
DemoCraft: Using In-Context Learning to Improve
Code Generation in Large Language Models

Kapu Nirmal Joshua
Department of Electrical Engineering
Indian Institute of Technology Kanpur

nirmalj21@iitk.ac.in

Mihit Sreejith
Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
s.mihit@iitg.ac.in

Abstract—Generating executable code from natural language
instructions using Large Language Models (LLMs) poses chal-
lenges such as semantic ambiguity and understanding task-
specific contexts. To address these issues, we propose a system
called DemoCraft, which enhances code generation by leverag-
ing in-context learning and demonstration selection, combined
with latent concept learning. Latent concept learning introduces
additional concept tokens, which are trainable embeddings that
capture task-specific knowledge. We then test our system on two
major datasets: MBPP and Humaneval. Our experimental results
demonstrate that the proposed system achieves an approximate
2x increase in the pass@k metric compared to baseline models.
Furthermore, we introduce two novel evaluation metrics: correct-
ness@k and similarity@k. Our empirical studies indicate that our
system attains nearly a 3x improvement in these metrics as well.

Index Terms—in-context learning, code generation, latent con-
cept learning, demonstration selection, large language models

I. INTRODUCTION

The problem of generating code from natural language using
Large Language Models (LLMs) involves creating systems
capable of translating human language instructions into exe-
cutable code accurately. This requires the LLM to understand
the semantics of the natural language input, grasp the intent
behind the instructions, and convert it into syntactically correct
and functional code in a specified programming language. Key
challenges include handling ambiguous or imprecise language,
ensuring the generated code is both correct and efficient,
and covering a wide range of programming scenarios and
languages.

Fig. 1. Large Language Models struggling at Code Generation

Code generation remains a significant challenge for large
language models, as evidenced by Google’s AlphaCode [1],
developed specifically for competitive programming tasks.
When evaluated on the CodeContests benchmark, AlphaCode
achieves a maximum Codeforces rating of only 1238, placing

it in approximately the top 28th percentile. Furthermore, a
comprehensive survey on code generation using large language
models [2] reports a maximum pass@1 rate of around 30%.
These studies have been conducted under zero-shot conditions,
highlighting the necessity for few-shot learning approaches.
Few-shot learning allows models to leverage relevant demon-
strations associated with the prompt prior to generating the
output, potentially improving performance.

II. PROBLEM BEHIND SELECTING DEMONSTRATIONS

In-context learning operates by pre-pending a series of
demonstrations—examples of prompts and corresponding an-
swers—before the final prompt that the model needs to solve.
This setup effectively guides the model, allowing it to leverage
patterns from prior examples to generate improved responses.
By selecting demonstrations that closely match the problem at
hand, we can significantly enhance the model’s performance
on complex tasks like code generation.

Fig. 2. Few Shot Learning Pipeline

However, selecting relevant demonstrations is a challenging
task in itself. Semantic similarity-based selection, a commonly
used approach, attempts to identify demonstrations that share
high textual similarity with the prompt. While this method may
capture surface-level relationships, it often fails to consider the
deeper task requirements.

For instance, in competitive programming contexts like
Codeforces, problem statements frequently involve recurring
character names like ”Alice” and ”Bob,” often engaging in
a hypothetical game. A semantic similarity-based approach
might assume that any problem mentioning ”Alice and Bob
playing a game” is contextually relevant to another problem
with similar phrasing. However, while these problems may
seem alike in language, they can differ significantly in their
underlying algorithms. One ”Alice and Bob” problem may
require a dynamic programming approach, while another could

ar
X

iv
:2

41
1.

00
86

5v
1

 [
cs

.S
E

]
 3

0
O

ct
 2

02
4

involve graph theory or combinatorial analysis. As a result,
semantically similar demonstrations might mislead the model,
offering examples that match the language but fail to provide
the right procedural insights.

This is where our system, DemoCraft, becomes instru-
mental. DemoCraft utilizes a latent concept-based selection
algorithm to analyze and select demonstrations that are aligned
not only in linguistic features but also in conceptual depth.
By focusing on the intrinsic structure of computational prob-
lems, DemoCraft identifies demonstrations that share the same
reasoning paradigms or algorithmic strategies necessary to
solve the target prompt. For instance, when presented with
a complex binary search or dynamic programming problem,
DemoCraft is capable of prioritizing demonstrations that in-
volve these specific techniques over those with mere super-
ficial similarity, thereby ensuring that the model is provided
with the most contextually relevant guidance.

Fig. 3. Demonstration Selection with Latent Concept Learning

III. DEMOCRAFT: SYSTEM DETAILS

In this section, we provide a detailed technical description
of our system architecture, which consists of three primary
components: the Latent Concept Learning module, the Task
Concept Probability Calculation module, and the Demonstra-
tion Selector.

