EXPERT INSIGHT

Supercharged
Coding with GenAl

prompt engineering
A
4 N\

def [HNNE (0:H)->"N
——— —— L

syntactic flexibility context cue

=

From vibe coding to best practices using GitHub Copilot,
ChatGPT, and OpenAl

Foreword by

Mike Erlihson, PhD

Head of Al, Stealth Cyber Startup

Hila Paz Herszfang | Peter V. Henstock <packh

Supercharged Coding
with GenAl

From vibe coding to best practices using GitHub Copilot,
ChatGPT, and OpenAl

Hila Paz Herszfang
Peter V. Henstock

Supercharged Coding with GenAl

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors nor Packt Publishing or its dealers and distributors will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee

the accuracy of this information.

Portfolio Director: Gebin George
Relationship Lead: Sonia Chauhan
Project Manager: Prajakta Naik
Content Engineer: Aditi Chatterjee
Technical Editor: Irfa Ansari

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar
Proofreader: Aditi Chatterjee
Production Designer: Vijay Kamble

Growth Lead: Nimisha Dua

First published: August 2025

Production reference: 2220825

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 IRB, UK.

ISBN 978-1-83664-529-0

www . packtpub.com

http://www.packtpub.com

To my husband, Dvir, my mother, Yifat, my father, Amos, my brother, Roy, and my dog, Panda—

thank you for your support and encouragement throughout this journey.

— Hila

To my father, with special thanks to my mother, brother, and especially my wife for their support.

— Peter

Foreword

When Hila told me she was working on a book about GenAl-powered software development, I
smiled. Of course, she was. We’ve collaborated on papers where Al meets cybersecurity, so I've
seen her thinking firsthand—rigorous, curious, never satisfied with surface-level insights. If

anyone was going to map the future of coding with Al it was Hila.

This book is not just another tour of ChatGPT or Copilot. It’s a builder’s manual for the age of
Al-augmented engineering. It’s part workflow, part playbook, and part philosophical reflection
on what it means to code when the machine is your collaborator. It goes from prompt engineering
to system design, from small refactors to architectural guidance, from GitHub Copilot to OpenAl
APIs, without losing the plot or pandering to hype. What I appreciate most is how grounded it
is. Hila and Peter don’t romanticize GenAl, and they don’t fear it either. They approach it as en-
gineers: curious, skeptical, and practical. How do you evaluate GenAl output? How do you keep
it reliable? When should you override it, or better yet, teach it? These aren’t abstract questions.
They’re daily challenges, and this book meets them with clarity and grit. For those of us wholive at
the intersection of Al, code, and security, this book feels like home. It speaks to the real problems
developers face when integrating these tools into production environments, where correctness
matters, hallucinations can be dangerous, and productivity means more than autocomplete. If
you’re looking for a book that teaches you how to code faster, sure, you’ll get that. But if you're
looking for a book that teaches you how to think more clearly about coding in a world where

machines also write code, then this is your book.
Congratulations, Hila and Peter. You've created something timely, honest, and actually useful.
Mike Erlihson, PhD

Head of Al, Stealth Cyber Startup

Contributors

About the authors

Hila Paz Herszfang, with seven years of building machine learning (ML) services and leading
teams, holds a master’s degree in information management systems and is completing a second
master’s in data science, both from Harvard Extension School. She developed a Python for MLOps

Udemy course and runs a math and tech TikTok channel boasting 15K followers and 300K+ likes.

Peter V. HenstocK is an Al expert with 25+ years of experience at Pfizer, Incyte, and MIT LL.
He teaches graduate software engineering and AI/ML courses at Harvard Extension School. He
holds a PhD in Al from Purdue and seven Master’s degrees. Recognized as a top Al leader by DKA,

Peter guides professionals in AI/ML, software, visualization, and statistics.

About the reviewers

Mike Erlihson is a seasoned Al professional, leveraging his PhD in mathematics and extensive
expertise in deep learning and data science. As a prolific scientific content creator and lecturer, he
has reviewed approximately 500 deep learning papers and hosted more than 50 recorded pod-
casts in the field, building a substantial following of over 60,000 on LinkedIn. In addition to his
professional work, Mike is committed to education and knowledge sharing in the Al community,

making complex topics accessible through his various content platforms.

Alice Fridberg is a data science team lead with a master’s in applied statistics from Tel Aviv
University. She specializes in innovative ML and deep learning methods for marketing optimi-
zation, forecasting, and user modelling. Her work earned her the Top Women in Media & Ad Tech
— Data Demystifiers award. Alice in an active public speaker, delivering talks such as A Brief History
of Data Science with the Women on Stage community. She also mentors students and early-career

professionals through programs with DataHack, Women in Data Science, and Tel Aviv University.

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled
filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.1link/TRO5B or scan the QR code below:

O

https://packt.link/TRO5B

Table of Contents

Preface xxiii
Your Book Comes with Exclusive Perks — Here’s How to Unlock Themcceeeeueeercsanneees XXX
Part 1: Foundations for Coding with GenAl 1
Chapter 1: From Automation to Full Software Development Life Cycle:
The Current Opportunity for GenAl 3
Changing the software engineering fieldccceeceeereeervensnecseeisseecnsneecsnensnecsseeessneeeseens 4
The evolution of tools for software development e 4
Introducing the riSe 0f LLIMS ..cccivveiecrssureecssneccsssneecsssseeccssssescsssssessssssescsssssessssssassssssssssssssesss 6
Exploring the software development lifecycleeeeeeieeirvvueeeiiicisiisneeiiiccsiscneeeeecccssssnnneees 7
Embracing a GenAl toolkit cereenenertieeisannaaeneeees cessssssneeeeessssnntantesssssasntanaasssssasanases 9
ChatGPT ¢ 9
OpenAI API e 10
GitHub Copilot ¢ 10
Improving software development with GenAl e 11
Is GenAl worth learning for software engineering?ccceeeceueeerecsssvnneeeeeccssssnnnnens e 12

The benefits of coding with GenAl e 12
The downsides of coding with GenAl e 12

Takeaways o 13

X Table of Contents
SUMMATY eoceeeeennceneenncceeennnceenens eeesesseeteatnseettttnseeetarnseseraanscestasssssanssssssasnsesenans . 14
FUItNEr TAdING ..uueeeireeiiiieneeiiiiiiieneetiecissseneetiescsisssseseessessssssssssssssssssssessesssssssssssssssessssnnns 15
Chapter 2: Your Quickstart Guide to OpenAl API 17
Technical requirements N 18
INtroducing OPENAL APIcceieeiisruneeeiecsssssneeeeecssssssssseesessssssssssseesssssssssssssssssssssssssssesssssass 18
OpenAl API through a RESTful HTTP request ¢ 19
OpenAl API Python package installation e 21
Obtaining your project API keys from OpenAl o 22
Lab 2.1 - sending your first OpenAlI API request using the openai Python package 24
Lab 2.1 guided walk-through e 25
Lab 2.1 analysis ¢ 26
Learning how request costs are calculatedccceeevveereiscniiissericsssnnicsssnnescssssescsssssesessnsenes 28
Understanding tokens ¢ 28
How billing is computed ¢ 30
Understanding rate limits and usage restrictions for free and paid OpenAl accounts 31
Lab 2.2 — analyzing reqUeSt PATAmMELETSccceeeeeecessssnneeeeccsssssnnsertesssssssssssessesssssssssessesssssnes 32
Lab 2.2 guided walk-through e 33
Lab 2.2 analysis e 35
Multiple service responses with Lab 2.2 ¢ 36
Lab 2.3 — using OpenAl API t0 Generate COAEcceurvumeerrrecirsrsnneericcsssssnneeeeescsssssseseessesssnnes 36
Routing chat capabilities to code completion e 37
Lab 2.3 guided walk-through e 38
Lab 2.3 analysis ¢ 40
SUMMATY .oceereennccenennnccceennneceennns ceeeseeseettttneettttnseettarssesetarnscettasssssanssssesarasessenans . 42
QUIZ LIINIE .eeevrreeerereeecerereecccressssccesssssecssssssccssssssscssssssssssssssssssssssesssssscssssssssscsssssssssssssssssnnnse 42
BB 013 o =T T« 11 o N 43
Subscribe for a free €BOOKccuueiereecrnecseeissneinsninsnnessnessnecssseesssnessssesssaeessassssascsssscsssacens 44

Table of Contents xi

Chapter 3: A Guide to GitHub Copilot with PyCharm, VS Code, and

Jupyter Notebook 45
Technical requirements ceeeeneettenessanaaesenas cerereetttiestsaaattese s saaa st e sesssnasaans 46
Introducing GitHub Copilot — our Al pair Programmercccceeeecessssneeereccsssssseseesesssssnnes 46

Code completion design overview e 46
Understanding GitHub Copilot’s free account limits, costs, and policiesc...cceerueerueecnnee 48
Who is eligible for a free account? e 48
Pricing ¢ 49
Code completion policies o 49

Activating your GitHub Copilot account e 50

Setting up Copilot in PyCharm and VS COdecceveeresirueriisssnercsssnensssssencsssesssssssesssssssssses 51
GitHub Copilot plugin for PyCharm e 52
GitHub Copilot extension for VS Code o 53

The three interaction modes — chat, completion, and analysis e 54

Using Copilot chat .. cereseetttieiiisraa et tes s s bttt e s s s saaa e e ses s sennaaseeees cessnnerenesessens 54
Lab 3.1 - calculating geometric mean with chat completioncccevvvueeeeeccrssnneeeecccssnnees 57
Lab 3.1 guided walk-through e 58
Lab 3.1 analysis e 59

Lab 3.2 —introducing completion and keyboard shortcuts for geometric

MEAN CAICULATIONS ceeerrrrieeeereeeeennnereeeeeeeereeeenssssscceseeesesssssssssscssssssssssssssssssssssssssasssnssssssssssases 61

Lab 3.2 guided walk-through e 61
Lab 3.2 analysis e 63
Analyzing code With COPIlOtuuuueeeeeiiiiiiiiieeeiiiciiineeeeticcseeneetiecssseeneeessecsssssesesssesssasens 65

Analyzing code with Copilot editor window in VS Code e 67

Lab 3.3 — working with Copilot in VS Code’s Jupyter Notebook for Code Analysis 69
Lab 3.3 guided walk-through e 69
Lab 3.3 analysis e 72

xii Table of Contents
SUMMATY eoceeeeennceneenncceeennnceenens eeesesseeteatnseettttnseeetarnseseraanscestasssssanssssssasnsesenans 74
QUIZ tIME .eeevereeeeereeccerrreeccresseoccasaes eeeeeseeernsssecennrsssensrrsssesernrsssesnrnsessnrarsnnes 75
DB 01 o =T T« 11 4V N 75
Chapter 4: Best Practices for Prompting with ChatGPT 77
Technical requirements N 78
Can we trust GenAl for coding tasks?cccceiicrvveereisveeicsssniiissssrisssssnissssssssssssssssssssssssssssses 78
The three pillars of good outputs e 79
Best practices for crafting prompts for coding taskscccceevveercissnericssnneicssneecsssnnesessnneees 81
Structured e 81
Surrounding information e 82
Single task per prompt e 82
Specific instructions e 83
Short prompts e 83
Crafting prompts fOor CRAtGPTeeeeeiiieiiiicreeiicisisisseneeiiessisssneestessssssssssseesessssssssssssesssssens 84
Lab 4.1 - converting PyCharm GUI steps to CLI « 85
Lab 4.1 guided walk-through 87
Lab 4.1 analysis e 92
Prompt Samples BY OPEnALuueeiicrvericsssneiisssnericssneicssssnssssssesessssssssssssessssssssssssssesssssseses 94
Lab 4.2 — code debugging e 95
Lab 4.2 guided walk-through ¢ 97
Lab 4.2 analysis e 99
SUMMATY .eeeeeenceencenncenncceanecs oecssesucsesntensnnsesessesntessuseisesessusesseressaressaresseneestnessaresses 101
QUIZ TIINIE ceuveeenrereneceeeecreesecessesessecesscsssesssssssssssssssssssssssssessssessssssssssssssssasssssssssssssssssssssnsssnne 101
FUrther reading c.cccceeeccceeeecssneecssneicssnnecnssneicssneeccssssescssssecsssssescsssssessssssessssssssesssssesssnns 102
SubsCribe for @ free EBOOK ...cciivueeiirinriiiinneicisnticssnnensssnnicsssneessssnnescsssseessssssessssssesssssnsens 102

Table of Contents xiii

Chapter 5: Best Practices for Prompting with OpenAl API and

GitHub Copilot 103
Technical requirements cereenenttenesnnaaesaeeas N 104
Extracting properties from Python objects for OpenAl APIcccuueeeeeeccrrvnneeeeeccssnnnes 104
Crafting precise prompts for OPEnAILAPIueeiereveericsseiicsssseicsssssnssssssesssssssssssssssssssssess 107

Structured prompts e 107
System prompts with the surrounding context and single task ¢ 108
User prompts with specific instructions ¢ 109

Lab 5.1 — Generating docstrings with OpenAI API cereenentieeesnaens 110

Singleton design pattern e 110
Generating a docstring e 112

Lab 5.1 guided walk-through e 113
Lab 5.1 analysis e 116

Crafting precise prompts for GitHub Copilotccccceeeeecrercuneeeeee. cerennneetiesessannans 117

Structuring with a lead-in cue o 117
Surrounding with imports and hashtags ¢ 118
Further narrowing the single task e 121
Specific instructions with type hints, docstrings, descriptive names, and unit tests e 123
Short prompts without comment fluff e 124
Lab 5.2 — Fixing faulty implementation with GitHub Copilotcccccvvveeerrecisvruneeeereccnnees 125
Lab 5.2 guided walk-through « 126
Lab 5.2 analysis e 134
Prompt 1—following the structured prompt principle with a lead-in cue o 134
Prompt 2— providing specific and short prompt principles o 134
Prompt 3 — adding surrounding context and focusing on a single task with VS Code e 135
Prompt 4 — applying the five S’s with PyCharm chat e 135
Prompt 5 — narrowing down the single task to fix a method implementation 135

SUMMATY ..ceeeennnicrrenneicerenneceennns eeeeneseetenttieetettttetttttsettttsssttsnsstesarnsssanassssnrnsssanannne 136

QUIZ TIINIE cevreeeneeeneecereccessecersscessecsssscssssesssscssssessssessssssssssssssasanee

Further readingccceceevvveeeeeiccssiseneeiiccsssssnneeeiecsssssneseennees cerenesttteessanaaetesessannans 138

Xiv Table of Contents

Part 2: Basics to Advanced LLM Prompting for

GenAl Coding 139
Chapter 6: Behind the Scenes: How ChatGPT, GitHub Copilot, and

Other LLMs Work 141
Technical requirements N 142
Statistical aPPTrOACh 10 LLMS ..eueeererccssessnsessessssssssassssscssssssssssssssssssssssssesssssssssssssssssssans 142

Extending the model to words e 147

Small and large language models fOor Wordscc.cccceeeeiiciiisinneeiiciiisicueeeinccnsnneneesecssssnenees 149
Word2vec ¢ 149
Deep learning ¢ 150
Improving LLM output PErfOrmMAnncCeccccveeressserecssseressssricsssserssssssescssssssssssssessssssassssanses 151
Prompt engineering e 151
Adding context e 151
Providing examples o 152
Fine-tuning e 152

