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Abstract

Although Large Language Models(LLMs) can generate coherent and contextually
relevant text, they often struggle to recognise the intent behind the human user’s
query. Natural Language Understanding (NLU) models, however, interpret the
purpose and key information of user’s input to enable responsive interactions. Ex-
isting NLU models generally map individual utterances to a dual-level semantic
frame, involving sentence-level intent and word-level slot labels. However, real-life
conversations primarily consist of multi-turn conversations, involving the inter-
pretation of complex and extended dialogues. Researchers encounter challenges
addressing all facets of multi-turn dialogue conversations using a unified single
NLU model. This paper introduces a novel approach, MIDAS, leveraging a multi-
level intent, domain, and slot knowledge distillation for multi-turn NLU. To achieve
this, we construct distinct teachers for varying levels of conversation knowledge,
namely, sentence-level intent detection, word-level slot filling, and conversation-
level domain classification. These teachers are then fine-tuned to acquire specific
knowledge of their designated levels. A multi-teacher loss is proposed to facilitate
the combination of these multi-level teachers, guiding a student model in multi-turn
dialogue tasks. The experimental results demonstrate the efficacy of our model
in improving the overall multi-turn conversation understanding, showcasing the
potential for advancements in NLU models through the incorporation of multi-level
dialogue knowledge distillation techniques.

1 Introduction

Natural Language Understanding (NLU) within the realm of Natural Language Processing (NLP)
explores the mechanisms through which computers comprehend human language. Developing a
hierarchical semantic framework encompassing domain, intent, and slot has become pivotal in
representing the meaning embedded in natural language [1]. We present a conversation example that
shows the way of annotation for word-level slots, sentence-level intent, and conversation-level domain
from the M2M dataset in Figure 1-(a). The dialogue consists of a total of 9 turns, and each turn
includes word-level slot tokens and sentence-level intent information, and the dialogue corresponds
to one domain, ‘restaurant’.

Large Language Models (LLM) have received lots of attention in generating human-like text based
on user prompts. However, they are still limited when it comes to deeper communication and diverse
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(a) (b)

Figure 1: (a) An example of conversations with word-level slots, sentence-level intents, and
conversation-level domain annotation from M2M. B-NP (B-Number of People), B-RN (B-Restaurant
Name), O (Others) (b) The multi-level teacher knowledge distillation framework for the multi-turn
NLU task. Note that we applied three multi-level teachers: Intent Detection, Slot Filling, and Domain
Classification. In this framework, we conduct diverse Loss objectives, including Lrel, Lsim, Lsce,
Ltp and LKD, which represent relation loss, similarity loss, student cross-entropy loss, teacher
prediction supervise loss, and Kullback-Leibler Divergence loss, respectively.

Model Year Token Sentence Document Dialogue Type Joint Integration(Slot) (Intent) (Domain)
SeqSeq Liu and Lane [2] 2016 ⃝ ⃝ × Single-Turn BiRNN + Attention
SDEN Bapna et al. [3] 2017 ⃝ ⃝ ⃝ Multi-Turn BiRNN + Memory Network
Slot-Gated Goo et al. [4] 2018 ⃝ ⃝ × Single-Turn BiLSTM + Slot Gate
BLSTM+attention Tingting et al. [5] 2019 ⃝ ⃝ × Single-Turn BiLSTM + Attention
STD Jiang et al. [6] 2021 ⃝ ⃝ × Single-Turn Transformer + One-teacher KD
SDJN Chen et al. [7] 2022 ⃝ ⃝ × Single-Turn BiLSTM + self KD
XAI Attention Gunaratna et al. [8] 2022 ⃝ ⃝ × Multi-Turn eXplainable AI
Tri-level JNLU Weld et al. [9] 2023 ⃝ ⃝ ⃝ Multi-Turn Cross Transformer
Ours 2024 ⃝ ⃝ ⃝ Multi-Turn Multi-teacher KD

Table 1: Summary of existing joint NLU models and ours. Token, Sentence, and Document columns
indicate whether the relevant information is used for joint integration. KD refers to knowledge
distillation. The complete set of summary tables is detailed in Appendix A

key information2. Hence, we investigate how to improve the state-of-the-art existing NLU techniques.
While existing NLU literature predominantly concentrates on single-turn utterances within a single
domain, recent advancements in multi-turn datasets have paved the way for annotations at the dialogue
level, spanning across diverse domains. Interpreting more extended and intricate conversations with
multiple turns necessitates understanding the ongoing context and retaining previously gathered
information. Traditional NLU involves mapping single utterances to a dual-level semantic structure,
encompassing sentence-level intent and word-level slot labels. With real-life conversations extending
across multiple turns, there is an evident demand for research incorporating dialogue history, as
demonstrated by improved performance through dialogue context. The challenge extends beyond
dual-level understanding to encompass a three-level comprehension: sentence-level intent, word-level
slot, and conversation-level domain classification. However, researchers encounter challenges in
handling all aspects of multi-turn dialogue conversations through a single unified NLU model, due to
computational complexity and a lack of distillability of multi-level knowledge.

Addressing this need, our paper introduces a novel multi-level multi-teacher knowledge distillation
model to enhance NLU understanding in multi-turn dialogues, leveraging diverse levels of knowledge
embedded in these datasets. Notably, our model stands as the pioneering approach in multi-teacher
knowledge distillation, catering to distinct facets of knowledge within a dialogue. To achieve this, our
approach involves the construction of teachers at different levels, specifically focusing on sentence-
level intent detection, word-level slot filling, and conversation-level domain classification. We
fine-tune these multi-level teachers to acquire the relevant knowledge and combine these to educate
the student model in dialogue tasks facilitated by novel multi-level teacher loss functions.

There are two major contributions: First, we introduce a novel multi-level, multi-teacher knowledge
distillation model to enhance multi-turn NLU. It outperforms across widely-used multi-NLU datasets,
producing superior performance in all intent detection, slot filling, and domain classification, even
compared with the LLMs. Secondly, we introduce multi-level teacher loss functions, shedding light
on their impact within the multi-teacher knowledge distillation and guiding a student model.

2We tested NLU benchmarks with several LLMs, including LLaMa2, Gemma, and GPT3.5, visualised in
Appendix G.1 and G.2
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2 Related works

There is a large body of NLU modelling literature, and we briefly introduce the joint NLU models
and knowledge distillation models in this section. A more detailed summary of joint NLU models
and our model can be found in Table 1.

Natural Language Understanding Early investigations aimed to tackle various Natural Language
Understanding tasks by developing models for slot filling and intent detection separately. It has now
become commonplace to enhance joint models using transfer learning [10, 11]. One notable strategy
involves fine-tuning a language model [12–14] to address the limited generalisation capability caused
by insufficient data and leverage high-quality representations from the language model. In these
studies, the majority classify intent through the [CLS] representation and slots through each token
representation [15, 16]. Another approach to transfer learning involves training a model through
knowledge distillation, where a smaller model, known as the student model, is trained to mimic
the behaviour of a larger, more complex model, referred to as the teacher model. The predominant
method is self-distillation, where both the teacher and student models share the same structures
[7, 17]. However, those models mainly focused on single-turn dialogue or adopted only one teacher
model. As real-life conversations involve multiple turns, there is a growing need for research that
incorporates dialogue history. In multi-turn dialogues, it has been demonstrated that encoding the
dialogue history enhances performance [3, 9, 18, 19]. Hence, our model is the first method for
multi-teacher knowledge distillation to teach different aspects of knowledge in dialogue. As NLU
consists of multiple tasks such as intent classification and slot filling, it is more appropriate to train
the student model using a specialised teacher for each task. To the best of our knowledge, there have
been no attempts to employ multi-teacher distillation for multi-turn-based NLU.

