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Abstract

Conversational assistants (CAs) and Task-oriented ones, in particular, are designed to

interact with users in a natural language manner, assisting them in completing specific

tasks or providing relevant information. These systems employ advanced natural lan-

guage understanding (NLU) and dialogue management techniques to comprehend user

inputs, infer their intentions, and generate appropriate responses or actions. Over time,

the CAs have gradually diversified to today touch various fields such as e-commerce,

healthcare, tourism, fashion, travel, and many other sectors. NLU is fundamental in the

natural language processing (NLP) field. Identifying user intents from natural language

utterances is a sub-task of NLU that is crucial for conversational systems. The diversity

in user utterances makes intent detection (ID) even a challenging problem. Recently, with

the emergence of Deep Neural Networks. New State of the Art (SOA) results have been

achieved for different NLP tasks. Recurrent neural networks (RNNs) and Transformer

architectures are two major players in those improvements. RNNs have significantly con-

tributed to sequence modelling across various application areas. Conversely, Transformer

models represent a newer architecture leveraging attention mechanisms, extensive train-

ing data sets, and computational power. This review paper begins with a detailed explo-

ration of RNN and Transformer models. Subsequently, it conducts a comparative

analysis of their performance in intent recognition for Task-oriented (CAs). Finally, it con-

cludes by addressing the main challenges and outlining future research directions.

K E YWORD S

conversational systems, intent detection, natural language understanding, recurrent neural
networks, transformer models

1 | INTRODUCTION

Personalization is a research subject that dates back to the late 1990s and is considered to be one of the more established research fields.

The concept of personalization, which is also known in a broader sense as customization, refers to the act of modifying a service or a product in

such a way that it fits to the preferences, cognition, requirements, or capabilities of specific persons within the confines of a specific setting.
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A bot is a virtual agent that uses more or less advanced artificial intelligence to communicate with a user on a given domain. Human-machine

communication must be as natural as possible to approach human touch as closely as possible. The assistant can recognize your request, whether

written or oral and then provide you with a suitable answer witch could also be personalized based on the users’ profile of interactions. In addi-

tion, the robot can be represented by a totemic character or an avatar so that users feel accompanied at best in their experience.

We can specify several types of assistants, depending on their task. The chatbots respond in writing to user requests. Callbots, on the other

hand, answer phone calls. Finally, voice assistants, or conversational agents, called also voice bots like Siri or Alexa, are dedicated to oral communi-

cation. They are a powerful tool to free up time for sellers and agents dedicated to customer relations on redundant aspects of their daily lives.

But even more, there are many prominent areas where virtual personalization has gained traction, including virtual assistants on devices such as

Alexa, Siri, Cortana, chat-bots, and online suggestions for e-commerce and entertainment.

In both verbal and written interactions, the function of communicative labour can be automated through the use of conversational agents,

often known as chatbots. The widespread availability of voice assistant chatbots like Siri, Alexa, Cortana, and Google Assistant, as well as the

numerous chatbot features in online retail, have made the utility, interaction, and operation of a chatbot more familiar to a large portion of mod-

ern society. For example, chatbots are used in industrial settings to provide information, instructions, detect fatigue, and address exceptions.

1. Siri: In 2011, Apple offered an assistant named Siri to its devices (computers, tablets, and even smartphones). Innovation was born since the

assistants offered until then were only accessible on computers. When it started, Siri could answer basic questions given by users. Nowadays,

he is recognized as a real virtual assistant since he is recognized for advanced human properties such as humour and the answer to more com-

plex questions.

2. Google Assistant: Formerly Google Now, this conversational assistant, presented in the form of a downloadable application, allows not only to

answer the questions asked by users but also to provide personalized recommendations to them. It is based on speech recognition, synthesis,

and automatic natural language processing (NLP). It, therefore, includes both written and oral requests.

3. Alexa: Launched by the giant Amazon, Alexa is not content to be only an application, but it also appears in the form of a connected speaker. In

addition to multilingual voice communication (English, French, Spanish, German, and Japanese) and distinguishing several voice profiles, Alexa

can play a piece of music, set alarms, serve as a calculator and provide information such as weather or traffic. Finally, she can also control some

so-called intelligent devices inside the house.

4. Cortana: Cortana, the Windows personal assistant, offers, just like Siri and Alexa, to answer users' oral questions. It is based on the Bing search

engine, specifically Microsoft, and on the data provided within the users' smartphones.

Conversational agents, commonly referred to as conversational assistants (CAs), are computer systems designed to emulate human conversa-

tion through various communication channels. These channels include speech, text, facial expressions, and gestures (Laranjo et al., 2018). Task-

oriented dialogue systems, in particular, are conversational agents that aim to assist users in accomplishing a specific task. For example, they could

help users make a restaurant reservation, (book a flight, recommend a movie to watch, etc.) through dialogue in natural language, either in spoken

or written form. These systems have been subject to growing interest in the last decade with applications in various industrial sectors. For

instance, travel bots facilitate hotel and flight booking in the tourism industry. In contrast, chatbots support tasks such as checking account bal-

ances, money transfers, and bill payments in the banking industry.

Dialogue systems are built-in generally as a pipeline of components (Iovine et al., 2020). The user message, also called utterance or act of

speech, is first analysed by the NLU feature, which interprets the user's needs. Then the Dialogue State Tracker (DST) module remembers all the

information that was exchanged between the user and the system. It also updates its dialogue based on the user's message and the previous form.

A dialogue policy manager block is then used to choose the action that will be performed by the system based on the current input and the state

of the conversation. Finally, the natural language generation (NLG) component produces the actual response to the user.

The NLU component is the first step in building effective dialogue systems. The two main key problems in NLU are identifying the user inten-

tion (ID) and extracting attribute values i.e Slot-Filling (SF) from the user utterance (Bhathiya & Thayasivam, 2020). The present paper centres on

the task of ID. The task at hand involves the identification of user input through a process known as text classification. This process entails cate-

gorizing the user's input into one or more intent categories that have been predefined. For instance, in the context of conversational recommen-

dation scenarios, it is observed that users often have specific goals in mind when engaging with the system. These goals typically revolve around

expressing their preferences or requesting recommendations (Epure et al., 2018).

Two widely used architectures that were used for ID in the last decade are RNN-based and Transformer-based models. RNNs are a popular

category of neural network models successfully utilized for various sequential data (text streams, audio clips, video clips, time-series data, etc.)

modelling. For ID, in particular, RNNs have proven a good performance on multiple benchmark data sets. On the other hand, Transformer models

(Vaswani et al., 2017) are pretty new architectures that were proposed so that they can be trained on massive data sets and benefit from parallel-

ism. As a result, transformer models achieved state-of-the-art results in various NLP tasks. Moreover, recent studies demonstrate their competi-

tive performance against RNN-based models for ID. Thus, it is an excellent opportunity to review recent works and to understand the latest

progress, challenges, and frontiers for ID.
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Briefly, this paper's significant contributions are summarized below:

1. An overview of RNNs, and Transformer models, including historical advancements, types, and variants.

2. Presentation of the main RNN and Transformer-based models proposed for the ID task.

3. Comparative analysis of different models on widely used data sets, encompassing performance and efficiency evaluations.