Retrieval-augmented generation e 153

What are the limitations 0f LLMS?cccicceercsssseeesssnnescssssescsssssescssssesessssesssssessssassses .153
CRATGPT cevvvvrererersssssssssssssssssssssssssssssssesssasssssssssssssssssssssssssns 154
L3135 L5103 07 o1 o oS 155
SUINIMATY eeerieennceenneeeenceeencerancceancceascctsncecesscesassesssscsssscssssssssscssssssssssssssssssscsassssssssssnse 156
QUIZ LIINIE cevreernrerenecrenecreseesesssssssssessscssssssssssssssesssssssssassssesassesasssssssossssssansssssssssssssssssssssssenne 156
FUIther reading ccceeeeceveiicissneiissseiicssnticnssneiesssneticsssseiesssssessssssesesssssessssssesessassassssssssessases 157
Subscribe for a free €BOOKcccovuereecruneecssnnreccsneecnne ceeseeeessnteeesnnteessaareeesasanesssnreees 158
Chapter 7: Reading and Understanding Code Bases with GenAl 159
Technical requirements eeeesestteeesisaatt st ee st aaa ettt e s s aa sttt s e s s e e sttt s esssssensastsessranas 160
Reading and understanding the code base Structureccccceeeeeeircneeeeeccssscneeeeeeccssnees 160

Introducing the Manhattan distance o 161

Manhattan distance for matrices o 162

Table of Contents XV

Using LLMS t0 €XPlain COAE ...uuirirrrneecsssnrecsssnneecssneecssssneesssnecssssseecsssssecsssssescsssssscsssssessssss 163
Using the /explain command with GitHub Copilot e 164
Using ChatGPT to explain code ¢ 166
Using OpenAl API to explain code ¢ 168

Explaining Non-project filesuuiiiiniiiniienssienssneensneenseensnensseessseessssessssessssesssseesane 169
Explaining an entire file 170
Explaining with context ¢ 171
Explaining non-project files with ChatGPT e 172
Explaining non-project files with OpenAI API e 174
Creating calls with example Parametersccocceeecsseeicsseiicssssercssssseecssssencsssssessssssesessonees 175
Debugging with GitHub Copilot ¢ 177
Debugging dependency code ¢ 180
Customizing call parameters with ChatGPT and OpenAl ¢ 182
Debugging dependency code o 183

Putting it all together ¢ 184

SUMMATY «oceeeennnceeennncceeenneceeenns eeeeseseetttteeettttstettattsstetarsssettassssssanssssssarasesenane .185
QUIZ TIINIE ceuveeeneereneceenecereeccssecsessecsssccsssessessssessssesnnsesns 186
Further readingccccceevvveeeeeiccisiseneeiiccssssnneeeiecsssssneseensees N 186
Chapter 8: An Introduction to Prompt Engineering 187
Technical requirements cereeneetteeessananenenes N 188
Utilizing prompt engineering for COAIngccceervuereesssneicssserisssssessssssesssssssssssssasses ... 188
Enhancing prompts with few-shot examplescccoceerreecrseecseccsrecseecssnecssneennns ... 189

Few-shot learning for code refactoring « 190

Leveraging few-shot prompting with ChatGPTccccvveeicisneecssneicsssnnescsssnescsssneees 192
Few-shot structure ¢ 192

Improvement in output with code refactoring ¢ 193

Crafting a style guide for GIitHUD COPILOt ...ccicvvverrcsssericssniicsssnnicsssnenicssseicsssenssssssescssnnes 196
Style guide file ¢ 198
Working with few-shot learning for OpenAI APIceeiierieeesseenseensnenssenssseessseesnnes 199

Implementing code with OpenAI API « 200

xvi Table of Contents

Introducing more prompt engineering techniquescccceerseeecisneccssneeccsnnenes
Bug fix at scale with prompt engineering ¢ 203
Iterative prompting e 204
Template-based prompting ¢ 205
Chain-of-thought prompting 205
Exploring additional methods ¢ 206

SUMMATY .eeeeerencrencceenccrencrencenes crseeennetnneetantenneesanes cereeerancenaneenes

QUIZ tIME .eeeerreeeerenecceensescccrassscassssscssssssences eeesessetsasessesassesstsannssesessanessssnns

FUIther readingeeeeecciivrvneeeieciisssnneeiecissssnneeeeccsssssssseesccsssssssssssessssssssssssssees

Subscribe for a free €BOOK ...ceuueeeereeneeeerenneeereeneesceeenes eeeeeserransseneenesessnnnssenne

Chapter 9: Advanced Prompt Engineering for Coding-Related Tasks

. 203

Technical FEQUITEMENTS ...ueeeeeerierissscsneerienssssssesssesssssssssssssscsssssssssssssssssssssasssssssss

Extending the prompt implementation SCOPEccccvveeeesssrrercssneecsssssescssssesssasaeee

.............

Extending the geometric mean scope ¢ 210
Evaluating baseline outputs e 212

GitHub Copilot baseline o 212

ChatGPT baseline o 213

OpenAl API baseline o 215

Leveraging CoT reasoning With LLM ...cc.ccccceeteeesssssneeiescsssesnncesscsssssssesssesssssens
CoT in the GPT-o series o 219
o-series adoption e 220
Using CoT for GitHub Copilot ¢ 221
CoT for the geometric mean with ChatGPT e 225
CoT with OpenAl API e 226

Using prompt chaining for LLMSeccceeeeenivseeeesecsssssnnscesecsssssnnees
Chaining with ChatGPT e 228
Selective history with OpenAI API ¢ 231
Chaining with Copilot e 236

Table of Contents xvii

SUMMATY eoceeeeennceneenncceeennnceenens ceeesseeeerennncerannsecsenans ceeeesecerennnseetannsesaennnnes 238
QUIZ tIME .eeevereeeeereeccerrreeccresseoccasaes eeseseeernnssscernrsresesnsnseseesararesesnrasessararsnnns 238
Further readingcccceceveeeeeeercisscueneeeiccssssnneeeseccsssnneseeenees cesssnsneensssssannneenessssnanns 239
Chapter 10: Refactoring Code with GenAl 241
Technical requirements ceeeenentreeessannaneeesees N 242
Introducing code refactoringccceeevverresssnercsssnnicsssericsssseiesssssnsssssesesssssessssssesessssssssssses 242

Manhattan and Euclidean distance ¢ 243
Implementing the distance function e 244
Types of refactoring e 245
Improving readability before GenAl ¢ 247
Limitations of code refactoring with IDE tools e 248
Refactoring with chain-of-thoughteeiiiniiniiiniiniiciecneeiecnnececcseeseeans 250
Refactoring for a better structure 250
CoT for refactoring with GitHub Copilot e 251
Leveraging CoT for refactoring with ChatGPT and OpenAl API e 254
OpenAl API prompt e 256

Performance refactoring with GENALIcueeeeveeensueecsrensnecssnecssneessseessnecssseesssscssssessssssssns 256

Performance refactoring with GitHub Copilot 256
Performance refactoring with ChatGPT and OpenAl « 258
Vectorizing with OpenAI API « 260

More advanced performance refactoring e 261

SUMMATY «cerrenneereenenccereneeceeenes eeetsseettatetetattttettansssttantessetarssssesaressssanrrssessarssssssares 262
QUIZ TIINIE cevrreennerenecreneceeeeccesecsessessssecesssssssssssscssassssssssssssssanseses 262
FUrther reading c.cccceeeccceeeecssneecssneicssnnecnssneicssneeccssssescssssecsssssescsssssessssssessssssssesssssesssnns 263

Subscribe for a free €BOOK ...cceeveeeeeeeeeereeenecceereeecceenes ceeereeeeennnnene ceeeseeecerarecennne 264

xviii

Table of Contents

Chapter 11: Fine-Tuning Models with OpenAl

265

Technical requirements

Fine-tuning LLMs toward a specialization

LLMs specialization e 267
Fine-tuning an LLM e 267
Favoring fine-tuning over prompt engineering e 268

Task specializing in cleaner code o 268

......................

Experimenting with the OpenAI API Playground
Computing quadratic roots with GPT-40 mini e 271
Implementing the quadratic roots calculator e 272

Crafting a JSONL file for fine-tuning

Fine-tuning file structure o 274

Strategy e 275
Code-only — five training examples o 276
Contrastive code-only — three training examples 276
Code with no comments — five examples o 277
Contrastive no comments — two examples e 278

Fine-tuning a model with the OpenAI GUI

Costs of fine-tuning a model ¢ 280
Initiating a fine-tuning job e 281
Using the fine-tuned model « 284

Comparing our results

Fine-tuning in action e 287

Summary

Quiz time

............................

Further reading

..

Table of Contents xix

Part 3: From Code to Production with GenAl 291

Chapter 12: Documenting Code with GenAl 293
Technical FEQUITEIMENTS ..eciicvrrericssereissssricsssseressssseicsssssessssssessssssessssssesssssssessssssessssassessns 294
Introducing software doCUMENTALION ..cccvuerriissnriicssniecssneicsssnteessssseecssneecsssssessssssessssnns 294

Working with the /explain GitHub Copilot command 296

Using GenAl to write docstrings . N 300

Docstring for a single method ¢ 300

Docstrings for an entire file » 302

Finding outdated docstrings with GitHub Copilot, ChatGPT, and OpenAI API 304
Practical inSIGhts ...ccciceiieveeeiiiiiiiineetiiccsieeetecssneee s senneesseessnees308
SUMMATY .eeeeerenceencenncrancceencenes ceeeeeennetnnectnnesnneenanes cereeteteetancennntenneeennnens 308
QUIZ LIINIE cevrereneereneerereerssesersecsessssssssssssssssssssssssssssssssssssssassssssssssssssassssosanssssasssssssosassosansoses 309
FUIther reading .ccccceeeceveeicssseiissseiicssnticsssnenesssseissssssressssessssssessssssssssssssssssssssessssssssssssns 310
Subscribe for a free €BOOKcccovuerriersuerccssnnecccsneennne ceesereessnteeesanteessaateeesasanesansenes 310
Chapter 13: Writing and Maintaining Unit Tests 311
Technical requirements ceeessesttetesssssnnttttesssssnnasttesessssssnttttsessssssntasttessssssnastsesssens 312
UNIt teStS WIth GENAL uueeiicisnreccssnneecssnrecssssneecsssresssssescsssssesssssseecsssssessssssesssssssessssssassssns 312

ChatGPT for testing « 318

Data-driven testscceeeeeeeenes eeesseesennsssesennnssesennssessesnnsesssnnnssesensnnsesesaransessnnnnssaes 321

Test-driven development .. N 322

TDD using GitHub Copilot within VS Code ¢ 325
TDD using GitHub Copilot within PyCharm e 327
TDD using ChatGPT e 327

Sample data creation with GenAlcccccuveeeeeeee. . cesssannnenesessssannnane 329
Practical insights cereestttteeiisaattteesssaaat st e e s e s ssaaa et sessssbanntateeees e 332
SUMMATY .cceeennncernnnnnnnee ceeeeeseetnntessettnttsetnsnssssesaressasassesessans 332
QUIZ TIINIE ceuereeneeeenecreneceseeccesscsessecsssecsssesssssssssscsssessssessssessnsssee 333

FUIther Teadingeeeeeiceiiiiieeeiieniiiiinectienisnisneetieecssssssssesesesssssssestsesssssssssssssssssssssssssssesssns 334

XX

Table of Contents

Chapter 14: GenAl for Runtime and Memory Management

Technical requirements cereeneetteeessaanaaeneees S,

Introducing time and space analysis cerenentteeesissannastesesssannannens

The runtime of a program e 336
Runtime complexity refresher e 337

The space consumption of a program e 338
Space complexity e 338
Balancing efficiency tradeoffs e 339

Profiling runtime and memory consumption with GitHub Copilot

Profiling runtime o 339

Profiling space usage o 342

Analyzing maximal capacity with ChatGPT ... cereeneneneneas
Profiling runtime across multiple runs e 343
Profiling memory consumption across multiple runs e 345
Determining maximal capacity within runtime constraints e 347

Determining maximal capacity within memory constraints e 349

Optimizing code with chained Promptsccccceeeeeevueeeerccsscssnneeereccsnens

Runtime optimization e 352
Space optimization e 354

Further runtime and space optimization e 357

SUMMATY «.ceeeennncenennnicecenneceeenns eeesseseettnttieetennsetetnrnssetansssssssnnsseeans

QUIZ TIINIE ceurerenreeneecresecesseccesscsessessssessssesssscsnsssssssessssesssssssssssssssssssssssessnne

Further readingccceceevvveeeeicissiseneeticcssssnneeeiecsssssneseeneees

Subscribe for a free €BOOK ...cccuveeeeeeeeereceeereeenennneneeees ceeneseeeennnnnen

Table of Contents XXi
Chapter 15: Going Live with GenAl: Logging, Monitoring, and Errors 361
Technical requirements cereeneetteeessaanaaeneees N 362
Introducing logging, monitoring, and raiSing €rrorscccceeeeeeeeeeeeccsscneeeeeccsssssnnseereccssnnes 362
The FizzBuzz use case ¢ 363
Logging e 364
Handling unexpected input e 365
Monitoring e 366
Leveraging GenAl for higher-level coding patterns ... cererestettesssanaastnsesssannannens . 368
Using decorators to separate responsibilities ¢ 368
Inverse CoT for decorator implementation e 369
Applying inverse CoT with ChatGPT and OPEenALccccceeeccssneeccssnneecssneescsssseecssssessssnnes 375
Using ChatGPT to monitor decorators e 375
Using OpenAl API to monitor decorators e 377
Utilizing few-shot learning and fine-tuning as style guidesccceeevuerevsrueercssnercnns . 378
Few-shot decorator style for GitHub Copilot ¢ 378
Few-shot learning in ChatGPT e 380
Leveraging fine-tuning for OpenAI API « 383
SUMMATY .ceeeeeenceencceencrancceanccnes ceeeeeenntetnnectnnennnensanes cerseeteneenaneennnecnnneennnens 387
QUIZ LIINIE ceverrerrereneeresecsssecessesssassssassssasanssssasssssssssassosansoses 387
FUIther reading c.ccceeeceveeicsssneicssseriissnticsssnenesssseicssssensssssesssssssssssssssssssssssssssssassssssssssssns 388
Chapter 16: Architecture, Design, and the Future 389
The rapid riSe Of GENALcciceueiiiisvneriissnriissseresssssticsssseisssssnssssssensssssssssssssssssssssasssssnssssns 390
Economics of faster software developmentceeevceeeecssnirccssneeicssneecsssseeccssnnescssssensssnnes 391
Will GenAl be adopted by software engineers?ccceeeeeevveeereecsssssneetiecssssssnnseesecssssssnnees 392
Shifting landscape of software developers cereenenrieeesaens 393

GenAl as related to the Software Engineering Body of Knowledge ¢ 394
Democratization of software engineers ¢ 395

Legacy software and flexible teams ¢ 395

xxii

Table of Contents

Will GenAl change programming languages? .
The future of GenAl in software engineering ...
Vibe coding e 397
Shorter term e 398
Longer term e 398
Will Al replace software engineering? e 398

Risk and governance « 399

Further reading

............................

