
INTERTRANS: Leveraging Transitive Intermediate
Translations to Enhance LLM-based Code Translation

1st Marcos Macedo
School of Computing

Queen’s University
Kingston, ON, Canada

marcos.macedo@queensu.ca

2nd Yuan Tian
School of Computing

Queen’s University
Kingston, ON, Canada

y.tian@queensu.ca

3rd Pengyu Nie
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

pynie@uwaterloo.ca

4th Filipe R. Cogo
Centre for Software Excellence

Huawei Canada
Kingston, ON, Canada

filipe.roseiro.cogo1@huawei.com

5th Bram Adams
School of Computing

Queen’s University
Kingston, ON, Canada

bram.adams@queensu.ca

Abstract—Code translation aims to convert a program from
one programming language (PL) to another. This long-standing
software engineering task is crucial for modernizing legacy
systems, ensuring cross-platform compatibility, enhancing per-
formance, and more. However, automating this process remains
challenging due to many syntactic and semantic differences
between PLs. Recent studies show that even advanced techniques
such as large language models (LLMs), especially open-source
LLMs, still struggle with the task.

Currently, code LLMs are trained with source code from
multiple programming languages, thus presenting multilingual
capabilities. In this paper, we investigate whether such capabili-
ties can be harnessed to enhance code translation. To achieve this
goal, we introduce INTERTRANS, an LLM-based automated code
translation approach that, in contrast to existing approaches,
leverages intermediate translations to bridge the syntactic and
semantic gaps between source and target PLs. INTERTRANS
contains two stages. It first utilizes a novel Tree of Code
Translation (ToCT) algorithm to plan transitive intermediate
translation sequences between a given source and target PL, then
validates them in a specific order. We evaluate INTERTRANS
with three open LLMs on three benchmarks (i.e., CodeNet,
HumanEval-X, and TransCoder) involving six PLs. Results show
an absolute improvement of 18.3% to 43.3% in Computation
Accuracy (CA) for INTERTRANS over Direct Translation with
10 attempts. The best-performing variant of INTERTRANS (with
the Magicoder LLM) achieved an average CA of 87.3%-95.4%
on three benchmarks.

I. INTRODUCTION

Automatically translating source code between different
programming languages (PLs) can significantly reduce the
time and effort required for software development teams.
In the literature, researchers have proposed various auto-
mated code translation methods. Data-driven learning-based
approaches [35], [37] have shown impressive improvements
over traditional rule-based methods [1], [2], [7]. Unlike rule-
based approaches, which rely on handcrafted rules and pro-
gram analysis techniques, learning-based methods can auto-

matically learn syntactic and semantic patterns from large-
scale code repositories.

Large language models (LLMs) represent the most advanced
learning-based approaches developed in recent years and have
demonstrated promising results across various software engi-
neering tasks [16]. Pre-trained on vast amounts of code (across
dozens of PLs) and text data, and equipped with billions of
parameters, LLMs can be applied directly to code translation
without the need for task-specific continuous training/fine-
tuning. This would eliminate the need for costly and time-
consuming processes involved in collecting training datasets
and developing specialized models for code translation.

However, recent studies have shown that the performance
of LLM-based automated code translation, particularly with
open-source LLMs, is still far from the production level, with
correct translations ranging from 2.1% to 47.3% [30], [41].
These studies found that many errors in LLM-generated code
translations stem from the models’ lack of understanding of
syntactic and semantic discrepancies between source and target
languages, which can vary significantly across different pairs.
For instance, 80% of the errors in translating from C++ to
Go are due to syntactic and semantic differences, while only
23.1% of such errors occur when translating from C++ to
C [30]. This variation is intuitive, as certain PLs naturally
share more similarities in syntax and semantics than others.

A similar phenomenon has been observed in machine trans-
lation for human languages, where translating between certain
languages is easier than others [21]. To improve translations
for challenging language pairs, a common strategy is to use
parallel corpora with a pivot (bridge) language [20]. In fact,
traditional statistical machine translation between non-English
languages, such as French to German, often involves pivoting
through English [40]. This approach remains effective with the
rise of multilingual neural machine translation models. For
instance, in a recent work by Meta [15], training language
pairs were collected based on linguistic families and bridge

ar
X

iv
:2

41
1.

01
06

3v
1 

 [
cs

.S
E

] 
 1

 N
ov

 2
02

4



languages, facilitating translation across numerous language
pairs without exhaustively mining every possible pair.

Inspired by this idea, this paper explores the potential of
leveraging transitive intermediate translations from a source
PL into other PLs before translating to the desired target PL,
an idea not previously explored in the field of automated code
translation. For example, to translate a program written in
Python to Java, we might first translate it from Python to C++
and then from C++ to Java, as illustrated in Figure 1. This
process is done through prompting, without additional training
data, thanks to code LLMs that are pre-trained on text and
code across multiple PLs and naturally possess multilingual
capabilities. While this idea is inspired by machine translation,
its potential in the inference stage of LLM-based translation
approaches has not been explored. Despite the conceptual
simplicity of the idea, a major challenge to address is the
choice of the number and type of intermediate language(s),
since the optimal choice might be different for each pair of
PLs or even each pair of code snippets.

The idea of utilizing existing PLs as “bridges” is different
than earlier work, TransCoder-IR [37], a non-LLM learning-
based method that enhances source code pairs by incorporat-
ing their corresponding low-level, language-agnostic compiler
Intermediate Representations (IR), such as LLVM IRs [24],
into the training dataset. Instead of relying on one unified IR
to bridge any pair of cross-PL translations, we systematically
explore different potential transitive intermediate translations
using multiple existing PLs.

INTERTRANS, our novel LLM-based code translation ap-
proach that enhances source-target translations via transitive
intermediate translations, operates in two stages. In the first
stage, a method called Tree of Code Translations (ToCT)
generates a translation tree containing all potential translation
paths for a specific source-target PL pair, conditioned to a set
of pre-defined intermediate PLs and the maximum number
of intermediate translations to be explored. In the second
stage, translation paths are turned into LLM prompts that are
executed in a breadth-first order. INTERTRANS then uses a
readily available test suite to validate whether the generated
translation to the target language is correct, enabling early
termination of translation path exploration if a successful path
is found before completely exploring the translation tree.

To evaluate the effectiveness of INTERTRANS, we con-
ducted experiments using three code LLMs (Code Llama [33],
Magicoder [38], and StarCoder2 [25]) on 4,926 translation
problems sourced from three datasets, i.e., CodeNet [32],
HumanEval-X [42], and TransCoder [34]. Each translation
problem aims to translate a program writing in a source PL
to a target PL. These problems involve 30 different source-
target PL pairs across six languages: C++, JavaScript, Java,
Python, Go, and Rust. Our results show that INTERTRANS
consistently outperforms direct translation (i.e., without in-
termediate language translation) with 10 attempts, achieving
an absolute Computational Accuracy (CA) improvement of
18.3% to 43.3% (median: 28.6%) across the three LLMs and
datasets. Through ablation studies, we analyzed the effects of

varying the number and selection of intermediate languages on
INTERTRANS’s performance. Generally, increasing the num-
ber of intermediate translations enhances CA, though the ben-
efits taper off after three translations. Similarly, incorporating
more intermediate languages is advantageous, but gains slow
after including three languages. The effectiveness of specific
intermediate PLs varies across translation pairs, with notable
patterns observed in translations from C++/Python to Java via
Rust and from Rust to Go via C++. The main contributions
of this paper are as follows:

• We present the first study demonstrating that intermediate
translations based on existing PLs can enhance the perfor-
mance of LLM-based code translation.

