
CRUXEVAL-X: A Benchmark for Multilingual Code
Reasoning, Understanding and Execution

Ruiyang Xu1,2*, Jialun Cao3*, Yaojie Lu1, Hongyu Lin1,
Xianpei Han1, Ben He1,2, Shing-Chi Cheung3, Le Sun1

1Chinese Information Processing Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3The Hong Kong University of Science and Technology, Hong Kong, China
{xuruiyang2022,hongyu,luyaojie,xianpei,sunle}@iscas.ac.cn

benhe@ucas.edu.cn
{jcaoap, scc}@cse.ust.hk

Abstract

Code benchmarks such as HumanEval are widely adopted to
evaluate Large Language Models’ (LLMs) coding capabil-
ities. However, there is an unignorable programming lan-
guage bias in existing code benchmarks – over 95% code
generation benchmarks are dominated by Python, leaving the
LLMs’ capabilities in other programming languages such
as Java and C/C++ unknown. Moreover, coding task bias
is also crucial. Most benchmarks focus on code generation
capability, while benchmarks for code reasoning (given in-
put, reasoning output; and given output, reasoning input), an
essential coding capability, are insufficient. Yet, construct-
ing multi-lingual benchmarks can be expensive and labor-
intensive, and codes in contest websites such as Leetcode suf-
fer from data contamination during training. To fill this gap,
we propose CRUXEVAL-X, a multi-lingual code reasoning
benchmark that contains 19 programming languages. It com-
prises at least 600 subjects for each language, along with 19K
content-consistent tests in total. In particular, the construction
pipeline of CRUXEVAL-X works in a fully automated and
test-guided manner, which iteratively generates and repairs
based on execution feedback. Also, to cross language bar-
riers (e.g., dynamic/static type systems in Python/C++), we
formulated various transition rules between language pairs to
facilitate translation. Our intensive evaluation of 24 represen-
tative LLMs reveals the correlation between language pairs.
For example, TypeScript and JavaScript show a significant
positive correlation, while Racket has less correlation with
other languages. More interestingly, even a model trained
solely on Python can achieve at most 34.4% Pass@1 in
other languages, revealing the cross-language generalization
of LLMs. The leaderboard is available at https://cruxeval-
x.github.io/leaderboard.html.

Introduction
Large language models (LLMs) have shown advanced pro-
ficiency in various domains, including code generation (Liu
et al. 2024; Du et al. 2024), defect detection (Yang et al.
2024b) and program repair (Xia and Zhang 2023; Zhong,

*These authors contributed equally.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

-1

(C) Output Reasoning

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

-1

Given the input and Python program,
reasoning the output of the program.

Input: "23157"

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

"3"

Given the output and Python program,
reasoning the input of the program.

Output: -1

(B) Input Reasoning (D) Output Reasoning

#include<bits/stdc++.h>

long f(std::string numbers) {
for(int i = 0; i < numbers.length(); i++) {
if (std::count(numbers.begin(),

 numbers.begin()+i+1, '3') > 1) {
return i;

}
}
return -1;

}

C++

0

Given the input and C++ program,
reasoning the output of the program.
Input: "23157"

Generate Python program as described.

Write a Python function f that takes a string as
input and returns the index where the '3'
appears more than once, or -1 if it does not.

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

(A) Code Generation

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

"3"

Given the output and Python program,
reasoning the input of the program.

Output: -1

(B) Input Reasoning

Generate Python program as described.

Write a Python function f that takes a string as
input and returns the index where the '3'
appears more than once, or -1 if it does not.

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

(A) Code Generation

(C) Output Reasoning

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

-1

Given the input and Python program,
reasoning the output of the program.

Input: "23157"

(D) Output Reasoning

#include<bits/stdc++.h>

long f(std::string numbers) {
for(int i = 0; i < numbers.length(); i++) {
if (std::count(numbers.begin(),

 numbers.begin()+i+1, '3') > 1) {
return i;

}
}
return -1;

}

C++

0

Given the input and C++ program,
reasoning the output of the program.
Input: "23157"

Figure 1: Code Generation vs. Code Reasoning

Wang, and Shang 2024; Hu et al. 2024). Benchmarks such
as HumanEval (Chen et al. 2021) and SWE-bench (Jimenez
et al. 2023) were introduced to measure LLMs’ capabilities,
providing insights into LLMs’ strengths and weaknesses.

Recent studies (Cao et al. 2024a; Chai et al. 2024; Chen
et al. 2024) have spotted two significant biases in cur-
rent benchmarks. First, Programming language bias. As
pointed out by prior studies (Cao et al. 2024a; Chai et al.
2024; Chen et al. 2021; Austin et al. 2021), Python domi-
nates code generation benchmarks with over 95% involve-
ment. Other programming languages (PLs) such as Java and
C/C++, despite their popularity and availability, gain less
exploration. Second, Coding task bias. Most coding bench-
marks focus on code generation tasks (i.e., giving descrip-
tions in natural language and generating the program, as
shown in Figure 1 (A)), while code reasoning (i.e., given
the program, reasoning the input or output of the program,

ar
X

iv
:2

40
8.

13
00

1v
1

 [
cs

.A
I]

 2
3

A
ug

 2
02

4

as shown in Figure 1 (B - D)), as an essential coding ca-
pability of LLMs, is seldom evaluated (Chen et al. 2024).
A recent work introduced a code reasoning benchmark (Gu
et al. 2024; Chen et al. 2024), while it is only in Python. Fig-
ure 1 (C - D) shows that simply changing PLs from Python
to C++ can turn a correct reasoning into an incorrect one.

However, constructing multi-lingual benchmarks is not a
trivial task. First, human annotation can be expensive. As
reported by recent work (Chai et al. 2024), they spent a total
of $12,000 US dollars for human annotators, providing the
working environment, free meals, souvenirs, and free GPT-
4 interface usage to construct their multi-lingual benchmark.
Second, automated translation does not perform well. The
latest studies (Yin et al. 2024) show that even the best LLM
(i.e., ChatGPT) can only achieve an average of 64% success
translation rate, which is far from practice. Rule-based trans-
lation (Cassano et al. 2023; Ling et al. 2022) usually suffers
from generalizability issues, making them limited in han-
dling prescribed code structures. Additionally, multi-lingual
solutions from contest websites such as LeetCode and Code-
forces were included in most LLMs training sources, thus
suffering from data contamination issue (Cao et al. 2024b).

To fill the research gaps, we introduce CRUXEVAL-X,
a multi-lingual code reasoning benchmark that contains 19
popular PLs, including C++, Rust, Java, etc. , expanded from
CruxEval (Gu et al. 2024), a code reasoning benchmark
written in Python. For each PL in CRUXEVAL-X, there are
at least 600+ functions. In total, there are 12,660 subjects
along with 19K test cases for input/output reasoning.

Noteworthy that the pipeline of constructing CRUXEVAL-
X works in a fully automated manner. It first translates the
test cases by transition rules adapted from prior work (Cas-
sano et al. 2023), then iterates the generation-and-repair pro-
cess intensively. In particular, the transition rules are formu-
lated to cross the language barriers. For example, Python
employs a dynamically typed system where types are de-
termined at runtime, whereas C++ uses a statically typed
system requiring explicit type declarations at compile time.
The rules facilitate the translation of the test cases. Addition-
ally, inspired by prior work (Yin et al. 2024; Rozière et al.
2022), we employ a test-guided manner (Rozière et al. 2022)
to generate the translation and iteratively repair the gener-
ated code using execution feedback (e.g., compilation error,
runtime error) (Yin et al. 2024).

Through intensive experiments on 24 mainstream LLMs,
we observe several interesting findings. First, in multiple
PLs, the input reasoning and output reasoning capabilities
of LLMs are comparable. Also, there is a noticeable corre-
lation between certain PLs (e.g., JavaScript and TypeScript
show a positive correlation, while Racket consistently yields
the worst results). More interestingly, we observe that even
if a model is only trained on Python (e.g., phi-1 and phi-1.5),
it still can reach a 16% ∼ 26% output reasoning success rate
in other PLs, compared with 25.6% in Python. The finding
indicates the cross-language generalization of LLMs.

The contributions can be summarized as follows: (1) We
introduce CRUXEVAL-X, a multi-lingual code reasoning
benchmark that contains 19 popular PLs. (2) We introduce
an automated code translation pipeline that adopts a test-

guided and iterative generate-and-repair practice. (3) We
evaluate 20+ LLMs against CRUXEVAL-X and yield inspir-
ing findings.