Knowledge Distillation Knowledge Distillation (KD) defines a learning approach involving using a
well-trained network of teachers to guide the training of a student network for various tasks. Early
KD transfers knowledge from one teacher to one student model [20]. Multi-teacher KD, inspired
by ensemble learning, aims to enhance performance by incorporating knowledge from multiple
teacher models into a student model [21–28]. It was common for KD to use multiple teachers to
learn the same domain, regardless of whether the teacher had the same or a different architecture.
Recent methods have been proposed in which each teacher learns a different domain and imparts
knowledge to the student [29, 30]. Additionally, methods for learning different modalities have also
been proposed, which are classified into two types: the teacher and student learn different modalities,
a concept known as cross-modality [31, 32] and the teacher learns different modalities, and the
student receives all modalities [33].

3 MIDAS: Multi-level intent, domain, and slot knowledge distillation for
multi-turn NLU

We propose a new multi-level dialogue teacher knowledge distillation framework, MIDAS, that
trains the student model S with multi-level teachers to enhance the Natural Language Understanding
(NLU) capabilities. Note that we have three multi-level dialogue knowledge teachers, including
intent detection, slot filling and domain topic classification. To achieve this, we initially construct
teachers with distinct levels of dialogue knowledge, denoted as T = {TID, TSF , TDC}, where T
is the set of teacher models, and ID, SF , and DC correspond to Intent Detection, Slot Filling,
Domain Classification tasks. Then, we fine-tune the teacher models T to acquire knowledge from
each task. Finally, a combination of all three multi-level teachers T is employed to instruct the student
model S in dialogue tasks using our newly proposed multi-teacher knowledge loss objectives. The
comprehensive architecture is depicted in Figure 1-(b).

3.1 Multi-Level teacher construction

We first construct the teachers of different dialogue document component understanding levels,
including word-level slot, sentence-level intent, and conversation-level domain knowledge. The
inputs for all teachers consist of utterances from each turn in dialogue datasets, denoted by Xi =
xi
1, x

i
2, ..., x

i
l , where Xi represents the ith utterance in the entire dataset, l is the length of the

utterance, and xi
l signifies a word in the utterance.
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Word-level slot filling teacher TSF predicts the slot type for each word, providing knowl-
edge to the student model about key slots in the dialogue. The output of TSF is denoted
as Ŷ i

SF = Ŷ i
SF,1, Ŷ

i
SF,2, ..., Ŷ

i
SF,l, representing the predicted slot types for each word, where

Ŷ i
SF,l ∈ 0, 1, ..., kSF − 1, and kSF is the number of slot types.

Sentence-level intent detection teacher TID predicts the intent of the utterance, aiding the student
model in comprehending the overall intent of each turn. The prediction of TID is symbolised as Ŷ i

ID,
where Ŷ i

ID ∈ 0, 1, ..., kID − 1, and kID represents the number of intents in the dataset.

Conversation document-level domain classification teacher TDC forecasts the dialogue’s domain,
providing knowledge to classify it and understand its background knowledge. The prediction from
TDC is indicated as Ŷ i

DC , where Ŷ i
DC ∈ 0, 1, ..., kDC − 1, and kDC denotes the number of domains

in the dataset.

Using these three levels of teachers, our objective is to instruct the student model to comprehend
dialogues from multiple perspectives, incorporating word-level slot knowledge, sentence-level intent,
and document-level domain background knowledge. By doing so, we enhance the student model’s
grasp of dialogues across various levels. There are two primary reasons for utilising multi-level
dialogue knowledge teachers to train a student. First, individually deploying a pre-trained model for
each task consumes more computational resources, and some machines may not support running
multiple pre-trained models. Instead, the knowledge distillation process leads to more robust models
and is resistant to adversarial attacks. Incorporating soft targets from the teacher model can help
the student model learn smoother decision boundaries. Secondly, we posit that diverse levels of
knowledge derived from multi-turn conversation understanding datasets can enhance the comprehen-
sion of each specific natural language understanding task, surpassing the benefits of learning from
single-level dialogue knowledge. Note that we use pre-trained models as the foundational structure
for our teachers. After experimenting with various backbones, we determined that BERT yields one
of the best results overall, as detailed in Section 5.2. These pre-trained models undergo fine-tuning
using specific data for each level, resulting in distinct teachers with expertise in intent detection,
slot filling, and document classification. Pre-trained models, having been trained on extensive text
data, exhibit the capacity to transfer knowledge effectively. Ultimately, we leverage the collective
knowledge of these refined teachers to train the student model comprehensively.

3.2 Multi-level Teacher Fine-tuning

We perform separate fine-tuning of pre-trained models on intent detection (ID), slot-filling (SF), and
domain classification (DC) tasks. This yields multi-level teachers, TID, TSF , and TDC respectively,
corresponding to sentence-level, word-level and sentence-level knowledge, respectively. Each pre-
trained model specialises in learning knowledge at one specific level from the dialogue datasets,
resulting in teachers possessing different levels of dialogue document component understanding.
It’s important to note that each teacher focuses on one level of dialogue knowledge. This approach
is motivated by two factors. First, learning knowledge from a single task is less complex than
incorporating knowledge from all tasks, simplifying the fine-tuning of pre-trained models. Secondly,
instead of burdening a single model with the challenge of mastering knowledge from all aspects
of dialogues, each teacher focuses on a specific level of understanding, such as word-level slot
filling, sentence-level intent detection, or document-level domain classification. For each task, we
consolidate data from two datasets (MultiWOZ and M2M) by merging split and corresponding
label sets. For example, the training set for fine-tuning includes data from both datasets. We apply
cross-entropy loss and fine-tune the pre-trained models for a fixed number of epochs, utilising the
checkpoint from the last epoch as the teacher model. The process is described as follows:

Xj,train = X1
j,train, ..., X

NM2M
j,train, X

1
j,train, ..., X

NMultiWoz
j,train ,

Ltce = cross_entropy(Tj(Xj,train), Yj),

j ∈ {DC, ID, SF},

where NM2M and NMultiWoz are the number of training samples, and Yj is the ground truth.
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Algorithm 1 Triplet Relations
Input: The hidden states of the batch data from the teachers
Ht = {h1

1, h
2
1, ...h

n
1 , ..., h

n
j }, the hidden states of the batch

data from the student Hs = {h1
s, h

2
s, ...h

n
s }, the teacher model set

T = {T1, T2, ..., Tj}
Parameter: Distance function FD

Output: The batch size of triplet relations T

1: Let i = 0, T = ∅.
2: for i < n do
3: Randomly select three samples from the batch and label their

indexes in the batch as r1, r2, r3.
4: Treat the sample indexed r1 as the anchor, r2 as the positive

sample, r3 as the negative sample.
5: Let l = 0, flag = 0
6: for l < j do

7: d1,2 = FD(hr1
l , hr2

l ), d1,3 = FD(hr1
l , hr3

l )

8: if d1,2 > d1,3 then
9: flag += 1
10: else
11: flag −= 1
12: end if
13: l += 1
14: end for
15: if flag > 0 then
16: Swap the labels of hr2

l and hr3
l .