• We propose ToCT, a novel planning algorithm designed
to explore intermediate translations effectively. We also
introduce INTERTRANS, an LLM-based code translation
approach that uses ToCT and is orthogonal to existing
approaches for code translation.

• We conducted a comprehensive empirical study to evaluate
INTERTRANS. Our results highlight the effectiveness of
INTERTRANS in enhancing LLM-based code translation.
We also provide insights for the practical application of
INTERTRANS.

The code for implementing INTERTRANS, the datasets, and the
notebooks for generating the experiment results are available
at: https://github.com/RISElabQueens/InterTrans.

II. INTERTRANS

INTERTRANS translates programs from a source to a target
language using an LLM and a series of transitive intermediate
translations. The input of INTERTRANS includes: (1) a LLM,
(2) a program Ps written in a source language Ls, (3) the
target language Lt, (4) a non-empty intermediate PL set L
which contains Ls but excludes Lt, (5) a hyper-parameter
maxDepth, which determines the maximum number of tran-
sitive intermediate translations. INTERTRANS utilizes a readily
available test suite to evaluate the accuracy of the generated
program(s) TP written in the target language, i.e., TP =
{Pt|Pt ∈ PPs,Lt

∧s ̸= t}, where PPs,Lt
is the set of programs

written in Lt that represent translation candidates for Ps.
Given a translation problem aimed at converting a source

program Ps into a target language Lt, INTERTRANS operates
in two stages. In Stage 1, it constructs all possible translation
(PL) paths using a novel approach called the Tree of Code
Translations (ToCT), which identifies potential sequences of
transitive translations from Ls to Lt via intermediate lan-
guages from the set L. Stage 2 then uses the source program Ps

and the PL paths generated from Stage 1 to perform inferences
with an LLM to generate a set of target programs TP written
in Lt. These programs, each corresponding to a translation
path, are generated and verified sequentially against a test
suite. The algorithm terminates when a successful translation
is identified, indicated by a Pt that passes the test suite. The
following subsections provide detailed descriptions of each
stage, accompanied by a running example.

https://github.com/RISElabQueens/InterTrans


Fig. 1: Running example of INTERTRANS with maxDepth=3 for translating Python to Java, showing a successful translation
through C++ after exploring various translation paths. Red nodes represent unsuccessful translations, blue nodes indicate
explored translations, green nodes denote successful translations, and grey nodes are skipped translations. The number along
with each edge is the execution order of the translations.

A. Stage 1: Generating Tree of Code Translations (ToCT)

Algorithm 1 specifies how ToCT creates (plans) translation
PL paths for a given translation PL pair utilizing a set of
intermediate languages. Since ToCT operates at the level of
translation PL pairs, this planning algorithm only needs to run
once for all translation problems involving the same source
and target languages.

In ToCT, the intermediate language set L includes the
source language Ls but excludes the target language Lt.
This is because Lt should be the final target and should not
occur as an intermediate step in the translation process, while
we should allow Ls to appear in intermediate translations
(for cases where a source program can be “simplified” by
translating to and from another PL). Below, we use a running
example, shown in Figure 1, to illustrate this algorithm. In
this example, we aim to translate a Python program to Java
(Ls is Python, Lt is Java), and we consider a maximum
depth (maxDepth) of 3, meaning that at most three edges
can be included in a translation path. The set of intermediate
languages (L) includes five programming languages: Python,
Rust, JavaScript, C++, and Go.

ToCT (see Algorithm 1) starts by enqueueing and then
dequeueing the source PL, yielding the current path starting
from the source PL, i.e., [Python] and the current depth 0 in
our running example. Since Python is not the target language,
and the current depth is less than the maximum depth of 3, the
algorithm continuously explores possible transitions either to
an intermediate language (excluding Python, since a PL cannot
be translated to itself) or directly to the target language to
complete the translation path. This results in the following
paths: [Python, Java], [Python, Rust], [Python, JavaScript],
[Python, C++], and [Python, Go]. Each of these new paths,
along with the incremented depth of 1, is enqueued into Q.

Continuing this process, the algorithm dequeues [Python,
Java] (i.e., the direct translation path) and since it ends with
the target PL, this path will be added to the final translation PL
path output list. Next, the algorithm dequeues [Python, Rust]
and explores further transitions, appending each language from
the set L to the current path, but excluding Rust to avoid trans-
lation between the same PLs. This results in new paths like

[Python, Rust, Java], [Python, Rust, JavaScript], etc., which
are then enqueued with a depth of 2. This process repeats
for all potential paths within the specified maximum depth,
ensuring all possible translation paths from Python to Java are
explored and recorded. By the end of the algorithm, the list
paths will contain all feasible sequences of translations from
Python to Java, considering all given intermediate languages
and the maximum depth argument.

Algorithm 1 ToCT path generation algorithm

Input: Ls: Source programming language, Lt: Target pro-
gramming language, maxDepth: Maximum depth of the
tree, L = {Li}: A set of intermediate languages.

Output: All paths from Ls to Lt

1: Initialize an empty list paths
2: Initialize a queue Q
3: Enqueue ([Ls], 0) into Q
4: while Q is not empty do
5: (currentPath, currentDepth)← Dequeue Q
6: currentLang ← last element of currentPath
7: if currentLang = targetLang then
8: Append currentPath to paths
9: else if currentDepth < maxDepth then

10: for lang ∈ {Lt} ∪ L do
11: if lang ̸= currentLang then
12: newPath← currentPath+ [lang]
13: Enqueue (newPath, currentDepth+1) into Q

14: return paths

B. Stage 2: Sequential Verification of ToCT

For a specific translation problem (source program), the
second stage of the INTERTRANS approach (see Algorithm 2)
takes the ToCT-generated plan for the problem’s source and
target PL, i.e., the list paths from Algorithm 1, to (1) deter-
mine the order of the paths that will be verified (i.e., checked
if they lead to a successful translation), (2) generate the
translations using an LLM and a prompt template PromptT ,
and (3) evaluate the translations to the target language using
the given test suite T . To make INTERTRANS more efficient,



an early-stopping mechanism is applied (Lines 19-20): as
soon as one path successfully translates the code into Lt,
Algorithm 2 terminates.

Algorithm 2 Algorithm for executing ToCT-generated plans

Input: Ps: An input source program, paths: A list of transla-
tion PL paths generated by ToCT, LLM : a LLM that can
generate code into {Lt} ∪ L, PromptT : A prompt tem-
plate for the specific LLM, T : a test suite for evaluating
the computational accuracy of the generated translation to
target PL Lt.

Output: Successful translation, if any, from Ls to Lt for Ps

1: Sort paths by their length in ascending order
2: for path p ∈ paths do
3: for edge Ek ∈ p do
4: if Ek is already processed then
5: continue with cached output
6: else
7: Retrieve extracted source code from Ek−1

8: Create a new prompt using PromptT
9: Perform translation using LLM and the prompt

10: Extract source code from inference output
11: if Failed extracting source code then
12: break continue with the next path p

13: Save the extracted code for Ek to cache
14: if Target language of Ek = Lt then
15: Verify this translation using the test suite T
16: if Test suite passes then
17: return the translation found
18: return the translation failed

Following the design of ToCT, it is common for multiple
paths to share the same initial transitive translation edges. For
instance, Path p1: [Python, Rust, Java] and Path p2: [Python,
Rust, JavaScript] Java share the first translation (edge). To
further improve the efficiency of INTERTRANS, we apply
memoization within each path to ensure the same edge is
not computed more than once (Lines 4-5). Note that this
optimization requires deterministic output for the same input
prompt, which is ensured via a fixed seed in our experiment.
Only new translation edges after branching from a shared path
are processed. In other words, if p1 is verified first, then p2
will reuse the resulting Rust program saved in the memory
cache to continue its unique translation to JavaScript.