Benchmark Construction
In this section, we detailed the construction process of
CRUXEVAL-X in Figure 2. It can be divided into three main
steps. First, we translate the function signature via mapping
variable type annotations (Step 1 in Figure 2). Then we em-
ploy a rule-based approach to translate Python test cases into
other PLs (Step 2 in Figure 2). Finally, we integrate multiple
LLMs to translate the code by iterating the generation-and-
repair process (Step 3 in Figure 2).

Step I. Function Signature Translation
To enhance the accuracy and standardization of function
translation results, we first translate the function signatures
and dependencies. Note that Python does not require an ex-
plicit type annotation, which may confuse the translation for
the function signature. For example, as shown in Figure 2
Step I, the types of two input parameters (i.e., s1 and s2)
are unclear. So we extract the input variables from the func-
tion signature using the syntax tree and match them with the
tests. Based on the variable types in the tests, we annotate
the input and output variables in the function signature.

Then, we adopt the rules as prior work (Cassano et al.
2023) to map the types from Python to other PLs. In par-
ticular, we identify the data types in the annotated Python
signature (e.g., parameter types, return types), mapping the
types from Python to other PLs according to the rules,
then structuring the signature in the corresponding PLs.
Take the example in Figure 2 Step I, the Python signa-
ture def f(s1:str, s2:str) -> str is translated
into that in C (std::string f(std::string s1,
std::string s2). After translating the tests, all 800
subjects in Python can be translated, as shown in Table 1.

Step II. Test Suites Translation
We employ a test-guided approach to ensure the correctness
of the translation results, which necessitates test cases in
various PLs. Prior works (Athiwaratkun et al. 2022; Cas-
sano et al. 2023) provided various rules for mapping Python
test cases to other PLs. We adopt the mapping rules from
MutiPL-E (Cassano et al. 2023) to assist the transition of
our test suites.

However, their rules have limited support for type han-
dling (e.g., they cannot handle a list with hybrid types),
Thus, to maximize the success rate, we made two improve-
ments to enhance the rules. First, we enhance handling
structured types such as List and Dict. For example,
when handling C#, we add an equality function to check
whether two Dict types are equal. Second, when dealing
with variables that have complex types that are not as well-
supported in some other PLs, we transform these variables
into more generic types without significantly altering the
original function’s functionality. For example, we change
type List[Union(str, int)] into List(str) if
the function keeps the same functionality. A small portion

std::string f(std::string s1, std::string s2) {
return s1 + s2

}

C++ (Generated)

Test

int main() {
auto candidate = f;
assert(candidate(("c"), ("at")) == ("cat"));

}

#include<assert.h>
#include<bits/stdc++.h>

std::string f(std::string s1, std::string s2) {
return s1 + s2 ;

}

C++ (Function + Test Suite)

Function

Dependencies

def check(func):
assert func('c', 'at') == 'cat'

def test_check():
check(f)

Step I. Function Signature Translation

Generate

std::string f(std::string s1, std::string s2) {
return s1 + s2

}

C++ (Generated)

Syntax/Semantic Error Message
/tmp/tmperq_14a5.cpp: In function 'std::string
f(std::string, std::string)'
/tmp/tmperq_14a5.cpp:4:19: error: expected ';'
before '}' token
 4 | return s1 + s2
 | ^
 | ;
 5 | }
 | ~