Subscribe for a free eBook .

Appendix

Set up an OpenAl Account.

Creating a virtual environment

...............

Prompting virtual environment ¢ 406
Adding virtual environment to .gitignore ¢ 409

Further reading

............................

Other Books You May Enjoy

.........

Index

417

Preface

Supercharged Coding with GenAl aims to train software developers to achieve increased productivity
throughout the software development life cycle (SDLC). It covers not only the programming
aspect but also how to write tests, documentation, and other aspects required for putting software
into production using GenAl methods. The book introduces the five S’s framework, a standardized

approach for consistently producing high-quality output that many GenAl users face.

It guides you on how and when to use the three most common GenAlI software tools that currently
dominate the marketplace: ChatGPT, OpenAl API, and GitHub Copilot. Each of these tools offers
a different interface for generating code, each with different strengths and weaknesses. Learn-
ing how to effectively use these tools is an empowering skill set in the quickly evolving field of

software engineering.

This book is a hands-on approach, with many labs introduced throughout the different chapters,
since GenAl coding tools require practice. The labs provide the necessary practice to challenge the
knowledge and explore the key skills introduced. The book also dives deeper into the concepts
behind how to use instructions, making sure that you not only learn sow to do something but

also understand why the GenAl is producing particular outputs.
The book is structured into three parts:

e Part 1, Foundations for Coding with GenAl, provides a quick start tutorial for the three dif-
ferent GenAl tools you can use for code completion and surrounding tasks. We will start
with OpenAI API framework to harness the large language models (LLMs) as a software
developer. We built a program for code completion so we can better understand the de-
sign of GenAl tools. Next, we will get started with GitHub Copilot and ChatGPT using
three different interaction modes: chat, completion, and analysis. By then, we will also
understand the design differences among the different interaction modes. Finally, we will
introduce the five S’s framework, a structured approach to crafting precise prompts that

lead to predictable and more desirable outputs.

XXiv Preface

e Part 2, Basics to Advanced LLM Prompting for GenAlI Coding, takes the next step toward be-
coming supercharged coders. We will dive deeper into the foundations of LLMs. The goal
is to gain a better understanding of why these models work so much better than the many
tools that came before them. We will then start developing the mindset of a supercharged
coder by learning which tasks are native to the models, which require advanced prompting
techniques, and which tasks are better handled without the assistance of GenAl altogeth-
er. We will also learn about applying advanced prompting techniques to coding-related
tasks, how to evaluate the goodness of our output with evaluation techniques, and how

to fine-tune a model to specialize it for a specific task.

e Part 3, From Code to Production with GenAl, is dedicated to the advanced SDLC approach,
where we will be able to use our newly obtained skillset and mindset to work with GenAl
tools. We will talk about logging, monitoring, debugging, unit testing, and documenting
our code efficiently and quickly with GenAlI tools. We will also apply prompt engineering
techniques to both space and memory optimizations. We will close this chapter with talks

about design, architecture, and the future.

Who this book is for

If you are a Python developer curious about GenAl and are looking to elevate your software
engineering productivity, this book will transform your approach to software. We include many
structured examples of varying problem complexity that will demonstrate the use of advanced

prompting techniques, suitable for early intermediate through advanced developers.

To get the most out of this book, you should have at least one year of hands-on Python develop-
ment experience and be somewhat familiar with the SDLC.

What this book covers

Chapter 1, From Automation to Full Software Development Life Cycle: The Current Opportunity for
GenAl, describes the recent convergence of software development tools and the Al transforma-
tion with LLMs. It makes a case that now is the best time to improve skills in GenAlI to produce

quality code faster.

Chapter 2, Your Quickstart Guide to OpenAI API, introduces everything you need to know to begin
using OpenAl. By the end of the chapter, you will be able to start using it to write code.

Preface XXV

Chapter 3, A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook, provides setup
instructions for GitHub Copilot, the pair programming GenAI tool. It then shows how to inte-
grate GitHub Copilot with the two most popular IDEs. With this background, you will be able
to prompt with GenAl.

Chapter 4, Best Practices for Prompting with ChatGPT, dives into prompting, which is a core skill for

GenAl coding. This chapter introduces the five S’s framework for consistent outputs.

Chapter 5, Best Practices for Prompting with OpenAl API and GitHub Copilot, completes Part 1 of the
book by extending the prompting methods to functions, classes, and methods. The methods are

applied to not just writing code but also fixing bugs and providing documentation.

Chapter 6, Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work, sheds light on
how LLMs work under the hood since such an understanding can help understand the strengths
and limitations. The chapter begins with a statistical example as a motivation and continues
through general LLMs. The chapter concludes with the extension to code-specific LLMs that are
at the heart of GitHub Copilot.

Chapter 7, Reading and Understanding Code Bases with GenAl, showcases the effectiveness of the
different GenAl tools in working with full code bases. The chapter shows how GenAl can explain

how code works and help debug issues using the code and support documentation.

Chapter 8, An Introduction to Prompt Engineering, applies this recent field to code development and
introduces few-shotlearning. Prompt engineering methods are applied through OpenAI APl and

GitHub Copilot for code refactoring to support a consistent coding style.

Chapter 9, Advanced Prompt Engineering for Coding-Related Tasks, extends the few-shot approaches
from Chapter 8 into reasoning models. Iterative prompting, chain-of-thought prompting, and
chaining can effectively deliver highly predictable code that implements key functionality, in-

cluding code and comments.

Chapter 10, Refactoring Code with GenAl, revisits and extends the chain-of-thought prompting
technique to improve code. The chapter covers examples of refactoring code for improved quality

and performance.

Chapter 11, Fine-Tuning Models with OpenAl, compares and contrasts the few-shot learning ap-
proach with fine-tuning, a standard approach for customizing LLMs. The chapter uses the OpenAl

Playground to compare the effectiveness and costs of the two approaches.

Xxvi Preface

Chapter 12, Documenting Code with GenAl, begins Part 3, which focuses on SDLC components
beyond coding. The chapter is a how-to guide for effectively writing docstrings, the standard
documentation for Python. It also provides solutions to the problem of out-of-date comments

within the code.

Chapter 13, Writing and Maintaining Unit Tests, demonstrates multiple methods for leveraging
GenAl to accelerate the creation of tests. The chapter also covers the test-driven development
(TDD) process of writing test cases first and automatically generating the functional code to

pass the tests.

Chapter 14, GenAl for Runtime and Memory Management, delves into performance optimization,
which israrely discussed in GenAl code literature. Its examples show how to assess performance
trade-offs and, using a combination of prompting with chaining prompts, how to estimate run-

time capacities and optimize code to run at scale.

Chapter 15, Going Live with GenAl: Logging, Monitoring, and Errors, provides guidance on the use
of GenAl for key late-stage components for putting code into production. The chapter brings
together past concepts such as enforcing style, few-shot learning, and fine-tuning as applied to

monitoring and logging methods.

Chapter 16, Architecture, Design, and the Future, discusses the rise of GenAl, software economics,
and the changing landscape of software engineering. It provides a perspective on the future of

software engineering from vibe coding to long-term expectations, including risks and governance.

To get the most out of this book

Following along will be easier if you bear the following in mind:

e Examples: Begin with the hands-on examples provided in each chapter to make sure that
you can effectively use all the tools, rather than focus on just one

e Labs: Use the labs to test your knowledge of how you approach the challenges, and use
the questions at the end of each chapter to make sure you grasp the fundamentals

e GenAlapproach: Experiment with the different techniques from each chapter on your own
code and examples to see how GenAl can change your approach to software engineering

e Think beyond: Reflect on how the practical knowledge of the introduced GenAlI tools re-
lates to the fundamentals of how LLMs work, and how they can enhance multiple aspects

of your organization’s software development practices

Preface xxvii

Here is a list of things you need to have:

Software/hardware covered in the book | System requirements

Python 3.11 or higher Windows, macOS, or Linux.

LLM chat and embedding models Windows, macOS, or Linux.

You can decide to leverage your LLM of choice.
Throughout the book, we will be using a variety
of GPT models from ChatGPT, OpenAl API, and
GitHub Copilot.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781836645290.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and X handles. For example, “The edits window
supports the slash commands such as /fix, /explain, and /test, as well as tailored instructions

to modify your code.”

Ablock of code is set as follows:

def get_geometric_mean_of_two_numbers(

a: float,
b: float,
) -> float:

return pow(a * b, 1 / 2)

numl: float 5.0
num2: float 20.0
print(get_geometric_mean_of_two_numbers(numl, num2))

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing
https://packt.link/gbp/9781836645290

xxviii Preface

Any command-line input or output is written as follows:

(.venv) $ pip install openai

Bold: Indicates a new term, an important word, or words that you see on the screen, for example,
in menus or dialog boxes. For example: “In this chapter, we will introduce the practice of prompt
engineering, a field of study that started in 2020, which offers advanced techniques for refining
prompts to achieve more reliable, predictable, and desirable outcomes in large language model

(LLM)-based applications.”

\/;ﬂ/> Warnings or important notes appear like this.

\ ! 7/
_,@\' Tips and tricks appear like this.

Disclaimer on Al usage

The authors acknowledge the use of cutting-edge Al, such as ChatGPT, OpenAl AP], and GitHub
Copilot, with the sole aim of enhancing the language and clarity within the book, thereby ensuring
a smooth reading experience for readers. It is important to note that the content itself has been

crafted by the authors and edited by a professional publishing team.

Get in touch

Feedback from our readers is always welcome!

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of
your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you could report this to us.

Pleasevisithttp://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.comwith a link to the material.

http://www.packtpub.com/submit-errata

Preface

XXix

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

Join our Discord and Reddit spaces

You're not the only one navigating fragmented tools, constant updates, and unclear best prac-

tices. Join a growing community of professionals exchanging insights that don’t make it into

documentation.

Stay informed with updates, discussions, and

behind-the-scenes insights from our authors.

Join our Discord space at https://packt.

1link/z81ivB or scan the QR code below:

O

=

Connect with peers, share ideas, and discuss
real-world GenAl challenges. Follow us on
Reddit at https://packt.link/@rExL or
scan the QR code below:

O

Share your thoughts

Once you've read Supercharged Coding with GenAl, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com/
http://authors.packtpub.com/
https://packt.link/z8ivB
https://packt.link/z8ivB
https://packt.link/0rExL
https://packt.link/r/1836645295
https://packt.link/r/1836645295

XXX Preface

Your Book Comes with Exclusive Perks — Here's How
to Unlock Them

Unlock this book’s exclusive

benefits now
[x]
[

Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you

start.

o

e

b

Enhanced reading experience with our Next-gen Reader:
(3 Multi-device progress sync: Learn from any device with seamless progress sync.
Highlighting and notetaking: Turn your reading into lasting knowledge.
I,—\l Bookmarking: Revisit your most important learnings anytime.
%* Dark mode: Focus with minimal eye strain by switching to dark or sepia mode.
Learn smarter using our Al assistant (Beta):
4, Summarize it: Summarize key sections or an entire chapter.

4, Al code explainers: In the next-gen Packt Reader, click the Explain button above each

code block for Al-powered code explanations.

http://packtpub.com/unlock
http://packtpub.com/unlock

Preface xxxi

\/V) Note: The Al assistant is part of next-gen Packt Reader and is still in beta.

Learn anytime, anywhere:

&3 | Access your content offline with DRM-free PDF and ePub versions—compatible

with your favorite e-readers.

Unlock Your Book’s Exclusive Benefits

Your copy of this book comes with the following exclusive benefits:
(3 Next-gen Packt Reader
+, Al assistant (beta)
DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few min-

utes and needs to be done only once.

How to unlock these benefits in three easy steps
Step 1

Keep your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visithttps: //www. packtpub.com/unlock-benefits/help.

\/‘/' Note: Did you buy this book directly from Packt? You don’t need an invoice. After

completing Step 2, you can jump straight to your exclusive content.

https://www.packtpub.com/unlock-benefits/help

Xxxii Preface

Step 2

Scan this QR code or go to packtpub.com/unlock.

On the page that opens (which will look similar to Figure 0.1if you’re on desktop), search for this
book by name. Make sure you select the correct edition.

Q Search... Subscription \:J @

Explore Products Best Sellers New Releases Books Videos Audiobooks Learning Hub Newsletter Hub Free Learning

Discover and unlock your book's exclusive benefits

Bought a Packt book? Your purchase may come with free bonus benefits designed to maximise your learning. Discover and unlock them here

()
Discover Benefits Sign Up/In Upload Invoice
Need Help?
% 1. Discover your book'’s exclusive benefits ~
Q Search by title or ISBN
CONTINUE TO STEP 2
£ 2. Login or sign up for free v
@ 3. Upload your invoice and unlock v

Figure 0.1: Packt unlock landing page on desktop

http://packtpub.com/unlock

Preface xxxiil

Step 3
Sign in to your Packt account or create a new one for free. Once you're logged in, upload your
invoice. It can be in PDF, PNG, or JPG format and must be no larger than 10 MB. Follow the rest

of the instructions on the screen to complete the process.

Need help?

If you get stuck and need help, visithttps: //www.packtpub.com/unlock-

benefits/help for a detailed FAQ on how to find your invoices and more.

The following QR code will take you to the help page directly:

\/;1’{ Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
mailto:customercare@packt.com

Part 1

Foundations for
Coding with GenAl

In Part 1 of this book, we introduce the fundamentals of GenAl for coding and get you started with
both OpenAI API and GitHub Copilot. The part begins with a discussion of how GenAl for coding
hasrecently emerged from the intersection of a long evolution in software development tools and
the recent large language models (LLMs) from the Al space. This recent fusion of technologies
has completely changed the programming landscape. Now is the perfect time to begin the jour-

ney since applying them across software engineering tasks requires both training and practice.

The remainder of Part 1 provides hands-on guidance to start using OpenAl API and GitHub Copilot.

After setting up these tools, the part introduces best practices for prompting.
This part contains the following chapters:
e Chapter 1, From Automation to Full Software Development Life Cycle: The Current Opportunity
for GenAI
e Chapter 2, Your Quickstart Guide to OpenAI API
e Chapter 3, A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook
e Chapter 4, Best Practices for Prompting with ChatGPT
e Chapter 5, Best Practices for Prompting with OpenAl API and GitHub Copilot

From Automation to Full
Software Development Life

Cycle: The Current Opportunity
for GenAl

If you are reading this book, you have probably heard some of the excitement, hype, concerns, and
reality of Generative Artificial Intelligence (GenAl) for coding. You may have checked out some

tutorials online and perhaps even explored using this technology for your own coding.

Learning to apply GenAlI to software coding takes both practice and time. While there are many
online demonstrations of the capabilities, there has not been a systematic approach for achieving
functional, quality code with any consistency. There also aren’t many resources that guide devel-
opers to use GenAl beyond simple code completion or perhaps testing. GenAl can be particularly
useful in expediting tasks such as standardizing coding style to improve readability, debugging,

optimizing performance, and the many other tasks performed by software engineers.
In this chapter, we will explore the following topics:

e Changing the software engineering field
e Introducing the rise of large language models
e Exploring the software development lifecycle

e Embracing a GenAlI toolkit

4 From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAl

e Is GenAl worth learning for software engineering?

e What you will get from this book

Changing the software engineering field

Computer programming and software engineering, in general, contribute not only to the tech
industry, but to many different sectors of the economy, including commerce, finance, health,
transportation, and energy. Software drives the creation of many new products. It increases the
productivity of companies through the automation and optimization of processes and enables

cost reductions.

