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ABSTRACT

An increasing number of data providers have adopted shared num-
bering schemes such as GTIN, ISBN, DUNS, or ORCID numbers for
identifying entities in the respective domain. This means for data
integration that shared identifiers are often available for a subset
of the entity descriptions to be integrated while such identifiers are
not available for others. The challenge in these settings is to learn a
matcher for entity descriptions without identifiers using the entity
descriptions containing identifiers as training data. The task can
be approached by learning a binary classifier which distinguishes
pairs of entity descriptions for the same real-world entity from
descriptions of different entities. The task can also be modeled as a
multi-class classification problem by learning classifiers for identify-
ing descriptions of individual entities. We present a dual-objective
training method for BERT, called JointBERT, which combines bi-
nary matching and multi-class classification, forcing the model to
predict the entity identifier for each entity description in a training
pair in addition to the match/non-match decision. Our evaluation
across five entity matching benchmark datasets shows that dual-
objective training can increase the matching performance for seen
products by 1% to 5% F1 compared to single-objective Transformer-
based methods, given that enough training data is available for both
objectives. In order to gain a deeper understanding of the strengths
and weaknesses of the proposed method, we compare JointBERT
to several other BERT-based matching methods as well as baseline
systems along a set of specific matching challenges. This evalua-
tion shows that JointBERT, given enough training data for both
objectives, outperforms the other methods on tasks involving seen
products, while it underperforms for unseen products. Using a com-
bination of LIME explanations and domain-specific word classes,
we analyze the matching decisions of the different deep learning
models and conclude that BERT-based models are better at focusing
on relevant word classes compared to RNN-based models.
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1 INTRODUCTION

In practical data integration settings, shared identifiers are often
available for a subset of the entity descriptions to be integrated. For
instance, some e-shops annotate product offers with GTIN numbers
while others do not. The same is true for financial information
providers which might identify companies using DUNS numbers,
or libraries which might provide ISBN, LCCN, GND or ORCID
identifiers. The challenge in these settings is to learn a matcher for
entity descriptions without identifier using the entity descriptions
having an identifier as training data.

The matching tasks in these settings often involve a set of popu-
lar head entities for which a large number of entity descriptions
including identifiers is available from different sources. But the
tasks also involve long-tail entities for which hardly any data is
available. The users of applications that build on the integrated
data expect data describing head entities to exhibit hardly any inte-
gration errors while errors on tail entities might be more tolerable,
e.g. in the context of a price portal or electronic marketplace, users
would likely expect data describing a widely-sold phone to be cor-
rect, while they would be more forgiving if offers for a tail product
are mixed up. This means that matching methods should excel on
both, head and tail entities, while taking full advantage of the large
amounts of training data that are available for head entities. For
head entities, solving the entity matching problem using multi-class
classification works well as enough training data is available for
learning classifiers that identify descriptions of individual entities,
while for long tail entities this is often not the case due to the limited
amount of examples. A further drawback of multi-class classifica-
tion is that entities unseen during training cannot be classified and
need to be summarized into a class other. For long-tail entities and
unseen entities, the binary matching approach is often more suited
due to its ability to learn matching patterns that generalize.

In this paper, we demonstrate that by combining binary match-
ing and multi-class classification it is possible to better exploit
the training data that is available in the multi-source matching
scenarios described above and to thus improve the overall match-
ing performance. We present a dual-objective training method for
BERT [9], called JointBERT, which combines binary matching and
multi-class classification. In addition to the binary matching ob-
jective, the model is tasked with predicting the entity identifier of
each of the two entity descriptions in a pair during training. The
idea behind this dual-objective training is to force the model to
perceive the matching task not only as a comparison of two isolated
entity descriptions but to also incorporate information from other
descriptions of the respective entities seen during training into the
matching decision. In situations where training data is scarce for
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each entity in a pair, the model can still rely on learning patterns
using the binary matching objective.

We compare JointBERT to BERT [9], RoBERTa [22], Ditto [20],
Deepmatcher [23], Magellan [18], and a baseline using word co-
occurrence on five entity matching benchmark datasets. We show
that the dual-objective trained JointBERT can improve on single-
objective classifiers by 1% to 5% F1 for seen entities, given that
enough training data for both objectives is available. We further
show that JointBERT performs only slightly worse than BERT when
multi-class training data is scarce.

In order to gain a deeper understanding of the strengths and
weaknesses of the dual-objective training approach, we evaluate the
learned models on specific matching challenges, such as dropped
tokens and typos in the entity descriptions as well as entity pairs in-
volving new entities unseen during training. We further investigate
which words in the entity descriptions were considered relevant by
the different models for specific matching challenges. For this, we
generate LIME explanations [28] for sets of matching decisions in-
volving specific challenges and then aggregate the generated LIME
word importance weights using domain-specific word classes such
as model name, product attribute, or stop word. The comparison of
BERT-based models and Deepmatcher shows that the former are
better at focusing on strong predictors such as model numbers while
still being able to fall back to other word classes such as model name
in cases where model numbers are not available.