Step III. Iterative Generation & Repair

```python
def f(s1:str, s2:str) -> str:

return s1+s2
```

```cpp
#include<assert.h>
#include<bits/stdc++.h>

std::string f(std::string s1, std::string s2) {

Please translate the following Python to C++.

Prompt

Template of Test Suite (C++)

int main() {
auto candidate = f;
assert(candidate( ) == ( ));

}

Pass

C++ (Test Suite)Python (Test Suite)

def f(s1:str, s2:str) -> str:
return s1+s2

Python (Function)

def f(s1, s2):
return s1+s2

Python (Function)

Step II. Test Suite Translation

Type Annotation
std::string f(std::string s1, std::string s2)

C++ (Function Signature)str -> std::string
int -> long
float -> float
bool -> bool
List -> std::vector
Dict -> std::map
Tuple -> std::tuple
None -> std::nullopt
Any -> std::any
...

Rules on Type Mapping (Python → C++)

Template of Dependencies (C++)

#include<assert.h>
#include<bits/stdc++.h> #include<assert.h>

#include<bits/stdc++.h>

int main() {
auto candidate = f;
assert(candidate(("c"),("at"))==("cat"));

}

Dependencies

Test Case

Run against Test Suite

Fail

Generate & Repair

std::string f(std::string s1, std::string s2) {
return s1 + s2

}

C++ (Generated)

D Scala

Apply to
all PLs

Figure 2: The Pipeline of CruxEval-X Construction.

of the data that cannot be converted is discarded. The result
of Step II is shown in Table 1. Further details can be found
in the Appendix.

Step III. Iterative Generation & Repair
After the test, dependencies, and signatures are properly
transited, we then use multiple LLMs to iteratively trans-
late the original Python reference code into corresponding
PLs. In particular, each LLM undergoes two substeps: gen-
eration and repair. These substeps are based on the results of
the previous LLM. Once a problem successfully passes the
test cases, it will not appear in the next round of iteration.
Below, we will elaborate on these two substeps in detail.

Generation. Relying solely on a single LLM’s limited
number of generations is unlikely to achieve high accuracy
in translation tasks (Yin et al. 2024). Therefore, we propose
a multi-round generation method, which involves interaction
with the testing environment to determine whether to pro-
ceed with the next round of iteration.

Let A0 represent the number of translated codes that pass
the tests and the number of total problems is U . For all
questions that are not correctly answered, we used LLM M
to generate results through multiple rounds. We denote the
number of correct results in the i-th round as Ai, with the
maximum number of generation rounds set as N . For Ai, if
the increase in the number of correct questions compared to
the results k rounds before Ai−k is less than the threshold δ,
the process will stop early. Here, k is a fixed constant, and
the formula is as follows:

Ai = Correct(P (Oi | U −Ai−1;M)) +Ai−1

for i ∈ {1, 2, . . . , N}
Stop if (i >k) and (Ai −Ai−k < δ)

(1)

We obtain the i-th round code result Oi from the code gener-
ation distribution P (Oi | U −Ai−1;M). Then we calculate
the correct results using Correct(.) as the function.

To fully leverage the strengths of various LLMs, we select
the closed-source LLM GPT3.5-Turbo and the open-source
LLM DeepseekCoder-33B-Instruct for iterative translation
tasks. We initially use GPT3.5-Turbo for preliminary gener-
ation. Given the higher usage cost of closed-source LLMs,
we set N to 5, k to 5, δA to 0, and the temperature to 0.2.
The result is shown in Table 1 under the column “w/o Iter”.
We also use this as a baseline for the effectiveness of single
LLM’s generation within a limited number of iterations to
compare with the final results of our pipeline. Subsequently,
we employ Deepseekcoder-33B-Instruct on top of the foun-
dation laid by GPT3.5-Turbo to conduct further generation.
We set N to 50, k to 5, δA to 0, and the temperature to 0.8.

Repair Simply generating code will still result in many
errors the LLM cannot solve. Therefore, after the genera-
tion step of each LLM, we provide them error messages for
error correction. We observed that the cost of multiple iter-
ative error corrections is high and the benefits are relatively
low (Chen et al. 2023), so we only perform error correction
once after each of the two LLMs.

After the generation of GPT3.5-Turbo, we directly pro-
vide the LLM with the erroneous code along with the er-
ror messages for correction. After the Iterating Generation
of DeepseekCoder-33B-Instruct, since the untranslated code
can produce numerous incorrect code snippets after multiple
rounds of iteration, which may contain the same errors, we
first use simhash to deduplicate the erroneous code and then
proceed with error correction on the deduplicated code. Er-
ror correction in different phases uses the LLM employed in
that specific phase, with a temperature setting of 0.



Multiturn Repair based on overlap After completing the
steps above, we first calculate the intersection of correctly
answered questions across different PLs. To our surprise,
there were only 333 questions that all PLs answered cor-
rectly. However, 563 problems have been successfully trans-
lated correctly by at least 16 PLs. Upon analyzing the ques-
tions our LLM failed to solve, we find that each PL has its
difficulties in translating from python. For example, in Julia,
the index for arrays and other collection types starts from 1,
which differs from Python. The details of the difficulties can
be found in Appendix.

Based on these observations, we conduct final generation
and iterative error correction on the questions that are cor-
rectly translated by more than 15 PLs. Due to the small
number of questions requiring translation, we utilized GPT-
4o for generation and error correction. We set the tempera-
ture to 0, generate once, and correct errors three times. Dur-
ing the generation process, we provide the LLM with three
corresponding typical examples based on the difficulties we
find. The overlap is increased to 462 after repair of GPT-4o.

We manually modified 38 questions that GPT-4o almost
got right, expanding our dataset to 500 entries. We deter-
mined that 500 entries are sufficient to distinguish the effec-
tiveness of the LLMs and most of the questions that failed to
be translated cannot be expressed well in other PLs. There-
fore, we use these 500 entries as our CRUXEVAL-X bench-
mark. The final result of our pipeline is shown in Table 1
under the column “w/ Iter”. The prompt of each step can be
found in Appendix.

Languages Step I Step II Step III
w/o Iter w/ Iter

C# (cs) 800 774 380 670
C++ (cpp) 800 800 549 733
D (d) 800 754 95 629
GO (go) 800 752 293 699
Java (java) 800 774 541 698
JavaScript (js) 800 800 634 743
Julia (jl) 800 774 410 680
Lua (lua) 800 800 582 741
Perl (pl) 800 799 591 728
PHP (php) 800 800 622 755
R (r) 800 800 542 699
Racket (rkt) 800 800 264 681
Ruby (rb) 800 800 658 748
Rust (rs) 800 754 449 690
Scala (scala) 800 799 462 712
Shell (sh) 800 763 528 674
Swift (swift) 800 796 415 654
TypeScript (ts) 800 774 592 726

Table 1: The result of each step, The portion within paren-
theses in the “Language” column represents the abbrevia-
tions for various languages. Due to the constraints of page
size, these abbreviations are used to better display certain
charts or tables.

Experiments
Experiment Setup
LLMs for evaluation We selecte 24 LLMs across 4 types
for evaluation, including general LLMs (GPT-3.5-Turbo,
GPT-4o-mini, GPT-4o (Brown et al. 2020; Achiam et al.
2023), Llama3 (AI 2024), Qwen2 (Yang et al. 2024a), phi-
3-instruct (Abdin et al. 2024)), multilingual code LLMs
(Deepseekcoder-V2 (Zhu et al. 2024), Deepseekcoder-
V1 (Guo et al. 2024), CodeLlama (Roziere et al. 2023), Star-
coder (Li et al. 2023a), Starcoder2 (Lozhkov et al. 2024),
CodeQwen1.5-Chat (Bai et al. 2023)), instruction-tuned
multilingual LLMs (Deepseekcoder-instruct-V1 (Guo et al.
2024), WizardCoder (Luo et al. 2023), CodeLlama-Python,
CodeLlama-Instruct (Roziere et al. 2023)), and single or
few-language code LLMs (CodeGen (Nijkamp et al. 2022),