As software continues to deliver economic value, new paradigms and tools for software developers
have increased the ability to write quality software at a faster pace. Over the last couple of years,

GenAl has become one of these tools.

In software engineering, GenAl has suddenly advanced to reach an inflection point and is fun-
damentally changing the field. This recent technology allows everyone from novices to expert
software developers to supercharge their productivity not only in coding but, more generally, the

full software development lifecycle (SDLC).

Advanced technologies, including artificial intelligence, seem to be in the news every day lately.
Despite this, many software engineers seem somewhat surprised that Al has progressed to the
point that it can support their field and specific software development work. The current state
of software engineering tools has resulted from the convergence of two separate trends. First,
software development tools are not new but have progressed continuously over many decades.
Second, GenAl technology has crossed over from the rapid emergence of large language models

(LLMs), which trace back to neural networks and the origins of artificial intelligence.

The evolution of tools for software development

The application of GenAl to software engineering is quite a recent development. Although Al has
been discussed for many years as a promising set of tools for enhancing code development, the

emergence of GenAl has ushered in a new era of capabilities.

Software development has experienced many new tools over the past decades that have trans-
formed the field. It is easy to argue that software development is constantly evolving, with new
tools that have streamlined the processes and enhanced productivity. This section provides an

overview of some major technology revolutions that have aided software developers.

Chapter 1 5

In the 1970s and 1980s, the Maestro I was developed as the first integrated development envi-
ronment (IDE), although it would hardly be recognized as such by today’s standards. Its succes-
sors, such as Borland’s Turbo Pascal and Visual Studio, provided an easy integration of coding, file
management, debugging, compilation, and execution. Today’s IDEs for Python, such as Visual
Studio Code, PyCharm, and Spyder, facilitate global changes to variables, code highlighting, syntax

checkers, and access to multiple tools.

Version control systems were a critical step in software engineering, enabling many developers
to work on a single project. With a single code base, different versions of code can be tracked and
managed. IBM’s [IEBUPDTE in the 1960s was a forerunner of the technology, followed by the Re-
vision Control System in 1982 and the Concurrent Versions System (CVS) in1986. It wasn’t until 2005

that the now ubiquitous Git was developed, which enabled a distributed version control system.

Build tools and continuous integration and continuous deployment (CI/CD) systems speed the
delivery process of software. Build tools such as Jenkins and Maven transform source code into
executable code. CI/CD tools are often triggered by the build, but continue further to automate
the testing, execute linters or other code tools, and often deploy the updated version to users.
The full deployment pipeline frees the developers from the many manual steps and enables both

arapid and consistent way of providing users with the latest functionality.

Significant research has been poured into software testing. Apart from many specialized tools
for different forms of testing, testing frameworks are now a standard part of virtually all software
development suites. IDEs already speed up the process of creating skeleton tests from existing code
by using method signatures and standard test naming conventions. The unittest frameworks

run all the tests and report failures, significantly speeding up the process.

Code analysis and refactoring tools identify issues with code and can improve the overall quality.
SonarQube is an example of a code analysis tool that performs static code analysis. It identifies
potential problems with code, often referred to as code smell, but can also check for a range of

potential issues, such as deviations in code style and poor security handling.

Some more advanced tools have been able to not only recognize coding problems but also fix
them. For example, ReSharper actually refactors the code to improve its quality. Such tools save

developers time and achieve this result through a combination of pattern matching and Al

6 From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAl

With continual changes in coding sources and packages, software development always seems to
require new packages, platforms, or even languages. As a result, software developers require access
to the latest manuals or other documentation. Some refer to searching for code examples in Stack
Overflow or Reddit. Innovations in this space included Kite, Al-powered software that provided
automated code completion and instant code documentation. Kite proved to reduce keyboard
clicks and improved code development speed, gaining a user base of an estimated 500,000 pro-
grammers. Unfortunately, the company ceased to exist in 2021 and donated its multi-language

code tools to the open source community.

Next, we will introduce the turning pointin Al research that has driven significant adoption across

a variety of domains, including software engineering.

Introducing the rise of LLMs

Over the past few short years, LLMs have emerged as the dominant Al resource for writing, re-
search, and inference. They are currently transforming the tech industry, and their applications
have a far-reaching impact across all fields. This section provides a brief overview of their un-

precedented ascent.

Artificial Intelligence was formally started in 1956 at a famous Dartmouth College workshop of
computer science experts. They coined the term artificial intelligence (AI) and set ambitious
goals ranging from automated reasoning to natural language processing (NLP). Although the
participants expected a rapid progression to these goals, the compute and technology limitations
thwarted their success. A publication in 1969 denounced the key technology and allegedly started

the first well-documented AI winter, an extended period of no funding or research.

In the 1980s, expert systems emerged as a workable solution where rules could be crafted by
technologists to reproduce human-like reasoning over limited domains for a specific problem.
Despite some early successes with the approach, it proved difficult to craft and manage the or-

dering for sets of rules. This hindered its adoption and eventually led to the second Al winter.

Machine learning (ML), a sub-field of Al, emerged as the only viable solution. Unlike the
hand-crafted rules of expert systems, ML systems could learn to make predictions or decisions
directly from data. Research has led to dozens of techniques within the sub-field, but neural
networks have become the dominant approach over the past dozen years. Mildly inspired by
biological neurons, neural networks have proven to be a powerful system for learning and mod-

eling data. Researchers have shown that neural networks can generalize well and approximate

Chapter 1 7

any function. Deep learning, any neural network with multiple layers of neurons, overcomes
the limitations of more traditional machine learning techniques. Specifically, it can continue to

learn when provided with ever larger training sets.

NLP is the application of machine learning to human language data. It applies to any texts, such
as articles, blogs, emails, or books. The field draws from computer science, Al, and linguistics.
Earlier methods drew extensively from statistical methods and later traditional ML techniques.
In recent years, deep learning methods have revolutionized the NLP field by introducing lan-
guage models (LMs), which predict and generate text based on existing language data. LLMs
are expanded versions of LMs, trained on massive datasets and billions of parameters, which are
internal weights tuned to reflect the patterns in the training data. We will discuss LLMs exten-

sively in later chapters of the book.

Over the past several years, deep learning models have been trained on ever-increasing volumes
of text and, with new techniques, can understand how words within each sentence are related to
each other. This class of LLMs includes OpenAI’s GPT, Meta’s Llama, Google’s Gemini, Anthrop-
ic’s Claude, and newer models continue to be developed. These LLMs were initially designed to
accurately predict the next word of a phrase. At scale and with recent technologies, they have
enabled natural language generation (NLG) solutions that can write full texts to enable report

writing, question-answering, chatbots, and much more.

LLMs are typically trained on large sets of available online text sources, but the same models can
also be trained on software code. These LLMs use publicly available code in Python, Java, and
other programming languages that are mostly available from GitHub repositories. The result is
that the LLMs can predict the next block of code, can generate comments, write tests, and even

refactor code. These are all parts of the overall SDLC that we will describe in the next section.

Exploring the software development lifecycle

To deliver quality software, most software teams progress through a series of stages known as
the software development lifecycle (SDLC). As shown in Figure 1.1, these steps are designed to
be an efficient approach that minimizes the risk of failure. The process usually begins with the
recognition of an unmet business need, and cycles through many stages to meet the need with a
software system. Projects progress from analyzing the existing state to gathering requirements,
designing the system, implementing and testing the code, delivering the solution, and often

maintaining the software.

8 From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAl

While most people associate software development with coding, actual programming makes up
only 25-35% of the overall effort, depending on the type of software and its requirements. The
remaining steps are needed to gather requirements, test and document the code, deploy the

software, and support its continued functionality, as shown in Figure 1.1.

Support & ﬁ Requirements

maintenance gathering

Planning,
pepleyment Software ik analysis
Development
Lifecycle

High level

Testing design

Software
coding

Figure 1.1: The SDLC - the continual process of developing or improving software systems
from requirements through maintenance

The SDLC process begins with gathering requirements, followed by planning, feasibility, and risk
analysis. A successful analysis leads to the creation of a high-level system design, and only after this
step does an engineer continue on to software coding. The form will be formally tested beforeitis
deployed, resulting in a live or production system. As the environment or business needs change,

support and maintenance are always needed, and that can trigger the next development cycle.

Chapter 1 9

Important note

While the SDLC is an industry-standard approach, individual organizations often
V4 introduce variations to tailor it for their software development processes. For in-
\@/ stance, some organizations may choose to implement tests before writing the code,
a practice known as test-driven development (TDD). Others may create a prototype

system or introduce a proof of concept (POC) before conducting a feasibility analysis,

a step that has become easier to perform with the help of LLMs.

There are an increasing number of books and videos that describe the use of GenAl for coding, but
the technology can supercharge the entire process, not just the actual coding implementation.
This book will explore several of these aspects, including testing, documenting, and monitoring

software. These are critical for the success of software projects.

Next, we will see how we can embrace a comprehensive GenAl toolkit in our technological stack

as software developers.

Embracing a GenAl toolkit

This book focuses on three separate tools for software development: ChatGPT, OpenAl API, and
GitHub Copilot. In 2024, these three tools had roughly a $35 million combined market size for
software engineering applications. The market is expected to grow 25% per year throughout the
rest of the decade, according to a Research and Markets report. The following chapters of the book
will provide instructions on how to subscribe to these services and how to get started. These tools
provide distinct kinds of functionality, and knowing when to use which tool is part of the learning

curve. Later chapters will highlight the features and use cases for each of the tools.

ChatGPT

OpenAl has been aleader in LLMs since 2015. Led by CEO Sam Altman, the company has produced
multiple versions of its Generative Pretrained Transformer (GPT) LLM. While these were well

received, the release of ChatGPT in December 2022 transformed the perspectives of Al worldwide.

ChatGPT is an Al-driven chatbot, an application that is designed for text conversations using
natural language. Its release spurred widespread use, reaching 100 million users the following

month. It continues to be one of the most visited websites across the world.

10 From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAl

While natural language conversations with ChatGPT often succeed in eliciting answers to ques-
tions, prompt engineering has proven a more robust technique. Itis the art of crafting an instruc-
tion to produce a more desirable output. The prompt typically consists of context, instructions, a
history of the dialog, and sometimes examples of desired output. This book will provide structured
formats that guide the reader to effectively perform prompt engineering for producing code,

comments, tests, and other outputs.

OpenAl API

ChatGPT is among the most popular tools for interacting with LLMs. However, in many cases,
prompt engineering lacks the simple structures found in software, such as loops and conditions.
OpenAl provides a developer platform for coding directly against the same OpenAl LLM used by
ChatGPT. Through its Application Programming Interface (API), OpenAl enables developers to
combine software and prompt engineering. The API also provides specific added functionality

that is useful for solving software engineering problems.

GitHub Copilot

While GitHub is one of the most popular platforms for sharing code using Git distributed version
control, the company released GitHub Copilot in 2021. Originally powered by OpenAI’s LLM, it
provides intelligent code completion using GenAl’s programming capability. The functionality
has been integrated into many IDEs, including Visual Studio Code and PyCharm—two of the
most popular IDEs for Python.

Unlike the other OpenAl models, Copilot functions as a pair programmer. This concept comes
from the Extreme Programming (XP) agile methodology, where two developers work together to
write code with a single keyboard. Although not yet a fully functioning pair programmer, Copilot
can quickly find and display references for code syntax and even provide annotated examples
or full code as requested by the user. It interprets the intention from the function and variable
names used. Together with the surrounding code as context, it can predict and suggest the next
block of code.

Next, we will review recent studies that assess the use of GenAl for software development.

Chapter 1 1

Improving software development with GenAl

Anumber of studies have assessed whether GenAl provides increased productivity in coding tasks.
McKinsey reported increases ranging from minimal to 50%, depending on the complexity of the
task. For code documentation and generation, the gains were much higher than for difficult tasks.
They found it was particularly good for routine tasks and repetitive work, as well as initial dives
into new code projects. Refactoring code to make changes and tackling new challenges were also
improved through GenAl technology. Perhaps as important, their study showed that users of GenAlI
for software felt happier, were able to focus more on meaningful work, and achieved flow much
more frequently. The study details can be found at https://www.mckinsey.com/capabilities/

mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai.

A similar study by Exadel reported that half of the developers in their study used GitHub Copilot at
least 50% of the time. Two-thirds of these developers completed tasks more quickly, saving 10-30%
of their development time. Copilot made them more productive and fulfilled. See https://exadel.

com/news/measuring-generative-ai-software-development/ for more details on the study.

Research by Colombatto and Rivadulla (https://aws.amazon.com/blogs/apn/transforming-
the-software-development-lifecycle-sdlc-with-generative-ai/) found benefits of applying
GenAI across the full SDLC. Examining data from AWS and IBM, they found that the benefits
begin in the analysis phase with requirements engineering. Even in this early phase of the SDLC,
the researchers observed up to a 60% reduction in time from using GenAl. They found a 30%
reduction in development time and a 25% reduction in time for generating unit tests and test
plans. Even though less time was spent, the code quality improved by 25%, which contributes to

fewer bugs and lower software maintenance costs.

A study conducted by BlueOptima from 2022 to 2024 used code repositories to analyze produc-
tivity, quality, and cost across 77,338 developers. In contrast with the other studies that reported
significant savings, the findings were much more modest. They found only a 3.99% increase in
productivity for those with access to GenAl and a 5.12% decrease for those without. Quality still
improved slightly, which is important since it proves that the productivity gains do not compro-
mise quality, but the gains were not as significant. However, the study used access to these tools
as an input variable without characterizing the training, familiarity, or integration of GenAl into
their workflows. In addition, productivity is likely to increase as the predictive accuracy and
overall performance of GenAl tools continue to rapidly improve. The details of the study can be

found through this link: https://www.blueoptima.com/resource/1lm-paper-1/.

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://exadel.com/news/measuring-generative-ai-software-development/
https://exadel.com/news/measuring-generative-ai-software-development/
https://aws.amazon.com/blogs/apn/transforming-the-software-development-lifecycle-sdlc-with-generative-ai/
https://aws.amazon.com/blogs/apn/transforming-the-software-development-lifecycle-sdlc-with-generative-ai/
https://www.blueoptima.com/resource/llm-paper-1/

12 From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAl

Next, we will discuss our perspective on the benefits and downsides of using GenAl in software

development.

Is GenAl worth learning for software engineering?

We have been using code completion tools for over a decade, but current GenAl tools are different.
We have used the full range of tools, such as keyboard shortcuts, Stack Overflow searches for help,
code API search tools, and all the latest refactoring tools and templates available in the IDE. All
these strategies have helped us be more efficient in our work, but there has always been a lot of

mundane, repetitive work that has limited our coding speed and enjoyment.

The benefits of coding with GenAl

GenAl tools have transformed our output. Within three months of using an earlier version of
GitHub Copilot, we were writing code 15% faster. Now, after two years, the combination of GitHub
Copilot, ChatGPT, and OpenAlI API has supercharged our coding output more than anything else
that we have used. We complete twice as much work as we did previously with multiple tools. The
improvements in productivity were a combination of advances in the tools themselves as well as

familiarity with how to use them, both of which are covered throughout this book.