17: end if
18: i += 1
19: T += [hr1

s , hr2
s , hr3

s ]

20: end for
21: return T

3.3 Multi teachers knowledge distillation

Following the acquisition of multi-level teachers T , we employ a blend of these teachers to instruct
the student model S through multi-teacher knowledge distillation. The combination of teachers
comprises different levels, such as BERT-Base ID, BERT-Base SF, BERT-Base DC BERT-Base ID,
RoBERTa-Base DC, and LLaMa2-7b SF. The student model undergoes separate training for each
task, enabling it to grasp the intricacies of individual tasks with the assistance of diverse levels of
dialogue knowledge.

We delve into the exploration and introduction of five distinct loss functions to assess their efficacy
within the MIDAS. We incorporate Kullback–Leibler Divergence loss and Student Cross Entropy loss,
widely utilised knowledge distillation tools. Furthermore, with MIDAS, we explore three specific
types of losses tailored for multi-level teacher integration. These encompass relation loss, similarity
loss, and teacher-prediction supervised loss, each designed to enhance the learning dynamics in the
context of multi-level knowledge distillation.

Kullback–Leibler divergence(KD) loss LKD: We compute the KD loss [34] by comparing the
mean probabilities generated by the combination of teacher models with the probabilities derived
from the student model. We use KD loss to align the prediction probability distributions between the
student model and the teacher models, facilitating the learning of the student model from multiple
teachers.

LKD = KLDivLoss(
1

nT

∑nT

j
Pj , Ps), Pj = softmax(Tj(X)), Ps = softmax(S(X)),

where nT is the number of teachers.

Student cross entropy(SCE) loss Lsce: This loss function is computed by comparing the student
model’s predictions with the ground truth of each task. By employing the cross-entropy loss, the
student model receives direct supervisory signals from the ground truth, aiding in its learning process.

Lsce = cross_entropy(vs, Ytrue), vs = S(X),

where vs represents the student logit.

Relation loss Lrel: During training, for each batch of data, triplets are randomly generated, and the
internal relations of the triplets are determined by aggregating the votes from the combination of
teacher models. Employing TripletMarginLoss, the student model learns internal relations among
the batch data, aligning its understanding with that of the teacher models and ensuring a consistent
perspective on the dataset.

Lrel =
1

N

N∑
i

TripletMarginLoss(Ti),

where N is the batch size, and triplet T is generated by and articulated in Algorithm 1.

Similarity loss Lsim: The similarity loss is computed by maximising the logits similarities between
the student model and teacher models. With this, the student model can learn the knowledge from the
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teacher models in the feature space, not only the prediction probabilities. The loss equation is:

Lsim = −
nT∑
j

Fsim(vj , vs), vj = Tj(X), vs = S(X) (1)

Here, Fsim denotes the similarity function, and vj represents the teacher logit.

Teacher prediction supervised loss Ltp: In addition to utilising the ground truth for each task, we
incorporate the predictions made by the teacher models as pseudo-labels to facilitate the training
of the student model. We employ the probabilities assigned by the teacher models for each class,
ensuring that the student comprehensively acquires the knowledge embedded in the teacher models.

Ltp =

nT∑
j

cross_entropy(vs, Pj),

We experiment with diverse combinations of the aforementioned loss functions to assess their impact
on the student’s performance across various datasets and NLU tasks. The summary of the loss
function is described in Appendix B and the detailed result analysis can be found in Section 5.4.

4 Experimental setup

4.1 Datasets and Baselines

In this paper, we focus on multi-turn dialogue analysis in the dialogue state tracking (DST) domain,
which consists of all three natural language understanding tasks, including intent classification, slot
filling, and domain (topic) classification. Following by [9], we utilise two widely used benchmark
datasets in multi-turn dialogue Natural Language Understanding (NLU): Multi-Domain Wizard-of-Oz
2.2 (MWOZ) and Machines Talking To Machines (M2M), especially used as benchmarks in the DST
field. Details for each dataset are described in Appendix C.

Due to the limited number of baselines available for Multi-turn Dialogue Understanding, we initially
adopted the three published results as baselines [2, 4, 9]. Additionally, we fine-tuned the pre-trained
language models commonly used in the NLU domain. BERT-Base3 is representative transformer
encoder-based language model. RoBERTa-Base4 builds on BERT and adjusts hyperparameters
by eliminating the next-sentence prediction objective. It also trains with larger mini-batches and
learning rates. ALBERT-Base5 is a BERT-based model that demonstrated superior performance
by reducing the model size with factorised embedding parameterisation and cross-layer parameter
sharing. SeqSeq [2] is an RNN with attention mechanisms, designed for the joint tasks of ID and SF.
Slot-Gated [4] introduces a slot gate to capture the relationship between intent and slot, aiming to
improve semantic understanding through global optimisation. Tri-level JNLU [9] is a pioneering
model that incorporates domain information in the joint modelling of ID and SF.

4.2 Metrics and implementations

This paper evaluates the performance of baseline models and MIDAS in all three multi-turn dialogue
tasks, including ID, SF, and DC for each dataset. Following by [2, 4, 9], the metrics for each task are
shown as follows: Accuracy for ID and DC and F1 score for SF. Accuracy is the most commonly
used metric for Intent Detection (ID) as determining the intent of an utterance is typically framed as
a classification task. Accuracy is calculated as the ratio of correct predictions to the total number
of tests. Domain Classification (DC) also employs accuracy as it is a classification task. On the
other hand, Slot Filling (SF) employs F1 score. F1 score is directed towards assessing the prediction
effectiveness for slot tokens. It computes an F1 score for each class and determines the token-based
micro-averaged F1 score across all classes.

We introduce some implementation details in this section and the complete details in Appendix
H. For Multi-teacher fine-tuning, we use BERT-Base, RoBERTa-Base and LLaMa2-7b6 as the

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/roberta-base
5https://huggingface.co/albert-base-v2
6https://huggingface.co/meta-LLaMA/LLaMA-2-7b
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teacher backbones and fine-tune them on each task. For fine-tuning LLaMa2-7b, we adopt an unmask
strategy used in [35]. We use AdamW [36] and CrossEntropy loss to fine-tune the pre-trained models
for 3 epochs. The learning rate is 5e-5 and is warm-uped linearly from 0 to 5e-5 during the first
10% training steps. The batch size is 32. For Multi-level Distillation, we use AdamW and the
aforementioned losses to train the student with multi-level teachers. We use Squared Euclidean
distance in algorithm 1 and cosine similarity in equation 1. For the combination of these losses, we
sum them without any weight. We use the same optimiser, learning rate, warm-up strategy, and batch
size as the one used in teacher fine-tuning, and use a vanilla Transformer encoder as a student.

5 Results

5.1 Overall performance

ID SF DC
MWOZ M2M MWOZ M2M MWOZ M2M
(ACC) (ACC) (F1) (F1) (ACC) (ACC)

BERT-Base 0.6534 0.8675 0.9218 0.8543 0.8667 0.8923
RoBERTa-Base 0.8424 0.9252 0.9748 0.9132 0.8675 0.8909
ALBERT-Base 0.6531 0.8654 0.9187 0.8542 0.8694 0.8919
SeqSeq 0.6641 0.9250 0.8543 0.9172 - -
Slot-Gated 0.6883 0.9327 0.8776 0.9279 - -
Tri-level JNLU 0.7849 0.9419 0.9798 0.9302 0.2572 0.8938
MIDAS (BERT) 0.8464 0.9427 0.9928 0.9856 0.8793 0.8952
MIDAS (RoBERTa) 0.8502 0.9377 0.9928 0.9813 0.8816 0.8945

Table 2: The comparison of the MIDAS with baselines.
ID, SF and DC indicate intent detection, slot filling and
domain classification, respectively, as mentioned in Sec-
tion 4.2. ACC and F1 stand for accuracy and micro F1,
respectively, and scores in bold indicate leadership among
the metrics.