In summary, the contributions of this paper are:

(1) We present JointBERT, a dual-objective training method for
BERT which combines binary entity matching with multi-
class classification.

(2) We experimentally compare JointBERT with various other
entity matching methods showing that dual-objective train-
ing performs best for seen entities, given that enough train-
ing data for both objectives is available.

(3) We evaluate the strengths and weaknesses of dual-objective
training using specific matching challenges.

(4) We analyze matching decisions of different models by ag-
gregating LIME word weights into domain-specific word
classes.

2 RELATED WORK

Entity Matching [1, 5, 6, 14] is the task of identifying entity de-
scriptions that refer to the same real-world entity and has been
researched for over 50 years [15]. Entity matching methods can
broadly be divided into rule-based, crowd-based, and machine
learning-based methods [5, 6, 14]. Since 2018, an increasing num-
ber of neural network-based matching methods [13, 23, 30] have
been proposed and have pushed the state-of-the-art performance
especially for textual entity matching tasks [1]. We include Deep-
matcher [23] into our experiments as an example of one of the
initial neural network based matching systems.

Transformers for Entity Matching: In natural language pro-
cessing (NLP), deep Transformer networks [33], pre-trained on
large text corpora via language modeling objectives [7, 9, 22] sig-
nificantly pushed the state-of-the-art in a variety of downstream
tasks [16, 34], including a number of sentence-pair classification
tasks, e.g. paraphrase identification [11]. Recent studies [3, 20, 31] as
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well as the dominance of Transformer-based models at the Semantic
Web Challenge on Mining the Web of HTML-embedded Product Data
(MWPD) at ISWC2020 [37] underline the effectiveness of Trans-
former models like BERT [9] and RoBERTa [22] for the task of
entity matching. Recent work [3, 20, 31, 37] on using BERT for
entity matching usually builds upon the default BERT architecture
for sequence classification. Ditto [20] combines this architecture
with injecting domain knowledge as well as data augmentation
techniques in pre-processing and fine-tuning.

Multi-Task Learning: Multi-task learning (MTL) [4] has a long
history in NLP [29] and generally serves the purpose of comple-
menting a main task using auxiliary training tasks or directly train-
ing for multiple main tasks in order to obtain better, more gen-
eral representations compared to single task training. With the
recent successes of neural models, MTL has seen a resurgence, with
BERT [9] and other Transformers [19, 36] using a form of MTL for
pre-training. Liu et al. [21] recently presented a method to jointly
train the lower layers of a BERT model using multiple objectives like
sentence classification, sentence similarity, and sentence ranking,
resulting in an improved overall performance compared to single
task training. JointBERT is inspired by this work and is, up to our
knowledge, the first method that applies MTL for entity matching.

3 DUAL-OBJECTIVE TRAINING OF BERT

Problem statement: We address the task of learning a classifier
for deciding whether two entity descriptions refer to the same real-
world entity or not. Our method assumes that the following two
requirements concerning the training set are fulfilled: R1. The train-
ing examples consist of pairs of entity description/entity identifier
tuples. R2. The training set contains multiple entity descriptions
for many of the described entities. These requirements are typically
fulfilled in multi-source entity matching settings where a part of
the data sources provides entity identifiers, such as GTIN, ISBN,
DUNS, or ORCID numbers, together with the entity descriptions.

Model Architecture: BERT is commonly used as follows for
entity matching [3, 20, 31, 37]: The string representations of two
entity descriptions are concatenated using BERTs [CLS] Sequence
1 [SEP] Sequence 2 [SEP] input scheme for sequence classification
tasks. The pooled output representation of the [CLS] token from
the last encoder layer is then used as input for a linear classifica-
tion layer followed by sigmoid or softmax to obtain the final class
probabilities, in the case of entity matching, match and non-match.
The [CLS] token is used as a representation of the two sequences,
trained for a specific task [9]. During BERT pre-training the [CLS]
token was tuned for the Next Sentence Prediction objective and is
adapted to the entity matching objective during fine-tuning for the
entity matching task.