phi-1 (Gunasekar et al. 2023), phi-1.5 (Li et al. 2023b)).
Evaluation task We adopt the task settings from prior
work (Gu et al. 2024), dividing the tasks into output reason-
ing and input reasoning. For any PLs dataset Lk ∈ {Li}Ki=1,
where K = 19, representing the total number of PLs. We
provide a function fLk and the corresponding test. The in-
put of this test example is iLk , and the output is oLk .

The output reasoning task can be expressed as:

rLk = I(P (oLk |fLk , iLk ,M)) (2)

The input reasoning task can be expressed as:

rLk = I(P (iLk |fLk , oLk ,M)) (3)

where M is any LLMs. We get the input or output from
the code generation distribution P (.) and compose test cases
(i, o)L

k

. I(.) is the indicator function by executing this test
case with function fLk . If fLk passes the test, the evaluation
result is 1, otherwise 0.
Evaluation method. We use pass@1 (Kulal et al. 2019;
Chen et al. 2021) as the evaluation metric to assess both the
task of output reasoning and input reasoning. We set the tem-
perature to 0 and employ greedy decoding for generation as
prior work (Cao et al. 2024a). For closed-source LLMs, we
generate outputs by calling OpenAI’s API. The version of
the api is gpt-3.5-turbo, gpt-4o-mini, gpt-4o

Overall Result.
Figure 3 shows Pass@1 evaluation results of various LLMs
arranged in descending order of the LLMs’ parameter size.
It can be observed that LLMs with a larger number of param-
eters tend to perform better. The closed-source LLMs GPT-
4o achieved the best results among all evaluated LLMs. No-
tably, the result of the open-source LLMs Deepseekcoder-
V2 is better than GPT-4o-mini, with an average Pass@1 of
62.8% on input reasoning and 65.0% on output reasoning.
From the perspective of average values, it can be observed
that under different types of PLs, the LLMs’ capabilities on
input and output reasoning are quite similar, which echos the
observation made by prior work (Gu et al. 2024) in Python.
More interestingly, during the evaluation, we introduced the
few-language LLMs CodeGen-muti, which was only trained
on C, C++, GO, Java, JavaScript, and Python, as well as the



Input Reasoning Performence

Models Size cs cpp d go java js jl lua pl php py r rkt rb rs scala sh swift ts

GPT-4o - 70.2 64.6 71.6 75.4 69.8 73.2 67.0 73.0 70.2 74.8 70.6 74.4 67.4 72.0 73.6 65.4 70.6 74.2 74.0
GPT-4o-mini - 58.8 52.2 60.6 62.0 57.2 59.6 56.2 63.4 57.4 61.0 59.6 60.4 51.2 61.6 61.2 52.6 57.2 63.4 61.2
GPT-3.5 Turbo - 52.2 39.2 50.2 53.4 55.4 50.0 47.0 53.2 47.6 52.2 51.6 48.6 45.4 49.6 53.0 54.2 47.6 58.2 48.4
Deepseekcoder-V2 236B 63.8 57.0 66.6 64.0 64.8 67.0 58.4 62.0 61.4 64.2 64.0 65.8 58.0 63.2 63.6 58.2 62.4 62.6 66.6
Qwen2-Instruct 72B 52.0 54.2 49.6 55.4 50.0 51.6 51.0 51.2 47.8 55.2 52.4 53.2 47.8 54.4 57.2 50.6 52.4 51.6 52.0
CodeLlama-Python 34B 38.8 40.0 39.2 39.0 41.4 45.8 44.8 45.0 43.2 48.0 46.8 42.2 38.8 44.0 44.2 43.0 44.6 45.0 44.0
CodeLlama-Instruct 34B 44.6 48.4 43.8 46.0 44.4 52.6 50.4 49.4 46.0 52.0 51.2 48.4 42.4 48.2 48.6 48.0 46.2 49.4 53.2
CodeLlama 34B 40.4 44.6 45.6 41.2 39.0 50.0 49.0 47.0 46.6 48.8 49.8 47.6 39.8 46.6 46.8 44.6 44.4 50.0 48.6
WizardCoder-V1.1 33B 44.8 25.4 46.4 47.6 48.4 45.6 49.2 48.8 44.6 50.0 50.0 45.0 42.4 49.2 48.2 48.2 45.4 51.0 46.4
Deepseekcoder-instruct 33B 46.0 43.6 49.8 49.0 46.8 48.8 47.0 50.0 46.8 52.0 51.8 48.2 41.6 52.0 48.4 47.0 48.2 52.2 49.6
Deepseekcoder-base 33B 41.2 42.8 43.2 45.6 43.8 46.0 47.6 47.4 47.2 48.6 49.2 50.6 42.8 47.4 46.8 44.0 46.4 48.2 45.0
Starcoder2 15B 41.4 43.8 51.6 45.2 42.6 44.0 48.2 44.6 44.8 49.8 46.6 45.8 45.0 49.0 46.6 37.0 47.4 52.2 46.2
WizardCoder-V1.0 15B 29.2 30.0 30.6 28.6 29.6 33.0 34.8 33.6 36.2 36.8 33.2 33.4 36.4 33.6 33.0 29.0 35.0 34.0 32.4
Starcoder 15B 28.2 30.0 33.0 33.2 33.4 35.2 34.4 31.6 34.0 36.4 34.8 33.4 36.6 35.0 34.8 27.4 37.0 30.8 33.2
phi-3-instruct 14B 31.8 26.0 38.8 36.4 37.2 42.4 36.2 37.2 35.6 41.2 43.4 39.2 24.4 36.0 36.8 38.0 33.6 41.2 42.8
Llama-3-Instruct 8B 37.0 36.4 35.0 38.6 36.2 38.4 39.6 40.0 36.2 36.6 38.4 42.2 24.2 35.8 37.6 38.0 31.6 42.2 38.2
CodeQwen1.5-Chat 7B 42.8 42.0 43.0 46.4 44.6 43.8 42.2 42.8 41.6 44.8 43.0 43.4 38.2 43.6 42.0 39.4 46.6 45.8 43.6
CodeLlama-Instruct 7B 38.6 36.0 38.4 38.4 38.2 39.6 42.2 43.4 36.4 40.4 41.0 41.0 38.8 41.6 37.6 42.6 39.6 40.2 41.0
CodeLlama 7B 36.4 36.2 36.8 34.6 36.4 36.6 40.2 39.6 36.0 39.4 40.2 40.0 36.6 39.2 35.4 37.8 36.8 39.2 38.8
Deepseekcoder-instruct 6.7B 35.0 37.0 35.6 40.4 35.0 36.6 39.2 38.8 39.4 42.2 38.2 42.0 37.2 40.2 37.4 36.8 42.8 40.8 34.2
Deepseekcoder-base 6.7B 38.8 42.4 41.2 43.2 40.4 43.6 42.6 42.8 41.6 46.4 41.4 46.2 43.0 44.6 41.6 40.8 44.8 43.4 41.8
CodeGen-multi 6B 28.8 25.4 6.2 25.6 36.2 25.2 17.4 24.4 38.4 22.8 22.6 27.2 16.2 6.4 18.8 31.0 48.6 32.4 25.2
phi-1.5 1.3B 29.2 16.0 13.2 25.8 26.8 9.8 30.4 26.6 17.8 26.6 25.8 8.4 6.6 1.4 25.2 30.4 34.4 26.6 30.8
phi-1 1.3B 0.2 7.0 9.6 3.6 2.8 17.0 19.0 17.4 23.6 9.2 11.8 9.4 11.2 6.8 5.4 1.8 19.8 14.0 14.0

Average 40.4 38.3 40.8 42.4 41.7 43.1 43.1 43.9 42.5 45.0 44.1 43.2 38.0 41.7 42.7 41.1 44.3 45.4 43.8

Output Reasoning Performence

Models Size cs cpp d go java js jl lua pl php py r rkt rb rs scala sh swift ts

GPT-4o - 75.0 74.8 71.4 77.0 73.2 77.6 73.6 74.8 74.0 75.4 75.4 72.0 70.8 74.0 74.4 71.8 71.6 76.0 76.4
GPT-4o-mini - 63.0 63.0 61.4 63.4 54.0 61.8 57.8 60.0 57.4 64.2 61.6 59.6 56.6 61.2 61.8 61.2 56.2 63.0 61.2
GPT-3.5 Turbo - 54.2 43.2 56.0 53.2 43.6 56.2 54.2 54.6 51.8 55.2 57.2 49.4 48.0 56.4 54.6 56.4 51.0 57.8 53.6
Deepseekcoder-V2 236B 66.6 66.2 63.4 68.0 67.6 65.4 64.8 63.6 63.0 67.4 66.8 63.0 62.2 65.2 65.8 63.2 58.8 67.8 66.4
Qwen2-Instruct 72B 51.2 50.2 51.6 53.6 38.2 52.0 51.0 49.0 45.8 50.8 51.2 45.0 46.8 50.8 51.0 51.0 45.6 50.4 53.2
CodeLlama-Python 34B 41.4 44.8 45.6 41.8 41.4 45.4 45.2 42.8 43.6 43.8 43.8 42.4 38.6 42.8 46.6 43.8 42.0 44.4 44.8
CodeLlama-Instruct 34B 44.4 46.2 45.8 46.8 40.6 47.4 45.6 42.8 44.0 44.8 44.0 40.2 38.2 44.2 46.4 43.8 40.6 45.2 45.0
CodeLlama 34B 44.6 47.8 44.2 45.2 38.4 47.0 45.8 42.8 43.8 46.4 46.4 38.8 38.4 45.4 47.2 47.4 43.8 47.6 47.4
WizardCoder-V1.1 33B 47.0 46.8 45.8 44.2 50.8 50.0 47.0 46.0 45.2 51.4 49.6 44.0 42.4 48.2 47.8 45.0 44.4 48.0 49.8
Deepseekcoder-instruct 33B 52.0 51.4 49.0 48.8 53.2 55.0 50.4 50.4 50.0 53.0 52.2 48.2 46.6 52.8 50.6 48.0 49.4 52.8 53.6
Deepseekcoder-base 33B 48.2 50.0 46.0 48.6 49.2 51.4 46.8 48.0 48.4 52.0 49.8 45.2 46.4 49.0 46.2 47.6 46.0 49.2 51.2
Starcoder2 15B 46.0 47.4 47.2 49.0 48.4 50.0 49.2 44.8 49.4 48.4 48.4 47.2 45.0 51.0 48.8 45.2 45.8 49.6 48.6
WizardCoder-V1.0 15B 25.2 30.0 30.6 33.2 26.8 33.6 30.2 30.2 31.0 33.0 34.0 31.6 29.6 32.8 31.2 31.2 29.8 34.2 34.0
Starcoder 15B 20.4 31.6 31.8 31.0 18.4 33.4 32.2 31.8 29.8 32.6 32.6 30.0 29.2 33.4 32.6 30.0 30.2 33.0 33.0
phi-3-instruct 14B 34.2 37.6 39.0 31.0 34.2 41.6 41.2 34.4 35.8 37.8 42.4 36.6 24.6 42.2 37.4 36.2 37.2 41.4 43.0
Llama-3-Instruct 8B 32.0 30.8 31.2 31.4 25.0 35.0 31.4 34.0 29.6 27.0 33.6 27.2 28.0 31.8 34.4 33.8 32.0 36.4 33.8
CodeQwen1.5-Chat 7B 37.8 40.2 40.2 40.6 35.4 43.6 42.6 40.4 39.6 43.0 41.4 38.2 39.0 44.6 42.0 35.0 38.2 43.8 42.2
CodeLlama-Instruct 7B 32.2 35.6 34.4 35.0 24.4 38.2 35.2 32.2 34.2 36.0 35.4 32.0 29.6 37.0 37.4 33.0 33.0 34.6 38.8
CodeLlama 7B 32.6 34.4 33.8 33.4 28.4 38.0 35.2 34.4 35.2 38.0 34.4 32.6 30.8 34.8 36.8 33.4 31.0 35.0 38.2
Deepseekcoder-instruct 6.7B 34.8 41.8 40.4 39.4 32.8 47.6 42.6 38.8 42.0 43.8 43.6 40.8 39.2 43.2 41.8 40.6 37.8 43.2 44.0
Deepseekcoder-base 6.7B 41.2 46.2 43.2 42.8 42.6 44.8 46.0 41.0 40.4 41.8 44.8 42.8 43.0 42.6 42.0 43.2 40.6 47.6 45.4
CodeGen-multi 6B 21.4 23.6 25.0 26.4 21.6 22.8 22.8 23.8 20.4 25.2 24.8 23.4 17.8 24.0 25.2 22.0 22.2 25.0 21.4
phi-1.5 1.3B 16.0 26.0 24.8 22.6 15.8 23.0 23.6 21.2 22.0 22.2 25.6 21.8 16.8 19.6 22.0 21.6 17.6 25.6 25.2
phi-1 1.3B 5.8 9.0 13.2 14.8 4.6 20.8 19.2 15.8 15.6 18.6 22.4 17.6 10.4 18.0 16.4 11.0 16.4 19.2 19.0

Average 40.3 42.4 42.3 42.6 37.9 45.1 43.1 41.6 41.3 43.8 44.2 40.4 38.3 43.5 43.4 41.5 40.1 44.6 44.6