We compare MIDAS with fine-tuned
PLM baselines and published pioneer-
ing model results for two mainstream
multi-turn natural language understand-
ing tasks, Intent Detection and Slot Fill-
ing, with the same evaluation setup. Ta-
ble 2 shows that MIDAS remarkably out-
performs other baselines. To demon-
strate the improvement achieved through
MIDAS, we conduct experiments utilis-
ing two widely recognised multi-turn di-
alogue understanding datasets, MWOZ
and M2M. Note that all baselines and
MIDAS are fine-tuned for each of the
two tasks individually. As detailed in
Section 3.1, our approach involves the
utilisation of pre-trained models, BERT
or RoBERTa, for the fine-tuning of our three multi-level teacher models. These teachers encompass
Intent Detection (ID), Slot Filling (SF), and Domain Classification (DC). It is important to highlight
that MIDAS undergoes knowledge distillation from three distinct multi-level teachers, each specialis-
ing in sentence-level intent, word token-level slot, and conversation-level domain topic. Thus, Table 2
shows the results MIDAS (BERT) and MIDAS (RoBERTa) that all teachers are constructed using either
the BERT or RoBERTa architecture. Two versions of MIDAS exhibit superior performance across
both datasets, presenting outstanding outcomes with a slot-filling error rate below 2%. While the
RoBERTa-Base model demonstrates superiority in MWOZ, the BERT-Base model excels in M2M.
What should be noted is the performance difference between these models is not substantial, with
both consistently outperforming other baseline models. In Intent Detection (ID) and Slot Filling
(SF) tasks, MIDAS showcases notably higher performance compared to baselines. We also conduct
experiments on the Domain Classification (DC) task with the same datasets to better compare the
differences between MIDAS and other PLM baselines. However, while surpassing BERT-Base
and ALBERT-Base, the performance difference is marginal. We assume that this discrepancy is
attributed to the small number of the domain class. In contrast to other baseline models, Seq2Seq and
Slot-Gated lack a structure incorporating domain information, making them unable to assess domain
classification performance.

Overall, the observation highlights that bolstering multi-level conversation knowledge substantially
improves the comprehension of each Natural Language Understanding (NLU) task. Specifically,
enhancing results in intent detection is achievable by refining a student model through the distillation
of multi-level knowledge, encompassing sentence-level intent, word-level slots, and conversation-
level domain knowledge. The following two sections (Sections 5.2 and 5.3) delve into a more
comprehensive exploration of multi-level teacher models and the combination of multi-level teachers.

5.2 Effect of pretrained model for teachers

We then evaluate the efficacy of different pre-trained models for our multi-level teachers. As detailed
in Section 5.1 and illustrated in Table 2, we employed all three multi-level teachers (ID, SF, and DC)
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ID SF DC
MWOZ M2M MWOZ M2M MWOZ M2M
(ACC) (ACC) (F1) (F1) (ACC) (ACC)

MIDAS (BERT) 0.8464 0.9427 0.9928 0.9850 0.8780 0.8952

MIDAS (RoBERTa) 0.8502 0.9377 0.9928 0.9813 0.8816 0.8945

MIDAS (LLaMa) 0.8403 0.9392 0.9912 0.9833 0.8702 0.8804

MIDAS (Mixed 1) 0.8472 0.9411 0.9839 0.9745 0.8808 0.8929

MIDAS (Mixed 2) 0.8473 0.9401 0.9928 0.9764 0.8769 0.8925

ID SF DC
MWOZ M2M MWOZ M2M MWOZ M2M
(ACC) (ACC) (F1) (F1) (ACC) (ACC)

ID-only 0.8406 0.9366 0.8590 0.9684 0.7977 0.7159
SF-only 0.8310 0.9377 0.9619 0.9718 0.2425 0.8930
DC-only 0.8408 0.9321 0.8888 0.9534 0.6330 0.8915
ID+SF 0.8422 0.9399 0.9924 0.9835 0.8760 0.8939
ID+DC 0.8400 0.9292 0.9923 0.9848 0.8756 0.8929
SF+DC 0.8376 0.9416 0.9923 0.9825 0.8760 0.8940
ID+SF+DC 0.8464 0.9427 0.9928 0.9850 0.8780 0.8952

(a) (b)
Table 3: (a) The performance based on the type of teacher models. The MIDAS (BERT) and MIDAS
(RoBERTa) are identical to those presented in the table 2 whose all teachers are either BERT or
RoBERTa. MIDAS (LLaMa) refers to the outcome of utilising the LLaMa2-7b model as teacher
models of all tasks. The MIDAS (Mixed 1 and 2) represents the outcome of mixed type teacher
combination; Mixed 1: BERT (ID), LLaMa (SF) and RoBERTa (DC); Mixed 2: BERT (ID), RoBERTa
(SF) and RoBERTa (DC). (b) The performance based on the type of teacher models. The first column
indicates the type of teacher used. For example, ID+SF+DC uses all intent classification, slot filling,
and domain classification teachers, while ID-only uses only the intent classification teacher. Only
BERT is utilised as the teacher model. Results using RoBERTa are presented in Appendix D.

LKD Lsce Lsim Lrel Ltp

ID SF DC
MWOZ M2M MWOZ M2M MWOZ M2M
(ACC) (ACC) (F1) (F1) (ACC) (ACC)

⃝ ⃝ ⃝ × × 0.8429 0.9411 0.9928 0.9856 0.8750 0.8928
⃝ ⃝ × ⃝ × 0.8427 0.9411 0.9928 0.9791 0.8750 0.8927
⃝ ⃝ ⃝ ⃝ × 0.8464 0.9427 0.9928 0.9850 0.8780 0.8952
⃝ ⃝ ⃝ ⃝ ⃝ 0.8462 0.9373 0.9927 0.9761 0.8793 0.8903

Table 4: The comparison of the diverse loss function combinations. Only BERT is utilised as the
teacher model, and the results of RoBERTa are presented in Appendix E. The full names of each loss
can be found in Section 3.3. We adopt two LKD and Lsce as compulsory knowledge distillation loss
and also explore three Lrel, Lsim, and Ltp for MIDAS. Scores in bold indicate leadership among the
metrics, and underlined scores indicate the second-best.

based on BERT and/or RoBERTa, resulting in a superb performance. In this section, we investigate
how various pre-trained language models can impact the knowledge distillation ability of our multi-
level teachers in instructing the student model. In addition to using BERT or RoBERTa, we also
incorporate LLaMa2-7b, a decoder-only based pre-trained model, into our analysis.

Table 3-(a) shows the results of the effectiveness of using various pre-trained models as base models
for all three multi-level teachers7. Compared to the high-achieving two encoder-based models, BERT
and RoBERTa, the MIDAS (LLaMa) multi-level teachers produce lower performance8. We assume a
decoder-only model like LLaMa, primarily used for generating coherent and contextually relevant
text, whereas BERT and RoBERTa are encoder-based models that have a deep understanding of
context and relationships between words and excel in classification tasks. In addition to having
multi-level teachers using a single pre-trained model, we adopt a mixed type of pre-trained model for
preparing multi-level teachers. For instance, we can apply BERT as a pre-trained model for teaching
sentence-level intent knowledge, utilise RoBERTa as a teacher model for word-level slots, and adopt
LLaMa as a conversation-level domain topic teacher model. As shown in Table 3-(a), the result shows
that using mixed types of pre-trained teacher models is less effective than employing a consistent
single pre-trained model as the teacher. This implies that knowledge distillation from teachers with
inconsistencies in their feature spaces may impede the learning process for a single student model.