JointBERT adds a multi-class training objective to the binary
matching objective during the fine-tuning phase. For this objective,
the model is tasked to predict the entity identifier of each of the
two entity descriptions in a pair in addition to the binary entity
matching decision. Figure 1 illustrates the architecture and training
objectives of JointBERT. We design the input to the JointBERT
model, similar to related work, by (i) concatenating all attributes
of an entity description into a single string representation and (ii)
combining two entity descriptions into a pair using [CLS] and [SEP]
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Figure 1: JointBERT architecture. Picture adapted from [20].

tokens as follows: [CLS] Entity 1 [SEP] Entity 2 [SEP]. The output
representation of the [CLS] token of the last encoder layer is then
further fed into three separate linear layers. The first corresponds to
the classifier for the binary decision, i.e. do the entity descriptions
refer to the same entity or not. The activation function for this layer
is the sigmoid function, resulting in the probability of the positive
class (match). The second and third linear layers are trained to
predict the entity identifier of the left and right entity descriptions
respectively. The activation function for both of them is a softmax
layer, resulting in the probabilities for each of the entity identifiers
in the training set. We use binary cross-entropy loss for the binary
objective and cross-entropy loss for both multi-class objectives.
With BCEL and CEL as binary cross entropy and cross entropy loss
respectively and yp,, yy,, yr; as binary and multi-class labels, we
define the instance loss as:

Li = BCEL (y, 9v,) + (CEL (y1,- 41,) + CEL (yr;- 9r,))

JointBERT is initialized with the pre-trained BERT}, . parame-
ters. During training, both objectives are jointly optimized. Match-
ing decisions during inference (application of the trained model)
are solely based on the output of the binary classification layer.

4 EXPERIMENTS

We compare the performance of JointBERT to the performance
of BERT, RoBERTa, Ditto, Deepmatcher, Magellan, and a word co-
occurrence baseline using five entity matching benchmark datasets.
Two of these datasets, WDC LSPC [27] and DIZKG monitors [8],
model multi-source settings and fulfil the requirement from the
problem statement in Section 3 that multiple entity descriptions
should be available for many of the described entities. The other
three datasets, abt-buy, dblp-scholar and company [23], do not fulfill
this requirement and are included in order to evaluate the perfor-
mance of JointBERT in traditional two-source settings.

4.1 Datasets

Tables 1 and 2 provide statistics about the training and test sets that
we use for the experiments. Below, we describe the datasets.
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Table 1: Statistics about the training sets.

% entities

#Pos. #Neg. with min # of

. . # entiti
Training Set Size Pairs Pairs entities descriptions
5 10
xlarge 9,690 58,771 745 57 10
large 6,146 27,213 745 57 10
WDC computers - dium 1762 6332 745 55 8
small 722 2,112 745 28 0
xlarge 7,178 35,099 562 50 14
large 3,843 16,193 562 50 14
WDC cameras  Gium 1,108 4,147 562 47 11
small 486 1,400 562 22 1
xlarge 9,264 52,305 615 62 15
large 5,163 21,864 615 62 15
WDCwatches  dium 1418 4,995 615 59 12
small 580 1,675 615 30 0
xlarge 4,141 38,288 562 42 2
large 3,482 19,507 562 42 0
WDC shoes medium 1,214 4591 562 39 0
small 530 1,533 562 13 0
DI2KG monitor default 611 68,538 100 59 1
abt-buy default 822 6,837 992 0 0
dblp-scholar default 4,277 18,688 2,312 12 1
company default 22,560 67,569 22,560 0 0

Table 2: Statistics about the test sets.

Test Set # entities #Pos. #Neg. # Comb.
w/ pos (overall)  Pairs Pairs Pairs
WDC computers 150 (745) 300 800 1,100
WDC cameras 150 (562) 300 800 1,100
WDC watches 150 (615) 300 800 1,100
WDC shoes 150 (562) 300 800 1,100
DI2KG monitor-seen 84 (88) 1,369 122,882 124,251
DI2KG monitor-unseen 123 (141) 7,651 852,365 860,016
DI2KG monitor-combined 207 (229) 9,020 975,247 984,267
abt-buy 205 (819) 206 1,710 1,916
dblp-scholar 848 (1,635) 1,070 4,672 5,742
company 5,640 (5,640) 5,640 16,863 22,503

WDC LSPC datasets: We use the training and test sets from
the WDC Product Data Corpus for Large-scale Product Matching
(WDC LSPC)! [27] for the evaluation. The datasets were built by ex-
tracting product offers from the Common Crawl. More specifically,
product offers were gathered from e-shops that use schema.org an-
notations to mark up offer titles, product descriptions, and product
IDs like GTIN or MPN numbers within their HTML pages. WDC
LSPC models a multi-source entity matching scenario and fulfills
the requirements from Section 3 that entity identifiers as well as
multiple entity description should be available for many entities
(see last two columns of Table 1). We use the training, validation,
and test sets for the four categories computers, cameras, shoes and
watches. The training sets are available in four sizes, labeled small,
medium, large and xlarge, ranging from ~2,000 to ~70,000 product
offer pairs. All entities that are contained in the test sets are also
represented with different entity descriptions in the training set.

!http://webdatacommons.org/largescaleproductcorpus/v2/
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Thus, WDC LSPC represents the use case of learning a model for
seen entities. The WDC LSPC datasets were used for the evaluation
in the Ditto paper [20] as well as for the Semantic Web Challenge on
Mining the Web of HTML-embedded Product Data at ISWC2020 [37].