A. Latent Concept Learning

In this stage, we introduce additional tokens [6], referred to
as concept tokens, to enable the model to learn task-specific
features for a given task. These concept tokens function as
specialized units within the language model, representing
knowledge specific to the task. Incorporating these tokens
allows the model to predict the structure and requirements
of the task more effectively.

We aim to find the optimal value of the variable θd for
each task d in the set of tasks T . The variable θd, referred
to as the latent concept variable, is intended to capture the
essential characteristics of each task to maximize the model’s
predictive accuracy. Mathematically, the optimal θd maximizes
the probability of the correct output given the input, achieved
through the Bayes optimal classifier defined as

θd = argmax
θd

P d
M (Y | θd, X) (1)

where P d
M (Y | θd, X) is the probability that the model M

assigns to the output Y given the input X and task-specific
variable θd.

To train the model to make better predictions, we aim to
find θd that minimizes the cross-entropy loss. This involves
minimizing the negative expected log probability:

θ̂d = argmin
θd

−EX,Y,d

[
logP d

M (Y | θd, X)
]

(2)

We align θ̂d with the token embedding space by introducing
new tokens—our concept tokens—into the model’s vocabulary.
These tokens represent the task concept θd, allowing the
model to utilize them within its regular vocabulary. Following
methods proposed by Lester et al. [3], we add c new concept
tokens, denoted as θ̂d, to represent each task’s concept. The
embeddings of these new tokens, Enew(θ̂d), are fine-tuned
specifically for the task while keeping the rest of the language
model’s parameters frozen. This approach enables the model
to focus on learning the nuances of θd without altering its
general language capabilities. The parameter c, representing
the number of concept tokens, is treated as a hyperparameter
adjustable based on task requirements.

During training, the c concept tokens associated with θ̂d
are prepended to the input X (or output Y) to condition the
model on the specific task, providing task-specific context that
enhances predictive performance.

Fig. 4. Latent Concept Learning Module

This process is illustrated in Figure 4, which provides a
flowchart for the latent concept learning method. The flow
depicts how, starting from a dataset D, the input Xi is fed
into the model along with the updated concept tokens θ̂. The
model generates the output Y ′

i , and the cross-entropy loss
logPM (Yi | θ,Xi) is computed to update θ. This iterative
training process enables the model to understand and adapt to
the task-specific requirements embedded in θ, leading to more
relevant demonstration selections in DemoCraft.

B. Task Concept Probability Calculation

In the Task Concept Probability Calculation stage, our
objective is to quantify how well each demonstration aligns
with the target task. This involves calculating the relevance of
each input-output pair (Xi, Yi) within the context of the task’s
specific requirements.

Leveraging the previously trained concept tokens θ, we
evaluate the suitability of input-output pairs from our dataset
D. For each pair (Xi, Yi), we compute the probability PM (θ |
Yi, Xi), which measures the degree to which the demonstra-
tion aligns with the task-specific concept encapsulated by θ.
This probability serves as an evaluative metric, where higher
values indicate stronger alignment with the task.

Formally, the task concept probability is calculated using
Bayes’ theorem:

PM (θ | Yi, Xi) =
PM (Yi, Xi | θ)PM (θ)

PM (Yi, Xi)
, (3)

where:
• PM (θ | Yi, Xi) is the posterior probability of the concept

tokens given the demonstration pair.
• PM (Yi, Xi | θ) is the likelihood of the demonstration pair

given the concept tokens.
• PM (θ) is the prior probability of the concept tokens.
• PM (Yi, Xi) is the marginal probability of the demonstra-

tion pair.
In this stage, the large language model M operates in an

evaluative capacity; it computes the task concept probabilities
based on its learned representations without undergoing further
fine-tuning. By assigning task concept probabilities to each
demonstration, we gain insights into their relative relevance,
which is crucial for selecting the most appropriate demonstra-
tions in subsequent stages.

Fig. 5. Task Concept Probability Calculation Module

This process is illustrated in Figure 5, which outlines how
input-output pairs, along with the trained concept tokens θ,
are processed through the model to compute the task concept
probabilities PM (θ | Yi, Xi) for each pair (Xi, Yi).

C. Demonstration Selection

In the Demonstration Selection stage, our objective is to
identify the most relevant demonstrations for a given task
prompt. Having computed the task concept probability PM (θ |
Yi, Xi) for each demonstration pair (Xi, Yi) in our dataset D,
we proceed to select the top k demonstrations that align most
closely with the task-specific concept θ.