Beyond the productivity in merely writing code, GenAl contributes to other aspects of software
development. GenAl can help refactor code automatically, which helps make it more readable and
hence maintainable. As shown in later chapters, code can also be improved by selecting better
algorithms that execute faster. GenAl can also help write documentation of code and automate
the creation of tests. With GitHub Copilot, the pair programming approach to efficient coding
includes providing help, which is useful for senior developers, but invaluable to developers learn-

ing a new language or framework.

The downsides of coding with GenAl

The technology behind GenAl for software development is still quite new. Early studies from
2022 showed that GitHub Copilot’s accuracy in producing correct code was below 50%. While
advances and new versions of the underlying models continue to be released every few months,

they are certainly not perfect.

In fact, GenAl has produced some of the worst fatal development mistakes we have ever seen.
To put that in perspective, we have seen a data scientist pushing their entire environment file
to the corporate repository, which exposed secret tokens that had to be replaced. One software

developer crashed a microservice after renaming a file pandas. One data engineer spent two

Chapter 1 13

weeks learning Cython to handle a Python DataFrame memory issue instead of just switching
to Dask or PySpark. GenAl may not only supercharge your strengths, but may also supercharge
your weaknesses. After all, it is still a developing technology, but continues to improve arguably

faster than anyone expected.

Al coding has made the headlines, butit may not be clear why it would fail. The underlying coding
models are trained on available GitHub repository data and other code that is publicly available
in various languages. For problems that are widely documented, such as the Fibonacci sequence
calculation or the many code snippets used to pass LeetCode interviewing questions, the answers
are nearly perfect. For this reason, YouTube is full of videos showing how GitHub Copilot can

program a React web page in 3 minutes.

GenAl has far more difficulty solving more obscure coding tasks where there is far less training
data. Even if the most famous LeetCode’s Two Sum Problem were changed slightly to include Python

Threads, for example, the solution would be unpredictable.

A well-documented problem with LLMs for generating text is that they tend to hallucinate or
fabricate information when the answers are not apparent. Significant research is ongoing to
counter this poorly understood problem. However, hallucinations and other LLM issues do occur

when GenAl is applied to software engineering.

Some developers worry that GenAl coding tools will turn them into less capable developers. They
fear that relying on automatic code completion, suggestions, and examples will cause them to

lose their programming edge or familiarity with the functions.

Recent research by Michael Gerlick (https://doi.org/10.3390/s0c15010006) suggests that Al
tools might decrease our critical thinking capability through a process known as cognitive off-
loading. However, similar arguments have been made about automated spelling checkers that
produce better documents but perhaps reinforce our spelling crimes. It is true that it may take
a bit longer to remember the exact syntax of adding tick marks to a matplotlib plot when the
internet is down. However, if you can double your output with fewer keystrokes, you can focus

on the more important problems that GenAI has yet to solve.

Takeaways

Recent blogs describe a new trend called vibe coding, where developers and even non-developers
design and build full applications extensively using GenAl over a weekend that would probably
take months. It is remarkable that the technology has advanced to the point where rapid proto-

typing is effective. However, prototypes are not production code.

https://doi.org/10.3390/soc15010006

14 From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAl

In many tutorials where GenAl fails, the common wisdom is You should verify the output you get, yet
none offers a pragmatic way or even a guided mindset of how to effectively evaluate the outputs

and improve the code.

It is considered good practice to apply unit and other testing approaches for all code. However,
using GenAl is neither about blindly trusting nor fact-checking everything. GenAl failures do not
mean we have to go overboard with fact-checking any piece of code it produces. Similarly, evi-
dence of GenAl success does not imply you should push every memory optimization suggestion

into production.

Leveraging GenAl is about developing a new set of skills to formalize the inputs and outputs
obtained from LLMs. This will enable you to truly supercharge your coding tasks throughout
the SDLC. It enables you to own the code whether you wrote it from scratch yourself or utilized
LLMs. When you can assess the quality and risk of the output these tools generate, you will be

able to transform your approach to software engineering.

Summary

This chapter highlighted that GenAl for coding emerged from the combination of software tool
advancements with LLMs. This nascent technology applies not only to coding but can enhance
many aspects of the SDLC. The combination of ChatGPT, OpenAI API, and GitHub Copilot pro-
vides a complementary set of tools that have been shown to not only improve productivity and

enhance code quality but can even bring happiness to programmers.

Although the technology is new and still evolving, GenAl is already changing the software engi-
neering field. This book was developed to provide a structured approach to effectively leverage

the tools and achieve the best results across many aspects of the SDLC.

In the next chapter, we will introduce a quick-start guide to OpenAI API and use the chat service
for coding tasks. We will build our own code completion program that takes a function’s signature

as input and returns its implementation as output.

Chapter 1 15

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following

resources:

e VS Code Plugin: https://github.com/kiteco/vscode-plugin

e Begum Karaci Deniz, Chandra Gnanasambandam, Martin Harrysson, Alharith

Hussin, Shivam Srivastava. Unleashing developer productivity with Generative AI:
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/

unleashing-developer-productivity-with-generative-ai.
e Alexey Girzhadovich. Scientifically Measuring the True Impact of Generative Al Software
Development: https://exadel.com/news/measuring-generative-ai-software-

development/.

e Diego Colombatto and Jose Manual Pose Rivadulla. Transforming the software development
lifecycle (SDLC) with Generative AIL: https://aws . amazon.com/blogs/apn/transforming-
the-software-development-lifecycle-sdlc-with-generative-ai/

e Research and Markets Report: Generative Artificial Intelligence (AI) in Coding
Market - Forecasts from 2024 to 2029: https://www.researchandmarkets.com/
reports/6014321/generative-artificial-intelligence-ai-in?utm_source=GNE&utm_
medium=PressRelease&utm_code=8xz7cm&utm_campaign=2014387+-+Generative+Arti
ficial+Intelligence+(AI)+in+Coding+Market+Research+2024-2029%2c+Profiles+o
f+Codecademy%2c+CodiumAI%2c+Google%2c+IBM%2c+Microsoft%2c+NVIDIA%2c+0penAl
%2c+and+Tabnine&utm_exec=chdomspi

e Michael Gerlick. AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical
Thinking: https://doi.org/10.3390/s50c15010006

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before

you start.

https://github.com/kiteco/vscode-plugin
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://exadel.com/news/measuring-generative-ai-software-development/
https://exadel.com/news/measuring-generative-ai-software-development/
https://aws.amazon.com/blogs/apn/transforming-the-software-development-lifecycle-sdlc-with-generative-ai/
https://aws.amazon.com/blogs/apn/transforming-the-software-development-lifecycle-sdlc-with-generative-ai/
https://www.researchandmarkets.com/reports/6014321/generative-artificial-intelligence-ai-in?utm_source=GNE&utm_medium=PressRelease&utm_code=8xz7cm&utm_campaign=2014387+-+Generative+Artificial+Intelligence+(AI)+in+Coding+Market+Research+2024-2029%2c+Profil
https://www.researchandmarkets.com/reports/6014321/generative-artificial-intelligence-ai-in?utm_source=GNE&utm_medium=PressRelease&utm_code=8xz7cm&utm_campaign=2014387+-+Generative+Artificial+Intelligence+(AI)+in+Coding+Market+Research+2024-2029%2c+Profil
https://www.researchandmarkets.com/reports/6014321/generative-artificial-intelligence-ai-in?utm_source=GNE&utm_medium=PressRelease&utm_code=8xz7cm&utm_campaign=2014387+-+Generative+Artificial+Intelligence+(AI)+in+Coding+Market+Research+2024-2029%2c+Profil
https://www.researchandmarkets.com/reports/6014321/generative-artificial-intelligence-ai-in?utm_source=GNE&utm_medium=PressRelease&utm_code=8xz7cm&utm_campaign=2014387+-+Generative+Artificial+Intelligence+(AI)+in+Coding+Market+Research+2024-2029%2c+Profil
https://www.researchandmarkets.com/reports/6014321/generative-artificial-intelligence-ai-in?utm_source=GNE&utm_medium=PressRelease&utm_code=8xz7cm&utm_campaign=2014387+-+Generative+Artificial+Intelligence+(AI)+in+Coding+Market+Research+2024-2029%2c+Profil
https://www.researchandmarkets.com/reports/6014321/generative-artificial-intelligence-ai-in?utm_source=GNE&utm_medium=PressRelease&utm_code=8xz7cm&utm_campaign=2014387+-+Generative+Artificial+Intelligence+(AI)+in+Coding+Market+Research+2024-2029%2c+Profil
https://doi.org/10.3390/soc15010006
http://packtpub.com/unlock
http://packtpub.com/unlock

Your Quickstart Guide to
OpenAl API

Generative artificial intelligence (GenAl) platforms such as OpenAl are transforming entire
industries by empowering everyday users to generate custom answers to questions, reports, and
images. You do not have to be an Al expert to leverage OpenAl to supercharge your software de-
velopment. This chapter focuses on setting up OpenAl and using its application programming

interface (API) calls to generate quality code.

OpenAl offers numerous services such as chat, image generation, and text-to-speech. These are
available through a RESTful HTTP request, which is a standard way for applications to commu-

nicate over the web, or through a programmatic interface of the openai Python package.

In our first quickstart guide of the book, we will walk through three interactive labs and three
sets of requests, working with the OpenAI Chat service. We will dive into the different models

available through OpenAI API, and how to impact the Al-generated output.

We will obtain our project API keys, analyze the services’ limits, and learn how to compute each
request’s costs. The costs are computed from the number of tokens or subword fragments of the

model’s input and output.

We will wrap up this chapter by creating a basic code completion program that can generate a

Python code implementation based on a function signature.

18 Your Quickstart Guide to OpenAI API

In this chapter, we will explore the following topics:

e Introducing OpenAl API

e Obtaining your project API keys from OpenAl

e Sending your first OpenAl API request using the openai Python package

e Learning how request costs are calculated

e Understanding rate limits and usage restrictions for free and paid OpenAl accounts
e Analyzing request parameters

e Using OpenAl API to generate code

Technical requirements

To get the most out of this chapter, ensure you have the following:

e Your personal OpenAl account credentials

e Access to the book’s GitHub repository, which is available at https://github.com/
PacktPublishing/Supercharged-Coding-with-Gen-AI

e Avirtual environment set up in your integrated development environment (IDE), either
VS Code or PyCharm

If you require additional assistance in setting up your OpenAl account or a virtual environment

in your IDE, refer to the Appendix for detailed instructions.

Introducing OpenAl API

The OpenAl platform offers a variety of natural language processing (NLP) services, powering
many Al applications. At its core, the platform leverages large language models (LLMs) that are
trained on a massive amount of data, with a complex architecture and billions of learnable param-
eters to produce Al-generated responses. Developers can interact with the platform through its
APIwith text-based requests that are often called prompts. The prompts are processed, enriched,
and transformed before being passed into the LLM model. The model’s output is further refined

and delivered as a response to the API request.

The Chat service by OpenAl is designed for conversational interactions with the LLM where the

conversation uses three types of prompt roles — user, system, and assistant:

e User prompts represent an end user of the system such as a ChatGPT user, and resemble

prompts we feed into ChatGPT, such as Tell me about the Fibonacci sequence.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 2 19

Assistant prompts represent the model output through the conversation and resemble
answers we will get back from ChatGPT, such as The Fibonacci sequence is a series
of numbers where each number is the sum of the two preceding ones.

System prompts define the guidelines of the assistant behavior through the conversation,

suchasYou are a helpful programming instructor.

Like many other GenAl tools in the industry, the OpenAlI API calls are primarily a paid service. It

does offer some limited free usage such as three requests per minute to a restricted selection of

models, excluding GPT-4o0. With just $5 in OpenAl credits, you can fully engage with the examples

and labs presented in this book. We will instruct you how to do this right after our initial Lab 2.1.

OpenAl API through a RESTful HTTP request

The OpenAl API services are accessed via RESTful HTTP requests, a communication protocol

based on the principles of Representational State Transfer (REST) architecture, and using the

HyperText Transfer Protocol (HTTP). RESTful HTTP provides a standardized way to send and

retrieve data from servers over the internet. A request to OpenAl APl includes four key components:

Endpoint: The URL specifying the service you are accessing, such as https://api.openai.

com/v1/chat/completions for the Chat service

HTTP method: The action to perform, such as POST for OpenAl Chat service requests,

which sends data to the server

Headers: Metadata about the request, including your API token, to authenticate and

provide context for the request

Body: The data payload containing details such as the LLM to use and the input prompts

Here is an example of a request to the OpenAl API Chat service using the requests package in

Python. It demonstrates how to make a POST request to the service, including a header with your

API key for authentication and a body containing the data payload, such as the model and a prompt:

import requests

import json

api_key = "your-key-here"

headers = {

}

"Authorization": f"Bearer {api_key}",

"Content-Type": "application/json"

payload = {

"model”: "your model's name here",

https://api.openai.com/v1/chat/completions
https://api.openai.com/v1/chat/completions

20 Your Quickstart Guide to OpenAI API

"messages"”: "your message here"}

response = requests.post("https://api.openai.com/vl/chat/completions”,
headers=headers,
data=json.dumps(payload))

chat_response = response.json()["choices"][0]["message"]["content"]

@ Quick tip: Enhance your coding experience with the AI Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

Copy Explain
function calculate(a, b) { o @

return {sum: a + b};

\ };

& The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

Note that this code sample can also be found at the book’s repository path, ch2/code_samples/

openai_request.py.

In this example, the payload is submitted in JSON format. If the request is successfully accepted
and the server responds, the OpenAl API Chat service’s output can be retrieved from response.

json()["choices"][@]["message"]["content"].

Chapter 2 21

For Python developers, a more efficient approach to accessing the OpenAl Chat service is available.
Rather than dealing with the complexities of crafting and sending RESTful HTTP requests, such
as constructing the correct endpoint URL, setting authentication tokens in headers, formatting
payloads in JSON, and handling potential response errors, we can leverage the dedicated openai

package.

OpenAl API Python package installation

The openai Python package simplifies the process by abstracting complexities such as URL paths,
retries, error handling, and authentication. This allows us to interact directly with Python objects,

instead of manually constructing RESTful HTTP requests.

To install the openai package, run the following command in your terminal within your virtual

environment:

(.venv) $ pip install openai

To verify that the openai package is installed correctly on your virtual environment, run the

following command, which specifies the information of the package:

(.venv) $ pip show openai

Your console will output information about the package version, author, and support email.

With the openai package installed, we can simplify our interactions with the OpenAl platform
using a programmatic framework. Instead of making direct RESTful HTTP requests, we will uti-
lize Python classes. This results in fewer boilerplates, such as handling authentication and error

management, and a more maintainable code.

Important note

V4 If you are already working with the book repository, you do not need to install the
\G/‘ openai package separately. Itis already specified in the requirements. txt file and
should be installed in your virtual environment. If you require additional assistance

in setting up your virtual environments, refer to the Appendix for detailed instructions.