We use the attributes brand, title, description and specTableCon-
tent for all experiments. The three latter attributes are highly textual
and contain longer sequences of words. As the attribute values orig-
inate from the Web and may contain noise due to extraction errors,
we limit the maximum amount of words in each attribute. This is
done with regards to the length limits of BERT-like Transformer
models which is usually 512 tokens. We limit the attribute value
length to twice their median length in order to ensure this step only
affects unusually long strings.

DI2KG monitors dataset: We also evaluate all models using the
DIZKG monitor dataset [8] that was used for the DI2KG challenge at
the DI2KG workshop? at VLDB2020. The dataset contains product
offers and corresponding ground truth (entity identifiers) from a
wide range of online shops and represents a multi-source matching
problem. This dataset fits the requirements from Section 3, as entity
identifiers are available and multiple entity descriptions exist for
most entities (see last two columns of Table 1). We use the pairwise
training set offered for the challenge for training. This set was
created using a subset of the entity descriptions of a subset of all
entities in the ground truth [8]. To allow for unbiased evaluation,
we remove all entity descriptions contained in the training set from
the collection of entity descriptions in the ground truth before
building test sets. This means that the same entity description will
not appear in the training and test sets. Using the remaining offers,
we build two test sets by creating all possible pairs and assigning
the corresponding pair as well as entity identifiers to the two sets
(i) entities appearing in the training set (seen) and (ii) entities not
appearing the training set (unseen). This allows us to compare the
performances of classifiers specifically for these two cases. Each
offer in this dataset contains a title attribute as well as a set of
specifications which are not aligned across offers originating from
different e-shops. We use the title and concatenate all specifications
as key-value pairs into a second attribute specs. We restrict the
length of both attributes in the same way as the length of the
attributes in the WDC datasets.

Abt-buy, dblp-scholar, company datasets: We evaluate all
models using the abt-buy, dblp-scholar, and company entity match-
ing benchmark datasets. We use the preprocessed versions and
splits® that were also used for the Deepmatcher paper [23]. The
datasets all model the use-case of two mostly deduplicated datasets
to be matched for different domains, namely products (abt-buy),
scientific texts (dblp-scholar) and companies. We can see in the last
two columns of Table 1 that abt-buy and companies do not fulfill
the requirement R2 from Section 3 that multiple entity descriptions
should be available for a larger fraction of the entities. We include
results on these datasets to show how JointBERT performs in such
cases. dblp-scholar contains at least 5 entity descriptions for 12%
of the entities, likely due to duplicates inside the two sources. We
will later see in the results of the experiments that this fraction is
too small to fulfill R2. As the datasets only contain pairwise ground

http://di2kg.inf.uniromas3.it/2020/
3https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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truth labels (match/non-match), we use these and the resulting
transitive relations from positive pairs to assign entity labels to
each entity description in all pairs. We further introduce a summary
class other and assign to it all entity descriptions which appear only
in negative pairs. For each of the three datasets, we use all available
attributes during the experiments.

4.2 Models and Baselines

We compare the performance of JointBERT to the performance
of BERT and RoBERTa. Furthermore, we compare to Ditto [20],
the state-of-the-art Transformer-based entity matching framework,
the previous state-of-the-art framework Deepmatcher [23], and
two non-deep learning baselines. All models are evaluated using
precision, recall, and F1 on the positive class (match). The following
paragraphs present each of the models as well as the specific settings
used for training them.

Transformer-based models: All Transformer-based models
are implemented using PyTorch [24] and the HuggingFace Trans-
formers library [35]. We select the uncased base versions of the
pretrained models for BERT and RoBERTa for our experiments. For
each of them we add a linear layer on top of the pooled output of
the [CLS] token and combine it with a sigmoid activation function
resulting in a single output probability for the positive class, i.e.
match, for the current pair of product offers. All models are trained
using binary cross entropy loss. The architecture of JointBERT has
already been described in Section 3.

All Transformer-based models are trained on a single NVIDIA
RTX 2080Ti GPU with 12GB VRAM. The attributes of each entity
description are concatenated into a single string. Any further pre-
processing is omitted and left to the tokenizer of the respective
models. All models are allowed the full input length of 512 tokens.
We fix the batch size at 32 and use the Adam [17] optimizer to train
the models for 50 epochs using a linearly decaying learning rate
with one epoch warmup. A learning rate sweep is done over the
range [1e-5, 3e-5, 5e-5, 8e-5. le-4]. Model selection is performed
using the maximum F1 value on the validation set. If a models
performance on the validation set does not increase over 10 con-
secutive epochs, training is stopped early. All models are trained
three times and we report the average performance.