In Algorithm 2, the input paths are first sorted by length in
descending order (Line 1), ensuring that the first explored path
is always a direct translation from Ls to Lt. In the best-case
scenario, where the LLM generates a program in the target
language that successfully passes the evaluation test suite, the
algorithm completes after exploring only this direct path. If
no direct translation is found, the sorting step following path
generation ensures that the algorithm maximizes the number of
paths explored relative to the total translations performed. For
instance, for our running example, in Figure 1 the numbers
along the edges indicate the sequence of steps performed

following Algorithm 2 for a specific Ps. The direct translation,
i.e., [Python, Java], will be verified first. If the transferred code
generated following this path fails, then the path [Python, Rust,
Java] will be verified, and so on, until the transferred code
generated by path [Python, C++, Java] passes the test suite T ,
the algorithm stops and returns the successful translation.

For each edge in a translation path, we first generate
translated code for the target language of the previous edge
(Line 7) (which serves as the source program of the current
edge). Next, we use the given LLM to generate the translation
output (Lines 8-9), then extract the source code from this
output (Line 10). If the extraction is successful, we then verify
if it can pass the test suite T .

III. EXPERIMENT DESIGN

We evaluate the effectiveness of INTERTRANS by answering
the following three research questions:
• RQ1: How effective is INTERTRANS compared to direct

translation and other baselines?
• RQ2: How could varying the maxDepth affect the perfor-

mance of INTERTRANS?
• RQ3: How could varying the selection of intermediate

languages affect INTERTRANS?

A. Benchmark Dataset Collection and Pre-Processing

Our experiment dataset consists of 4,926 translation prob-
lems across 30 source-target translation PL pairs involving six
PLs - C++, Go, Java, JavaScript, Python, and Rust. When
creating our experiment dataset, we considered three existing
datasets. Below, we describe the creation of our experimental
datasets from these sources.
TransCoder: The original TransCoder dataset [34] was cre-
ated by manually collecting coding problems and solutions
written in C++, Java, and Python from GeeksforGeeks [4].
Recently, Yang et al. [41] discovered quality issues in this
dataset and subsequently conducted a manual verification
and curation of the dataset to ensure its correctness. In this
study, we reused their cleaned version, containing a total of
2,826 translation problems and corresponding test suites. We
employed the full version of this dataset for comparisons with
SOTA learning-based approaches.
HumanEval-X: HumanEval-X [42] extends the python-only
code generation evaluation dataset HumanEval [12] with addi-
tional canonical solutions and test cases in six PLs: C++, Go,
Java, JavaScript, Python, and Rust. We created translation pairs
for all 164 tasks in HumanEval-X across the six languages,
resulting in 4,920 translation problems. Due to computational
constraints (particularly required by the ablation studies per-
formed to understand the impact of varying variables on the
performance of INTERTRANS), we randomly sampled 1,050
translation problems, stratified across the 30 source-target
translation pairs, ensuring a 99.9% confidence level.
CodeNet: CodeNet [32] contains programs written in 55
programming languages for learning and evaluating coding
tasks and was adopted in a recent empirical study by Pan
et al. [30] on LLM introduced translation bugs. Programming



tasks in CodeNet are verified by matching the program outputs
with the expected results. For our study, we selected tasks with
at least three test cases to ensure adequate test suite coverage,
resulting in 1,112 programming tasks. From these tasks, we
generated 15,660 translation problems by concentrating on the
six PLs featured in HumanEval-X, removing problems with
a file size exceeding 1KB (as a proxy for token length, to
prevent inputting into the prompt problems longer than the
model’s token limit) and ensuring that each translated code
snippet could be assessed using three test cases. We created a
subset of 1,050 pairs from this dataset using stratified random
sampling, ensuring a 99.9% confidence level.

B. Selected Large Language Models

InterTrans relies on an LLM that understands multiple
PLs. Almost all recent code LLMs possess this multilingual
capability. We have chosen the following three instruct-tuned
LLMs over their base models, as instruct-tuned models are
fine-tuned to follow prompted instructions more effectively.
Magicoder [38]: An open-source collection of LLMs trained
on 75K synthetic instruction-response pairs and includes mul-
tiple model variants with different base models. All Magicoder
models have around 7B parameters. We use the Magicoder-S-
DS variant [6].
StarCoder2 [25]: An open-source collection of LLMs offered
by the BigCode project [9]. StarCoder2 has instruction-tuned
versions ranging from 1B to 34B parameters. We use the
StarCoder2-15B variant [8].
CodeLlama [33]: An open-source collection of LLMs offered
by Meta based on Llama 2, specialized in code generation,
with 7B, 13B, and 34B parameters. We use the CodeLlama-
13B variant [3].

We chose these models because of their proven effective-
ness in code generation tasks and their open-source nature,
which promotes accessibility and collaborative development.
Additionally, we prioritized models compatible with efficient
inference frameworks, i.e., vLLM [22], while also ensuring
they work well with platforms such as the HuggingFace Text
Generation Interface [39]. This ensures that our selected mod-
els are not only high-performing but also practically feasible
for widespread use in both research and industry settings.

C. Compared Approaches

Direct translation (CA@1 and CA@10): We compare
INTERTRANS with direct translation by evaluating perfor-
mance with a single attempt (CA@1) and multiple attempts
(CA@10). For CA@10, a single prompt is used to generate ten
translation candidates. The translation is considered successful
if any of these ten attempts result in a correct translation.
Comparing with CA@1 reveals the additional opportunities
INTERTRANS discovers via ToCT. Since INTERTRANS utilizes
multiple translation paths, it inherently makes more than one
attempt, making a comparison with CA@1 alone insufficient.
Hence, to find a fair number of attempts (k) for direct transla-
tion, we analyzed how many attempts INTERTRANS required
to achieve a successful translation across the experiments.

On average, 3.9 attempts were needed, with 75% of cases
successful within two attempts and less than 0.1% requiring
between 59 and 83 attempts. Therefore, we chose CA@10
as a stronger baseline, allowing ten attempts with a high
temperature setting to generate diverse variants and increase
the chances of passing the test suite. The distribution of the
number of attempts made by INTERTRANS in our experiments
is presented in the supplementary material.
Non-LLM SOTA approaches: TransCoder [34] is an unsu-
pervised model pre-trained with cross-lingual language model-
ing, denoising auto-encoding, and back-translation, leveraging
a vast amount of monolingual samples. TransCoder-IR [37], an
incremental improvement, introduces the idea of using a low-
level compiler Intermediate Representation (IR) to enhance
translation performance. In addition to TransCoder’s pretrain-
ing tasks, TransCoder-IR includes translation language model-
ing, translation auto-encoding, and IR generation. TransCoder-
ST [35] is another enhanced version of TransCoder that uses
automatically generated test cases to filter invalid translations,
improving performance. These models are trained on only a
few PLs, i.e., Python, C++, and Java.
GPT-3.5 and its enhanced version: GPT-3.5 is a powerful
closed LLM provided by OpenAI that is capable of code
generation. We consider the gpt-3.5-turbo-0613 version. Uni-
Trans with GPT-3.5 is an enhanced version designed for code
translation, proposed by Yang et al. [41]. UniTrans generates
test cases to aid LLMs in repairing errors by integrating test
execution error messages into prompts. Despite UniTrans with
GPT-3.5 requiring additional program repair and extra test
cases, we include it as a baseline since it represents the state-
of-the-art performance on the TransCoder dataset.