Figure 3: The result of each LLM in CRUXEVAL-X. Each result is shaded with a background color from blue to white based
on the Pass@1. The bluer, the larger. Deepseekcoder-V2 is a MOE LLM; the parameter activated during inference is 21B.



Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

1.35

1.40

1.45

1.50

1.55

1.60

1.65

(A) Number of Input Variables

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

1.35

1.40

1.45

1.50

1.55

1.60

1.65
(B) Number of Variable Type

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42
(C) Whether Have Complex Type

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

15

16

17

18

19

(D) Input Length

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

9.0

9.5

10.0

10.5

11.0

(E) Output Length

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

65

70

75

80

85

90

95

100
(F) Execution Steps

Correct Error

Figure 4: Key Factors for LLM Code Reasoning Capability.

single-language LLMs phi-1.5 and phi-1, which were pre-
trained only on Python. However, they achieve similar re-
sults in the input and output reasoning tasks across 19 PLs.
Notably, phi-1, having only seen Python, achieved a Pass@1
of 11.8% on Python input prediction, but scored 23.6% on
Perl input prediction. We will provide a more detailed anal-
ysis of this phenomenon in Analysis part.

Analysis on Key Factors for LLM Code Reasoning

To get more insight into what factors in code affect LLMs’
code reasoning ability, we explore six factors (e.g., aver-
age number of input variables, average input length) and
statistics their correlation with correct/incorrect reasoning.
The result is shown in Figure 4. Each column of the box
plot displays the distribution of 19 PLs. In particular, the
columns “Num of Input Variable”, “Num of Variable Type”
are counted by averaging the number of types of input pa-
rameters in method signatures, “Input/Output Length” is the
average string length of the input/output. For instance, in the
test case where f("a", 123) == 123, the input length
is 4, and the output length is 3. “Whether Have Complex
Type” checks whether there are List, Dict, Tuple, Set
types in input and output. “Execution Steps” calculates the
average execution steps in Python bytecode operations, fol-
lowing prior work (Gu et al. 2024).

From Figure 4, we can see from Sub-figures A-C that the
number/types of input variables have little impact on the
code reasoning, especially Sub-figure B, which shows that
the reasoning capability is slightly better when more types
of variables are involved. A more counter-intuitive obser-
vation is made from sub-figures D-E. They indicate that the
reasoning capability is negatively correlated with the length
of input/output strings instead of the number of data types.

Furthermore, regarding input reasoning capability, the
more input variables, the more challenging it is for LLMs
to reason about the correct inputs, thus the worse the input
reasoning performance (Sub-figures A and D). Similarly, the
longer the outputs, the harder the output reasoning, resulting
in worse performance (Sub-figure E).

cs cpp d go java py rs scala ts
0.0

0.2

0.4

0.6

0.8

1.0
(A) Input Reasoning

cs cpp d go java py rs scala ts
0.0

0.2

0.4

0.6

0.8

1.0
(B) Output Reasoning

phi-1.5 phi-1

Figure 5: The number of syntax error of each LLM.

Analysis on Cross-language Generalization
To investigate the cross-language generalizability of LLMs,
we investigate the reasoning ability of phi-1 and phi-1.5,
which are trained on English and Python only. To get a bet-
ter understanding, we analyze the capability in terms of syn-
tax and semantics in 9 PLs because they provide clear error
messages to distinct syntactic/semantic errors.

Syntactic Correctness. To generalize to other PLs, it is
critical to ensure syntactic correctness. Figure 5 (A)-(B)
show the number of syntactic-correct cases made by these
two LLMs in both tasks. It is clear that Python has the
highest syntactic correctness in both tasks, followed by Go
and TypeScript. On the contrary, C++, C#, and Java wit-
ness the most syntactic errors for three LLMs. Interestingly,
even though phi-1 and phi-1.5 have not trained on PLs other
than Python, they can still achieve an average of 49.1% and
72.0% syntactically correctness rate in other PLs, respec-
tively, compared with 97.0% and 98.7% achieved on Python.
It indicates the cross-language generalizability of LLMs.

Semantic Correctness. Beyond syntactic correctness, se-
mantic correctness poses higher requirements, i.e., passing
the tests. The results are shown in the last two rows in Fig-
ure 3. Similar results can be observed in both tasks and both
LLMs. In particular, phi-1.5 reaches 25.8% input reasoning
performance on Python, while on other PLs, an average of
19.0% can also be reached. The observation further consol-
idates the cross-language generalizability of LLMs.

Cross-NL and Cross-PL Generalization. From Figure 5
and Figure 3, there is a noticeable increase from phi-1 to
phi-1.5 (an average of 10.7% vs. 21.7% on input reasoning,
and 15.1% vs. 21.7% on output reasoning). According to the
description (Abdin et al. 2024), phi-1.5 is further fine-tuned
with more synthetic texts in natural language (NL). Con-
sidering the dramatic improvement in code reasoning, it is
highly likely that the improvement in NL reasoning posi-
tively impacts code reasoning.

Analysis on Programming Language Correlation
To further investigate the correlations between these 19 PLs
in CRUXEVAL-X, we calculate each PL pair’s correlation
(i.e., cosine similarity, ranging from -1 to 1), visualized in



cs cp
p d go

ja
va js jl

lu
a pl

ph
p py r

rk
t rb rs

sc
al

a sh
sw

ift ts

cs
cpp

d
go

java
js
jl

lua
pl

php
py

r
rkt
rb
rs

scala
sh

swift
ts

Input Reasoning

cs cp
p d go

ja
va js jl

lu
a pl

ph
p py r

rk
t rb rs

sc
al

a sh
sw

ift ts

cs
cpp

d
go

java
js
jl

lua
pl

php
py

r
rkt
rb
rs

scala
sh

swift
ts

Output Reasoning

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Figure 6: The Correlation between PL Pairs.

Figure 6. In particular, for each PL, we flatten the results of
LLMs as a feature vector and calculate the cosine similari-
ties for each pair of PLs.

Overall, Figure 6 shows that the correlation between PL
pairs is generally similar, with an average of 0.7+ cosine
similarities. Among all PL pairs, JavaScript and TypeScript
correlate the most strongly (0.87 and 0.91 on both tasks). It
indicates that the code reasoning capabilities on different
PLs are highly correlated. Also, the correlation in output
reasoning is slightly higher than in input reasoning, with an
average of 0.79 vs. 0.75.

It is also noteworthy that Racket has the most minor corre-
lation with all the other PLs. It may be because of its distinct
syntax. A case study can be found in Listing 3.

Case Study
After identifying the phi-series-LLMs (i.e., phi-1, phi-1.5)
exhibit cross-language generalization and the correlation
across PLs, we further analyze the predictions of phi-1.5 to
get a deeper understanding. We noticed that out of the 128
correct instances in Python by phi-1.5, 61.7% (79/128) are
also correct in PHP, while only 39.8% (51/128) are correct
in Racket. Therefore, we use one example in these three PLs
(Python, PHP, and Racket) to understand its rationale.

Analysis on Subject 106. Listing 1-3 demonstrates an
instance where phi-1.5 generalizes Python (Listing 1)’s
reasoning capabilities to other languages. Each example’s
check function has been uniformly simplified to assert
f() == (). From a grammar structure perspective, their
respective function definitions, indentation formats, and the
functions they invoke exhibit significant differences. How-
ever, overall, PHP and Python share a more similar struc-
ture, both utilizing sort for sorting and return for return-
ing output values. Therefore, phi-1.5 is able to generalize its
code reasoning abilities to PHP, but fails to comprehend the