Ditto: For our experiments with the Ditto [20] framework, we
activate the domain knowledge injection module using the offered
spans for the product or general domain, depending on the dataset,
as well as the training data augmentation module with the operator
span_del, which deletes randomly sampled spans to augment the
data. For the abt-buy, dblp-scholar and company datasets we use
the respective operator found working best in the original paper.
Instead of using a RoBERTa model at the core of Ditto as in the
original paper [20], we use a BERT model in order to make the re-
sults more comparable to the results of the JointBERT experiments.
The batch size is set to 8 due to memory constraints and we train
for 50 epochs using a linearly decaying learning rate of 3e-5 (as
in the original paper) with warmup. All Ditto models are trained
three times and we report the performance average.

Deepmatcher: For our experiments with Deepmatcher [23],
we choose the RNN summarization method which has proven to
perform best for the WDC LSPC datasets [26]. We fix the batch size
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Table 3: F1 results on the test sets for each dataset.

Testset Training Set Word Co-oc  Magellan Deepmatcher BERT RoBERTa Ditto JointBERT
xlarge 82.39 63.16 88.95 94.57 94.73 96.53 97.49
WDC computers large 81.23 64.56 84.32 92.11 94.68 93.81 96.90
p medium 70.94 61.59 69.85 89.31 91.90 88.97 88.82
small 62.69 57.60 61.22 80.46 86.37 81.52 77.55
xlarge 73.33 51.70 84.88 91.42 94.39 94.74 98.02
WDC cameras large 76.24 54.49 82.16 91.02 93.91 94.41 96.51
medium 69.89 54.99 69.34 87.02 90.20 87.97 87.91
small 64.86 52.78 59.65 77.47 85.74 78.67 78.30
xlarge 79.78 56.04 88.34 95.76 94.87 97.05 97.09
large 79.64 60.59 86.03 95.23 93.93 97.17 98.46
WDC watches medium 69.54 66.62 67.92 89.00  92.28  89.16  87.46
small 63.49 59.73 54.97 78.73 87.16 81.32 75.83
xlarge 70.38 61.45 86.74 87.44 88.88 93.28 97.88
large 71.18 60.48 83.17 87.37 86.60 90.07 95.16
WDC shoes medium 72.43 59.80 74.40 7982 8112  83.20 8261
small 63.65 58.57 64.71 74.49 80.29 75.13 73.13
DI2KG monitor-seen default 83.59 21.79 77.41 96.22 96.65 86.51 97.82
DI2KG monitor-unseen default 21.24 16.02 33.93 91.49 93.26 73.52 82.86
DI2KG monitor-combined default 33.82 16.90 37.37 92.19 93.76 75.28 84.77
abt—buy default 36.30 43.60 62.80 84.64 91.05 82.11 83.44
dblp—scholar default 85.38 92.30 94.70 95.27 95.29 94.47 93.99
company default 71.81 79.80 92.70 91.70 91.81 90.68 91.40

at 16 and set the positive-negative ratio, which controls the class
weighting, to the actual distribution of each training set. We keep
the default values for all other hyper-parameters. We use fastText
embeddings pre-trained on the English Wikipedia* as input for
Deepmatcher. Each model configuration is trained three times for
50 epochs and we report the averages. For the datasets abt-buy, dblp-
scholar and company we report the best result from the original
paper [23].

Magellan and Word Co-occurrence: The two non deep learn-
ing methods in our experiments are Magellan [18], an entity match-
ing framework based on feature similarities, as well as a simple
baseline using the binary word co-occurrence among two prod-
uct offers as features. For the classification step, both methods use
scikit-learn [25] classifier implementations.

The Magellan framework offers the option of automatically cre-
ating similarity features which can then be used for classification.
For this purpose, the framework uses a set of human written heuris-
tic rules, which consider for example the average length of text
inside an attribute to create meaningful features. We use this auto-
matic feature generation method on the respective training sets to
generate feature input for the classifier.

To build the features for the Word Co-occurrence baseline, we
first build a vocabulary of words on the respective training set

4https://fasttext.cc/docs/en/pretrained-vectors.html
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which is subsequently used to build a binary word co-occurrence
vector for each entity pair.

We optimize both methods using random search over parameter
grids for the following classifiers: Logistic Regression, LinearSVC,
DecisionTree, Random Forest and XGBoost. After finding the best
hyper-parameter settings as well as classification algorithm on the
validation set, the best model configuration is trained three times
and we report the averages. For the datasets abt-buy, dblp-scholar
and company, we report the result of the Magellan experiments
from the Deepmatcher paper [23].

4.3 Results and Discussion

Table 3 shows the F1 results of the experiments across all models and
datasets. With regards to the WDC datasets and the large and xlarge
training sizes the JointBERT model performs best and can improve
on single-objective BERT by 1% to 10% F1 depending on dataset. The
improvement range over RoBERTa and Ditto is generally smaller
with a range of 1% to 5% over Ditto apart from the watches xlarge
training set were both perform equally well. Using the multi-class
objective in addition to binary classification results in a strong
matching performance of >95% F1 in all categories for the large
and xlarge WDC training sets. For the medium and small WDC
training sets, JointBERT is outperformed by BERT, RoBERTa and
Ditto. The performance loss to single-objective BERT is up to 3% F1
and up to 6% for Ditto for these training sizes. This is potentially
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Table 4:

F1 Results for the specific matching challenges of the MWPD test set.