4. Summarization of the main challenges faced by current ID models, along with proposed avenues for future research.

The rest of the survey is organized as follows. Section 2 presents the theoretical background of RNNs and commonly used variants, including

GRUs and LSTMs. Section 3 describes the building blocks of Transformer models. A review of recent studies about ID using RNNs and Trans-

formers is discussed in Section 4. Section 5 presents a comparative analysis of different architectures on widely used NLU benchmark data sets.

Finally, conclusion and feature works are given in Section 6.

2 | RECURRENT NEURAL NETWORKS

Recurrent versus feed-forward: A neural network can be defined as a complex interconnected system composed of individual nodes, wherein

each node is responsible for receiving input signals and generating corresponding output signals. The connectivity pattern within a neural network

is determined by its architectural design, which governs the interconnections between individual nodes or neurons. In the architecture of a feed-

forward neural network (FFNNs), it is observed that the outputs of each node exclusively influence the nodes located in the subsequent layers.

FFNNs encompass a variety of neural network architectures that are widely employed in various domains. Prominent examples of FFNNs include

multi-layered perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Transformers (Vaswani et al., 2017). These architectures have

demonstrated remarkable success in tasks such as image classification, NLP, and sequence modelling. MLPs, the most basic form of FFNNs, con-

sist of multiple layers of interconnected neurons, where information flows in a unidirectional manner from the input layer to the output layer. On

the other hand, for recurrent neural networks (RNNs), a node's output depends on its inputs' entire history, which results in a temporal dynamic

behaviour. This makes RNNs suitable for processing several sequential data such as videos, audio, text, time series, and so forth (Sarker, 2021).

RNN mechanism: RNNs were mentioned many times in literature, one of which could be the most similar to today's vanilla RNN can be

referenced by Elman (1990). In a schematic representation, it can be observed that an RNN layer employs a “for” loop to sequentially process

each timestep within a given sequence. Simultaneously, the layer maintains an internal state that effectively encodes pertinent information

regarding the timesteps it has encountered thus far.

Figure 1a illustrates the structure of a vanilla RNN, while its unrolled version is depicted in Figure 1b. The equations involved in vanilla

RNN are:

Ht¼ fh U �XtþW �Ht�1ð Þ, ð1Þ

Ot¼ S �Ht ð2Þ

where at each timestep t, Equation (1) calculates the hidden state value Ht using previous hidden state Ht�1 and input Xt, and Equation (2) calcu-

lates the output Ot. U, W, and S as weight matrices learned during the training of the network. The function fh is a type of smooth, bounded func-

tion commonly used in various fields of research. Examples of such functions include the logistic sigmoid function and the hyperbolic tangent

function. These functions exhibit desirable properties such as smoothness and boundedness, making them suitable for a wide range of

applications.

F IGURE 1 (a) Simple diagram of a recurrent layer. (b) The general structure of BRNN shown unfolded in time for three time steps.
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RNN problems: Vanilla RNNs pose challenges during training due to issues such as vanishing gradients, where gradients become extremely

small (go to zero) and may cause the network to effectively stop learning, or exploding gradients (go to infinity), where gradients become excep-

tionally large and lead to unstable training. These problems arise from the recurrent application of the same parameters throughout the training

process. However, these challenges were mitigated with the development of more sophisticated architectures such as long short-term memory

(LSTM) networks and gated recurrent units (GRUs). LSTM, introduced in (Hochreiter & Schmidhuber, 1997), and GRU, proposed in (Chung

et al., 2014), address these issues by incorporating mechanisms to regulate the flow of information and gradients within the network. These archi-

tectures are designed to better retain long-term dependencies and prevent the vanishing or exploding gradient problem. Further details on LSTM

and GRU will be provided in subsequent sections.

2.1 | Long short-term memory

The LSTM unit was originally introduced by Hochreiter and Schmidhuber in their pioneering paper (Hochreiter & Schmidhuber, 1997). Subsequent

to its inception, a number of minor adjustments have been implemented to the initial LSTM unit. One of the well-documented implementations

was initially introduced in an important paper by Graves (2013).

In contrast to a conventional RNN unit that calculates a weighted sum of the input signal and applies a nonlinear function, an LSTM unit dis-

tinguishes itself by preserving a memory Ct at each time step t. The schematic representation of a typical LSTM cell is depicted in Figure 2a.

A typical LSTM unit is composed of several components, namely an input gate, a forget gate, an output gate, and a cell state. These compo-

nents are calculated using the following equations:

ft¼ σ Wf : ht�1,xt½ �þbfð Þ, ð3Þ

it¼ σ Wi: ht�1,xt½ �þbið Þ, ð4Þ

~Ct¼ tanh WC: ht�1,xt½ �þbCð Þ, ð5Þ

Ct¼ f ∘Ct�1þ it ∘ ~Ct, ð6Þ

ot¼ σ Wo: ht�1,xt½ �þboð Þ, ð7Þ

ht¼ ot ∘ tanh Ctð Þ: ð8Þ
The weights matrices, denoted as Wf , Wi, WC , Wo along with the bias terms bf , bi, bC , bo are essential components of the LSTM unit that are

iteratively adjusted during the training process.

Forget gate: The gate in question serves the purpose of determining the degree to which the pre-existing memory should be either discarded

or preserved. To compute ft at timestep t, the sigmoid function σ is applied to the preceding hidden state ht�1 and present input xt as shown in

Equation (3). The resulting values come out in the range [0, 1], closer to 0 means data should be lost, and closer to 1 suggests it should be kept.

F IGURE 2 Simple diagram of (a) a single standard LSTM cell, (b) a single GRU cell.
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Input gate: The gate in question serves as a modulator, regulating the extent to which the recently acquired memory content is incorporated

into the memory cell. To compute it at timestep t, the previous hidden state ht�1 and the current input xt are passed into a sigmoid function σ that

decides which values will be updated and filter out unwanted information, by transforming the values to the range [0, 1] as shown in Equation (4).

The previous hidden state ht�1 and the current input xt are also passed into a tanh function to compress values into the range [�1, 1] as shown in

Equation (5).

Cell state: C acts as the networks' memory. At each timestep t, the memory cell Ct is updated by selectively incorporating new memory con-

tent while also considering the existing memory. To compute Ct, it is necessary to perform a point-wise multiplication between the cell state and

the forget vector ft. There is a potential risk of the cell state values being affected if they are multiplied by values that are close to zero. Then the

output of a point-wise multiplication of it and ~Ct is added using a point-wise addition. That gives the new cell state as shown in Equation (6).