5.3 Effect of combination of multi-level teachers

We explore the impact of incorporating each multi-level teacher (ID, SF, DC) in all three multi-turn
dialogue understanding tasks. MIDAS is evaluated with individual teachers (ID, SF, DC), all possible
pairs from {ID, SF, DC}9, and then with all three teachers. Table 3 presents the results for each

7Note that the MIDAS (BERT) and MIDAS (RoBERTa) models are identical to those presented in the Table 2.
8Any decoder-only LM produces a similar low performance.
9Note that we do not adopt Lrel since it is not possible to adopt when there are two teachers.
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combination of teacher models for three different dialogue understanding tasks. Note that the table
demonstrates the outcome of MIDAS (BERT) teachers, and we produce that of MIDAS (RoBERTa)
in Appendix D. The experimental findings highlight that the ID+SF+DC combination attains the
highest performance, underscoring the advantage of the student model integrating knowledge from
all teachers for each task.

5.4 Effect of knowledge distillation loss function

As mentioned in Section 3.3, we conducted the loss function ablation study for MIDAS. This
comprehensive evaluation aims to identify the most effective combinations that enhance the student
model’s proficiency in handling different aspects of dialogue understanding across multiple NLU
tasks. Note that we use LKD and Lsce as compulsory knowledge distillation losses, and conduct an
ablation study of three newly proposed multi-level teacher losses: Lsim, Lrel, and Ltp. As shown
in Table 4, the results indicate that incorporating Lsim with Lrel achieves the best or the second
best performance across all tasks and datasets. Although Lrel and Lsim share a similar trend, their
impact on model learning may be somewhat superior when employed independently, particularly
when utilising Lsim. While incorporating Ltp with the others led to a slight performance increase, it
did not match the effectiveness observed with the sole application of the earlier losses.10

5.5 Qualitative analysis: case study Turn Model Tokens (Slot) Intent Domain

1

Utterance boat, is, fine - -
GT B-RN, O, O affirm -

MIDAS (BERT) B-RN, O, O affirm -
BERT-Only O, O, O inform -

2

Utterance sure, „ i, found, this, one, :, the, view - -
GT O, O, O, O, O, O, O, B-RN, I-RN offer -

MIDAS (BERT) O, O, O, O, O, O, O, B-RN, I-RN offer -
BERT-Only O, O, O, O, O, O, O, O, O offer -

3

Utterance how, about, the, ivy, or, boats, ? - -
GT O, O, B-RN, I-RN, O, B-RN, O select restaurant

MIDAS (BERT) O, O, B-RN, I-RN, O, B-RN, O select restaurant
BERT-Only O, O, B-RN, B-RN, O, B-RN, O select movie

Table 5: A Prediction example with a three-turn conversa-
tion on slot filling, intent detection, and domain classifi-
cation results of each model. The green cell represents a
result that matches the ground truth, the red cell indicates
incorrect results, and the yellow cell indicates partially
correct results. Additional case examples are articulated
in Appendix F.

We further evaluate MIDAS with a quali-
tative assessment of the three NLU tasks
on M2M. As shown in Table 5, we as-
sume to have a three-utterance conver-
sation11, ‘boat is fine’, ‘sure, i found
this one: the view’, ‘how about the ivy
or boats?’. Based on the given con-
versation, we test all three NLU tasks,
including intent classification, slot fill-
ing, and domain classification. The
domain would be classified across the
entire conversation, so we placed it
only once to the end. We mainly
compare with two models: 1) MIDAS
(BERT), trained with three teachers
BERTID, BERTSF , and BERTDC ,
and 2) BERT-only refers a single fine-
tuned BERT (BERT-Base), which focus
on only one task for each prediction.

Although the single fine-tuned BERT (BERT-only) can sometimes predict the slots correctly, it does
not communicate/integrate with the word level and domain level classification. For example, (BERT-
only) correctly tags B-RN (Restaurant Name) in the turn 3, while no-integration would produce
a domain prediction as ‘movie’. Nevertheless, the student model exhibits the ability to identify
(-RN)Restaurant Names even in the absence of domain labels when trained independently on the
SF task and concurrently on the ID and DC tasks. Instances such as these validate our hypothesis
that leveraging diverse knowledge levels from multi-turn conversation datasets can improve the
understanding of individual natural language understanding tasks, outperforming the advantages of
learning with single-level dialogue knowledge.

6 Conclusion and Limitation

This paper introduces a novel multi-level teacher knowledge distillation framework to enhance multi-
turn natural language understanding (NLU). By fine-tuning pre-trained models at word, sentence,
and document levels, we construct multi-level teachers, imparting their knowledge to a student

10We conducted testing with Ltp only, it produces much lower performance than any others, which is expected.
11The original conversation is longer but reduced in the visualisation due to page limitation.
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model. Various loss functions are introduced and explored, and the experiment results demonstrate
the framework’s effectiveness in improving the student model’s understanding across diverse NLU
tasks. It shows better than the LLM result. However, there are some spaces for future work, including
covering multilingual multi-turn dialogue. We believe this work will provide valuable insights into
various aspects of dialogue knowledge for NLU and multi-level knowledge distillation.
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Model Year Token
(Slot)

Sentence
(Intent)

Document
(Domain) Dialogue Type Joint Integration

SeqSeq Liu and Lane [2] 2016 ⃝ ⃝ × Single-Turn BiRNN + Attention
SDEN Bapna et al. [3] 2017 ⃝ ⃝ ⃝ Multi-Turn BiRNN + Memory Network
Slot-Gated Goo et al. [4] 2018 ⃝ ⃝ × Single-Turn BiLSTM + Slot Gate
BLSTM+attention Tingting et al. [5] 2019 ⃝ ⃝ × Single-Turn BiLSTM + Attention
Co-Interactive Transformer Qin et al. [37] 2021 ⃝ ⃝ × Single-Turn BiLSTM + Attention
GL-GIN Qin et al. [38] 2021 ⃝ ⃝ × Single-Turn BiLSTM + GAT
SyntacticTF Wang et al. [39] 2021 ⃝ ⃝ × Single-Turn Transformer
STD Jiang et al. [6] 2021 ⃝ ⃝ × Single-Turn Transformer + One-teacher KD
JointIDSF Dao et al. [12] 2021 ⃝ ⃝ × Single-Turn CRF + Attention
CaBERT-SLU Wu et al. [40] 2021 ⃝ ⃝ ⃝ Multi-Turn Attention
SDJN Chen et al. [7] 2021 ⃝ ⃝ × Single-Turn BiLSTM + self KD
HAN Chen et al. [41] 2022 ⃝ ⃝ × Single-Turn BiLSTM + Attention
ReLA-NET Xing and Tsang [42] 2022 ⃝ ⃝ × Single-Turn BiLSTM + GAT
XAI Attention Gunaratna et al. [8] 2022 ⃝ ⃝ × Multi-Turn XAI
WFST-BERT Abro et al. [13] 2022 ⃝ ⃝ × Single-Turn WFST
Contextual SLU Tran et al. [43] 2022 ⃝ ⃝ ⃝ Multi-Turn BiLSTM + Attention
TKDF Cheng et al. [17] 2023 ⃝ ⃝ × Single-Turn SSRAN + One-teacher KD
MISCA Pham et al. [44] 2023 ⃝ ⃝ × Single-Turn BiLSTM + Attention
PAGM Mei et al. [14] 2023 ⃝ ⃝ × Single-Turn Gate
FAN Huang et al. [45] 2023 ⃝ ⃝ × Single-Turn Attention
Tri-level JNLU Weld et al. [9] 2023 ⃝ ⃝ ⃝ Multi-Turn Transformer
CKA-NLU Wu and Juang [18] 2023 ⃝ ⃝ ⃝ Multi-Turn Attention
BiSLU Tu et al. [19] 2023 ⃝ ⃝ × Single-Turn self KD
MIDAS 2024 ⃝ ⃝ ⃝ Multi-Turn Multi-teacher KD

Table 6: Summary of previous joint NLU models and MIDAS. Token, Sentence, and Document
columns indicate whether the relevant information is used for joint integration. GAT in the Joint
Integration column refers to the graph attention network, KD refers to knowledge distillation, and
WFST refers to Weighted Finite-State Transducers.