D. Evaluation Metric

Similar to recent studies on LLM-based code transla-
tion [30], [41], we adopt execution-based evaluation met-
rics, i.e., Computational Accuracy (CA) [34]. CA assesses
whether a transformed target program produces the same
outputs as the source function when given identical inputs.
CA on a benchmark is the ratio of translation problems
that have correctly translated to the target language. We
choose CA over text-based metrics like BLEU score because
LLMs can produce valid translations that differ from human-
written references; text-based metrics might be misleading
when evaluating translated code against the reference, i.e., they
can yield high scores despite the two code versions being
functionally distinct [43]. In our study, we aim to explore
the effectiveness of intermediate PL translations in generating
functionally equivalent programs instead of merely focusing
on textual similarity.

E. Implementation

Our scalable reference implementation of the INTERTRANS
algorithms is written in Go and implemented as a client
(Python) and server (engine written in Go) architecture that
communicates over gRPC [17]. The INTERTRANS engine



utilizes vLLM [22] as the inference engine, given its perfor-
mance and dynamic batching capabilities. It queries vLLM
endpoints using round-robin to achieve data parallelism during
inference and distribute the computational load evenly. The
computational infrastructure used for our experiments consists
of 6x NVIDIA RTX A6000 GPUs on an AMD EPYC Server
with 128 CPU cores.

To ensure deterministic inference results from vLLM across
all experiments involving InterTrans, we randomly generated
a fixed random seed for inference. We set the decoder param-
eters top-p to 0.95, top-k to 10, and the temperature to 0.7.
When evaluating the baseline performance of direct translation
with CA@1 and CA@10, we do not fix the seed to ensure we
generate diverse candidates. The selection of top-p, top-k, and
temperature aligns with recent studies on code LLMs [14].

During our experiments, even after identifying a successful
translation, we still continue to explore and verify all potential
translation paths. While one would not do this in practice when
using INTERTRANS, it was essential in our empirical study to
collect comprehensive data on all translation paths needed for
addressing our research questions, particularly RQ3 (impact
of removing intermediate PLs). However, this does not impact
the reported CA results for INTERTRANS.

IV. RESULTS AND ANALYSIS

A. RQ1: Effectiveness of INTERTRANS

Approach: In INTERTRANS, the maxDepth is set to 4,
allowing for a maximum of four translations (edges) in a trans-
lation PL path. This parameter enables us to explore various
translation paths (with 85 maximum attempts). The six PLs
of the CodeNet and HumanEval-X benchmarks, i.e., Python,
C++, JavaScript, Java, Rust, and Go, serve as intermediate
languages. While the TransCoder dataset includes only Python,
C++, and Java, additional languages like Rust, JavaScript,
and Go can be used as intermediates. This flexibility is
possible because INTERTRANS does not verify the correctness
of intermediate translations unless they result in a program
written in the target language.
Results: Table I presents the comparison of INTERTRANS
with direct translation (CA@1 and CA@10) across the three
datasets, for the three base LLMs. We calculated both absolute
and relative differences with CA@10, as the latter serves as
a stronger direct translation baseline. Table II displays the
comparison of INTERTRANS (with StarCoder2) against non-
LLM SOTA approaches, GPT-3.5 and its enhanced version on
the TransCoder dataset.

As shown in Table I, INTERTRANS consistently surpasses
direct translation (CA@1 and CA@10) across all three
datasets and all studied LLMs. It achieves an absolute im-
provement of 18.3% to 43.3% compared to direct CA@10.
Specifically, on CodeNet, INTERTRANS shows an average
absolute improvement of 26.2% for Code Llama, 38.3% for
Magicoder, and 43.3% for StarCoder2 when compared to
Direct (CA@10), the largest among three datasets for all three
models. Overall, INTERTRANS with Magicoder performs the
best, with the highest CA on both CodeNet and HumanEval-X

(see grey filled cells in Table I). On TransCoder, INTERTRANS
with StarCoder2 performs the best with a CA of 93.8%,
slightly higher than INTERTRANS with Magicoder (90.8%).

When comparing INTERTRANS with StarCoder2 (the best
variant of INTERTRANS on TransCoder), to other state-of-the-
art approaches on TransCoder, our approach outperforms all
others across all six source-target PL pairs (see Table II). The
second best performance is achieved by UniTrans with GPT-
3.5. All the LLM-based approaches considered in Table II
perform consistently better than the TransCoder models, fur-
ther showcasing the promising potential of LLMs in automated
code translation.

B. RQ2: Impact of Varying maxDepth

Approach: INTERTRANS utilizes two hyper-parameters, one
of which is maxDepth. This parameter controls the depth of
the translation tree generated by Algorithm 1. In this research
question, we investigate how this parameter affects the per-
formance of INTERTRANS. Specifically, we vary maxDepth
from 1 (direct translation) to 4. We conducted pairwise com-
parisons across different depths (1 vs. 2, 1 vs. 3, 1 vs. 4, 2
vs. 3, 2 vs. 4, and 3 vs. 4) to evaluate the significance of
the performance changes (i.e., the number of successful and
unsuccessful translations) using the Chi-Square statistical test.
To account for multiple comparisons across levels within the
same model and dataset, we apply the Bonferroni correction
to an alpha level of 0.05. The results of our experiments with
varying values for maxDepth are shown in Figure 2.
Results: We can observe that as the maxDepth increases, the
performance of INTERTRANS consistently improves, although
the rate of improvement slows down towards longer paths. For
instance, on HumanEval-X, increasing the maxDepth from 1
to 2 results in an absolute improvement of 23.7% for Code
Llama, from 2 to 3 results in an improvement of 6.6%, and
from 3 to 4, the improvement is 3.2%. Similar patterns are
observed across all nine combinations of models and datasets.

Regarding the statistical tests performed, we find that for
all datasets and models, there is a statistically significant im-
provement in terms of CA as the depth increases. Exceptions
to this trend are noted for Code Llama and StarCoder 2 in the
TransCoder dataset, where there is no significant increase in
the CA metric when increasing the depth from 3 to 4, and for
Code Llama and Magicoder in the HumanEval-X dataset with
the same depth change. In other words, out of 54 comparisons
(6 depth changes × 9) conducted, only 4 cases of increasing
the depth do not lead to a statistically significant improvement
in performance, all involving an increase from depth 3 to 4.

We observe small differences (an average of 2.8%) when
comparing the Direct (CA@1) reported in Table I with the
results of this experiment using maxDepth set to 1. These
differences may be attributed to the fact that for Direct CA@1
and CA@10, we did not fix the random seed. Consequently,
a different seed was used.



TABLE I: Performance of InterTrans compared with Direct Translation. Abs Diff and Rel Diff mean the absolute difference
and relative difference compared to Direct (CA@10). The source language column includes all PLs of a dataset. The set of
target languages for a given source language includes all PLs of a dataset, except the source language.

Dataset Source
language

Total
samples

CA@K (percentage)

Code Llama Magicoder StarCoder2

Direct
(CA@1)

Direct
(CA@10)

INTER
TRANS

Abs.
diff.

Rel.
diff.

Direct
(CA@1)

Direct
(CA@10)

INTER
TRANS

Abs.
diff.

Rel.
diff.