Output gate: The output gate plays a crucial role in determining the subsequent hidden state. The computation of ot involves the utilization

of the previous hidden state ht�1 and the current input xt, which are both fed into the sigmoid function σ, as depicted in Equation (7). The altered

state of cell Ct, which has undergone recent modifications, is subsequently conveyed to the hyperbolic tangent tanh function. In accordance with

the mathematical formulation presented in Equation (8), the output of the tanh is combined with the output of the sigmoid function σ to deter-

mine the specific information that the hidden state should encompass. The subsequent time step involves the propagation of the newly updated

cell state Ct and the revised hidden state ht.

2.2 | Gated recurrent unit

The gated recurrent unit (GRU) (Chung et al., 2014) is a variant of the RNN that was proposed following the LSTM unit. The GRU is a simplified

version of the LSTM model. While both models are similar, the GRU eliminates the need for a separate cell state and instead uses the hidden state

to transfer information. A GRU unit has only two internal gates, namely, the update gate zt and the rest gate rt. The structure of a standard GRU

cell is shown in Figure 2b.

The computations involved in the update and reset gates in a typical GRU unit are presented in the following equations:

rt ¼ σ Wr � ht�1,xt½ �ð Þ, ð9Þ

~ht¼ tanh Wh � rt ∘ht�1,xt½ �ð Þ, ð10Þ

zt ¼ σ Wz � ht�1,xt½ �ð Þ, ð11Þ

ht¼ 1� ztð Þ ∘ht�1þ zt ∘~ht, ð12Þ

with Wr , Wh, and Wz weights matrices that are learned during the training.

Reset gate: The reset gate is utilized to determine the quantity of previous data that needs to be retained. rt is computed by passing the pre-

vious steps' memory ht�1 and the current steps' input xt to a sigmoid function σ as shown in Equation (9).

The reset gate is element-wise multiplied ‘ ∘ ’ to the hidden state ht�1, and concatenated with the current input xt. The resulting values are

then fed to a tanh activation function to generate a vector ~ht, that stores values in the range [�1, 1] as the new beliefs of the cell as shown in

Equation (10).

Update gate: The Update gate exhibits similar functionality to the forget and input gates observed in a LSTM network. zt is computed by passing

the previous steps' memory ht�1 and the current steps' input xt to a sigmoid function σ as shown in Equation (11). This determines which data

should be discarded and what new should be added. The updated hidden state, denoted as ht�1, is a result of blending the new beliefs of the cell,
~ht, and the current hidden state, ~ht, in a proportion determined by the update gate, zt. This process is mathematically expressed in Equation (12).

2.3 | Types of RNN

Various forms of RNN architectures have been proposed in order to effectively tackle a diverse range of problems that are based on sequential

data. Figure 3a depicts a one-to-one RNN architecture, which can be considered as a neural network with weight sharing. The model in question,

commonly referred to as the Vanilla Neural Network, is a versatile tool applicable to a wide range of machine learning tasks characterized by a sin-

gular input and output. In Figure 3b a one-to-many RNN, which generates a series of outputs given one input, such as in the image captioning

task (Xu et al., 2015). The third type depicted in Figure 3c is the many-to-one. In this scenario, the model takes a sequence of inputs and gener-

ates a single output. A good example that uses this scheme is text classification when the objective is to assign a single label for an entire text
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sequence as in sentiment analysis (Jbene, Raif, et al., 2022), or intent detection (ID) (Jbene, Tigani, et al., 2022; Ravuri & Stolcke, 2015).

Figure 3d,e shows many-to-many RNNs. The first one is with a one-to-one alignment between the number of input and output timesteps. And

the second one is without a specific alignment between the input and output. The input sequence comprises numerous inputs, yielding multiple

outputs. Both the input and output are sequences of arbitrary length. This configuration is commonly known as a sequence-to-sequence or

encoder-decoder framework. It has found successful applications in various fields, such as machine translation, where the input text is translated

from one language to another (Sutskever et al., 2014).

2.4 | Variants of RNN

Throughout recent years, more complex variants of RNNs were proposed as the complexity of the tasks and the requirement for more perfor-

mance increase. This includes Bidirectional RNNs, Deeper RNNs, and attention-based RNNs, which we discuss in the following sections.

2.4.1 | Bidirectional recurrent neural networks

Conventional RNN architectures make conclusions about a current state taking into consideration only the previously seen inputs. A bidirectional

recurrent neural network (BRNN) with two hidden layers running in opposite directions was proposed by Schuster and Paliwal (1997) to tackle

this issue. BRNN consists of a forward and backward RNN layer as shown in Figure 1b. Neuron states are divided into two parts: one that governs

the positive time direction (ahead states) and another that governs the negative time direction (backward states).

BRNN encoder reads the input vectors x¼ x1,x2,…,xTð Þ and generates T hidden states by concatenating the forward pass h
!

and backward

pass h
 

hidden states. Thus, the last state of the BRNN carries information about the entire source sequence. The computations involved in the

BRNN cell are presented in the following equations (Sutskever et al., 2014):

h
!

t¼ f W
!
XtþV

!
h
!

t�1þ b
!� �

, ð13Þ

h
 

t¼ f W
 
XtþV

 
h
 

t�1þ b
 � �

, ð14Þ

yt¼ g U
!

h
!þU
 

h
 þ c

� �
: ð15Þ

Using non-linear functions f and g, along with weight matrices W
!
, W
 
, U
!
, U
 
, V
 
, and V

!
, and bias terms b

!
, b
 
, and c, all of which are learned dur-

ing network training, the output signal is represented by yt.

2.4.2 | Deep recurrent neural networks

The utilization of deep architectures, specifically deep recurrent neural networks (DRNNs), has played a pivotal role in the notable achievements

observed in neural network systems as of late. According to previous research (Graves et al., 2013), it has been observed that deep architectures

possess the ability to construct increasingly sophisticated representations of data.

DRNNs can be characterized by various configurations, but a more straightforward approach involves the stacking of multiple hidden layers

of RNNs. In this setup, the output sequence of one layer serves as the input sequence for the subsequent layer.

F IGURE 3 RNN types. (a) One-to-one, (b) one-to-many, (c) many-to-one, (d) many-to-many with alignment, (e) many-to-many without
alignment.
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If we assume that the same hidden layer function is employed across all N layers within the stack. Then, the hidden vector sequences, den-

oted as hn, are computed iteratively for each layer, starting from n¼1 up to N, and for each time step, denoted as t, ranging from 1 to T as in

Equation (16):

hnt ¼ϕh Whn�1hnh
n�1
t þWhnhn h

n
t�1þbnt

� �
, ð16Þ

where h0¼ x, W, and b are weight matrices and ϕh is a non-linear activation function. The network outputs yt are calculated following

Equation (17):

yt¼WhNyh
N
t þby: ð17Þ

Deep bidirectional recurrent neural networks (DBRNNs) can be effectively realized by substituting each hidden sequence hn with two distinct

sequences, namely the forward sequence h
!
t and the backward sequence h

 
t. To ensure comprehensive information flow, it is crucial that every

hidden layer in the network receives input from both the forward and backward layers at the preceding level.