22 Your Quickstart Guide to OpenAI API

Obtaining your project APl keys from OpenAl

All requests to OpenAl API require an authentication token, and we must obtain one prior to

submitting any request.

Navigate to https://platform.openai.comand login with the same credentials as you use for
ChatGPT at https://chat.openai.com/.

Once logged in, click on Dashboard in the upper-right menu, then select API keys from the left

menu.

Recently, OpenAlreplaced personal API keys with the option to create a project API key. This new
key serves two purposes. First, it allows personal use, as required for the work throughout this
book. Second, it supports service API keys intended for non-human identities such as microser-

vices running in production.

° Pazpaz the coder < Supercharged Coding with GenAl < Playground Dashboard Docs APl @ °
[oasHBOARD API keys + Create new secret key

{=) Batches

@ Evaluations @ Project APl keys have replaced user APl keys.

o) We recommend using project based API keys for more View user APl keys

< Fine-tuning granular control over your resources. Learn more

8 storage

db Usage As an owner of this project, you can view and manage all APl keys in this project.

& APlkeys

Do not share your API key with others, or expose it in the browser or other client-side code. In
order to protect the security of your account, OpenAl may also automatically disable any API

Figure 2.1: Project API keys dashboard

To generate your first API key, click on Create new secret key under your account icon at the
upper left. Choose an API key that is owned by You, as we will use this key rather than assign it
to a service account. You can assign a name for future reference, and it should be associated with

a project (named default project if you have not changed the project name yet).

https://platform.openai.com
https://chat.openai.com/

Chapter 2 23

Create new secret key

Owned by
You Service account

This APl key is tied to your user and can make requests against the selected project. If

you are removed from the organization or project, this key will be disabled.

Name Optional

[My Test Key]

Project

Supercharged Coding with GenAl

Permissions

All Restricted Read Only

Cancel Create secret key

Figure 2.2: Creating a new secret key for personal use

Once you click on Create secret key, the platform will generate a new secret key for you.

Return to your IDE, either VS Code or PyCharm, and export it as an environment variable from

your terminal by running the following:

$ export OPENAI_API_KEY="your-key-here"

Alternatively, for a reproducible environment, you can use the .env file template provided with

this book’s repository:

1 OPENAI_API_KEY="your-key-here"

Figure 2.3: The .env file template, placed at the root of the repository

24 Your Quickstart Guide to OpenAI API

If you choose to work with .env for your environment variables management, you should verify
that your running configurations are set to work with this file. Refer to the Appendix if you need

additional assistance.

Next, we will learn how to submit our first request to OpenAl API using the openai Python pack-

age, following a template that will be utilized throughout this book.

Lab 2.1 — sending your first OpenAl API request
using the openai Python package

With the installed Python package and the API Keys, we are all set to execute our first OpenAl
API request. Note that you do not need OpenAl platform credits to complete this lab, and we
will instruct you how to load credits to your account later in this chapter. If you have previously

loaded credits to the OpenAl platform, this example should cost no more than a fraction of a

cent to execute.

In this lab, we will start with a simple template for executing OpenAl API requests to the Chat

service and printing the response output. We will have three steps:

1. Create an openai.OpenAlI class instance.

2. Submitarequest to the Chat service with a single user prompt and a model selection such
as GPT-4o-mini or GPT-3.5-turbo.

3. Print the response output.

These steps are in place in our starter code, and we will walk you through completing it, running

it, and analyzing the results we get:

import openai
from openai import OpenAl
if _name__ == " main_ '
client: OpenAI = OpenAI()
completion: openai.ChatCompletion = (
client.chat.completions.create(
model="",
messages=[]

))

print("your print here")

In this lab walk-through, we will build on this starter code to complete the model and messages ar-

guments, enabling us to receive an Al-generated response to our request from the OpenAl platform.

Chapter 2 25

Lab 2.1 guided walk-through

Open Lab 2.1in the book’s repository located at ch2/labs/lab21.py. First, we will instantiate a new

instance of the openai.OpenAI class:

client: OpenAI = OpenAI()

We do not specify any authentication parameters directly in the code. The OpenAI client automat-
ically retrieves the API key from the OPENAI_API_KEY environment variable. While it is possible
to pass the APl key using the api_key argument during instantiation, we strongly advise against

hardcoding credentials in scripts for security reasons.

The next step is to send a request using the OpenAl client. We will initiate a call to the Chat ser-
vice by accessing chat. completion, where we will define the necessary RESTful HTTP request
parameters. This includes at least two parts: the model and messages keyword arguments. The
model argument represents the name of the LLM you are querying, and the messages argument

represents the input prompts sent to the model:

completion = client.chat.completions.create(

nn

model="",

messages=[]

If you have loaded credits onto your OpenAl platform account, enter the model value between

the double quotes:
gpt-4o0-mini
Otherwise, use the following model instead:

gpt-3.5-turbo

Next, add a single user prompt to the messages argument:

messages = [{"role": "user", "content": "What is the FizzBuzz problem?"}]
Thelast step is to print the response output of the Chat service. On the lastline, replace the print
statement with the following:

print(completion.choices[@].message.content)

26 Your Quickstart Guide to OpenAI API

At this point, your Lab 2.1 code should look as follows:

import openai
from openai import OpenAl
if __name__ == "_main__":
client: OpenAI = OpenAI()
completion: openai.ChatCompletion = client.chat.completions.create(
model="gpt-40-mini",
messages=[{"role": "user", "content": "What is the FizzBuzz
problem?"}]

)

print(completion.choices[0].message.content)

Lab 2.1is now ready to run and will print the Chat completion in response to the following user

prompt: What is the FizzBuzz problem?.

Note

7
\E/‘ When working on your lab code, you can always find the full lab solutions in the

ch2/solutions folder.

Lab 2.1 analysis

Run the script and check the output in the terminal if you are using VS Code, or the run console
if you are using PyCharm. The output of the program should be the Chat service’s response to

the user promptWhat is the FizzBuzz problem?, a problem we will revisit in later chapters.

Depending on the model you chose to work with (either GPT-3.5-turbo or the more advanced GPT-

40-mini), you might get quite a different output from the Chat service. For your reference, here

is a response from the GPT-3.5-turbo model, which includes a context and problem description:
FizzBuzz is a common programming problem often used in job interviews

to test a candidate's ability to write simple code. The problem is as
follows:

Write a program that prints the numbers from 1 to 100. But for multiples
of three, print "Fizz" instead of the number, and for the multiples of
five, print "Buzz For numbers which are multiples of both three and five,
print "FizzBuzz"

Chapter 2 27

Here is a response from the GPT-40-mini model, which, in addition to the context and descrip-
tion, included a detailed explanation of the coding task stages, an example output, and the task’s

challenges:

The FizzBuzz problem is a classic programming task often used in

coding interviews and educational settings to test a developer's basic
understanding of control structures, loops, and conditional statements.
The problem is simple:

1. Write a program that prints the numbers from 1 to a specified number,
typically 1ee.

2. For multiples of three, print "Fizz" instead of the number.

3. For multiples of five, print "Buzz" instead of the number.

4. For numbers that are multiples of both three and five, print
"FizzBuzz."

The output would look something like this:

i, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz,

This task helps demonstrate an understanding of loops and conditionals,
often revealing both logical reasoning and code clarity.

In Chapter 6, we will explore the underlying differences between GPT-40 and GPT-3.5 in greater
detail.

Important note

V4 As discussed in Chapter 1, applications built on top of LLMs rarely output determinis-
\E/‘ ticresults, and responses for similar prompts may differ due to prompt construction,
user customization, and randomness. Moving forward in this book, we will discuss

further how to control all three to achieve the desired outputs from the model.

Next, we will explore how to anticipate the costs associated with each API call and understand

how tokens, as fragments of words, are used to calculate the request charges.

28 Your Quickstart Guide to OpenAI API

Learning how request costs are calculated
Since OpenAl APl is primarily a paid service, itis essential to understand and anticipate the costs

associated with each request.

Before proceeding with the lab exercises, it is strongly recommended that you add credits to
your OpenAl platform account. An initial charge of $5 in credits should be more than enough
to complete all the labs in this book. Loading credits will also upgrade your account from Free
tier usage (with no prior credits) to a Tier 1 account, significantly increasing your rate and usage

limits, as we will discuss later in this chapter.

To load credits, open the OpenAl Billing Overview page at https://platform.openai.com/
settings/organization/billing/overviewand add a payment method with a minimum charge
of $5.

Billing

Overview Payment methods Billing history Preferences

Pay as you go

Credit balance ©

$4.97

B Autorecharge is off

When your credit balance reaches $0, your APl requests will stop workin
keep your credit balance topped up.

Enable auto recharge
Add to credit balance Cancel plan

Figure 2.4: Remaining credit balance

You can also check your remaining balance at any time by visiting the same link.

Understanding tokens

The OpenAl platform calculates request costs based on tokens, which are small segments of text
(often subwords, words, or characters) averaging about 0.75 words or 4 characters each. Text is
divided into tokens by elements such as punctuation, root words, and word endings. We will

discuss tokens in detail in Chapter 6.

https://platform.openai.com/settings/organization/billing/overview
https://platform.openai.com/settings/organization/billing/overview

Chapter 2 29

Each API request consists of both input and output tokens, and OpenAl charges for both. For
example, in Lab 2.1, the message {"role": "user", "content": "What is the FizzBuzz
problem?"} contains 15 tokens. You can access the exact count from the prompt_token attribute

as in the following code:

>> completion.usage.prompt_tokens

>> 15

Alternatively, we can estimate our total input token consumption using tools such as the Ope-
nAl Tokenizer, available at https://platform.openai.com/tokenizer. The Tokenizer also col-
or-codes the different tokens in the text, identifying words such as role and user as a single token,
punctuation marks such as commas and question marks as a single token each, and FizzBuzz as

three tokens.

GPT-40 & GPT-40 mini GPT-3.5 & GPT-4 GPT-3 (Legacy)

role: user, content: What is the FizzBuzz problem?

Clear Show example
Tokens Characters
14 50

role: user, content: What is the FizzBuzz problem?

Figure 2.5: OpenAl Tokenizer simulation

Output tokens are also billed. For example, in Lab 2.1, the output response from the GPT-4o-
mini model contains 292 tokens. You can access the completion_tokens attribute by calling the

following:

>> completion.usage.completion_tokens

>> 292

This brings the total billable tokens to 307. You can access the total_tokens attributes by calling
the following:

>> completion.usage.total_tokens

>> 307

https://platform.openai.com/tokenizer

30 Your Quickstart Guide to OpenAI API

How billing is computed

OpenAl charges for both input and output tokens, with costs varying by model. Newer, more
advanced models typically have higher costs, while optimized versions, such as models with
the -mini or -turbo postfix, are more affordable. You can find the full pricing details at https://

openai.com/api/pricing/.

As of January 2025, input tokens for the GPT-40 model are priced at $2.50 per million tokens (or
$1 for every 400,000 input tokens), while output tokens are priced at $10 per million tokens (or
$1 for every 100,000 output tokens).

In Lab 2.1, we used the more affordable GPT-40-mini model. Input tokens for this model cost $0.15
per million tokens (or $1 for every 6.6 million input tokens), and output tokens are priced at $0.60
per million tokens (or $1 for every 1.6 million output tokens). These costs are approximately 1/16

of the GPT-40 model’s pricing.

GPT-40

GPT-40 is our most advanced multimodal model that's faster and cheaper than GPT-4
Turbo with stronger vision capabilities. The model has 128K context and an October
2023 knowledge cutoff.

Learn about GPT-40 2

Model Pricing Pricing with Batch API*
gpt-4o0 $2.50 / 1M input tokens $1.25 /1M input tokens
$1.25 / 1M cached** input tokens
$10.00 / 1M output tokens $5.00 / 1M output tokens

Figure 2.6: Costs of GPT-40 input and output tokens

For example, we can calculate the cost of running Lab 2.1, which uses 15 input tokens and 292

output tokens. Based on the pricing for the GPT-40-mini model, the cost is as follows:

>> (15 * 0.15 + 292 * 0.6) / 1000000

>> 0.00018

This is approximately 1/55 of a cent.

https://openai.com/api/pricing/
https://openai.com/api/pricing/

Chapter 2 31

If we run Lab 2.1 with the larger GPT-40 model instead, the cost would be as follows:

>> (15 * 2.5 + 292 * 10) / 1000000
>> 0.002

This amounts to 1/5 of a cent.

Keep these cost differences in mind when designing your own applications, especially when de-
ciding between using more advanced models and their smaller, more affordable versions. Model
prices have historically declined as newer models are introduced, so itis a good idea to periodically

review the Pricing page at https://openai.com/api/pricing/.

With a clear understanding of cost calculations, we can now move on to discussing the limitations

and restrictions associated with different tiers of OpenAl accounts.

Understanding rate limits and usage restrictions for
free and paid OpenAl accounts

OpenAl usage is limited by three factors: requests per minute (RPM), requests per day (RPD),
and tokens per minute (TPM). The limits of each vary based on both the model and the type
of account you have. For Free tier accounts with no credits added, the limit is three RPM, and
only certain models are available, excluding GPT-4o. Token limits tend to be more restrictive
for advanced models such as GPT-4o to all account tiers, whereas older or mini models, such as

GPT-40-mini, have more relaxed limits.
For reference, here are the rate limits for Free tier accounts as of January 2025:
Free tier rate limits

This is a high level summary and there are per-model exceptions to these limits (e.g. some
legacy models or models with larger context windows have different rate limits). To view the
exact rate limits per model for your account, visit the limits section of your account settings.

MODEL RPM RPD TPM BATCH QUEUE LIMIT
gpt-3.5-turbo 3 200 40,000 200,000
text—-embedding-3-large 3000 200 1,000,000 3,000,000
text—embedding-3-small 3,000 200 1,000,000 3,000,000

Figure 2.7: Rate limits example for Free tier accounts

https://openai.com/api/pricing/

32 Your Quickstart Guide to OpenAI API

And here are the rate limits for Tier 1 accounts as of January 2025:

Tier 1rate limits

This is a high level summary and there are per-model exceptions to these limits (e.g. some
legacy models or models with larger context windows have different rate limits). To view the
exact rate limits per model for your account, visit the limits section of your account settings.

MODEL RPM RPD TPM BATCH QUEUE LIMIT
gpt-4o 500 - 30,000 90,000
gpt—4o0-mini 500 10,000 200,000 2,000,000
gpt—-4o-realtime-preview 100 100 20,000 -

gpt-4-turbo 500 - 30,000 90,000

Figure 2.8: Rate limits example for Tier 1 accounts

We encourage you to learn about your account’s API limits by navigating to the Settings sec-
tion in the upper-left corner of your organization: https://platform.openai.com/settings/

organization/limits.

With Tier 1I’s increased RPM and TPM limits in place, we’re now ready to move forward to the

next lab, where we will explore additional parameters for OpenAl API.

Lab 2.2 — analyzing request parameters
In Lab 2.2, we will expand on our basic OpenAl API request to the Chat service by adding addi-

tional parameters to customize the model’s response. This time, we will ask the Chat service to

explain the Two Sum problem, a topic we will explore further in later chapters.