We rank all demonstration pairs based on their computed
task concept probabilities and select the top k pairs with
the highest values of PM (θ | Yi, Xi). This selection pro-
cess ensures that we retain demonstrations that are most

Fig. 6. Demonstration Selection Module

contextually relevant to the task at hand. By focusing on
the highest probability values, we choose examples that the
model has identified as highly aligned with the desired task-
specific features. This maximizes the likelihood that these
demonstrations will enhance the model’s understanding and
performance when generating responses for the target prompt.

This process is illustrated in Figure 6, which shows how
we systematically select the top k demonstrations with the
highest alignment scores, ultimately constructing a refined set
of examples tailored to optimize the model’s responses for the
given prompt.

D. Final System Diagram

DemoCraft extends the foundational concepts
discussed—namely, latent concept learning and task concept
probability calculation—to operate across multiple datasets.
This enables the model to learn a comprehensive set of
concept tokens, each corresponding to distinct task types
denoted by θ1, θ2, . . . , θk. Once trained, these concept tokens
allow the system to retrieve relevant demonstrations from a
diverse range of sources.

When a new prompt Q is provided, DemoCraft evaluates
it by calculating probabilities over both the learned concept
tokens and potential demonstration pairs (Xj , Yj) from the
dataset D. This involves a two-step process:

1) For each concept token θi, compute the probability
PM (θi | Xj , Yj) for all demonstration pairs (Xj , Yj) ∈
D.

2) Maximize this probability over both θi and (Xj , Yj) to
select the top k demonstrations:

{(Xi∗ , Yi∗)} = arg max
θi,(Xj ,Yj)

PM (θi | Xj , Yj), (4)

where {(Xi∗ , Yi∗)} denotes the set of top k demonstrations
that best align with the task-specific requirements of Q. This
approach leverages both the learned task-specific knowledge
encapsulated in the concept tokens and the diversity of the
dataset, ensuring a refined and targeted selection process.

The overall system flowchart is provided in Figure 7,
illustrating how the trained concept tokens, task probability
calculator, and demonstration selector operate in unison to
choose the most relevant examples for each new prompt.

IV. EXPERIMENTS

In this section, we highlight our experimental metrics and
the conditions under which we conducted the experiments.

Fig. 7. DemoCraft System Flowchart

A. Evaluation Metrics

We evaluate our model using three primary metrics:
1) pass@k: This metric measures the probability that at

least one of the top k generated code samples passes
all the test cases for a given problem. Suppose for each
problem we generate n code samples, out of which c
samples are correct (i.e., they pass all the unit tests).
The pass@k is calculated as:

pass@k = ED

[
1−

(
n−c
k

)(
n
k

)]
, (5)

where ED denotes the expectation over the dataset D,
and

(
n
k

)
is the binomial coefficient representing the

number of ways to choose k samples out of n.
2) correctness@k: This metric is defined as the average

precision of the model over the entire dataset when k
outputs are generated per prompt. For each prompt, if
the model generates k outputs and c of them are correct,
the correctness for that prompt is calculated as:

correctness@k = ED

[c
k

]
, (6)

where ED denotes the expectation over the dataset D.
3) similarity@k: This metric measures the average similar-

ity between the working codes generated by the model
and the golden solution provided in the dataset. For each
prompt, let S be the set of all generated codes that pass
all the test cases (i.e., working codes), and let y be the
golden solution from the dataset. The similarity@k is
defined as:

similarity@k = ED

 1

|S|
∑
yi∈S

sim(yi, y)

 , (7)

where sim(yi, y) is a similarity function between the
generated code yi and the golden solution y, and |S| is
the number of working codes for that prompt. The outer
expectation ED is taken over all prompts in the dataset
D. The similarity function used over here is the edit
distance metric, provided in the standard NLTK library.

B. Datasets and Models

We conducted our experiments using the following datasets
and model:

1) MBPP: The Mostly Basic Python Problems (MBPP)
dataset [4] consists of 427 programming problems de-
signed for code generation tasks. Each problem includes
a natural language description, the corresponding code
solution, and three unit tests. The programming language
used is Python.

2) HumanEval: The HumanEval dataset [5] comprises
164 programming tasks focused on code completion.
Each task provides a function signature and a docstring
describing the desired functionality. The solutions are
written in C++, and each problem includes approxi-
mately seven unit tests, making it a stricter benchmark
than MBPP.

Due to resource constraints, we evaluated the performance
of our system using the SantaCoder model. SantaCoder is a
transformer-based language model with 1.1 billion parameters,
pretrained on a large corpus of code in multiple programming
languages, including Python and C++. It is designed to gen-
erate syntactically correct and functionally meaningful code
snippets. We conducted our experiments using Google Colab’s
T4 GPU, which provided sufficient computational resources
for our evaluations without compromising performance.