Direct
(CA@1)

Direct
(CA@10)

INTER
TRANS

Abs.
diff.

Rel.
diff.

CodeNet C++ 175 32.0 42.9 61.1 18.3 42.7 50.3 50.9 88.0 37.1 73.0 29.1 40.0 81.7 41.7 104.3
Go 175 30.3 34.3 61.1 26.9 78.3 50.9 53.1 85.7 32.6 61.3 45.7 50.3 85.1 34.9 69.3
Java 175 25.7 38.9 55.4 16.6 42.6 45.1 45.7 85.1 39.4 86.2 36.6 41.1 85.7 44.6 108.3
JavaScript 175 22.3 33.7 64.6 30.9 91.5 50.9 50.9 87.4 36.6 71.9 24.0 25.7 82.9 57.1 222.2
Python 175 14.3 19.4 57.1 37.7 194.1 41.1 42.3 91.4 49.1 116.2 38.3 44.0 87.4 43.4 98.7
Rust 175 29.7 38.3 65.1 26.9 70.1 50.9 51.4 86.3 34.9 67.8 36.0 45.1 83.4 38.3 84.8

Total/Average 1,050 25.7 34.6 60.8 26.2 75.8 48.2 49.0 87.3 38.3 78.1 35.0 41.0 84.4 43.3 105.6

HumanEval-X C++ 175 70.3 78.9 91.4 12.6 15.9 73.1 74.3 97.7 23.4 31.5 61.1 66.9 86.3 19.4 29.1
Go 175 64.0 71.4 90.3 18.9 26.4 62.9 64.0 98.3 34.3 53.6 52.0 55.4 83.4 28.0 50.5
Java 175 58.3 68.0 87.4 19.4 28.6 65.7 67.4 93.1 25.7 38.1 46.9 48.6 86.3 37.7 77.6
JavaScript 175 57.1 73.1 93.1 20.0 27.3 60.6 60.6 96.0 35.4 58.5 44.0 44.0 80.6 36.6 83.1
Python 175 53.7 64.6 82.3 17.7 27.4 61.7 62.9 89.7 26.9 42.7 36.6 36.6 77.1 40.6 110.9
Rust 175 59.4 72.0 93.7 21.7 30.2 71.4 72.0 97.7 25.7 35.7 52.6 54.3 81.1 26.9 49.5

Total/Average 1,050 60.5 71.3 89.7 18.4 25.8 65.9 66.9 95.4 28.6 42.7 48.9 51.0 82.5 31.5 61.9

TransCoder C++ 946 73.9 75.9 93.2 17.3 22.8 67.9 67.9 92.7 24.8 36.6 63.5 65.2 93.8 28.5 43.8
Java 931 77.7 79.5 94.8 15.4 19.3 77.4 77.4 91.9 14.5 18.7 79.3 79.9 95.1 15.1 19.0
Python 949 67.3 69.3 91.6 22.2 32.1 33.5 33.5 87.8 54.3 161.9 73.9 74.6 92.7 18.1 24.3

Total/Average 2,826 72.9 74.9 93.2 18.3 24.5 59.5 59.5 90.8 31.3 52.6 72.2 73.2 93.8 20.6 28.2

TABLE II: CA performance of INTERTRANS and other
baselines on TransCoder data set. We adopt the numbers of
baseline performance from Yang et al. [41]. A “–” means
there is no reported performance on the specific pair.

Models C++ to
Python

Python
to C++

Java
to C++

C++ to
Java

Java to
Python

Python
to Java

Avg.

TransCoder 36.6 30.4 27.8 49.8 – – 36.2
TransCoder-IR – – 41.0 40.5 – – 45.8
TransCoder-ST 46.3 47.8 49.7 64.7 – – 52.2
GPT-3.5 87.1 89.5 92.9 82.2 89.2 74.9 86.0
UniTrans w/ GPT-3.5 88.8 94.2 94.9 85.5 91.2 81.3 87.9

InterTrans w/ StarCoder2 93.3 94.4 96.1 94.2 94.0 91.1 93.8

Fig. 2: Performance of INTERTRANS with varying
maxDepth on three datasets.

C. RQ3: Impact of Varying the Intermediate Programming
Languages

Approach: Besides maxDepth, the other hyper-parameter of
INTERTRANS is the set of intermediate PLs considered, which
determines the width of the translation tree created by ToCT.
In this RQ, we investigate the impact of reducing the set and
specific types of intermediate PLs by addressing the following
two sub-RQs:
• RQ3.1: How does the number of available intermediate PLs

influence the performance of INTERTRANS?

• RQ3.2: How does the removal of a specific intermediate PL
affect the performance of INTERTRANS?
To address the above two sub-RQs, we first conducted an

ablation study across all possible combinations of intermediate
PLs from the experiments conducted in RQ1 and RQ2, using
a maxDepth of 4 with six PLs. Each ablation involves the
removal of all translation paths that contain a subset of the
set of intermediate PLs. In particular, for each translation, we
computed all 31 possible combinations of removing 1 to 5 PLs
from the intermediates (i.e. all combinations of intermediate
PLs, except those that include the target language). We then re-
moved the edges that involve each individual set and measured
whether the translation remained successful (i.e., at least one
translation path leads to a correct translation). This ablation
was performed for each sample of the nine experiments (3
datasets and 3 LLMs), and we recorded which removed sets
caused the translation to be unsuccessful. For this analysis,
we leveraged the data we generated during our evaluation
described in Section IV-A, where we recorded the execution
result of all translation paths in the translation trees.

To answer RQ3.1 in specific, we aggregated the results
from the 458,118 translations (4,926 tasks from 3 datasets,
each with 31 removal combinations using 3 different models)
based on the number of intermediate PLs removed, i.e., the
cardinality of the set of removed PLs. This analysis helps us
understand the overall impact of the number of intermediate
languages on translation success rate. Figure 4 shows the
performance of INTERTRANS with 0 (direct translation) to 5
intermediate PLs on three datasets with three base models.

Additionally, in RQ3.2, to investigate whether specific lan-
guages are more impactful as intermediates, we analyzed the
results from the translations of RQ3.1 that are associated with
the removal of a single intermediate PL. We then calculated
the mean absolute decrease in translation success for each of
the 30 PL pairs in our experiments, caused by the removal of



Fig. 3: HeatMap showing the mean absolute decrease in CA (%) when removing a programming language from the
intermediates used in our approach, compared to not removing any PL (across all datasets and models). Framed cells
annotated with “(sig.)” indicate statistically significant results. The “n” value in the x-axis labels indicates the sample size for
each translation pair. For each translation pair, one cell is empty because (by definition) the target PL can not be removed.

each specific PL. The heatmap in Figure 3 shows the mean
absolute decrease in CA when a PL is removed from each of
the 30 translation pairs. Darker cells indicate a greater loss in
CA, highlighting which PLs are more critical for maintaining
high translation accuracy. This heatmap also shows the results
of a statistical significance test (Chi-squared Goodness of Fit)
we conducted by comparing the the number of successful and
unsuccessful translations before (control group) and after (ex-
perimental group) the removal of a specific PL (alpha = 0.05,
Bonferroni-corrected). In the heatmap, we highlight the cells
associated with statistically significant differences.
Results of RQ3.1: We can observe in Figure 4 that the
inclusion of more intermediate PLs consistently improves the
translation accuracy of INTERTRANS. For instance, for Magi-
coder on CodeNet, increasing from zero to one intermediate
PL results in a significant improvement of 9.3% in CA (from
47.2% to 56.5%). Similarly, adding a second intermediate PL
increases the CA metric by 12.9%, and a third intermediate
PL results in a 9.2% increase. However, beyond this point,
the incremental gains begin to diminish. Adding a fourth
intermediate PL yields a 5.6%, while the addition of a fifth
intermediate PL results in a relatively smaller increase of
3.2%. This trend suggests that while the inclusion of inter-
mediate PLs is beneficial for improving translation accuracy,
the marginal returns decrease as more intermediate PLs are
added. The most substantial gains are observed when moving
from zero to three intermediates, after which the improvements
become more modest.
Results of RQ3.2: Figure 3 demonstrates that the importance
of intermediate PLs varies across different translation pairs.
For instance, when translating a program written in C++ to
Java (second column of the heatmap), removing Rust as an
intermediate PL resulted in a 17.4% decrease in successful
translations. In contrast, removing any other PL only led to
a decrease ranging from 3.1% to 6.8%. This emphasizes the

Fig. 4: Average performance of INTERTRANS with varying
number of intermediate PLs on three datasets.

critical role of certain intermediate PLs in achieving accurate
translations, yet we could not find any consistent trend across
translation pairs.