We will use a similar starter code from Lab 2.1, which includes setting up an OpenAI client and

print statements:

client: OpenAI = OpenAI()

completion: openai.ChatCompletion = (
client.chat.completions.create())

print("Completion Tokens: ")

print("Output: ")

https://platform.openai.com/settings/organization/limits
https://platform.openai.com/settings/organization/limits

Chapter 2 33

In this lab’s guided walk-through, we will add the following payload parameters:

n: Specifies the number of response variations

temperature: Controls the level of randomness in the model’s output ranging from 0 to 2
max_tokens: Limits the number of tokens in each response

Applications such as code completion services often offer users multiple suggestions from a lan-
guage model, so we may want to retrieve more than one response. Additionally, in some cases,
such as generating a creative prompt (for example, Give me a marketing slogan for a book
about GenAI for coding), we might prefer a higher degree of randomness in the output that

can be obtained by setting the temperature parameter closer to its maximum value of 2.

The max_tokens parameter limits the number of tokens in the response, though it does not guar-
antee the output will be fully complete within that limit. When using max_tokens, OpenAl charges
for the specified token limit rather than the actual number of tokens used, so it is best to set it

close to the expected length of the response.

Lab 2.2 guided walk-through

This walk-through consists of two steps: updating the payload with additional parameters and

adding a print statement to display the extra responses.

Open Lab 2.2 in the book repository at ch2/labs/lab22.py and ensure that you have either set the

OPENAI_API_KEY environment variable or configured your run settings to point to the .env file.
As the first step, update the arguments for the . create method on line 7 as follows:
1. Setthe model to gpt-40-mini:

model = "gpt-4o0-mini"

If you have not added credits to your OpenAl platform account yet, your access may be
limited to certain models, excluding gpt-40-mini. In that case, use the gpt-3.5-turbo

model instead.
2. Setalow temperature argument to reduce the randomness of the output:

temperature=0.2

3. Setthemax_tokens argument to restrict the model’s output to a maximum of 100 tokens:

max_tokens=1600

34 Your Quickstart Guide to OpenAI API

4. Setthen argument to instruct the model to return a single response for the request:

n=1

5. Add a system prompt to the messages argument to give the agent the tone of a tech com-

pany hiring manager:

{"role": "system", "content": "You are a hiring manager at a tech
company."}

6. Add an additional user prompt to the messages argument asking about the Two Sum

problem:

{"role": "user", "content": "What is the Two Sum problem?"}

7. For the second step, update the print statements to display the output token count and

the model output.

8. Modify the first print statement to indicate the output count:

print("Completion Tokens: ", completion.usage.completion_tokens)

9. To display the output response, update the second print statement as follows:

print("Output: ", completion.choices[@].message.content)

If you followed all the steps correctly, your code should look like this:

import openai
from openai import OpenAl
if __name__ == "__main__
client: OpenAI = OpenAI()
completion: openai.ChatCompletion = (

client.chat.completions.create(
model="gpt-40-mini",
temperature=0.2,
max_tokens=100,
n=1,
messages=[{"role": "system", "content": "You are a hiring
manager at a tech company."},

{"role": "user", "content": "What is the Two Sum problem?"}],

))

Chapter 2 35

print("Completion Tokens: ", completion.usage.completion_tokens)

n

print("Output: ", completion.choices[@].message.content)

Lab 2.2 is now ready to run and will print the output token count along with the response to the

user promptWhat is the Two Sum problem?

Lab 2.2 analysis

Run the script and check the output. If you are using VS Code, look in the terminal, and if you
are using PyCharm, check the run console. Ensure that the output token count does not exceed
100 and that the Chat service begins explaining the Two Sum problem, a topic we will revisit in

future chapters.

Keep in mind that setting a max_tokens limit does not guarantee a complete explanation and

may truncate responses.

The following is a sample output, limited to 100 tokens, obtained from running the lab. The

completion was truncated at 100 tokens, equivalent to 84 words:

"The Two Sum problem is a classic algorithmic problem often encountered in

coding interviews and competitive programming. The problem can be stated
as follows:

Given an array of integers “nums® and an integer "target’, you need to
determine if there are two distinct indices "i° and "j in the array such
that the sum of the elements at these indices equals the target value. In
other words, you need to find two numbers in the array that add up to the
specified target.

Problem Statement"

Although this output is truncated, it may still provide sufficient information to understand the

Two Sum problem.

\G/\/ Note

Question: Can you compute the cost of the lab22.py request?

Answer:
>> (28 * 0.15 + 100 * 0.6) / 1000000>> ©0.000064

This is approximately 1/150 of a cent.

36 Your Quickstart Guide to OpenAI API

Multiple service responses with Lab 2.2

Reflecting on Lab 2.2, we can now better understand the impact that payload request parameters

have on the initial output from the Chat service.

In that lab, we set the n parameter to 1, which is also the default value. However, in some GenAl
applications, it may be beneficial to generate more than one response. For example, in tools such
as GitHub Copilot or other code completion services, displaying multiple suggestions can enhance
user experience. In such cases, increasing the number of responses with the n argument allows
the model to provide multiple outputs. Keep in mind that the billing will include all generated

outputs along with the input tokens.

In Lab 2.2, modify the n argument to request three different responses, and increase the temperature
parameter to encourage more randomness and variety in the output:
n=3

temperature = 2

Now, update the print statements to include the additional outputs from the Chat service:

print("Output 1: ", completion.choices[@].message.content)
print("Output 2: ", completion.choices[1].message.content)

print("Output 3: ", completion.choices[2].message.content)

Run the lab again to view the three different responses from the Chat service explaining the Two

Sum problem. Feel free to experiment with the parameters further to see how they affect the output.

Next, we will explore how to utilize OpenAl API for coding-related tasks, such as generating a

Python code implementation based on a function’s signature.

Lab 2.3 — using OpenAl API to generate code

Now that we have learned how to execute OpenAl API calls and configure various parameters,
we can use them to create our own basic code completion program. Previously, developers could
select models such as code-davinci-002, which were specifically trained for code completion.
These models have since been deprecated and now chat services can effectively handle code

completion tasks.

Chapter 2 37

Routing chat capabilities to code completion

In this lab, we will create a code completion program by following five steps:

1.

2
3.
4.
5

Define the input to function signatures only.

Add system prompts to guide the model in generating the complete code.

Wrap the function signature with a specificinstruction for the model to complete the code.
Get the Chat service response for our request.

Extract only the code from the model’s output to present to the end user.

These steps demonstrate that applications built on top of LLM models require a tailored approach

such as using wrapping designs and specific prompts to align the model’s output with the busi-

ness problem at hand. We will cover that in depth later in the book.

Our starter code consists of all five steps, which we will complete in the guided walk-through:

import openai

from openai import OpenAI

USER_PROMPT = """

user prompt here

SYSTEM_PROMPT = "system prompt here"

def get_code_with_instructions(code: str) -> str:

if _ _name__ ==

Add a comment to the code for specific code completion instruction
:param code: Python code as string

:return: The code with additional instruction - "Complete this code"

return code + "your wrapping instructions here"

n ",

__main__

client: OpenAI = OpenAI()

completion: openai.ChatCompletion = (

client.chat.completions.create())

38 Your Quickstart Guide to OpenAI API

for i in range(2):
output = completion.choices[i].message.content
print(f"Output {i + 1}:")
try:
suggested code = output.split(" "~ ")[1]
print(suggested_code)
except IndexError:

print(output)

In this lab walk-through, we will learn how to complete the system prompt, wrapping instruc-
tions for the get_code_with_instructions function, and payload arguments for client.chat.
completions.create. Combined with a function signature as the user prompt, these elements

will channel OpenAlI’s Chat service capabilities toward a targeted code completion program.

Lab 2.3 guided walk-through

Open Lab 2.3 in the book repository at ch2/labs/lab23.py and ensure that you have either set the

OPENAI_API_KEY environment variable or configured your run settings to point to the .env file.

First, set the user prompt to be a function signature for printing the Fibonacci sequence:

USER_PROMPT="""

def print_fibonacci_ sequence(n: int) -> None:

nnn

Next, include a system prompt to set guidelines for the assistant to act as an Al pair programmer:

SYSTEM_PROMPT = "You will be provided with a Python function signature.

Your task is to implement the function. Return code only.

We will also wrap the function signature to include a specific instruction for code completion.
Update the get_code_with_instructions function to wrap the given code with an extended

comment that instructs the model to complete the function signature:

return code + "\n# Complete this code"

Chapter 2 39

Next, configure the payload arguments by specifying the appropriate model, the desired number

of responses, and the level of randomness:
1. Setthe model to gpt-40-mini:
model = "gpt-4o0-mini"
If you have not loaded credits to your OpenAl platform account yet, your access may be
limited to certain models, excluding gpt-40-mini. In that case, use the gpt-3.5-turbo
model instead.
2. Setamedium temperature argument to increase the randomness of the outputs:

temperature=1

3. Setthe n argument to instruct the model to return two different coding suggestions:

n=2

4. Finally, set up the request arguments to include the wrapped function signature as the

user prompt, along with a system prompt:

model = "gpt-4o0-mini"
temperature=1
n=2
messages = [
{"role": "system",
"content": SYSTEM_PROMPT},
{"role": "user",
"content": get_code with_instructions(USER_PROMPT)}

If you followed all the steps correctly, your lab’s code should be implemented as follows:

import openai

from openai import OpenAI

USER_PROMPT = """

def print_fibonacci sequence(n: int) -> None:

nnn

SYSTEM_PROMPT = "You will be provided with a Python function signature.

40 Your Quickstart Guide to OpenAI API

Your task is to implement the function. Return code only."

def get_code_with_instructions(code: str) -> str:
Add a comment to the code for specific code completion instruction
:param code: Python code as string
:return: The code with additional instruction - "Complete this code"

return code + "\n# Complete this code"

n ",

if __name__ ==
client: OpenAI = OpenAI()

__main__

completion: openai.ChatCompletion = (
client.chat.completions.create(
model="gpt-40-mini",
temperature=1,
n=2,
messages=|[
{"role": "system", "content": SYSTEM_PROMPT},

{"role": "user", "content": get_code_with_
instructions (USER_PROMPT)}

1

Lab 2.3 is now ready to run and will print two coding suggestions for the Fibonacci sequence.

Lab 2.3 analysis

In this lab, we wrapped the user prompt and added a supporting system prompt to explicitly
define the task for the Chat service: to complete a function that prints the Fibonacci sequence
based solely on its signature. The following is a sample output generated when running this lab
with two outputs. The first response provides a shorter solution without type checking, printing
the Fibonacci numbers one by one. The second response includes input validation, creates the

sequence up to the n limit, and then prints the entire sequence:

Output 1:

def print_fibonacci_sequence(n: int) -> None:

Chapter 2 41

a, b=20, 1

for _ in range(n):

print(a, end="' ")
a, b=b, a+b

print() # for a new line after the sequence

Output 2:
def print_fibonacci_ sequence(n: int) -> None:
if n <= 0@:
print("Please enter a positive integer.")

return

sequence = []
a, b=20, 1

count = @

while count < n:
sequence.append(a)
a, b=b, a+b

count += 1

print(sequence)

To further explore code completion, try adding additional system prompts such as add a
docstring or add type hints and observe the results. You can also increase the number of re-
turned outputs or modify the instructions in the wrapped user prompt to see how these changes

affect the generated code.

Important note

V4 In this lab, the system prompt includes specific instructions for the desired output:
\@/ Return code only. In later chapters, we will explore how to craft more effective
instructions to guide the model toward the desired output structure using best

practices and prompt engineering techniques.

42 Your Quickstart Guide to OpenAI API

Summary

In the first quickstart guide, we used the openai Python package to build three different programs
based on Al-generated output. We experimented with various models, including GPT-40 and

GPT-3.5, explored different request parameters, and combined user prompts with system prompts.

We also loaded credits to the OpenAl platform, which increased our rate limits and allowed us to
use a broader range of models. We learned how request costs are calculated based on the number

of input and output tokens.

Finally, we developed a basic code completion program that wrapped a function signature, guiding

the model to generate the rest of the function’s implementation.

With these foundations in place, we can progress to the next chapter, Quickstart Guide to GitHub
Copilot, and better understand how Copilot generates coding suggestions and how to tailor them

to fit our unique preferences when necessary.

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:

Question 1: What s the difference between a system prompt and a user promptin a Chat service

request?

Answer: User prompts are the inputs provided by the end user, such as the questions or com-
mands given to ChatGPT. They represent the direct interaction with the Al-generated content,

such as the following:

Explain the Two Sum problem
Here is another example:
def print_fibonacci_sequence(n):

System prompts, however, define the guidelines and tone for the Chat interaction. They instruct

the assistant on how to behave during the conversation with the end user, as in this example:

You are a technical interviewer for a software engineering internship

Chapter 2 43

Here is another example:

You will be provided with a Python function signature. Your task is to
implement the function. Return code only.

Question 2: What are tokens, and how do they impact the cost of an OpenAlI API request?

Answer: Tokens are small segments of text, typically averaging around 0.75 words or 4 characters
each when the text is split into tokens based on elements such as punctuation, root words, and
word endings. The cost of an OpenAl APIrequestis calculated based on the number of input tokens,

output tokens, and the max_tokens argument, with different models having varying token costs.

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following

resources:

e OpenAl Platform home page: https://platform.openai.com

e OpenAl API official documentation: https://platform.openai.com/docs/overview

e OpenAl Pricing: https://openai.com/api/pricing/

e OpenAl Rate Limits (General): https://platform.openai.com/docs/guides/rate-
limits

e OpenAl available models: https://platform.openai.com/docs/models/model-
endpoint-compatibility

e OpenAlindividual rate limits: https://platform.openai.com/settings/organization/
limits

e The FizzBuzz wiki page: https://en.wikipedia.org/wiki/Fizz_buzz

e TheTwo Sum Leet Code page: https://leetcode.com/problems/two-sum/description/

https://platform.openai.com
https://platform.openai.com/docs/overview
https://openai.com/api/pricing/
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/models/model-endpoint-compatibility
https://platform.openai.com/docs/models/model-endpoint-compatibility
https://platform.openai.com/settings/organization/limits
https://platform.openai.com/settings/organization/limits
https://en.wikipedia.org/wiki/Fizz_buzz
https://leetcode.com/problems/two-sum/description/

44 Your Quickstart Guide to OpenAI API

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled
filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs
and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.1link/TRO5B or scan the QR code below.

O

https://packt.link/TRO5B

A Guide to GitHub Copilot
with PyCharm, VS Code, and
Jupyter Notebook

GitHub Copilot, an Al pair programmer, is enabling developers to supercharge their coding abil-
ities and write code more efficiently. The application uses an underlying large language model
(LLM) designed specifically for code completion tasks, code analysis, and chat for coding-related
tasks.

Since we built our own code completion program capable of completing a Python function based
on its signature alone in Chapter 2, we can better understand the role of LLMs in Copilot’s imple-

mentation, as well as what other preprocessing and postprocessing work is required.

This chapter is dedicated to working with GitHub Copilot in our integrated development en-
vironment (IDE). First, we will set up a GitHub Copilot account and determine who is eligible
for a free account. Then, we will connect our account to our IDE (either VS Code or PyCharm)
and explore the three interaction modes of the tool: chat, completion, and analysis. We will also
work with Copilotin aJupyter Notebook using VS Code. PyCharm cannot run Jupyter notebooks
yet with Copilot.