2.4.3 | Attention-based RNN model

The attention mechanism is a computational technique that is inspired by the cognitive processes observed in human psychology. The prevailing

hypothesis posits that human cognitive processes exhibit a tendency to allocate priority to particular components within the perceptual domain,

thereby disregarding the remaining visible information. In the realm of text streams, the concept of attention pertains to the cognitive capacity to

focus one's mental resources on particular components within a given sequence, while simultaneously disregarding extraneous information. This

cognitive process plays a pivotal role in facilitating optimal learning outcomes.

The efficacy of the attention mechanism has been empirically validated across a range of machine learning (ML) tasks, including but not lim-

ited to machine translation, video captioning, and image captioning (Xu et al., 2015; Chen, Zhang, et al., 2017; You et al., 2016). The attention

mechanism was initially introduced by Bahdanau et al. (2015) in the context of neural machine translation, a task that entails a many-to-many

mapping. The utilization of an encoder-decoder model was employed by the researchers, alongside the implementation of a novel approach to

integrate weights onto the intermediate hidden values. The weights play a crucial role in determining the allocation of attention by the model

towards individual elements within the input sequence at each decoding step.

There are many variants of the attention mechanism in the literature, we find Content-based attention (Graves et al., 2014), additive attention

(Bahdanau et al., 2015), location-based attention (Luong et al., 2015), general attention (Luong et al., 2015), dot-product (Luong et al., 2015), and

finally scaled dot-product attention (Vaswani et al., 2017). To illustrate the concept of attention we consider two examples. The global additive

attention of Bahdanau et al. (2015) that we depict in Figure 4a. And the Global multiplicative attention version of Luong et al. (2015) that we

depict in Figure 4b.

The formulas used to calculate the attention vectors in Figure 4a,b are presented below in Equations 18 to 21.

F IGURE 4 Graphical illustration of different versions of the attention mechanism. (a) Bidirectional RNN-based encoder-decoder with
Bahdanou Attention. (b) Bidirectional RNN-based encoder-decoder with Luong (Global) attention (c) transformer encoder with scaled dot-product
self-attention.
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at sð Þ¼
exp score ht,hs

� �� �
Ps

s0¼1 exp score ht,hs0
� �� � , ð18Þ

ct¼
X
s¼1

at sð Þhs0 , ð19Þ

at¼ tanh Wc ct;ht½ �ð Þ, ð20Þ

score ht,hs
� �¼ hTt Whs Luongs0multiplicative style½ �

vTa tanh W1htþW2hs
� �

Bahdanaus0additive style½ �

(
, ð21Þ

where at sð Þ: attention weight for encoder hidden state h s at decoder timestep t; ht: decoder hidden state at timestep t; hs: encoder hidden state

at position s; ct: context vector at decoder timestep t; at: attention vector at decoder timestep t; score ht,hs
� �

: score function between ℎt and h s;

W,W1, W2: weight matrices; vTa : weight vector.

For recent studies in NLP, RNNs based on the attention mechanism have become a major trend in various text-processing research fields,

such as question answering (Chen, Hu, et al., 2017), text classification (Liu & Lane, 2016), recommendation systems (Ying et al., 2018) and so on.

3 | TRANSFORMER MODELS

Transformer models (Vaswani et al., 2017) have demonstrated success across a wide range of tasks. In this section, we describe its essential com-

ponents and working mechanisms.

3.1 | Self-attention

Self-attention is known to be the central and indispensable component of Transformer models. Self-attention is a very effective method of

leveraging context-aware features over variable-length sequences for NLP tasks (Tan et al., 2018; Zhong et al., 2018).

Given a matrix of input vectors X�R, self-attention maps it to queries Q, keys K, and values V matrices using different linear projections. The

output matrix is a weighted sum of values as shown in Equation (22).

Attention Q,K,Vð Þ¼ softmax
QKTffiffiffiffiffi
dk
p

 !
V, ð22Þ

where dk is the key dimensionality.

3.2 | Transformer architecture

The transformer, as described by Vaswani et al. (2017), is a model that employs an encoder-decoder architecture. It leverages stacked self-

attention and fully connected layers in both the encoder and decoder components. The encoder is comprised of N layers, with each layer con-

sisting of two sub-layers: a Multi-head self-attention mechanism, and a Feed-forward network, which is illustrated in Figure 4c.

The multi-head attention mechanism is a technique that allows for the extraction of multiple representations, denoted as h, for a given input

Q,K,Vð Þ. Each representation is obtained by applying scaled dot-product attention to the input. The attention mechanism computes the similarity

between the query Q and key K vectors, and uses this similarity to weight the values V. This process is repeated for each representation, resulting

in h different sets of attention weights. These sets are then concatenated together, and the concatenated result is projected through a feed-

forward layer. This multi-head attention mechanism enables the model to capture different aspects of the input and incorporate them into the

final representation. This can be expressed in the same notation as Equation (22):

Headi¼Attention QWQ
i ,KW

K
i ,VW

V
i

� �
, ð23Þ

MultiHeadi Q,K,Vð Þ¼Contacti Headið ÞW0, ð24Þ
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where the Wi and W0 are parameter matrices.

The feed-forward network serves as the second component within each layer of the Transformer network. The use of a two-layer network

with a Rectified Linear Unit (ReLU) activation is suggested by Vaswani et al. (2017). In a similar manner, it can be observed that every layer of the

decoder architecture comprises the aforementioned two sub-layers, along with an extra sub-layer dedicated to multi-head attention. This supple-

mentary sub-layer is responsible for receiving the output from the encoder as both its keys and values.

In recent years, there has been a proliferation of proposed iterations of the Transformer model. Multi-head attention is a technique employed

in various ways within the context of neural network architectures. Specifically, it is utilized in three distinct manners: encoder self-attention,

decoder self-attention, and encoder-decoder attention. Several Transformer models have been proposed in recent literature, as evidenced by the

works cited in references (Brown et al., 2020; Devlin et al., 2019; Liu, Ott, et al., 2019).

4 | INTENT DETECTION FOR DIALOGUE SYSTEMS

Natural language understanding (NLU) serves as an essential and foundational element within conversational systems. ID and SF are fundamental

components of NLU. An illustrative example for these tasks is shown in Figure 5.

The primary emphasis of this paper lies in the investigation of the ID task, whereas certain recent studies have approached the two tasks in a

combined manner. Assuming a strong relationship exists between the two tasks, they propose to train models in a multi-task fashion to achieve

promising results.