sorting command in Racket, leading to incorrect predictions.

Upon analyzing these 128 questions, we observe that ex-
cluding those where the output could be directly derived
from the input, such as assert f("zej","owc") ==
"zej", which accounted for approximately 40% of the
cases, there are still numerous examples demonstrating that
phi-1.5 has developed a certain level of cross-language capa-
bilities. From these examples, we can observe that the mul-
tilingual generalization capability of the model is positively
correlated with the grammar structural similarity between

languages. Even Racket, a language significantly different
from others, maintains certain logical similarities in aspects
such as function definitions, loops, and conditional branchs.
This is a key reason why Phi-1.5 can achieve considerable
effectiveness across multiple languages.

Listing 1: Subject-106 (Python)
1 def f(lst: List[int]) -> List[int]:
2 lst.sort()
3 return lst[0:3]
4 assert f([5,8,1,3,0])==????
5 # phi-1.5 answer: [0, 1, 3]

Listing 2: Subject-106 (PHP)
1 <?php
2 function f($lst) {
3 sort($lst);
4 return array_slice($lst, 0, 3);
5 }
6 assert f(array(5,8,1,3,0)) == ????
7 // phi-1.5 answer: array(0, 1, 3)

Listing 3: Subject-106 (Racket)
1 (define (f lst)
2 (define sorted-list (sort lst <))
3 (take sorted-list 3))
4 (require rackunit)
5 assert f(list 5 8 1 3 0) == ????
6 # phi-1.5 answer: list 5 8 1

Related Work
Multi-Task Code Benchmark Recently, there has been an
increasing number of tasks related to code that are used to
evaluate the various capabilities of LLMs in the field of cod-
ing, including code generation (Chen et al. 2021; Austin
et al. 2021), code repair (Jimenez et al. 2023; Tian et al.
2024), and code description (Chai et al. 2024). However,
datasets that assess the reasoning abilities of code are rela-
tively limited, and the currently proposed reasoning datasets
are confined to the Python language (Gu et al. 2024; Chen
et al. 2024). In this work, we have expanded the Python lan-
guage reasoning dataset CRUXEVAL (Gu et al. 2024) to en-
compass 19 PLs, thereby addressing the deficiency in rea-
soning datasets at the multilingual level.
Multi-Language Code Benchmark Multilingual evalua-
tion datasets are an important method for assessing the com-
prehensive coding capabilities of code LLMs. In the early
stages, multilingual code datasets were mainly used for code
translation tasks (Elnaggar et al. 2021; Ahmad et al. 2021;
Roziere et al. 2020, 2021; Zhu, Suresh, and Reddy 2022;
Yan et al. 2023; Zhu et al. 2022). These datasets often con-
sist of problem solutions in different languages extracted
from algorithm competition-related websites, thus suffering
from data contamination issue. Bechmark like McEval (Chai
et al. 2024), which relies on human annotation, requires a



high cost. In this work, we provide a process using LLMs
for multilingual code translation, which can achieve a high
accuracy and low cost in creating a multilingual dataset.

Conclusion
In this work, we provide a fully automated process for con-
structing a multilingual dataset based on a Python code
language dataset. Through this process, we successfully
transform the CRUXEval dataset into a multilingual dataset
containing 19 PLs and test its effectiveness on 24 LLMs,
demonstrating the validity of the dataset. Furthermore, we
find that models trained on only a few languages exhibit the
ability to transfer their prediction capabilities to other lan-
guages in input/output reasoning tasks, and this ability is in-
fluenced by the model’s own reasoning capabilities.

References
Abdin, M.; Jacobs, S. A.; Awan, A. A.; Aneja, J.; Awadal-
lah, A.; Awadalla, H.; Bach, N.; Bahree, A.; Bakhtiari, A.;
Behl, H.; et al. 2024. Phi-3 technical report: A highly capa-
ble language model locally on your phone. arXiv preprint
arXiv:2404.14219.
Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.
Ahmad, W. U.; Tushar, M. G. R.; Chakraborty, S.;
and Chang, K.-W. 2021. Avatar: A parallel corpus
for java-python program translation. arXiv preprint
arXiv:2108.11590.
AI, M. 2024. Introducing meta llama 3: The most capable
openly available llm to date. Blog. Online; accessed 15-
January-2024.
Athiwaratkun, B.; Gouda, S. K.; Wang, Z.; Li, X.; Tian, Y.;
Tan, M.; Ahmad, W. U.; Wang, S.; Sun, Q.; Shang, M.; et al.
2022. Multi-lingual evaluation of code generation models.
arXiv preprint arXiv:2210.14868.
Austin, J.; Odena, A.; Nye, M.; Bosma, M.; Michalewski,
H.; Dohan, D.; Jiang, E.; Cai, C.; Terry, M.; Le, Q.; et al.
2021. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.
Bai, J.; Bai, S.; Chu, Y.; Cui, Z.; Dang, K.; Deng, X.; Fan,
Y.; Ge, W.; Han, Y.; Huang, F.; et al. 2023. Qwen technical
report. arXiv preprint arXiv:2309.16609.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.
Cao, J.; Chen, Z.; Wu, J.; chi Cheung, S.; and Xu, C.
2024a. Can AI Beat Undergraduates in Entry-level Java As-
signments? Benchmarking Large Language Models on Jav-
aBench. arXiv:2406.12902.
Cao, J.; Zhang, W.; Cheung, S.-C.; and on, S. 2024b. Con-
cerned with Data Contamination? Assessing Countermea-
sures in Code Language Model. arXiv:2403.16898.

Cassano, F.; Gouwar, J.; Nguyen, D.; Nguyen, S.; Phipps-
Costin, L.; Pinckney, D.; Yee, M.-H.; Zi, Y.; Anderson, C. J.;
Feldman, M. Q.; et al. 2023. MultiPL-E: a scalable and
polyglot approach to benchmarking neural code generation.
IEEE Transactions on Software Engineering, 49(7): 3675–
3691.
Chai, L.; Liu, S.; Yang, J.; Yin, Y.; Jin, K.; Liu, J.; Sun,
T.; Zhang, G.; Ren, C.; Guo, H.; et al. 2024. McEval:
Massively Multilingual Code Evaluation. arXiv preprint
arXiv:2406.07436.
Chen, J.; Pan, Z.; Hu, X.; Li, Z.; Li, G.; and Xia, X. 2024.
Reasoning Runtime Behavior of a Program with LLM: How
Far Are We? arXiv:2403.16437.
Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H. P. D. O.;
Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman,
G.; et al. 2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.
Chen, X.; Lin, M.; Schärli, N.; and Zhou, D. 2023. Teach-
ing large language models to self-debug. arXiv preprint
arXiv:2304.05128.
Du, X.; Liu, M.; Wang, K.; Wang, H.; Liu, J.; Chen, Y.;
Feng, J.; Sha, C.; Peng, X.; and Lou, Y. 2024. Evaluating
large language models in class-level code generation. In
Proceedings of the IEEE/ACM 46th International Confer-
ence on Software Engineering, 1–13.
Elnaggar, A.; Ding, W.; Jones, L.; Gibbs, T.; Feher, T.;
Angerer, C.; Severini, S.; Matthes, F.; and Rost, B. 2021.
Codetrans: Towards cracking the language of silicon’s code
through self-supervised deep learning and high performance
computing. arXiv preprint arXiv:2104.02443.
Gu, A.; Rozière, B.; Leather, H.; Solar-Lezama, A.; Syn-
naeve, G.; and Wang, S. I. 2024. Cruxeval: A benchmark for
code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065.
Gunasekar, S.; Zhang, Y.; Aneja, J.; Mendes, C. C. T.;
Del Giorno, A.; Gopi, S.; Javaheripi, M.; Kauffmann, P.;
de Rosa, G.; Saarikivi, O.; et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.
Guo, D.; Zhu, Q.; Yang, D.; Xie, Z.; Dong, K.; Zhang,
W.; Chen, G.; Bi, X.; Wu, Y.; Li, Y.; et al. 2024.
DeepSeek-Coder: When the Large Language Model Meets
Programming–The Rise of Code Intelligence. arXiv preprint
arXiv:2401.14196.
Hu, X.; Kuang, K.; Sun, J.; Yang, H.; and Wu, F. 2024.
Leveraging print debugging to improve code generation in
large language models. arXiv preprint arXiv:2401.05319.
Jimenez, C. E.; Yang, J.; Wettig, A.; Yao, S.; Pei, K.; Press,
O.; and Narasimhan, K. 2023. Swe-bench: Can language
models resolve real-world github issues? arXiv preprint
arXiv:2310.06770.
Kulal, S.; Pasupat, P.; Chandra, K.; Lee, M.; Padon, O.;
Aiken, A.; and Liang, P. S. 2019. Spoc: Search-based pseu-
docode to code. Advances in Neural Information Processing
Systems, 32.
Li, R.; Allal, L. B.; Zi, Y.; Muennighoff, N.; Kocetkov, D.;
Mou, C.; Marone, M.; Akiki, C.; Li, J.; Chim, J.; et al.



2023a. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.
Li, Y.; Bubeck, S.; Eldan, R.; Del Giorno, A.; Gunasekar, S.;