A Related works

Table 6 presents a comparison of MIDAS with 23 previous joint NLU models. Recently, most NLU
studies have embraced a joint learning model capable of handling all NLU tasks to mitigate error
propagation inherent in pipelined approaches [39, 46, 8, 45]. The initial joint models employed
traditional neural networks like RNN [2] and LSTM [5, 38, 41–44] with attention mechanisms.

All models leverage slot-level knowledge and intent-level knowledge, but only five previous works
incorporate domain-level knowledge. This implies that only five prior studies utilised a multi-turn
dialogue dataset.

Only one previous study [9] conducted tests on domain classification. Hence, we chose [9] as
a representative baseline. What sets the proposed model apart is its utilisation of multi-teacher
knowledge distillation. While two previous works employed self-knowledge distillation and another
two adopted one-teacher knowledge distillation, MIDAS represents the first attempt at employing
multi-teacher knowledge distillation for joint learning in natural language understanding.

B Each losses of proposed loss function

The following losses are utilized to train the student model, each playing a distinct role:

• Lkd: This loss facilitates the transfer of knowledge from the teacher models to the student
model, enabling the student to mimic the general behavior of multiple teachers.

• Lrel: This loss is designed to capture the relationships between different samples in the
input data. It helps to align the student’s understanding with that of the teacher models and
ensures a consistent perspective on the dataset.

• Lsim: This loss encourages the student model to generate outputs that are similar to those
of the teacher models in terms of their overall structure and distribution. It helps to maintain
consistency between the student and teacher predictions.

• Lsce: This loss function serves as the fundamental mechanism for training the student model.
It entails the student learning to predict the correct labels associated with the input data.
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ID SF DC
MWOZ M2M MWOZ M2M MWOZ M2M
(ACC) (ACC) (F1) (F1) (ACC) (ACC)

ID-only 0.8339 0.8097 0.9079 0.9326 0.6183 0.7147
SF-only 0.8403 0.8945 0.9620 0.9434 0.2471 0.8917
DC-only 0.8469 0.8929 0.9547 0.9251 0.7521 0.8913
ID+SF 0.8451 0.9083 0.9928 0.9802 0.8734 0.8923
ID+DC 0.8373 0.9114 0.9921 0.9797 0.8763 0.8888
SF+DC 0.8453 0.9147 0.9927 0.9805 0.8707 0.8912
ID+SF+DC 0.8502 0.9377 0.9928 0.9813 0.8816 0.8945

Table 7: The performance based on the type of teacher models. The first column indicates the type
of teacher used. For example, ID+SF+DC uses all intent classification, slot filling, and domain
classification teachers, while ID-only uses only the intent classification teacher. Only RoBERTa is
utilised as the teacher model.

• Ltp: This loss leverages the predictions of the teacher models to provide additional supervi-
sion signals to the student model. It helps to guide the student towards making predictions
that align with those of the teachers.

C Details of datasets

MWOZ [47] is specifically designed for Dialogue State Tracking (DST) and adopts the conventional
human-vs-human Wizard of Oz approach across diverse domains, including attraction, bus, hospital,
hotel, police, restaurant, taxi, and train. It incorporates 30 slot types and 11 intent types. The dataset
comprises 8,437 dialogues, with an average of 5.68 turns per dialogue and 14.07 tokens per turn.
Following by [2, 4, 9], we do not consider any multi-label samples but utilise the data with a single
domain and intent.

M2M [48] is introduced with virtual agents and user-generated interactions to emulate goal-directed
conversations through paraphrasing with templated utterances. M2M has movies and restaurant
domains. The slots and intents are categorical, with 21 slot types and 15 intent types. The dataset
comprises 1,500 dialogues, with an average of 9.86 turns per dialogue and 8.25 tokens per turn.

D Combination-based ablation study

We explore the impact of incorporating each multi-level teacher (ID, SF, DC) in all three multi-turn
dialogue understanding tasks. Table 7 presents the results for each combination of teacher models
for three different dialogue understanding tasks. The experimental results are when only RoBERTa
is adopted as the teacher model. MIDAS is evaluated with individual teachers (ID, SF, DC), all
possible pairs from {ID, SF, DC}, and then with all three teachers. For example, ID+SF+DC uses
all intent classification, slot filling, and domain classification teachers, while ID-only uses only the
intent classification teacher. Note that we do not adopt Lrel while two models are used since it
is not possible to adopt when there are two teachers. The experimental findings highlight that the
ID+SF+DC combination attains the highest performance, underscoring the advantage of the student
model integrating knowledge from all teachers for each natural language understanding task.
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No. Model Tokens (Slot) Intent Domain

1

Utterance near, kirkland, and, i, don, ’, t, care, about, the ratings - -
Ground Truth O, B-location, O, O, O, O, O, O, O, O, O inform restaurant
MIDAS (BERT) O, B-location, O, O, O, O, O, O, O, O, O inform restaurant

BERT-Only O, B-restaurant_name, O, O, O, O, O, O, O, O, O infrom movie

2

Utterance let, ’, s, go, with, the, view - -
Ground Truth O, O, O, O, O, B-restaurant_name, I-restaurant_name affirm restaurant
MIDAS (BERT) O, O, O, O, O, B-restaurant_name, I-restaurant_name affirm restaurant

BERT-Only O, O, O, O, O, O, O affirm movie

3

Utterance then, find, me, one, in, the, expensive, price, range. - -
Ground Truth O, O, O, O, O, O, O, O, O find_hotel hotel
MIDAS (BERT) O, O, O, O, O, O, O, O, O find_hotel hotel

BERT-Only O, O, O, O, O, O, O, O, O find_restaurant restaurant

4

Utterance which, ever, is, nice., i, will, need, some, info, on, it, too. - -
Ground Truth O, O, O, O, O, O, O, O, O, O, O, O find_attraction attraction
MIDAS (BERT) O, O, O, O, O, O, O, O, O, O, O, O find_attraction attraction

BERT-Only O, O, O, O, O, O, O, O, O, O, O, O find_hotel restaurant

5

Utterance great, we, are, meeting, friends, at, wandlebury, country, park, before, we, eat„ can, you, tell, me, about, that, place,
and, where, it, is? - -

Ground Truth O, O, O, O, O, O, B-attraction-name, I-attraction-name, I-attraction-name, O, O, O, O, O, O, O, O, O, O, O, O, O,
O find_attraction attraction