To better understand the results of Figure 3, we conducted a
case study in which we manually examined three translations
associated with an absolute decrease in CA higher than 15%.
These cases were selected because their absolute decrease in
CA were not only substantial but also statistically significant.
Due to space limit, we only present the example translation
for the first case, and include the details of three cases in the
supplementary material.
Translation from Python to Java via Rust: We observed
that direct translation attempted to identify Java APIs and
operations that are functionally equivalent to the Python ones,
but which may not exist. Moreover, it struggles to handle
type requirements in Java and thus often leads to the wrong
use of API. Translating from Rust provided a pathway for
translating these operations more accurately into Java. Fig-
ure 5 illustrates an example. In the source Python code,
the expression ”if int(...) in []” checks whether an
integer is present in a list of integers. The direct transla-
tion uses the Arrays.asList().contains() API as an
equivalent, but Arrays.asList() only accepts reference
types, not primitive types. Consequently, passing an int[]
to Arrays.asList() results in a List<int[]>, a list



def specialFilter(nums):
count = 0
for num in nums:

if num > 10:
odd_digits = (1, 3, 5, 7, 9)
number_as_string = str(num)
if (int(number_as_string[0]) in

odd_digits and
int(number_as_string[-1])
in odd_digits):
count += 1

return count

Python
...
int[] odd_digits = {1, 3, 5, 7, 9};
String number_as_string =

Integer.toString(num);
if (

:::::::::::::::::::::::::::::
Arrays.asList(odd_digits).contains

.(Character.getNumericValue
(number_as_string.charAt(0))) &&
Arrays.asList(odd_digits)

.contains(Character.getNumericValue
(number_as_string.charAt
(number_as_string.length() - 1)))) {

count++;
...

Java

Direct

...
let odd_digits:
HashSet<i32> = [1, 3, 5, 7, 9]
.iter().cloned().collect();
let number_as_string = num.to_string();
let first_digit = number_as_string.chars()
.next().unwrap().to_digit(10).unwrap()
as i32;
let last_digit = number_as_string.chars()
.last().unwrap().to_digit(10).unwrap()
as i32;
if odd_digits.contains(&first_digit)
...

Rust
...
Set<Integer> oddDigits = new HashSet<>
(Arrays.asList(1, 3, 5, 7, 9));
String numberAsString = String.valueOf(num);
int firstDigit = Integer.parseInt
(String.valueOf(numberAsString.charAt(0)));
int lastDigit = Integer.parseInt
(String.valueOf(numberAsString.
charAt(numberAsString.length() - 1)));
if(oddDigits.contains(firstDigit)
&& oddDigits.contains(lastDigit))
...

Java
InterTrans

Fig. 5: Example of translation from Python to Java via Rust.

of arrays, failing to check for individual integers. In contrast,
via the intermediate translation, the Rust code employs a
HashSet for odd_digits, which translates correctly to
Set<Integer> in Java. This allows for accurate use of the
contains method to check for individual elements.
Translation from C++ to Java via Rust: We found that
direct translation frequently copies code from C++ to Java
(since the two languages indeed have similar syntax), but
some operations permitted in C++ are not permitted in Java,
e.g., using square brackets to access vectors/lists and strings,
implicit type conversion to lower precision types, etc. In
INTERTRANS, C++ code is first translated into Rust with a
more restrictive and distinct syntax, so that the LLM is aware
of the syntax differences and avoids directly coping code.
Translation from Rust to Go via C++: Since Rust and Go
both support type inference during variable declaration (i.e.,
developers can declare a variable without specifying the type
if it can be inferred from the initialization expression), we
observed that direct translation may misunderstand the types
of local variables and try to apply invalid APIs on them.
For instance, direct translation attempts to translate Rust’s
i32::abs to Go’s Math.Abs, without noticing that the
return value (w) has changed from integer to float; this causes
a type error three lines later at w % 10. In INTERTRANS, the
intermediate translation to C++ explicitly annotates the local
variable w as int, and thus when the C++ is translated to Go,
the LLM knows to wrap w with int() type conversion before
performing the remainder operation.

V. DISCUSSION

A. Implications

INTERTRANS vs. Other Tools: We demonstrate that INTER-
TRANS is a better alternative to state-of-the-art approaches
(see Table I). By leveraging easily accessible open-source
code LLMs, such as Magicoder, INTERTRANS achieved an
average CA ranging from 87.3%-95.4% across three datasets
involving 30 different source-target PL pairs. Furthermore,
INTERTRANS requires only readily available LLMs and a

relatively limited depth and set of intermediate languages to
perform effectively (see Figures 2 and 4).
Computational Cost and Efficiency of INTERTRANS: De-
spite implementing various optimizations in INTERTRANS,
such as caching inferences of shared edges, the system remains
computationally expensive. This is largely due to the ToCT al-
gorithm, which explores multiple translation paths, each poten-
tially containing numerous translations. However, the signifi-
cant translation performance gains suggest that INTERTRANS
can save considerable time compared to alternatives, especially
in contexts where human resources are costly. Additionally, by
leveraging existing LLMs, we avoid the expense of training a
specific code translation model. In practice, the actual cost of
INTERTRANS is much lower than the theoretical maximum, as
our experiments indicate an average of only 3.9 attempts per
successful translation (see Section III-C). Future research can
improve its efficiency by parallelizing the currently sequential
inference process and developing methods to predict the most
likely successful path for specific translation problems instead
of iteratively evaluating different paths.
Multiple and Dynamic Intermediates vs. Unified IR: Our
study confirms that prior work was on the right track by
utilizing intermediate representations. However, our approach
innovates by employing multiple, dynamic intermediates tai-
lored to each source-target language pair, utilizing existing PLs
instead of a unified compiler-level representation like LLVM
IR. Our findings suggest that a single, fixed intermediate
language may not suffice, as the performance impact varies
depending on the languages involved (see Figure 3). Even
though each successive intermediate translation can potentially
increase the risk of propagating translation errors to the next
translation, in practice this risk turned out to be moderate,
with substantial improvements of translation quality. Through
an initial analysis of three translation patterns, we uncovered
several interesting insights (see Section IV-C). However, future
work is needed to understand why certain paths are more
effective in particular scenarios and to develop methods for
recommending the optimal translation path for a given trans-
lation problem.