and Lee, Y. T. 2023b. Textbooks are all you need ii: phi-1.5
technical report. arXiv preprint arXiv:2309.05463.
Ling, M.; Yu, Y.; Wu, H.; Wang, Y.; Cordy, J. R.; and Has-
san, A. E. 2022. In Rust We Trust – A Transpiler from Un-
safe C to Safer Rust. In 2022 IEEE/ACM 44th International
Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion), 354–355.
Liu, J.; Xia, C. S.; Wang, Y.; and Zhang, L. 2024. Is your
code generated by chatgpt really correct? rigorous evalua-
tion of large language models for code generation. Advances
in Neural Information Processing Systems, 36.
Lozhkov, A.; Li, R.; Allal, L. B.; Cassano, F.; Lamy-Poirier,
J.; Tazi, N.; Tang, A.; Pykhtar, D.; Liu, J.; Wei, Y.; et al.
2024. Starcoder 2 and the stack v2: The next generation.
arXiv preprint arXiv:2402.19173.
Luo, Z.; Xu, C.; Zhao, P.; Sun, Q.; Geng, X.; Hu, W.; Tao, C.;
Ma, J.; Lin, Q.; and Jiang, D. 2023. Wizardcoder: Empow-
ering code large language models with evol-instruct. arXiv
preprint arXiv:2306.08568.
Nijkamp, E.; Pang, B.; Hayashi, H.; Tu, L.; Wang, H.; Zhou,
Y.; Savarese, S.; and Xiong, C. 2022. Codegen: An open
large language model for code with multi-turn program syn-
thesis. arXiv preprint arXiv:2203.13474.
Roziere, B.; Gehring, J.; Gloeckle, F.; Sootla, S.; Gat, I.; Tan,
X. E.; Adi, Y.; Liu, J.; Remez, T.; Rapin, J.; et al. 2023. Code
llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950.
Roziere, B.; Lachaux, M.-A.; Chanussot, L.; and Lample,
G. 2020. Unsupervised translation of programming lan-
guages. Advances in neural information processing systems,
33: 20601–20611.
Rozière, B.; Zhang, J.; Charton, F.; Harman, M.; Synnaeve,
G.; and Lample, G. 2022. Leveraging Automated Unit Tests
for Unsupervised Code Translation. In The Tenth Interna-
tional Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.
Roziere, B.; Zhang, J. M.; Charton, F.; Harman, M.; Syn-
naeve, G.; and Lample, G. 2021. Leveraging automated
unit tests for unsupervised code translation. arXiv preprint
arXiv:2110.06773.
Tian, R.; Ye, Y.; Qin, Y.; Cong, X.; Lin, Y.; Liu, Z.; and Sun,
M. 2024. Debugbench: Evaluating debugging capability of
large language models. arXiv preprint arXiv:2401.04621.
Xia, C. S.; and Zhang, L. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using Chat-
GPT. arXiv preprint arXiv:2304.00385.
Yan, W.; Tian, Y.; Li, Y.; Chen, Q.; and Wang, W. 2023.
Codetransocean: A comprehensive multilingual benchmark
for code translation. arXiv preprint arXiv:2310.04951.
Yang, A.; Yang, B.; Hui, B.; Zheng, B.; Yu, B.; Zhou, C.; Li,
C.; Li, C.; Liu, D.; Huang, F.; et al. 2024a. Qwen2 technical
report. arXiv preprint arXiv:2407.10671.

Yang, A. Z.; Le Goues, C.; Martins, R.; and Hellendoorn, V.
2024b. Large language models for test-free fault localiza-
tion. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 1–12.
Yin, X.; Ni, C.; Nguyen, T. N.; Wang, S.; and Yang, X.
2024. Rectifier: Code Translation with Corrector via LLMs.
arXiv:2407.07472.
Zhong, L.; Wang, Z.; and Shang, J. 2024. Ldb: A large lan-
guage model debugger via verifying runtime execution step-
by-step. arXiv preprint arXiv:2402.16906.
Zhu, M.; Jain, A.; Suresh, K.; Ravindran, R.; Tipirneni,
S.; and Reddy, C. K. 2022. Xlcost: A benchmark
dataset for cross-lingual code intelligence. arXiv preprint
arXiv:2206.08474.
Zhu, M.; Suresh, K.; and Reddy, C. K. 2022. Multilingual
code snippets training for program translation. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 36, 11783–11790.
Zhu, Q.; Guo, D.; Shao, Z.; Yang, D.; Wang, P.; Xu, R.; Wu,
Y.; Li, Y.; Gao, H.; Ma, S.; et al. 2024. DeepSeek-Coder-
V2: Breaking the Barrier of Closed-Source Models in Code
Intelligence. arXiv preprint arXiv:2406.11931.



Appendix
The improvements of MutiPL-E pipline
enhance of the pipline (1) For C# we enhance the check
function to include the ability to judge if the List and
Dict types are equal. (2) For Julia we add the data
type to empty dict, for example change input Dict()
to Dict{String, String}(). Otherwise, the func-
tion can not accept the input (3) For JavaScript we
change String which Contains special characters, such
as"example\n" to `example\n `.

transform complex types (1) For inputs and outputs that
include functions, such as "bfrerat".split("-"),
we will replace the input or output with the result after the
function execution. (2) When the input is of Callable
type, such as lambda x: x.reverse(), we will re-
move the parameter and incorporate the Callable type
into the main function internally. (3) For complex variables
that contain multiple types, if we can convert them into
a simpler type without altering the function’s functional-
ity, we will preserve such functions. For instance, as illus-
trated in Listing 4, consider a dictionary d: Dict[str,
Union[int, str]]. If converting all its values to the
str type does not alter the function’s behavior, we will re-
tain it; otherwise, we will discard them.

Listing 4: example with complex type
1 from typing import Dict, Union, Tuple
2
3 def f(d: Dict[str, Union[int, str]]) ->

Tuple[bool, bool]:
4 r = {
5 "c": d.copy(),
6 "d": d.copy()
7 }
8 return (r["c"] is r["d"], r["c"] ==

r["d"])
9

10 def check(candidate):
11 assert candidate({"i": 1, "love": "

parakeets"}) == (False, True)
12
13 def test_check():
14 check(f)

The difficulties for translating
(1) For indexing functions such as ‘index‘, the starting po-
sition is not 0 but 1, with Julia being a typical language
that exhibits this behavior. (2) For the conversion between
Python”s ‘str‘ type and its own ‘char‘ and ‘string‘ types, D
language is a typical case where this issue arises. (3) For the
transformation and comparison of dictionary types, C# is a
typical language where such errors are common.

Prompt of Benchmark Construction
In Figures 7 and 8, we include the prompts we use for our
benchmark construction. We use a few-shot prompt for all
models. For Generation step of each model, the prompt is

show in Figure 7. The example in this Figure is used for
GPT3.5-turbo. After the Generation and Repair of GPT3.5-
turbo, we choose three examples from the correct generated
problems which include str, List, Dict type respec-
tively. We use these examples for Deepseekcoder-instruct-
33b Generation. For GPT-4o, based on the summarized dif-
ficulties in translation, we provide three examples, as shown
in Listing 5, 6, and 7. we present these examples in three dis-
tinct languages. For each specific language translation, we
employ the corresponding language version of the three ex-
amples.

=================== System ===================
You are a helpful programming assistant designed to translate 
code and complete code snippets.

==================== User ====================
Please translate the python function to cpp function:
    
```python
def add(a, b):
 return a + b
```
    
The function starts as follows, and your task is to complete it 
so that its semantics are the same as the python code above.
Note that the number of packages called at the beginning of 
the given function cannot be reduced, but can only be 
increased.
    
```cpp
#include<assert.h>
#include<bits/stdc++.h>
long add(long x, long y) {
```

=================== Assistant ===================
```cpp
#include<assert.h>
#include<bits/stdc++.h>
long add(long x, long y) {
 return x + y;
}
```
==================== User ====================
Please translate the python function to cpp function:
    
```python
{the python code}
```
    
The function starts as follows, and your task is to complete it 
so that its semantics are the same as the python code above.
Note that the number of packages called at the beginning of 
the given function cannot be reduced, but can only be 
increased.
    
```cpp
{the cpp function head}
```

Figure 7: Prompt of Generation



=================== System ===================

You are an expert programming assistant.

==================== User ====================

Please translate the language of the function from python to 

cpp