MIDAS (BERT) O, O, O, O, O, O, B-attraction_name, I-attraction_name, I-attraction_name, O, O, O, O, O, O, O, O, O, O, O, O, O,
O find_attraction attraction

BERT-Only O, O, O, O, O, O, B-attraction-name, I-hotel-name, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O find_restaurant restaurant

6

Utterance yes, may, i, have, the, address, post,code, and, phone, number, for, golden, house?, i’ll, book, it, myself. - -
Ground Truth O, O, O, O, O, O, O, O, O, O, O, B-restaurant_name, I-restaurant_name, O, O, O, O find_restaurant restaurant
MIDAS (BERT) O, O, O, O, O, O, O, O, O, O, O, B-restaurant_name, I-restaurant_name, O, O, O, O find_restaurant restaurant

BERT-Only O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O find_hotel hotel

7

Utterance can, you, book, for, arrival, closer, to, 17:30, for, one, person, and, give, me, the, reference, number., also, i, would,
like, to, see, a, college, in, centre. - -

Ground Truth O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O find_attraction attraction
MIDAS (BERT) O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O find_attraction attraction

BERT-Only O, O, O, O, O, O, O, B-train_leaveat, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O book_train train

8

Utterance yes, please., i, need, an, address, and, phone, number, too. - -
Ground Truth O, O, O, O, O, O, O, O, O, O find_attraction attraction
MIDAS (BERT) O, O, O, O, O, O, O, O, O, O find_attraction attraction

BERT-Only O, O, O, O, O, O, O, O, O, O find_restaurant restaurant

9

Utterance just, need, to, know, what, area, "its", in. - -
Ground Truth O, O, O, O, O, O, O, O find_attraction attraction

MIDAS (RoBERTa) O, O, O, O, O, O, O, O find_attraction attraction
RoBERTa-Only O, O, O, O, O, O, O, O find_hotel hotel

10

Utterance i, would, actually, like, to, book, 5, people, and, would, like, to, know, the, reference, number, for, the, tickets, and,
the, address, of, la, tasca, restaurant. - -

Ground Truth O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, B-restaurant-name, I-restaurant-name, O find_restaurant restaurant
MIDAS (RoBERTa) O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, B-restaurant-name, I-restaurant-name, O find_restaurant restaurant

RoBERTa-Only O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, B-restaurant-name, B-hotel-name, O book_train restaurant

11

Utterance "its", not, a, restaurant„ "its", an, attraction., nusha. - -
Ground Truth O, O, O, O, O, O, O, B-attraction-name find_attraction attraction

MIDAS (RoBERTa) O, O, O, O, O, O, O, B-attraction-name find_attraction attraction
RoBERTa-Only O, O, O, O, O, O, O, O find_attraction restaurant

12

Utterance will, you, give, me, the, phone, number„ address„ and, postcode, for, graffiti„ please? - -
Ground Truth O, O, O, O, O, O, O, O, O, O, O, B-restaurant-name, O find_restaurant restaurant

MIDAS (RoBERTa) O, O, O, O, O, O, O, O, O, O, O, B-restaurant-name, O find_restaurant restaurant
RoBERTa-Only O, O, O, O, O, O, O, O, O, O, O, O, O find_attraction restaurant

13

Utterance i, am, looking, to, get, to, the, rajmahal, restaurant, please„ how, do, i, get, there? - -
Ground Truth O, O, O, O, O, O, O, B-restaurant_name, O, O, O, O, O, O, O find_restaurant restaurant

MIDAS (RoBERTa) O, O, O, O, O, O, O, B-restaurant_name, O, O, O, O, O, O, O find_restaurant restaurant
RoBERTa-Only O, O, O, O, O, O, O, B-restaurant_name, O, O, O, O, O, O, O find_taxi taxi

Table 8: 13 Prediction examples with both datasets on slot filling, intent detection, and domain
classification results of each model. The first two utterances are from M2M, while the rest are
from MultiWOZ 2.2 (MWOZ). The first eight results come from MIDAS (BERT) and BERT-Only,
whereas the remaining five results pertain to MIDAS (RoBERTa) and RoBERTa-Only. The green
cell represents a result that matches the ground truth, the red cell indicates incorrect results, and the
yellow cell indicates partially correct results.

E Loss function ablation study

We conducted the loss function ablation study for MIDAS with RoBERTa Teacher. This comprehen-
sive evaluation aims to identify the most effective combinations that enhance the student model’s
proficiency in handling different aspects of dialogue understanding across multiple NLU tasks. Note
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LKD Lsce Lsim Lrel Ltp
ID SF DC

MWOZ M2M MWOZ M2M MWOZ M2M
(ACC) (ACC) (F1) (F1) (ACC) (ACC)

⃝ ⃝ ⃝ × × 0.8441 0.9362 0.9928 0.9842 0.8744 0.8945
⃝ ⃝ × ⃝ × 0.8459 0.9377 0.9610 0.8415 0.8816 0.8914
⃝ ⃝ ⃝ ⃝ × 0.8502 0.9376 0.9928 0.9813 0.8803 0.8945
⃝ ⃝ ⃝ ⃝ ⃝ 0.8488 0.9264 0.9912 0.9704 0.8811 0.8922

Table 9: The comparison of the diverse loss function combinations. Only RoBERTa is utilised as
the teacher model. We adopt two LKD and Lsce as compulsory knowledge distillation loss and also
explore three Lrel, Lsim, and Ltp for MIDAS. Scores in bold indicate leadership among the metrics,
and underlined scores indicate the second-best.

ID SF DC
MWOZ M2M MWOZ M2M MWOZ M2M
(ACC) (ACC) (F1) (F1) (ACC) (ACC)

LLaMa2-7b-chat 0.4751 0.3363 0.0217 0.0751 0.6528 0.5231
LLaMa2-13b-chat 0.1679 0.2013 0.0891 0.1092 0.5602 0.4468
LLaMa2-70b-chat 0.3896 0.3275 0.0619 0.0883 0.6987 0.6012
Gemma-7b 0.6515 0.4588 0.6653 0.4357 0.7227 0.5426
GPT3.5 0.6971 0.5100 0.8175 0.5516 0.7739 0.7740
GPT4o 0.6789 0.6410 0.8418 0.6616 0.7877 0.8503
GPT4o with demonstration 0.7614 0.7510 0.8525 0.7132 0.7941 0.7051
Our best model 0.8502 0.9427 0.9928 0.9856 0.8816 0.8952

Table 10: The comparison of the proposed models with prompt tuning methods using Large Language
Models. ID, SF and DC indicate intent detection, slot filling and domain classification, respectively,
as mentioned in Section 4.2. ACC and F1 stand for accuracy and micro F1, respectively, and scores
in bold indicate leadership among the metrics.

that we use LKD and Lsce as compulsory knowledge distillation losses, and conduct an ablation study
of three newly proposed multi-level teacher losses: Lsim, Lrel, and Ltp. As shown in Table 9, the
results indicate that incorporating Lsim with Lrel achieves the best or the second best performance
across all tasks and datasets. Although Lrel and Lsim share a similar trend, their impact on model
learning may be somewhat superior when employed independently, particularly when utilising Lsim.
While incorporating Ltp with the others led to a slight performance increase, it did not match the
effectiveness observed with the sole application of the earlier losses.