B. Threats to Validity

Internal Validity: We performed the translation only once for
each translation problem, using a fixed random seed for study
LLMs when reporting the performance of INTERTRANS. This
design reduces the risk of selecting a favorable seed across
all nine experiments. However, altering this seed could affect
the reported performance. Nonetheless, this does not affect the
comparison between INTERTRANS with direct translation (as
shown in Table 2, where depth=1 represents direct translation
under identical conditions), or the empirical analysis of vary-
ing parameters, which are our main goals.

Furthermore, we employed a single prompt template for
each dataset; changing this template might also alter the
reported performance across all models. However, this does
not affect comparison results, as we used the same prompt for
all models, including direct translation and INTERTRANS. To



mitigate the effects of LLMs’ sensitivity to prompt templates,
we adhered to best practices from the literature. Future practi-
tioners can explore potential improvements in prompt design.

The temperature and top-p, top-k values were set consis-
tently across all LLMs, following established literature. While
these may not be the optimal parameters for a specific model,
our primary objective is to demonstrate the improvement of
INTERTRANS over direct translation, regardless of the LLMs
used.

Another threat to internal validity arises from potential data
leakage in LLMs, meaning there could be an overlap between
the training data of the studied LLMs and the evaluation
dataset used in this work. However, this issue would impact
all baseline models, not just INTERTRANS, ensuring that
the relative performance comparisons between models in our
study remain valid. Additionally, unlike code generation, open-
source code corpora typically do not contain paired code
translation data (i.e., source and target code in a single file).
We also carefully reviewed the documentation for Magicoder
and StarCoder2 and they did not include code translation as a
fine-tuning task.
External Validity: Potential threats to external validity may
arise from the selection of target PLs, LLMs, evaluation
datasets, and compared approaches. To mitigate these threats,
we selected six popular PLs with varying levels of maturity,
encompassing different programming paradigms. The source-
target PL pairs we considered include all those concerned in
recent work on LLM-based code generation by Pan et al. [30]
and Yang et al. [41]. For dataset selection, our evaluation set
is sourced from three well-known benchmarks. Two of these
benchmarks were used in the previously mentioned studies,
and the third allows for a fair comparison with non-LLM-
based models, such as the TransCoder family and GPT-3.5.
We selected three popular and recent open-source code LLMs
as the base for INTERTRANS. These models are multilingual
and have demonstrated strong performance on code generation
tasks. In the future, additional LLMs can be seamlessly inte-
grated, as INTERTRANS’s implementation is LLM-agnostic,
meaning all LLMs will be treated equally without requiring
additional engineering steps.
Construct Validity: Similar to prior studies [30], [41], we
only consider execution-based evaluation metric, i.e., CA.
While execution-based metrics align better with our goal to
investigate the capability of LLMs in generating translated
code that is functionally equal to the source program, its reli-
ability will be impacted by the effectiveness of output control
and the quality of test cases. To mitigate these threats, we
applied output control following the best practices suggested
by Macedo et al. [26] and calculated the matching success
rate (MSR) in extracting source code from inference output
for all nine experiments. These values range from 97.7% to
100%, with an average MSR of 99.7%. This indicates that the
reported performance is unlikely to be significantly influenced
by the varying capabilities of the LLMs in generating source
code that can be automatically extracted.

For the evaluation datasets, we used the complete, cleaned

TransCoder dataset, allowing us to leverage the performance
metrics reported by Yang et al. [41] for SOTA approaches,
where each translation includes at least one test case. When
sampling from the CodeNet dataset, we ensured that each
translation problem has at least three tests. Additionally, each
translation problem in HumanEval-X contains an average of
7.7 tests.

VI. RELATED WORK

A. Automated Code Translation

Automated code translation approaches generally fall into
two categories: rule-based methods and data-driven learning-
based methods. Rule-based automated code translation ap-
proaches [1], [2], [5], [7] utilize program analysis techniques
and handcrafted rules to translate code between programming
languages (PLs). A prominent example is C2Rust [2], which
has gained significant attention with 3.8k stars on GitHub as of
this writing. However, these tools often produce non-idiomatic
translations and are expensive to develop [37]. Learning-based
approaches aim to address these limitations by leveraging
large-scale data. These methods can be supervised, using
parallel code translation pairs, or unsupervised, learning from
open-source code. Techniques in this category have evolved
significantly, starting with statistical learning techniques [19],
[27], [28], progressing to neural network approaches [13], and
more recently, to pre-trained model-based [18], [23], [30],
[35], [37] and LLM-based methods [30], [41]. Our proposed
INTERTRANS is also a LLM-based code translation approach.
It is unique among existing methods as it is the first study to
explore the potential of leveraging intermediate PLs for code
translation.

B. The Multilingual Capacity of Code LLMs

Code LLMs such as Codex [12], CodeGen [29], Code
Llama [33], and StarCoder2 [25], have shown great potential
in tasks like code understanding, summarization, and gener-
ation. These models, especially those with a large number
of parameters (e.g., 7B, 13B, or larger), are pre-trained on
extensive code databases using self-supervised autoregressive
objectives. All these models are trained on multiple PLs
to ensure their generalizability across various coding tasks,
thereby possessing multilingual capabilities. For example,
StarCoder2 [25] models are trained on Stack v2, which is built
on the Software Heritage’s vast source code archive spanning
over 600 PLs [36] and other high-quality open data sources
such as GitHub issues, pull requests, etc.

HumanEval [12], developed by OpenAI, is the first bench-
mark for assessing the code generation capabilities of LLMs.
However, this dataset only contains Python coding prob-
lems and does not assess the multilingual capabilities of
code LLMs. Recently, efforts have increased to empirically
evaluate the multilingual capabilities of code LLMs [10],
[11], [31], [42]. For instance, Zheng et al. [42] evaluated
their multilingual code model, CodeGeeX, pre-trained on
code written in 23 PLs, on their developed new benchmark
HumanEval-X. HumanEval-X extends HumanEval to include



handwritten solutions and test cases for five additional PLs:
Rust, Go, JavaScript, C++, and Java. Recent studies by Pan
et al. [30] and Yang et al. [41] conducted comprehensive
empirical evaluations of LLMs’ capabilities in automated
code translation, including programs written in multiple PLs
and leveraging multilingual benchmarks like CodeNet [32]
and TransCoder [34]. Our experiments also include these
two datasets. However, previous work has not leveraged the
multilingual capability of code LLMs for the inference of code
translation, focusing instead on evaluation.

VII. CONCLUSION

This work explores the potential of leveraging the mul-
tilingual capabilities of LLMs to enhance automated code
translation through transitive intermediate translations. We
propose INTERTRANS, a novel approach that utilizes a plan-
ning algorithm (ToCT) to generate candidate translation paths,
which are then evaluated sequentially. Through extensive em-
pirical studies on three benchmarks, our results demonstrate
the promise of INTERTRANS with an absolute improvement
boosting of 18.3% to 43.3% in Computation Accuracy (CA)
over direct translation with ten attempts. With only a readily
available open-source LLM, e.g., Magicoder, INTERTRANS
achieved an average CA of 87.3%-95.4% on three benchmark
datasets. INTERTRANS not only enhances translation accuracy,
but also provides a new direction for future research in
leveraging and interpreting multilingual LLMs for diverse
coding tasks.



REFERENCES

[1] C to go translator, 2024. https://github.com/gotranspile/cxgo. Accessed:
2024.