4.1 | Defining the intent detection task

Intent detection can be considered as a sentence classification task. Given an input utterance X¼ x1,…,xnð Þ, where n denotes the length of X, the

model should assign one of the N pre-defined set of intent labels yi based on the components of the user utterance, which can be formulated as:

yi¼ argmax
i � N

P yi=xð Þ: ð25Þ

4.2 | Intent detection data sets

Over the past few years, numerous data sets have been introduced for the ID task. In the following section, we provide a concise overview of

17 widely utilized data sets. The majority of these data sets are in English, while some are multilingual. Additionally, they span a diverse array

of domains, including travel, hotels (Price, 1990), entertainment (Coucke et al., 2018), banking (Casanueva et al., 2022), and agriculture (Hao

et al., 2023). Furthermore, Table 1 provides additional statistics about each data set.

1. ATIS: the ATIS (Air Travel Information System) corpus (Price, 1990) is the most used data set for Spoken Language Understanding (SLU)

research. It was collected to build a spoken dialogue system to provide information on US flights. There are multiple variants of the data set.

In this paper, we've only considered papers that used the most common version in (Tür et al., 2010). The data set consists of sentences of

people making flight reservations. There are 4978 sentences for training and 893 sentences for testing. The number of distinct intents is

18, as shown in Table 1.

2. Ask ubuntu, Chatbot, and Web Applications: The three data sets were proposed in reference (Braun et al., 2017). The Web Applications and

askubuntu data sets are derived from queries scraped from StackExchange forums like askubuntu.com and webapps.stackexchange.com.

Despite not being originally designed for dialogue systems, they consist of dialogue-style utterances targeting various intents related to soft-

ware support. Both data sets are in English. The Chatbot Corpus, on the other hand, comprises real user utterances from a public transit

query dialogue system in Munich, Germany. While primarily in English, these utterances contain numerous German place names.

F IGURE 5 An Illustrative Instance from the xSID data set Featuring the Intent ‘add_reminder’.
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3. SNIPS: the SNIPS data set (Coucke et al., 2018) was collected by Snips voice assistant. The data set under consideration comprises a total of

seven distinct intent types. The distribution of samples across intention labels exhibits a near-equilibrium, with each label being represented

by a comparable number of samples. The data set contains comprehensive information, which can be accessed in Table 1. The complexity of

the SNIPS data set surpasses that of the ATIS data set due to the presence of multi-domain intents and a comparatively extensive

vocabulary.

4. TOP: data set, introduced by (Gupta et al., 2018), employs a hierarchical annotation scheme to address the challenge of utterances associated

with multiple intent labels. Every utterance in TOP is assigned a top-level intent. Notably, 35% of all utterances exhibit multiple intents.

5. HWU-64: joint corpus encompasses an extensive array of intent categories, including but not limited to home automation, travel, and general

inquiries such as weather queries. It comprises a total of 64 intent categories spanning 25, 716 crowdsourced utterances (Liu, Eshghi,

et al., 2019).

6. Facebook: this task Oriented Dialogue data set was specifically designed to assess multilingual transfer learning capabilities (Schuster

et al., 2019). It comprises 12 intents categorized across three domain areas related to setting alarms, reminders, and querying weather infor-

mation. Initially, English language utterances were collected by instructing crowd workers to provide sample commands or inquiries they

might address to a device capable of handling the three intent categories. Subsequently, separate crowd workers annotated both intent labels

for each utterance. A portion of the English utterances was then translated into Spanish and Thai by native speakers.

7. TOPv2: Chen et al. (2020) expanded upon the TOP corpus by introducing 72 additional intents, resulting in the creation of TOPv2. This cor-

pus encompasses approximately 180, 000 utterances distributed across 80 intents. Similar to TOP, TOPv2 was compiled through

crowdsourcing utterances. Its annotation structure mirrors that of TOP, employing a hierarchical style. It is estimated that roughly 16% of

utterances in TOPv2 are multi-intent.

8. Leyzer: a multilingual corpus introduced by (Sowanski & Janicki, 2020), encompasses English, Spanish, and Polish languages. It sets new stan-

dards with its imbalanced data sets, containing between one and 672 samples per intent class. With 186 intents covering various tasks like

news, weather, calendar, and web search, Leyzer stands as the largest data set in this survey. Unlike most data sets discussed in this article,

Leyzer's sample utterances are not human-generated through crowdsourcing or user queries; instead, they are generated using predefined

grammars.

9. MixATIS and MixSNIPS: were introduced by Qin et al. (2020) to address the scarcity of multi-intent data sets for evaluating intent classifica-

tion and slot-filling models. They achieve this by synthesizing multi-intent queries from single-intent data sets, specifically combining queries

from the Snips and ATIS data sets to create MixSnips and MixATIS, respectively. These queries are formed by connecting single-intent

queries using conjunctions such as ‘and’, ‘,’ (comma), ‘and also’, and ‘and then’.

TABLE 1 Intent detection data sets primarily comprising English utterances are arranged in the table from oldest to most recent. (Note that
data sets labelled with ‘Eng*’ also include versions available in other languages).

Data set Domain Intents Utterances Source Lang Licence

ATIS (Price, 1990) Travel & hotels 24 5871 Crowd Eng LDC

Ask Ubuntu (Braun et al., 2017) Software support 5 162 Users Eng CC-BY-SA 3.0

Chatbot (Braun et al., 2017) Transport 2 206 Users Eng CC-BY-SA 3.0

Web Applications (Braun et al., 2017) Software support 8 89 Users Eng CC-BY-SA 3.0

SNIPS (Coucke et al., 2018) Restaurant & Entertainment 7 14,484 Crowd Eng CC0 1.0

TOP (Gupta et al., 2018) - 25 44,783 Crowd Eng -

HWU-64 (Liu, Eshghi, et al., 2019) Home automation 64 25,716 Crowd Eng CC-BY-SA 3.0

Facebook (Schuster et al., 2019) Multiple domains 12 43,323 Crowd Eng* CC-BY-SA

TOPv2 (Chen et al., 2020) Multiple domains 80 181,000 Crowd Eng -

Leyzer (Sowanski & Janicki, 2020) Home automation 186 3892 Generated Eng* CC-BY-NC-ND 4.0

MixATIS (Qin et al., 2020) Travel & hotels 24 20,000 Derived Eng -

MixSNIPS (Qin et al., 2020) - 7 50,000 Derived Eng -

CSTOP (Einolghozati et al., 2021) Multiple domains 19 5803 Expert Eng -

MTOP (Li et al., 2021) Multiple domains 117 22,288 Crowd Eng* -

xSID (Van der Goot et al., 2021) Multiple domains 16 44,405 Derived Eng* CC-BY-SA 4.0

NLU++ (Casanueva et al., 2022) Banking 62 3080 Users Eng -

NLU++ (Casanueva et al., 2022) Agriculture 22 11,976 Users zh-CN -
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10. CSTOP: corpus (Einolghozati et al., 2021) is a bilingual data set combining Spanish and English, featuring code-switched (‘Spanglish’) queries.
These queries focus on weather and device domains, encompassing 19 intents. CSTOP was meticulously crafted by proficient bilingual

workers skilled in code-switched Spanish and English. Although some utterances in CSTOP have multiple intent annotations, it is estimated

that only about 6% include such annotations, predominantly within the weather domain.