```python

{the python code}

```

=================== Assistant ==================

```cpp

{the error cpp code}

```

==================== User ====================

The code you translated has the following {error type} error:

{error message}

Please analyze the cause of the error and then return the 

repaired code in cpp.

Figure 8: Prompt of Repair

As illustrated in Figure 8, the prompt for Repair is shown,
which depicts a single round of error correction. The com-
piler’s returned error messages are provided to the model
for correction. For multiple rounds of error correction, sub-
sequent error messages are appended to the dialogue after
the model encounters errors again.

Listing 5: example1 for GPT-4o (D)
1 import std.math;
2 import std.typecons;
3 import std.conv;
4 import std.algorithm;
5 import std.array;
6 import std.string;
7
8 string f(string x, string y) {
9 char[] yMutable = y.dup;

10 yMutable.reverse();
11 string tmp = yMutable.map!(c => c ==

"9" ? "0" : "9").array.map!(c =>
c.to!string).array.join("");

12 if (x.isNumeric && tmp.isNumeric) {
13 return x ˜ tmp;
14 } else {
15 return x;
16 }
17 }
18 unittest
19 {
20 alias candidate = f;
21 assert(candidate("", "sdasdnakjsda80

") == "");
22 }
23 void main(){}

Listing 6: example2 for GPT-4o (Swift)
1 import Foundation
2
3 func f(strand: String, zmnc: String) ->

Int {
4 var strand = strand
5 var poz = strand.range(of: zmnc)
6 while poz != nil {
7 strand.removeSubrange(poz!)
8 poz = strand.range(of: zmnc)
9 }

10 let lastIndex = strand.range(of:
zmnc, options: [], range: nil,
locale: nil)?.lowerBound.
utf16Offset(in: strand)

11 return lastIndex ?? -1
12
13 func ==(left: [(Int, Int)], right: [(Int

, Int)]) -> Bool {
14 if left.count != right.count {
15 return false
16 }
17 for (l, r) in zip(left, right) {
18 if l != r {
19 return false
20 }
21 }
22 return true
23 }
24
25 assert(f(strand: "", zmnc: "abc") == -1)

Listing 7: example3 for GPT-4o (Python)
1 from typing import Dict,Tuple
2
3 def f(d: Dict[str, int]) -> Tuple[int,

int]:
4 if "x" in d:
5 x = d["x"]
6 if "y" in d:
7 y = d["y"]
8 return x,y
9

10 def check(candidate):
11 assert candidate({"x": 5, "y": 12})

== (5, 12)
12
13 def test_check():
14 check(f)

Programming Language Correlation in Translation
We observed that after a four-step translation process, the in-
tersection of the 18 programming languages contained only
333 entries. This indicates that each programming language
has its unique subset of correctly translated parts. Therefore,
we constructed a Venn diagram to study the correlation be-
tween the sets of correct translations among different lan-
guages.

Specifically, the results are shown in Figure 9. Due to
the limitation of the number of sets that a Venn diagram



can clearly represent, we explored by two methods, each
selecting five representative languages. First, we chose the
five languages with the largest union of results from the 18
languages to construct the first Venn diagram, which is the
left half of Figure 9. Subsequently, we selected the top five
most widely used languages, excluding Python, based on
data from GitHut 2.0, to construct the second Venn diagram,
which is the right half of Figure 9.

From Figure 9, we can observe that mainstream program-
ming languages often have more similar syntax structures,
and the model’s generation capability is stronger for these
languages. Therefore, the intersection of the generation re-
sults for these five languages is relatively large, with 632 en-
tries, while the union is relatively small, totaling 776 entries.
Lua, PHP, R, Ruby, and JavaScript are among the languages
with the broadest correct translation entries across all pro-
gramming languages, with their union totaling 798 entries.

3 43

2
0

3

1

4

5

2

5

0
5

2
14

4

0
32

Java3

2 5
Lua 5

0

2

6

60

10

10

22

611

GOLua
PHP
R
Ruby

C++
JavaScript

13 15

4
3

0

17

3

1

1

11

2
0

5
12

1

2
01

1

10 0
13

2

0

0

3

11

5

R 17

632

PHP Java
Go
C++
TypeScript
JavaScript

TypeScript
JavaScript

Ruby JavaScript

Figure 9: The communitie of each langugage in code trans-
lation.

GPT3.5
Generate

GPT3.5
Repair

DeepSeek
Generate

DeepSeek
Repair

GPT-4o

100

200

300

400

500

600

700
C#
C++
D
Go
Java
JavaScript
Julia
Lua
Perl
PHP
R
Racket
Ruby
Rust
Scala
Shell
Swift
TypeScript

Figure 10: The result of each step in translation

The result of each Step in Translation
Figure 10 shows the improvement brought by each step for
every language during the construction of the benchmark. It
can be observed that each step leads to an overall enhance-
ment in translation performance. For mainstream languages
such as C++ and Java, the number of correctly translated

items can exceed 600 after one or two steps. For lower-
frequency languages like D and Racket, the effect is grad-
ually improved, eventually resulting in all languages having
more than 600 correct translations.

GPU Usage and Total Cost of Translation
The total cost of GPT3.5-Turbo and GPT-4o is aboat $60 US
dollars. For Deepseekcoder-Instruct-33b, we use 1 NVIDIA
A100-80GB GPU and the generation and repair takes about
72 hours.

Prompt of Input/Output Reasoning
In Figures 11, 12, 13, 14, we include the prompts we use for
our benchmark construction. We use a few-shot prompt for
all models. The examples of few-shot is shown in Listings
8, 9, 10. All the prompts and examples are demonstrated in
the C++ language.

You will be given a cpp function f and a check function, where you 

only know the output of the test case. Find any input such that 

executing f on the input leads to the given output. There may be 

multiple answers, but you should only output one. Think step by 

step before arriving at an answer. Finally, surround the answer, with 

no additional words, with [ANSWER] and [/ANSWER] tags. 

Express your answer as a function call that when executed will give 

the output.

```cpp

{example1}

```

[ANSWER]

{answer1}

[/ANSWER]

```cpp

{example2}

```

[ANSWER]

{answer2}

[/ANSWER]

```cpp

{example3}

```

[ANSWER]

{answer3}

[/ANSWER]

```cpp

{function}

```

[ANSWER]

{function answer}

[/ANSWER]

Figure 11: Prompt of input reasoning (non-GPT)



Based on the given code, which may contain errors, complete the 

"????" in assert statement with the output when executing the cpp

code on the given test case. Do NOT output any extra information, 

even if the function is incorrect or incomplete. Do NOT output a 

description for the assert.

…

```cpp

{function}

```

[ANSWER]

{function answer}

[/ANSWER]

Figure 12: Prompt of output reasoning (non-GPT)

You will be given a cpp function f and a check function, where you 

only know the output of the test case. Output the completion of the  

check function so that the code will run without errors by finding 

any input such that executing f on the input leads to the given 

output. There may be multiple answers, and you can output any one. 

Do NOT output any additional information.

…

```cpp

{function}

```

[ANSWER]

{function answer}

[/ANSWER]

Figure 13: Prompt of input reasoning (GPT)

Based on the given code, which may contain errors, complete the 

"????" in assert statement with the output when executing the cpp

code on the given test case. Do not output any extra information,

even if the function is incorrect or incomplete

.…

```cpp

{function}

```

[ANSWER]

{function answer}

[/ANSWER]

Figure 14: Prompt of output reasoning (GPT)

Listing 8: Input/Output Reasoning example1 (C++)
1 #include<assert.h>
2 #include<bits/stdc++.h>
3 long f(std::vector<std::string> my_list)

{
4 long count = 0;
5 for (std::string i : my_list) {
6 if (i.size() % 2 == 0) {
7 count += 1;
8 }
9 }

10 return count;
11 }
12 int main() {
13 auto candidate = f;
14 assert(candidate((std::vector<std::

string>({(std::string)"mq", (std
::string)"px", (std::string)"zy"
}))) == (3));

15 }

Listing 9: Input/Output Reasoning example2 (C++)
1 #include<assert.h>
2 #include<bits/stdc++.h>
3 std::string f(std::string s1, std::

string s2) {
4 return s1 + s2;
5 }
6 int main() {
7 auto candidate = f;
8 assert(candidate(("ba"), ("nana"))

== ("banana"));
9 }

Listing 10: Input/Output Reasoning example3 (C++)
1 #include<assert.h>
2 #include<bits/stdc++.h>
3 std::tuple<long, long> f(std::map<std::

string,long> d) {
4 long x = 0, y = 0;
5 if(d.find("x") != d.end()){
6 x = d["x"];
7 }
8 if(d.find("y") != d.end()){
9 y = d["y"];

10 }
11 return std::make_tuple(x, y);
12 }
13 int main() {
14 auto candidate = f;
15 assert(candidate((std::map<std::

string,long>({{"x", 5}, {"y",
12}}))) == (std::make_tuple(5,
12)));

16 }