F More case studies

We further evaluate MIDAS with a qualitative assessment of the three NLU tasks on MWOZ and M2M.
In Table 8, we test all three NLU tasks, including intent classification, slot filling, and domain classifi-
cation. The first two utterances are from M2M, while the rest are from MultiWOZ 2.2 (MWOZ). The
first eight results come from MIDAS (BERT), trained with three teachers BERTID, BERTSF , and
BERTDC , and BERT-only refers a single fine-tuned BERT (BERT-Base), whereas the remaining five
results pertain to MIDAS (RoBERTa), trained with three teachers RoBERTaID, RoBERTaSF ,
and RoBERTaDC , and RoBERTa-only refers a single fine-tuned RoBERTa (RoBERTa-Base).
Although the single fine-tuned BERT (BERT-only) or RoBERTa (RoBERTa-only) can sometimes
predict the slots correctly, it does not communicate/integrate with the word level and domain level
classification. Instances such as these validate our hypothesis that leveraging diverse knowledge
levels from multi-turn conversation datasets can improve the understanding of individual natural
language understanding tasks, outperforming the advantages of learning with single-level dialogue
knowledge.

G Prompt method

G.1 Quantitative analysis

We measured the performance using the zero-shot prompt method to compare performance with
Large Language Model (LLM). The LLM LLaMa, Gemma, and GPT3.5 were utilized. The prompt
for Intent Detection (ID) and Domain Classification (DC) was given as follows: In this task, you
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(a)

(b)

Figure 2: Two examples for qualitative analysis: (a) shows the results on the M2M dataset, and (b)
shows the results on the MWOZ dataset. Each example shows the results when MIDAS matches the
ground truth. The three cells below each example display the type lists for slot, intent, and domain
and red text in each column of the results table indicates errors.

are given a dialogue. Your job is to classify the following dialogue into one of
the {number of classes} different {intents or domains}. The {intents or domains}
are: {name of classes}. Input: [{input}]. Output(only output the {intent or
domain}):. The prompt for Slot Filling (SF) is: In this task, you are given a dialogue.
Your job is to classify the following dialogue into one of the {number of classes}
different slots. The slots are: {name of classes}. Input: [{input}]. Output(Only
output slot types. And the slot types should be output as a list without any
explanation):.

Table 10 shows the experimental results of each baseline with the performance of our best model.
We can see that GPT3.5 performs best on all tasks in the zero-shot testing, but still falls significantly
short of our model’s performance. In the ID and SF tasks, the performance of LLaMa is significantly
worse than that of Gemma and GPT. This suggests that factors such as architecture, training data, and
training methods also impact LLM performance, in addition to the number of parameters.

Even within the LLaMa series, the number of model parameters doesn’t always determine perfor-
mance; the 7b model sometimes outperforms the 13b and 70b models. Note that only the 70b model
was used with 4-bit quantisation.

Across all three tasks, LLMs occasionally generate out-of-scope class names, despite having all class
names provided. Additionally, in the SF task, LLMs don’t always output answers corresponding to
the length of the original text. Despite our prompt stating that no explanation is needed for efficiency,
LLMs sometimes still generate explanations. These observations indicate that LLMs don’t fully grasp
the input.

G.2 Qualitative analysis

In the qualitative analysis, we focus on two representative LLMs, Gemma-7b and GPT3.5, as shown
in Figure 2. From the M2M conversation as shown in Figure 2-(a), we found that both LLMs
can not predict slot types based on the context. For example, GPT3.5 predicts “Michelin/B-RN
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rated/I-Rating” instead of “Michelin/B-Rating rated/I-Rating”. Except for the wrong understanding
of the conversation, we found that both LLMs can not follow the prompt all the time. For example,
both LLMs do not predict the slot type for each token, where the missing predictions are represented
by “N”. From the Multi-Domain Wizard-of-Oz 2.2 (MWOZ) conversation as shown in Figure 2-(b),
we can see that both LLMs can not make predictions in terms of the whole conversation, resulting the
conflicts of the predictions of the domains and intents. For example, GPT3.5 predicts “Book Train”
after “Book Restaurant” and Gemma-7b predicts “Find Restaurant” after “Book Restaurant”. Another
example is that both LLMs failed to predict the domain “Restaurant” of the last turn dialogue, even
the Gemma-7b already predicted the intent as “Find Restaurant”.

H Implementation details

H.1 Experiment hyperparameters

Table 11 presents the hyperparameters, used in our proposed Multi-level Teacher Fine-tuning, as well
as Multi-Teacher Knowledge Distillation. The Implementation details can be found in Section 4.2. of
the main submission.

We further present the results of various experiments conducted to select hyperparameters, particularly
the learning rate, in Table 12. In all tests, the temperature is fixed at 20, and only the learning rate is
changed to 0.0005, 0.00005, and 0.000005. In the experiments on the M2M dataset, the performance
of Gemma-7b alongside LLaMa2-7b is also measured to compare performance with the generative
model. The highest accuracy is shown when the learning rate was 0.00005, and Gemma-7b shows
similar performance to LLaMa2-7b, but LLaMa2-7b is slightly superior. The best performance is
observed when the learning rate is 0.00005, which is also the case in experiments on the MWOZ
dataset.

Hyper-parameter Value in Fine-tuning Value in Knowledge Distillation
Learning Rate 5e-5 5e-5
Batch Size 32 32
Warm-up Steps 10% of Max epoch 10% of Max epoch
Mex epoch 3 100
Stop Strategy Max Epoch Early Stopping on validation loss
Stop Patience - 10
Optimizer AdamW AdamW
Optimizer Weight Decay 1e-2 1e-2
Optimizer Betas 0.9, 0.999 0.9, 0.999
Margin in Lrel - 0.2
Norm in Lrel - 2
FD in Lrel - L2-Norm
Similarity in Lsim - Cosine Similarity
Max Token Length 512 512

Table 11: The hyper-parameters used in our experiments.
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Model Task Learning Rate Accuracy
M2M

LLaMa2-7b

ID
0.0005 0.9121
0.00005 0.9392

0.000005 0.9093

SF
0.0005 0.9696
0.00005 0.9833

0.000005 0.9349

DC
0.0005 0.8895
0.00005 0.8804

0.000005 0.8375

Gemma-7b

ID
0.0005 0.9204
0.00005 0.9357

0.000005 0.9102

SF
0.0005 0.9693
0.00005 0.9816

0.000005 0.9429

DC
0.0005 0.8799
0.00005 0.8840

0.000005 0.7890
MWOZ

LLaMa2-7b

ID
0.0005 0.8021
0.00005 0.8403

0.000005 0.7952

SF
0.0005 0.9776
0.00005 0.9912

0.000005 0.9740

DC
0.0005 0.8411
0.00005 0.8702

0.000005 0.7026

Table 12: Summary of performance changes according to learning rate changes.

H.2 Model details

We display the visualisation of teacher models and our student model Vanilla Transformer Encoder
together. Those two summarises can be found in Table 13. Note that we use LoRA to fine-tune
LLaMa 2-7b.

BERT RoBERTa LLaMa Student
Architecture Encoder Encoder Decoder Encoder
Parameters 110M 125M 7B 58M
Layers 12 12 32 6
Heads 12 12 32 8
Hidden Dim. 768 768 4096 768
Feed Forward Dim. 3072 3072 11008 2048
Dropout Rate 0.1 0.1 0.0 0.3
Rank of LoRA - - 64
Alpha of LoRA - - 16
Dropout of LoRA - - 0.1

Table 13: The details of the models used in our work.

H.3 Hardware information

Our experiments are run on the Linux platform with an A6000 Nvidia graphic card and an AMD
Ryzen Threadripper PRO 5955WX 16-core CPU, and the RAM is 128G.
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