11. MTOP: inspired by the nested structure of queries in various TOP data sets, is a comprehensive benchmark comprising nested queries in six

languages: English, Spanish, French, German, Hindi, and Thai (Li et al., 2021). Encompassing 11 domains and 117 intents (with each domain

containing between 3 and 27 intents), MTOP was meticulously crafted in multiple phases. Initially, crowd workers provided English utter-

ances for hypothetical scenarios within specific domains. Then, professional translators translated these utterances into each target language.

12. xSID: corpus serves as a benchmark for cross-lingual transfer, featuring abundant training data in English and limited evaluation data in 13 lan-

guages: Arabic, Chinese, Danish, Dutch, English, German, Indonesian, Italian, Japanese, Kazakh, Serbian, Turkish, and South Tyrolean (each

language comprising 800 evaluation utterances) (Van der Goot et al., 2021). Constructed by sampling data from SNIPS and Facebook, the

data set underwent expert translation from English to each target language. xSID encompasses 16 intents and 41 slot types.

13. NLU++: benchmark, introduced by (Casanueva et al., 2022), comprises two joint-task data sets: Banking (with 48 intents and 13 slots) and

Hotels (with 40 intents and 14 slots). Combined, these data sets offer 62 intents, 17 unique slots, and a total of 3, 080 user-generated utter-

ances, many of which involve multiple intents. Unlike traditional annotation methods, NLU++ applies intent labels directly to each utterance

instead of annotating spans for separate intent segments. These intent labels vary in granularity, allowing broad categories like ‘cancel’ to
apply across both Banking and Hotel domains, while more specific categories like ‘account’ are domain-specific.

14. AGIS: was developed and annotated by the authors as referenced in (Hao et al., 2023), featuring 22 intent categories, 10 slot types, and a

total of 11, 976 samples. Notably, it stands as the first data set specifically tailored for Chinese agricultural joint ID and SF tasks.

4.3 | RNN-based models

The specific properties of RNNs make them suitable for sequence modelling applications. LSTM, GRU, and their bidirectional variants, with the

attention mechanism, have been shown to produce a good performance for ID. For instance, (Ravuri & Stolcke, 2015) successfully applied LSTM

for ID, indicating that sequential features benefit intent detection. The authors in (Liu & Lane, 2016) employed an attention-based encoder-

decoder BRNN model for joint ID and SF, allowing the network to learn the relationship between slot and intent. In a recent study, Liu, Meng,

et al. (2019) introduced a groundbreaking concept known as the collaborative memory network (CM-Net). This innovative approach aims to effec-

tively capture the semantic correlations between words by leveraging a collaborative framework. By enhancing the information flows within the

model, the researchers observed a notable improvement in its overall performance.

4.4 | Transformer-based models

Recent progress in pre-trained neural language models based on Transformer architecture has significantly improved the performance of many

NLP tasks. For ID, (Qin et al., 2019) used a pre-trained embedding encoder to replace its attention encoder (Stack-Propagation + BERT), which

boosts the model's performance. In a previous study, the BERT-Cap model was introduced by (Liu et al., 2020). This model utilizes a pre-trained

BERT transformer to encode sentence sequences. Subsequently, a capsule network with a dynamic routing mechanism is employed to capture

higher-level features. The efficacy of the PMM-Att model, as proposed in reference (Yang et al., 2021), has been further substantiated through

experiments involving BERT. In a recent study, a groundbreaking non-autoregressive SLU model called Layered-Refine Transformer was devel-

oped by Cheng et al. (2021). This innovative model incorporates a slot label generation (SLG) task and a layered refine mechanism (LRM), resulting

in significant improvements in performance.

4.5 | Hybrid models

Some recent studies tried to benefit from both worlds and propose hybrid RNN-Transformer architectures. For instance, Huang et al. (2020) claim

that adopting LSTM as an intent decoder and leveraging BERT as an additional encoder further improves their multi-view encoder (MV-Encoder).

Qin, Liu, et al. (2021) proposed a co-interactive Transformer that consists of a shared encoder based on BiLSTM and a co-interactive Module

based on the Transformer. Recently, Ni et al. (2020) proposed BERT-BACBC, which is a hybrid BERT, BiGRU model, achieving the best perfor-

mance compared to a variety of baselines.

JBENE ET AL. 11 of 20
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4.6 | Other ID models

The field of ID has historically been dominated by RNN-based models, but recent advancements have seen the emergence of transformer-based

approaches. However, notable works have explored alternative methodologies. For instance, by Zhang et al. (2019), the authors introduced a

model based on the Capsule neural network architecture, employing a dynamic routing-by-agreement schema. Their CAPSULE-NLU model

achieved competitive performance, achieving 97.3% accuracy on SNIPS and 95.0% accuracy on ATIS data sets. Furthermore, Xue and Ren (2021)

proposed an intention-enhanced attentive Bert Capsule network, leveraging the capabilities of pre-trained language models to encapsulate con-

textual information from utterances. By jointly learning label embeddings, they generated intent-concentrated utterance features and guided the

aggregation process of the capsule network.

Additionally, other works have explored the utilization of Graph neural networks. For example, by Qin, Che, et al. (2021), the CGCN-AF

framework was introduced. This context-aware GCN automatically encapsulates relevant contextual information, with an adaptive fusion layer

applied to each token dynamically incorporating pertinent contextual details.

5 | COMPARATIVE STUDY OF ID MODELS

In the subsequent sections, we conduct a comparative analysis of various ID models, considering multiple facets across four distinct data sets. This

comparison encompasses the models' performance, the diversity of tasks they were trained on, their efficiency, and their adaptability to low-

resource environments. Ultimately, we conclude by synthesizing the key findings and outlining potential avenues for further research.

5.1 | Evaluation metrics

In the domain of Intent identification, accuracy, and F1-score have emerged as the prevailing metrics of choice. Accuracy is a metric that quan-

tifies the proportion of sentences for which the intended meaning was accurately predicted. On the other hand, the F1-score is a measure that

combines precision and recall by taking their harmonic mean. The procedure for calculation is depicted as follows:

Acc¼ TPþTN
TPþTNþFPþFN

, ð26Þ

F1¼2�Precision�Recall
PrecisionþRecall

, ð27Þ

Precision¼ TP
TPþFP

, ð28Þ

Recall¼ TP
TPþFN

: ð29Þ

True positives (TP) represent the instances where the model correctly predicts the presence of a specific intent. True negatives (TN) signify

the cases where the model accurately identifies the absence of that intent. False positives (FP) occur when the model incorrectly predicts the

presence of an intent that is not actually present. Finally, False negatives (FN) occur when the model fails to detect an intent that is actually

present.