[2] C2rust, 2024. https://github.com/immunant/c2rust. Accessed: 2024.
[3] Codellama, 2024. https://huggingface.co/codellama/

CodeLlama-13b-hf/. Accessed: 2024.
[4] Geeksforgeeks, 2024. https://www.geeksforgeeks.org/. Accessed: 2024.
[5] Java 2 csharp translator for eclipse, 2024. https://sourceforge.net/

projects/j2cstranslator/. Accessed: 2024.
[6] Magicoder-s-ds, 2024. https://huggingface.co/ise-uiuc/

Magicoder-S-DS-6.7B/. Accessed: 2024.
[7] Sharpen - automated java to c# coversion, 2024. https://github.com/

mono/sharpen. Accessed: 2024.
[8] Starcoder2-15b, 2024. https://huggingface.co/bigcode/starcoder2-15b/.

Accessed: 2024.
[9] BigCode Project. Bigcode model license agreement, 2024. https:

//huggingface.co/spaces/bigcode/bigcode-model-license-agreement. Ac-
cessed: 2024.

[10] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen,
Luna Phipps-Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi,
Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e: a scalable
and polyglot approach to benchmarking neural code generation. IEEE
Transactions on Software Engineering, 49(7):3675–3691, 2023.

[11] Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, Ke Jin, Jiaheng Liu,
Tao Sun, Ge Zhang, Changyu Ren, Hongcheng Guo, et al. Mceval: Mas-
sively multilingual code evaluation. arXiv preprint arXiv:2406.07436,
2024.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374, 2021.

[13] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks
for program translation. Advances in neural information processing
systems, 31, 2018.

[14] Malinda Dilhara, Abhiram Bellur, Timofey Bryksin, and Danny Dig.
Unprecedented code change automation: The fusion of llms and transfor-
mation by example. Proceedings of the ACM on Software Engineering,
1(FSE):631–653, 2024.

[15] Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-
Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume
Wenzek, Vishrav Chaudhary, et al. Beyond english-centric multilingual
machine translation. Journal of Machine Learning Research, 22(107):1–
48, 2021.

[16] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho
Sengupta, Shin Yoo, and Jie M Zhang. Large language models for
software engineering: Survey and open problems. In 2023 IEEE/ACM
International Conference on Software Engineering: Future of Software
Engineering (ICSE-FoSE), pages 31–53. IEEE, 2023.

[17] gRPC. grpc: A high-performance, open-source universal rpc framework,
2024. https://grpc.io. Accessed: 2024.

[18] Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, Xiaodong Gu, and
Beijun Shen. On the evaluation of neural code translation: Taxonomy
and benchmark. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1529–1541. IEEE, 2023.

[19] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-
based statistical translation of programming languages. In Proceed-
ings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, pages 173–
184, 2014.

[20] Yunsu Kim, Petre Petrov, Pavel Petrushkov, Shahram Khadivi, and
Hermann Ney. Pivot-based transfer learning for neural machine trans-
lation between non-english languages. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 866–876, 2019.

[21] David Kolovratnık, Natalia Klyueva, and Ondrej Bojar. Statistical
machine translation between related and unrelated languages. In
Proceedings of the Conference on Theory and Practice of Information
Technologies (ITAT-09), Kralova Studna, Slovakia, September, 2009.

[22] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with

pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 611–626, 2023.

[23] Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume
Lample. Dobf: A deobfuscation pre-training objective for program-
ming languages. Advances in Neural Information Processing Systems,
34:14967–14979, 2021.

[24] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International symposium
on code generation and optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[25] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel
Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu,
Yuxiang Wei, et al. Starcoder 2 and the stack v2: The next generation.
arXiv preprint arXiv:2402.19173, 2024.

[26] Marcos Macedo, Yuan Tian, Filipe Cogo, and Bram Adams. Exploring
the impact of the output format on the evaluation of large language
models for code translation. In Proceedings of the 2024 IEEE/ACM
First International Conference on AI Foundation Models and Software
Engineering, pages 57–68, 2024.

[27] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Lexical
statistical machine translation for language migration. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 651–654, 2013.

[28] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Migrating
code with statistical machine translation. In Companion Proceedings of
the 36th International Conference on Software Engineering, pages 544–
547, 2014.

[29] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo
Zhou, Silvio Savarese, and Caiming Xiong. Codegen: An open large
language model for code with multi-turn program synthesis. In The
Eleventh International Conference on Learning Representations, 2022.

[30] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar,
Lambert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri,
Saurabh Sinha, and Reyhaneh Jabbarvand. Lost in translation: A study
of bugs introduced by large language models while translating code.
In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, pages 1–13, 2024.

[31] Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual
code generation benchmark for cross-lingual natural language general-
ization. In Proceedings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), pages 8383–8394, 2024.

[32] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo
Domeniconi, Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choud-
hury, Lindsey Decker, et al. Codenet: A large-scale ai for code dataset for
learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655,
2021.

[33] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[34] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guil-
laume Lample. Unsupervised translation of programming languages.
Advances in Neural Information Processing Systems, 33:20601–20611,
2020.

[35] Baptiste Roziere, Jie M Zhang, Francois Charton, Mark Harman, Gabriel
Synnaeve, and Guillaume Lample. Leveraging automated unit tests for
unsupervised code translation. arXiv preprint arXiv:2110.06773, 2021.

[36] Software Heritage. Bulk access terms of use, 2024. (cited on p. 37).
[37] Marc Szafraniec, Baptiste Roziere, Hugh James Leather, Patrick La-

batut, Francois Charton, and Gabriel Synnaeve. Code Translation with
Compiler Representations. In The Eleventh International Conference on
Learning Representations.

[38] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming
Zhang. Magicoder: Source Code Is All You Need, December 2023.
arXiv:2312.02120 [cs].

[39] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Hugging-
Face’s Transformers: State-of-the-art Natural Language Processing, July
2020. arXiv:1910.03771 [cs].

https://github.com/gotranspile/cxgo
https://github.com/immunant/c2rust
https://huggingface.co/codellama/CodeLlama-13b-hf/
https://huggingface.co/codellama/CodeLlama-13b-hf/
https://www.geeksforgeeks.org/
https://sourceforge.net/projects/j2cstranslator/
https://sourceforge.net/projects/j2cstranslator/
https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B/
https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B/
https://github.com/mono/sharpen
https://github.com/mono/sharpen
https://huggingface.co/bigcode/starcoder2-15b/
https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement
https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement
https://grpc.io


[40] Hua Wu and Haifeng Wang. Pivot language approach for phrase-based
statistical machine translation. Machine Translation, 21:165–181, 2007.

[41] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu,
Yifan Hong, Xiaoxue Ma, Zhi Jin, and Ge Li. Exploring and unleashing
the power of large language models in automated code translation.
Proceedings of the ACM on Software Engineering, 1(FSE):1585–1608,
2024.

[42] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei
Xue, Zihan Wang, Lei Shen, Andi Wang, Yang Li, et al. Codegeex: A
pre-trained model for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

[43] Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Code-
bertscore: Evaluating code generation with pretrained models of code. In
Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 13921–13937, 2023.


	Introduction
	InterTrans
	Stage 1: Generating Tree of Code Translations (ToCT)
	Stage 2: Sequential Verification of ToCT

	Experiment Design
	Benchmark Dataset Collection and Pre-Processing
	Selected Large Language Models
	Compared Approaches
	Evaluation Metric
	Implementation

	Results and Analysis
	RQ1: Effectiveness of InterTrans
	RQ2: Impact of Varying maxDepth
	RQ3: Impact of Varying the Intermediate Programming Languages

	Discussion
	Implications
	Threats to Validity

	Related Work
	Automated Code Translation
	The Multilingual Capacity of Code LLMs

	Conclusion
	References