Matching Challenge # Match  # Non-Match Word Co-oc  Magellan Deepmatcher BERT RoBERTa Ditto JointBERT
Unseen products - high similarity 25 75 48.00 27.89 58.64 84.53 83.18 69.97 59.92
Unseen products - low similarity 25 75 11.43 59.04 58.78 76.92 77.72 65.78 58.91
Seen products - introduced typos 100 0 54.01 19.79 60.76 71.21 85.49 83.49 89.08
Seen products - dropped tokens 100 0 78.79 50.35 71.75 87.62 89.88 90.28 93.23
Seen products - very hard cases 25 75 61.22 11.00 74.53 89.04 88.51 94.12 95.55
Mix of hard non-matches and matches 250 750 77.93 58.48 79.90 84.08 86.32 85.30 84.24
Full MWPD test set 525 975 69.65 48.23 71.53 82.58 86.20 83.96 83.35

due to the overall smaller amount of training data in combination
with the smaller amount of unique entity descriptions per product
which turn the multi-class training objective to having a negative
effect on the performance. All BERT-based models consistently
beat the baseline methods and Deepmatcher on all training set
sizes and categories for the WDC datasets. The differences are
most pronounced for smaller training set sizes, making BERT-based
models highly training data efficient compared to Deepmatcher,
Magellan, and the word co-occurrence baseline.

For the DI2KG monitor dataset RoBERTa is generally slightly
ahead of BERT but the best performance for the seen test set is
achieved by JointBERT which outperforms RoBERTa by nearly
1.5% F1. On the unseen test set, BERT and RoBERTa lose around
3-5% performance while JointBERT drops by 15% F1. As the DI2KG
monitor dataset provides enough training data for the multi-class
objective (see last two columns of Table 1), the impact of this objec-
tive on the final prediction is likely high. This seems to lead to very
good results when predicting for seen entities and has a negative
effect when predicting for unseen entities.

On two of the three two-source datasets abt-buy, dblp-scholar and
company, RoBERTa performs best while Ditto and BERT perform
slightly worse. On abt-buy, RoBERTa outperforms BERT by 6% F1.
The JointBERT results are up to 1% F1 worse than BERT, likely due
to the limited amount of distinct entity descriptions per entity in
these datasets.

In conclusion, if training data is limited and JointBERT’s require-
ment R2 of multiple entity descriptions for many entities is not
fulfilled, then using single-objective training and a robust model
like RoBERTa, which has been pre-trained on large amounts of
textual data, including web pages, leads to higher performance,
especially for unseen entities. If larger amounts of training data
for both objectives are available and the task mostly contains seen
entities, then JointBERT outperforms RoBERTa.

5 CHALLENGE-SPECIFIC ANALYSIS

In addition to the previous experiments, we further analyze the
strong performance of JointBERT when trained using large amounts
of training data by evaluating all models, trained with the computers
xlarge training set”, on the test set of the Semantic Web Challenge on
Mining the Web of HTML-embedded Product Data (MWPD) which
took place at ISWC2020 [37]. This test set contains 1,500 prod-
uct offer pairs from the WDC LSPC computers category [27]. For
the purposes of the challenge, this test set was made intentionally

SResults for other sets are found at https://github.com/wbsg-uni-mannheim/jointbert
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hard by selecting mainly very hard pairs as well as further aug-
menting some of them to derive subsets of pairs posing specific
matching challenges (100 pairs each). These challenges include (i)
pairs containing products unseen during training and having a high
similarity to seen products, (ii) pairs unseen during training and
having a low similarity to seen products, (iii) pairs of seen prod-
ucts which were augmented by manually introducing typos into
important words, (iv) pairs of seen products which were augmented
by manually dropping important words, and (v) very hard pairs
of seen products (i.e. most similar non-matches and least similar
matches). Similarity in this regard refers to Jaccard similarity of
the title attribute. Apart from these specific matching challenges,
the majority of the MWPD test set is comprised of a mix of simi-
lar non-matches and similar matches, mainly for seen but also for
unseen products.

Table 4 provides statistics about the amounts of matches and
non-matches for each challenge and reports the performance of
all matchers, trained using the computers-xlarge training set, for
the specific matching challenges of the MWPD test set. For the
two challenges involving unseen products, BERT and RoBERTa
perform the best (within 1.5% F1 of each other) with around 84%
F1 for unseen products similar to seen products, and around 77%
F1 for those which are less similar to seen products. JointBERT s
performance for unseen products is the worst among all BERT-
based models, which was expected as the multi-class objective
steers the model towards recognizing a specific set of entities and
reduces its ability to generalize to unseen entities. This is the same
effect that was already observed on the monitor-unseen test set in
Section 4.