5.2 | Performance comparison across data sets

To assess the performance of RNN-based models relative to Transformer-based models, Table 2 provides a comparative analysis across four

widely used data sets for the ID task, drawing from various previous studies. We categorize methods into five classes based on their backbone

architecture: those built on GRU, LSTM, transformer encoder, transformer decoder, and hybrid transformer-RNN architectures. The table indi-

cates a marginally superior performance of Transformer-based models, consistent with findings from prior research (Wei et al., 2022). This advan-

tage can be attributed to Transformer models being pre-trained on extensive data sets (Liu, Ott, et al., 2019), whereas RNN-based models

typically rely solely on pre-trained word embeddings for word and sentence representations. Using pre-trained word representations still does

not give the RNN-based models the comprehensive understanding achieved by Transformer architectures. Additionally, hybrid Transformer-RNN
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models demonstrate slightly improved performance, which is aligned with previous studies (Wei et al., 2022), particularly evident in models like

Wheel-GAT and Wheel-GAT+BERT.

5.3 | Evaluation of single-task versus multi-task training

Upon reviewing the literature on ID, we observed a trend towards training models on multiple tasks simultaneously. Proponents of this approach

argue that it enhances performance, particularly when tasks are interrelated. To delve deeper into this phenomenon, we present a comparative

analysis in Table 3 of state-of-the-art approaches based on their training regimen. We classify these approaches into three main categories:

models exclusively trained for ID, models trained jointly on ID and slot filling (SF), and models trained on a broader array of tasks. Our findings

indicate that SF emerges as the primary task paired with ID, reflecting their complementary roles in NLU. The close association between ID and

SF has prompted the development of models capable of jointly addressing both tasks. However, a preliminary assessment of model performance

reveals no discernible difference between models trained solely for ID and those trained for both ID and SF.

TABLE 2 Performance analysis of various model types on intent detection benchmark data sets.

Data set Backbone Model name Year Pre-training (Y/N) F1 (%) Acc (%)

ATIS GRU BiGRU-CRF (Daha & Hewavitharana, 2019) 2019 N - 95.60

Wheel-GAT (Wei et al., 2022) 2022 N - 97.50

LSTM TM + SAN + Bi-LSTM (Yolchuyeva et al., 2019) 2019 N - 96.81

BiLSTM+ID+SD (Yang et al., 2021) 2021 N - 97.00

Transformer-encoder RoBERTa + DRM (Shen et al., 2021) 2021 Y - 98.31

WFST-BERT (Abro et al., 2022) 2022 Y 98.12 -

Transformer-decoder gpt-3.5-turbo (Yoon et al., 2024) 2024 Y - 40.30

Transformer and RNN ICN + MTL (OIR) + BERT (Huang et al., 2021) 2021 Y - 98.20

Wheel-GAT + BERT (Wei et al., 2022) 2022 Y - 98.00

SNIPS GRU BiGRU-CRF (Daha & Hewavitharana, 2019) 2019 N - 97.00

Wheel-GAT (Wei et al., 2022) 2022 N - 98.40

LSTM DBLC-model (Li et al., 2022) 2022 N - 96.99

BiLSTM+ID+SD (Yang et al., 2021) 2021 N - 98.70

Transformer-encoder RoBERTa + DRM (Shen et al., 2021) 2021 Y - 98.87

Albert (xxl) (Louvan & Magnini, 2020) 2020 Y - 99.20

Transformer-decoder gpt-3.5-turbo (Yoon et al., 2024) 2024 Y - 81.68

Transformer and RNN ICN + MTL (OIR) + BERT (Huang et al., 2021) 2021 Y - 99.30

Wheel-GAT + BERT (Wei et al., 2022) 2022 Y - 99.30

MixATIS LSTM GL-GIN (Qin, Wei, et al., 2021) 2021 N - 76.30

SDJN (Chen et al., 2022) 2022 N - 77.10

Transformer-encoder SSRAN (Cheng et al., 2023) 2023 Y - 77.90

BiSLU (Tu et al., 2023) 2023 Y - 81.50

Transformer-decoder EN-Llama-2 (Yin, Huang, Xu, Huang, & Chen, 2024) 2024 Y - 80.60

EN-Mistral (Yin, Huang, Xu, Huang, & Chen, 2024) 2024 Y - 82.40

Transformer and RNN Uni-MIS (Yin, Huang, & Xu, 2024) 2024 Y - 78.50

MixSNIPS LSTM GL-GIN (Qin, Wei, et al., 2021) 2021 N - 95.60

SDJN (Chen et al., 2022) 2022 N - 96.50

Transformer-encoder SSRAN (Cheng et al., 2023) 2023 Y - 98.40

BiSLU (Tu et al., 2023) 2023 Y - 97.80

Transformer-decoder EN-Llama-2 [70] 2024 Y - 96.60

EN-Mistral (Yin, Huang, Xu, Huang, & Chen, 2024) 2024 Y - 97.60

Transformer and RNN Uni-MIS (Yin, Huang, & Xu, 2024) 2024 Y - 97.20
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Moreover, we observe a divergence in training strategies between RNN-based and Transformer-based models. RNN-based models undergo

training for at most three tasks concurrently, exemplified by the deep multi-task model (Firdaus et al., 2021). In contrast, Transformer-based

models, often pre-trained on extensive data sets, exhibit versatility across various NLU tasks, as demonstrated in the BERT paper (Devlin

et al., 2019). Fine-tuning a transformer model further enhances its performance on specific tasks. Additionally, while transformer-decoder models

are primarily designed for text generation, recent studies (Yoon et al., 2024) showcase their adaptability for classification tasks like ID through

straightforward fine-tuning with the appropriate prompt-output design.

5.4 | Efficiency analysis of ID models

The efficiency of models emerges as a crucial factor in model selection, particularly for deployment on edge devices or low-resource systems.

Table 4 presents a comparative analysis of various models based on factors such as model size, number of parameters, training time, and model

latency. However, for a fair assessment, our focus lies primarily on model size, parameter count, and corresponding accuracy, as other efficiency

metrics can fluctuate based on hardware and experimental setups used during training. Notably, RNN-based models exhibit lighter parameter

counts and smaller model sizes compared to their transformer-based counterparts. Additionally, we observe a clear correlation between increased

model size and enhanced accuracy among transformer-based models.

In conclusion, while Transformer-based models demonstrate superior performance, their tens of millions of parameters render them impracti-

cal for on-device deployment and constrained environments, contrasting with the lighter RNN-based models (Agarwal et al., 2021).