C. Baselines

We compare our system against the following baseline
methods:

1) Semantic Selection: In this baseline, we select demon-
strations from the dataset purely based on their semantic
similarity to the given prompt x. Let the dataset be
D = {(xi, yi)}ni=1, where xi are the prompts and yi are
the corresponding outputs. For each xi in the dataset,
we compute the similarity score sim(x, xi) between
the given prompt x and each dataset prompt xi. We
then select the top k demonstrations with the highest
similarity scores:

{(xi∗ , yi∗)} = arg max
(xi,yi)∈D
i=1,...,n

sim(x, xi), (8)

where {(xi∗ , yi∗)} denotes the set of top k demon-
strations selected. The sim(.) function used here is the
standard edit distance, implemented using the NLTK
library.

2) Random Selection: In this baseline, we randomly select
k demonstrations from the dataset D without considering
their relevance to the given prompt x. This method
serves as a control to evaluate the impact of demon-
stration selection strategies on the model’s performance.

V. RESULTS

In this section, we present the results of our experiments
on both the MBPP and HumanEval datasets. Table 1 shows
the results for the MBPP dataset, while Table 2 presents the
results for the HumanEval dataset.

The results show that demonstrations chosen by DemoCraft
consistently outperform other selection methods. This su-
periority arises from DemoCraft’s encoding of task-specific

Fig. 8. Fig. 9.

Fig. 10. Fig. 11.

TABLE I
EVALUATION RESULTS ON MBPP

Parameter Semantic DemoCraft Random
correctness@5 2% 7.2% 1.5%

correctness@20 0.5% 6.0% 0.3%
correctness@100 0.3% 5.0% 0.2%

similarity@5 0.77% 3.0% 0.5%
similarity@20 0.771% 3.5% 0.4%
similarity@100 2.7% 7.0% 1.8%

pass@1 0.6% 4.0% 0.2%
pass@10 6.07% 11.5% 5.0%
pass@100 20% 27.0% 15.0%

TABLE II
EVALUATION RESULTS ON HUMANEVAL

Parameter Semantic DemoCraft Random
correctness@5 0.1% 1.2% 0.2%

correctness@20 0.04% 1.1% 0.03%
correctness@100 0.008% 1.0% 0.005%

similarity@5 0.91% 3.5% 0.8%
similarity@20 0.92% 4.0% 0.7%
similarity@100 3% 7.5% 2%

pass@1 0.3% 2.0% 0.4%
pass@10 4.56% 8.0% 3%
pass@100 13.2% 18.5% 10%

knowledge through specialized token embeddings tailored to
each task.

VI. CONCLUSION

In this paper, we presented DemoCraft, a demonstration
selection framework that enhances code generation models
by leveraging task-specific knowledge through latent concept
learning. DemoCraft introduces specialized token embeddings
tailored to each task, enabling the model to internalize un-
derlying concepts effectively. Our evaluations on the MBPP
and HumanEval datasets, utilizing the metrics pass@k, cor-
rectness@k, and similarity@k, demonstrate that DemoCraft
consistently outperforms baseline methods, including seman-
tic similarity-based and random selection approaches. These
results highlight the efficacy of targeted demonstration selec-
tion in improving code generation accuracy and functionality.
Future work will explore the integration of DemoCraft with
larger language models and its application to diverse domains,
including software engineering and competitive programming.

ACKNOWLEDGEMENTS

We acknowledge Dr. Amar Prakash Azad and Dr. Brij
Kumar Chavda from IBM Research Bangalore for their in-
valuable support and mentorship, which were instrumental to
the success of this project.

REFERENCES

[1] Yujia Li, David Choi, Junyoung Chung, Nate Kushman et al.
Competition-Level Code Generation with AlphaCode. arXiv preprint.

[2] Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu et al. Large
Language Models Meet NL2Code: A Survey. arXiv preprint. 2022

[3] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for
parameter-efficient prompt tuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, pages
3045–3059, 2021

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma et al.
Program Synthesis with Large Language Models. arXiv preprint. 2021

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto et al. Evaluating Large Language Models Trained on
Code. arXiv preprint. 2021.

[6] Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William
Yang Wang. Large Language Models Are Latent Variable Models:
Explaining and Finding Good Demonstrations for In-Context Learning.
arXiv preprint. 2024.

	Introduction
	Problem Behind Selecting Demonstrations
	DemoCraft: System Details
	Latent Concept Learning
	Task Concept Probability Calculation
	Demonstration Selection
	Final System Diagram

	Experiments
	Evaluation Metrics
	Datasets and Models
	Baselines

	Results
	Conclusion
	References