When looking at the challenges involving seen products, which
have either typos introduced into important words or in which
these words are dropped entirely, JointBERT outperforms all other
models by at least 3% F1. The robustness to such challenges likely
stems from the additional multi-class objective which supports the
binary decision, even though the direct similarity comparison of
the two strings gets harder due to typos or dropped words.

The third challenge for seen products consists of especially hard
offer pairs. This challenge set is comprised of highly similar neg-
atives as well as dissimilar positives. As for the other two seen
product challenges, JointBERT performs best on this challenge and
can outperform BERT by 6.5% F1, highlighting the utility of the
dual-objective training approach for seen products.

Finally, the last set contains a mix of hard offer pairs for seen
products as well as some unseen products and makes up the bulk


https://github.com/wbsg-uni-mannheim/jointbert

of the MWPD test set. All BERT-based models perform comparably
here with around 85% F1 apart from RoBERTa which manages to
set itself apart slightly with 86.5% F1. Overall, RoBERTa proves to
be most robust even though it does not excel over other models at
any particular challenge, and performs the best on the mixed set.

6 EXPLAINING MATCHING DECISIONS

In order to better understand the matching decisions of different
models, in the following we investigate the importance of words
belonging to domain-specific word classes for the matching deci-
sions. We base our analysis on the Mojito [10] framework, which
adapts the LIME algorithm [28] for the use case of pairwise en-
tity matching and is part of recent efforts to explain deep entity
matching results [12, 32]. LIME creates an explanation for a single
matching decision as follows: The instance (pair of entity descrip-
tions) is perturbed using word dropping and labels for all perturbed
instances are queried from the model to be explained. This set of
instance/label pairs is used afterwards to train a surrogate linear
regression model which is presumed to locally approximate the
original model. The coefficients of the regression model are ex-
tracted and signify the importance of the respective words for the
matching decision. Mojito offers a second method for perturbing in-
stances, namely copying tokens between entities, but we decide on
using the default LIME word dropping method for our experiments.
Figure 2 shows an example of a LIME explanation generated with
Mojito for a matching decision by a BERT model for a pair from the
MWPD test set. Words with orange coloring signify positive weight
(pushing towards match), blue words negative weight (pushing
towards non-match). The models decision for non-match seems to
be based on the difference in RAM size as well as SSD size between
the two Chromebooks, which makes sense for a human.

HP Chromebook 14 G4 - 14 Celeron N2840 2 GB RAM 16 SSD US QETC Consortium Store
HP Chromebook 14 G4 - 14 Celeron N2940 4 GB RAM 32 SSD US QETC Consortium Store

L0[hp L0|chromebook L0|14 LO|g4 LO|- LO[14
L0|celeron LO[n2840 LOJ2 LO|gb LOjram LOJ16 L0|ssd
L0[us LOJoetc LO|consortium LO|store L1[hp RO[hp
RO|chromebook RO|14 RO|g4 RO|- R0[14 RO|celeron
R0[n2940 RO RO|gb ROram RO|ssd ROus
RO|oetc RO|consortium RO|store R1|hp

Figure 2: LIME explanation example for a non-match classi-
fied correctly by the BERT model.

Aggregating explanations: LIME explanations are restricted
to explaining single matching decisions by locally approximating
the model around one specific decision. In order to get a better
understanding about the types of words onto which a model is
focusing in specific matching situations, we want to aggregate the
LIME explanations for multiple matching decisions representing
a specific matching situation or matching challenge. For aggregat-
ing explanations and for abstracting from specific words to more
generic word classes relevant for the domain, such as model number,
brand and model name, we take a three step approach:

1. Sampling interesting entity pairs: The MWPD test set
serves as a basis for building a dataset for explanations, as it con-
tains a variety of hard pairs and products with and without training
examples in the associated training set. This allows us to sample
interesting entity pairs, whose explanations can give us further
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Table 5: Product domain-specific word classes used for man-
ual annotation of the explanation dataset.

Word Class Examples

DUAL-GTX1060-06G, DT100G3/128GB, ...
Asus, Apple, Hewlett-Packard, NVIDIA, ...
Thinkpad 11e, GTX 1070, Core i7-4770k, ...

16 GB RAM, 256 GB SSD, 4 GHz, ...

Stopword with, New, Wholesale, Laptop Outlet Direct, ...
Product type Hard Disk Drive, Processor, Graphics Card, ...
Other descriptive word  Kit, OEM, High Performance, ...