5.5 | Challenges and research directions

Much of the research in the field has been focused on enhancing performance, with relatively less attention given to efficiency. As demonstrated

in the comparative analysis conducted in the preceding sections, Transformer-based models exhibit slightly superior performance compared to

RNN-based approaches across benchmark data sets. This advantage can be attributed to their comprehensive pre-training on extensive data sets,

providing them with a broad understanding of diverse domains (Zhao et al., 2021). Consequently, fine-tuning models like BERT (Devlin

et al., 2019) often yields better results than training RNN-based models from scratch, particularly for specific tasks like identity (ID) recognition.

TABLE 3 Performance analysis of various model types on ATIS and SNIPS ID benchmark data sets based on the training tasks.

Data set Training tasks Model name Backbone Year F1 (%) Acc (%)

ATIS ID Char-Rep-ID (Shivnikar et al., 2021) RNN 2020 - 99.53

AgHA-IDSF (Hao et al., 2023) RNN 2023 - 97.76

NIDAL (Mullick, 2023) Transformer 2022 88.90 92.10

P CMIDlarge mean (Song et al., 2023) Transformer 2023 - 98.00

ID and SF BiGRU-CRF (Daha & Hewavitharana, 2019) RNN 2019 - 95.60

Wheel-GAT (Wei et al., 2022) RNN 2022 - 97.50

Co-Interactive Transformer (Qin, Liu, et al., 2021) Transformer 2021 - 97.70

BERT-FAN (Huang et al., 2024) Transformer 2024 - 97.80

Multitasks gpt-3.5-turbo (Yoon et al., 2024) Transformer 2024 - 40.30

SNIPS ID Char-Rep-ID (Shivnikar et al., 2021) RNN 2020 - 98.95

AgHA-IDSF (Hao et al., 2023) RNN 2023 - 98.29

NIDAL (Mullick, 2023) Transformer 2022 95.50 97.90

P CMIDlarge mean (Song et al., 2023) Transformer 2023 - 98.20

ID and SF BiGRU-CRF (Daha & Hewavitharana, 2019) RNN 2019 - 97.00

Wheel-GAT (Wei et al., 2022) RNN 2022 - 98.40

Co-Interactive Transformer (Qin, Liu, et al., 2021) Transformer 2021 - 98.80

BERT-FAN (Huang et al., 2024) Transformer 2024 - 98.30

Multitasks Deep Multi-task model (Firdaus et al., 2021) RNN 2020 - 99.60

gpt-3.5-turbo (Yoon et al., 2024) Transformer 2024 - 81.68
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However, despite their impressive performance, Transformer-based models encounter several challenges. They tend to be more computa-

tionally demanding during both training and inference stages, especially evident in larger variants such as LLAMA-2 (Touvron et al., 2023) and

GPT-3 (Brown et al., 2020), which possess the remarkable ability to perform ID tasks without explicit training due to their versatile nature. None-

theless, these advanced models still grapple with issues such as hallucination.

Moreover, current ID methodologies face various challenges, including inefficiency and limited generalizability. The scarcity of non-English

data sets in the Data set section highlights a promising research direction for addressing low-resource languages. Exploring diverse research ave-

nues could help mitigate these challenges, emphasizing the importance of balancing model complexity, performance, and computational

efficiency.

6 | CONCLUSION

The present study conducted an in-depth review of existing scholarly literature concerning ID for Task-oriented Conversational Agents. It pro-

vided a comprehensive overview of RNNs and Transformer Models, tracing their evolution and various adaptations for the ID task in CAs. A com-

parative analysis was presented, evaluating different RNN and Transformer-based models across widely used benchmark data sets from

performance, training tasks, and efficiency perspectives.

TABLE 4 Efficiency of different models on the ATIS and SNIPS data sets.

Data

set Backbone Model name

Model

size (MB)

Parameters

(M)

Training

time (s)

Latency

(ms)

Acc

(%)

ATIS Transformer Stack-Prop+BERT (Agarwal et al., 2021;

Qin et al., 2019)

>1200 - - - 97.50

BERT-FAN76 - 116.6 1456 - 97.80

BERTBase (Agarwal et al., 2021; Devlin et al., 2019) - 110 - 1580 97.16

DistillBERT (Agarwal et al., 2021; Sanh et al., 2019) - 66 - 781 96.98

DistillBERT-FAN (Huang et al., 2024) - 59.9 857 - 97.90

MobileBERT (Agarwal et al., 2021; Sun et al., 2020) - 24.6 - 545 96.30

TinyBERT-FAN (Huang et al., 2024) - 15.8 485 - 97.80

TinyBERT (Agarwal et al., 2021; Jiao et al., 2020) - 14.5 - 162 95.97

RNN SF-ID (BLSTM)net (Agarwal et al., 2021;

Haihong et al., 2019)

11.61 - - - 97.76

SG-BiLSTM+Attention (Agarwal et al., 2021;

Goo et al., 2018)

11.57 - - - 94.10

Stack-Prop (Agarwal et al., 2021; Qin et al., 2019) 3.32 - - - 96.90

LIDSNet (Agarwal et al., 2021) 0.63 0.065 - 18 95.97

SNIPS Transformer Stack-Prop+BERT (Agarwal et al., 2021;

Qin et al., 2019)

>1200 - - - 99.00

BERT-FAN76 - 116.6 1456 - 98.30

BERTBase (Agarwal et al., 2021; Devlin et al., 2019) - 110 - 1580 98.26

DistillBERT (Agarwal et al., 2021; Sanh et al., 2019) - 66 - 781 97.94

DistillBERT-FAN (Huang et al., 2024) - 59.9 857 - 98.00

MobileBERT (Agarwal et al., 2021; Sun et al., 2020) - 24.6 - 545 97.71

TinyBERT-FAN (Huang et al., 2024) - 15.8 485 - 97.80

TinyBERT (Agarwal et al., 2021; Jiao et al., 2020) - 14.5 - 162 98.00

RNN SF-ID (BLSTM)net (Agarwal et al., 2021;

Haihong et al., 2019)

11.61 - - - 97.43

SG-BiLSTM+Attention (Agarwal et al., 2021;

Goo et al., 2018)

11.57 - - - 97.00

Stack-Prop (Agarwal et al., 2021; Qin et al., 2019) 3.32 - - - 98.00

LIDSNet (Agarwal et al., 2021) 0.63 0.59 - 18 98.00
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Moreover, the study highlighted the current status of state-of-the-art models, along with their associated challenges and potential research

avenues. In terms of future research, the aim is to explore novel methods that overcome the limitations of existing techniques and validate their

efficacy across more complex and diversified data sets. This review seeks to push the boundaries of current methodologies and advance the field

of Task-oriented Conversational Agents.
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