Model number

Brand name

Model name
Characteristic attribute

insights into the models decision process. As we are interested in
the impact of the amount of training data on the matching decisions
and we are also interested in the role of strong predictors such as
model numbers for the matching decisions, we sample 50 pairs, split
into 25 positives and 25 negatives, for each of the following classes
of entity pairs:

(1) Both products had many training examples (>10)
) Both products had few training examples (<5)

) Both products had no training examples

) Both offers contain a model number

(5) At least one offer does not have a model number

@
3
“

2. Annotating entity pairs with word classes: We proceed
with manually labeling each of the words in the selected pairs title
attribute with a domain-specific word class, which we will use later
on to aggregate explanation weights and make explanations com-
parable across different products. Table 5 shows the word classes
that we selected as well as examples of words from each class.

Matches all models predicted correctly (TP)

BERT
JointBERT
Deepmatcher

f—§+—¢$—;é—§

Figure 3: Aggregated explanations for pairs classified cor-
rectly by all models.

3. Aggregating explanations for specific subsets: In order to
understand the importance of words belonging to domain-specific
word classes in specific matching situations and for specific match-
ing challenges, we select subsets of the 250 annotated entity pairs
and aggregate the LIME word weights by word classes, and finally
compare the resulting weight aggregations between different mod-
els. In the following, we analyze two subsets of the annotated pairs:
(i) Pairs correctly classified by BERT, JointBERT, and Deepmatcher,
(ii) Pairs with and without model numbers.
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Figure 4: Aggregated explanations for (left) the correctly classified pairs of the group "solvable by model number" and (right)
the correctly classified pairs of the group "not solvable by model number".

Correct Matching Decisions: To get a general overview of
differences between the three models BERT, JointBERT, and Deep-
matcher, we generate the explanation plots using those pairs which
all models predicted correctly for the match class. We omit non-
matches due to space reasons - the observed patterns are similar
to those for matches and the corresponding plots are available in
the repository. Picture 3 shows the resulting visualization. The
black lines across the swarm columns for each model denote the
median value of that column. There are some notable differences
visible between Deepmatcher and the BERT-based models. Both
BERT models seem to put a large fraction of the weight on model
numbers which is reasonable as this word class is the strongest
indicator for matching or non-matching product offers if available.
Compared to the BERT models, Deepmatcher puts less weight on
model numbers. The second highest weighted word class is model
name for the BERT-based models, which is highest weighted for
Deepmatcher. Intuitively this makes sense, since the model name is
one of the strongest indicators for a matching or non-matching pair
as often these are the words where hard non-matching pairs differ
in subtle ways (e.g. IPhone X vs IPhone Xs). For matching pairs these
words will likely be exactly the same apart from possible differences
due to encoding errors or noise. For the rest of the word classes
the differences between the models are minimal. The weighting
of stopwords is low for all models, suggesting that the models can
mostly ignore irrelevant words.

Role of Model Numbers: We can further drill down using the
two subsets solvable using model numbers and not solvable using only
model numbers to illustrate how model decisions change for each
of these cases. Figure 4 shows the resulting explanation plots for
matches. For the cases which can be solved using model numbers,
i.e. they are available for both offers, it is clear that the BERT-based
models focus strongly on the model numbers and less on the model
name, while the Deepmatcher model is more focused on the model
names and does not weight the model number as strongly (left
side in Figure 4). When looking at those pairs that are not solvable
using model numbers, the BERT-based models shift their focus
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towards using the model name (right side in Figure 4). The median

weight on model name is now even higher than for Deepmatcher.
In conclusion, the BERT-based models seem to be able to better

focus on strong predictors such as model numbers if available and
can better adapt if the strongest predictors, i.e. model numbers, are
missing when compared to Deepmatcher, which seems to overly
focus on the model name even if model numbers are available.

7 CONCLUSION

We have demonstrated that jointly training BERT for binary and
multi-class entity matching outperforms matching models that
were trained using only the binary objective by 1% to 5% F1 for
seen entities given that sufficient amounts of training data for both
objectives are available. This joint training is applicable to any
entity matching scenario in which entity identifiers are available
for a subset of entity descriptions to be matched. An example of
such a scenario are price portals which maintain a product cata-
log and have to match incoming product offers to it. The analysis
of specific matching challenges in Section 5 illustrated that Joint-
BERT outperforms the other models on challenges involving seen
products by at least 1.5% F1, again given that enough training data
is available. As a downside, JointBERT underperforms on unseen
products in comparison to Ditto, BERT and RoBERTa, as the multi-
class objective steers the model towards recognizing seen entities.
In conclusion, dual-objective training should be considered for use
cases involving seen entities and enough labels for both objectives,
while single-objective Transformers are more suited for unseen
entities and use cases involving small amounts of training data.
Aggregating LIME explanations by domain-specific word classes,
in an effort to better understand the general focus of the models,
uncovered that BERT-based models are more adept in focusing on
relevant words such as model numbers than Deepmatcher, while
still being able to fallback to focusing on other word classes such
as model name in cases for which model numbers are not available.
As future work, it would be interesting to investigate combining
dual-objective training with data augmentation techniques [20]
and additional pre-training using domain-specific corpora [2].
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