Through three interactive labs, we will implement a geometric mean calculator using all three
GitHub Copilot interaction modes: chat, completion, and analysis. Additionally, we will exper-
iment with keyboard shortcuts for core Copilot functionality to help streamline our workflow

and boost productivity.

46 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

In this chapter, we will cover the following key topics:

e Introducing GitHub Copilot — our Al pair programmer

e Understanding GitHub Copilot’s free account limits, costs, and policies

e Setting up Copilotin PyCharm and VS Code

e Using Copilot chat

e Introducing completion and keyboard shortcuts for geometric mean calculations
e Analyzing code with Copilot

e Working with Copilot in VS Code’s Jupyter Notebook for code analysis

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub account

e Access to IDE — either VS Code or PyCharm

e Access to the book’s repository, which is available at https://github.com/
PacktPublishing/Supercharged-Coding-with-Gen-AI

e Virtual environment set up in your preferred IDE, VS Code or PyCharm

If you require additional assistance in setting up your OpenAl account or a virtual environment

in your IDE, refer to the Appendix for detailed instructions.

Introducing GitHub Copilot — our Al pair
programmer

GitHub Copilotis an Al-powered tool that uses LLMs trained on vast and diverse datasets contain-
ing a significant amount of open source code from public repositories across various programming
languages, including Python. By combining the model’s extensive knowledge with your code’s
context, GitHub Copilot provides tailored coding suggestions, as well as chat and code analysis

features, to assist in your development process.

Code completion design overview

To provide meaningful code completions, Copilot processes the input and output of the LLM, like
the code completion program developed in Lab 2.3. For the input, Copilot structures a prompt
based on the lines surrounding the cursor, function signatures, and additional context, such as
recent edits, Git details, file names and open files. The LLM’s output s further processed, including

validation to ensure it compiles successfully.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 3 47

We can visualize Copilot’s code completion process as a flowchart, as shown in Figure 3.1.

system
prompts
starter code post-
def print_fibbonacci(...) user prompt > LLM processing
| SE—

| system and

| user prompts

Git
information

Figure 3.1: An overview of GitHub Copilot’s suggestion process

In addition to code completion, GitHub Copilot offers two other modes of interaction: chat (avail-
able inline or through the chat window) and code analysis. Both modes are based on the under-
lying code and comments but differ in their final output and the postprocessing steps involved.

We will discuss these extensively later in this chapter.

Important note

Some developers may think that GitHub Copilot sends the entire Git repository code

V4 they are working on to the LLM. This is very unlikely given two reasons: the cost of
\Q/ input tokens and the relevance of the entire code to the specific code completion task.
Itis far more likely that only relevant code is preprocessed by Copilot first. Then, only

the necessary information including coding style preferences or relevant classes, code,

and variables, is added to the promptin addition to the cursor’s surrounding context.

48 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

Understanding GitHub Copilot's free account limits,
costs, and policies

To enable GitHub Copilotin your IDE, you first need to subscribe to the service through GitHub’s
platform. Like many other GenAl services, GitHub Copilot is primarily a paid service, though

some exceptions allow free access.

Who is eligible for a free account?

There are three ways to qualify for GitHub Copilot at no cost:

e Free account available to anyone, which includes up to 2,000 code completions and 50

chat requests per month.
e Free pro account for students and educators with a valid university email

e Free pro account for maintainers of popular open source repositories

If you are a student or educator with a university email and the required documentation, you can

apply for GitHub’s Student Pack at https://education.github.com/pack.

If you are a leading maintainer of a popular open source repository, you may have free access to
Copilot. GitHub determines eligibility based on internal criteria, without requiring an application
process. If eligible, upon clicking your profile icon and selecting Your Copilot, you will be directed

to a page titled GitHub Copilot Individual instead of a payment page, as detailed later in this chapter.

Some organizations and enterprises cover the cost of GitHub Copilot access for their users. If
you belong to such an organization or enterprise, you will find a request access button next to
the organization’s name at https://github.com/settings/copilot. In these cases, you will
not be charged for using Copilot, as the organization or enterprise will handle the licensing fees

on your behalf.

Compared to individual accounts, GitHub Copilot for business and enterprises offers additional
features, such as pull request summaries, a knowledge base, and the ability to fine-tune a custom

LLM for enterprise versions. These options come at a higher cost than individual memberships.

https://education.github.com/pack
https://github.com/settings/copilot

Chapter 3 49

Pricing
For individual users, the service is priced at $10 per month or $100 annually. For Copilot business,

therateis $19 per user per month, while the enterprise version increases to $39 per user per month.

Code completion policies

All GitHub Copilot users are governed by specific policies that define the scope of code suggestions,

privacy, and access points, including your IDE and github.com.

A notable policy is suggestions matching public code. Since the GitHub Copilot model is primarily
trained on open source and publicly available code repositories, some of its suggestions may
be subject to copyright protection. To mitigate potential issues, GitHub provides users with an

option to exclude coding suggestions that replicate such code.

Anthropic Claude 3.7 Sonnet in Copilot f'Preuiew); Enabled ~

You can use the latest Claude 3.7 Sonnet model.

Google Gemini 2.0 Flash in Copilot (Preview) Enabled ~

You can use Google’s Gemini 2.0 Flash model in Copilot. Learn more about the public preview of Gemini 2.0 Flash.

Dashboard entry point Enabled ~

Allows instant chatting when landing en GitHub.com

Privacy

Suggestions matching public code (duplication detection filter) Allowed ~

Copilot can allow or block suggestions matching public code. Learn more about code suggestions.

Allow GitHub to use my data for product improvements

Allow GitHub, its affiliates and third parties to use my data, including Prompts, Suggestions, and Code Snippets, for product
improvements. More information in the Privacy Statement.

Allow GitHub to use my data for Al model training Disabled

Allow GitHub, its affiliates and third parties to use my data, including Prompts, Suggestions, and Code Snippets, for Al model training.
More information in the Privacy Statement.

Figure 3.2: Privacy and ownership options in Copilot

github.com

50 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

Q, Quick tip: Need to see a high-resolution version of this image? Open this book
in the next-gen Packt Reader or view it in the PDF/ePub copy.

@ The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this

¢ book by name. Double-check the edition shown to make sure you get the right one.

OfA0

Here, suggestions that match public code are allowed. We also recommend enabling additional
underlying models such as Anthropic Claude and Google Gemini alongside to support further

experimentation.

For business or enterprise accounts, the policies are pre-determined by the administrator of the
organization or enterprise. Individual account users, however, can set their own policies during

account setup or through the Copilot settings page: https://github.com/settings/copilot.

Activating your GitHub Copilot account

To participate in the labs and hands-on exercises in this book, you will need either a free, pro,
business, or enterprise GitHub Copilot account. If you wish to set up an individual account, go

to https://www.github.com, click on your profile icon, and select Your Copilot.

e hi_lahersz 2 x
Hila (Hil) Paz
M Authoring Something New

£ Your profile
[Your repositories
£3 Your Copilot

[Your projects

Figure 3.3: Copilot access in the GitHub account

https://github.com/settings/copilot
https://www.github.com

Chapter 3 51

If you are a leading maintainer of a popular open source repository and qualify for free access to
Copilot, you will be directed to a page titled GitHub Copilot Individual page. Otherwise, you will

be directed to the payment page, where you can select a free trial option or a paid plan.

Select the plan that suits you, adjust settings to align with your individual or company policies

(e.g., enable or disable public code matches), and enter your payment details.
Once completed, you will have access to Copilot services at https://github.com/settings/

copilot as shown in Figure 3.4:

GitHub Copilot

& GitHub Copilot Individual is active for your account

You currently have an active Copilot Individual subscription.
Get started by installing the extension in your preferred IDE.

Copilot in your IDE Copilot in the CLI Chat in GitHub Mobile More features

Figure 3.4: GitHub Copilot settings header

This page shows your access level, provides links to resources for setting up Copilot in your IDE,

and outlines Copilot’s privacy and ownership policies.

With our account now activated, we are ready to proceed and connect Copilot to our IDE.

Setting up Copilot in PyCharm and VS Code

GitHub Copilot is available via a PyCharm plugin or a VS Code extension. The core features of
GitHub Copilot in both IDEs are similar, offering the three interaction modes we will cover in

this book: chat, completion, and analysis.

However, Copilot is more tightly integrated with VS Code, meaning new features, such as Jupy-
ter Notebook support or switching to newer LLMs, are often released in VS Code before they are

available in the PyCharm extension.

Since your GitHub Copilot subscription can be used across multiple IDEs, we encourage PyCharm
users to try VS Code to explore Jupyter Notebook support. However, the labs in this book are
tailored for both PyCharm and VS Code.

https://github.com/settings/copilot
https://github.com/settings/copilot

52 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

GitHub Copilot plugin for PyCharm

To install the GitHub Copilot plugin in PyCharm, go to PyCharm | Settings | Plugins, then search
GitHub Copilot in the marketplace. After installation, you will be prompted to restart your IDE.

[J @ Settings
Q- Plugins Marketplace Installed <3
> Appearance & Behavior Q& Copilot Externally-Paid Code Tools JavaScript
Keymap Search Res... Sort By: Relevance~ GitHUb Copi'l.ot
> Editor
. GitHub Copilot (Instau] GitHub Plugin homepage 7
Plugins @ . —
4 11.2M ¥ 2.58 GitHub
> Version Control POECIRE 1.5.29.7524
> Project: supercharge .
Copilot Dark Theme Reviews Additional Info
> Build, Execution, Deployment 4 84.6K Y 4.61 Nate Brown
> Languages & Frameworks Overview What's New

Figure 3.5: GitHub Copilot Plugin in PyCharm
When your IDE restarts, you will be prompted to log in to your GitHub account.
To check whether the service is available, look for the Copiloticon at the bottom of the IDE. Hov-

ering over it should display Ready.

Ready
7:19 (42 chars, 1 line break) LF UTF-8 g repaces Python 3.11 (su

Figure 3.6: GitHub Copilot plugin icon health check in PyCharm

This confirms that the plugin is set up correctly, allowing us to start using Copilot.

Chapter 3 53

GitHub Copilot extension for VS Code

To install the Copilot extension, navigate to Code | Extensions, search GitHub Copilot, and in-

stall it. When you do this, the GitHub Copilot Chat extension will also be automatically installed.
& Code File Edit Selection View Go Run Termir

EXTENSIONS: MARKETPLACE Lo W

‘ Github Copilot = "T_r’"

GitHub Copilot P 206M ¥ 35
@ Your Al pair programmer

£ GitHub Install |~

GitHub Copilot Chat o 14.9M % 3
@ Al chat features powered by Copilot

: @ Gitrub
Figure 3.7: GitHub Copilot and Copilot Chat extension in VS Code

After the installation, the GitHub Copilot extension window will open, prompting you to authen-

ticate or sign up for a GitHub Copilot account.

To check whether the extension is working properly after authentication, click on the GitHub

Copiloticon in the bottom-right corner to open GitHub Copilot Menu.

3.11.2 ("venv': venv] £ O

Figure 3.8: GitHub Copilot icon in the bottom right window

Adrop-down list will appear, and if you are logged into your GitHub account with a stable internet

connection, the status should display Ready.

54 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

GitHub Caopilot Menu

| Select an option ‘

£3 Status: Ready

£8 GitHub Copilot Chat

| Disable Completions

i Edit Keyboard Shortcuts...
§E§ Edit Settings...
Show Diagnostics...

Figure 3.9: Verifying GitHub Copilot extension status in VS Code

This confirms that the extension is set up correctly, allowing us to start using Copilot.

The three interaction modes — chat, completion, and
analysis
Originally designed to provide tailored code completion suggestions, GitHub Copilot now offers

three key interaction modes powered by LLMs: chat, completion, and analysis:

1. Chatis accessible via a chat window resembling the ChatGPT interface or through an
inline compact view. We will use this mode when we want contextual assistance with
coding-related questions.

2. Completion is available automatically in our files. As we type, Copilot will suggest code
completions based on the code we write. We will use this mode when implementing

new code.

3. Analysisincludes features such as explain, fix, and tests, which are available through the
chat window, the inline chat, and the edits window in VS Code. We will use this mode

when interacting with existing code.

In the next three labs, we will experiment with each of these interaction modes.

Using Copilot chat

The chat feature complements GitHub Copilot’s code completion capabilities. The chat window
can assist with questions related to your code, external topics, terminal commands, and even
the VS Code IDE itself.

In VS Code, you can open the Copilot chat window using Ctrl + Alt + I (or cmd + control + I on Mac).

Alternatively, click on the Copiloticon next to the top search bar of the screen.

Chapter 3 55

2 supercharge 8 v DS os
F 3 2 B SRR <

&

Ask Copilot

Copilot is powered by Al, so mistakes are possible.
Review output carefully before use.

) or type # to attach context
@ to chat with extensions

Type [to use commands

Figure 3.10: GitHub Copilot chat window in VS Code

In PyCharm, you can open the Copilot chat window using Ctrl + Shift + C or by selecting the
GitHub Copilot Chat tab in the left-hand menu.

scratch_24
GitHub Copilot Chat e
FaEINenn: © ¥ New conversation ® - @
T & GitHub Copilot S

1ers. Hi @hilahersz, how can I help you?

&8
I'm powered by AI, so surprises and mistakes are possiblEFRAIITNRFATLSHIY4
verify any generated code or suggestions, and share feedH % = i

learn and improve.

Figure 3.11: GitHub Copilot chat window in PyCharm

56 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

Let us look at an example. Open a new chat window and enter this prompt:

What can you do?

Copilot will respond with examples of use cases across the three interaction modes, such as
refactoring existing code (analysis), generating unit tests (completion), providing version con-
trol assistance (chat), and more. In addition to the response itself, GitHub Copilot chat will also
display the pre-processed context in addition to the promptitself, and the steps taken to prepare
the input for the LLMs such as the following:

e Collecting recent files
e Retrieving Git information

e Analyzing problems and errors
This aligns with the GitHub Copilot process flow we discussed earlier in this chapter.

Here is an example of the prompt, What can you do?, outputin PyCharm:

I can assist you with various programming tasks, such as:

Writing and debugging code

Explaining code snippets and concepts

Providing code examples and templates

Assisting with version control (e.g., Git)

Helping with configuration and setup of development environments

Offering best practices and optimization tips

If you have a specific question or need help with a particular piece of
code, feel free to ask!

Here is an example of the prompt, What can you do?, outputin VS Code:

can assist with various programming tasks, including:
Answering general programming questions

Explaining how the code in your active editor works
Reviewing the selected code in your active editor
Generating unit tests for the selected code

Proposing fixes for problems in the selected code

Scaffolding code for a new file or project in your workspace

Creating a new Jupyter Notebook

Finding relevant code to your query

Chapter 3 57

* Proposing fixes for test failures

* Answering questions about VS Code

* Generating query parameters for workspace search
Running commands

* Explaining terminal outputs

* Providing step-by-step guidance for terminal tasks

How can I assist you today?

The PyCharm plugin and the VS Code extension may produce different outputs for the same
prompt. This occurs because the GitHub Copilot application handles files in PyCharm and VS Code
slightly differently, offers distinct features in each, and incorporates an element of randomness.
Keep in mind that, like any GenAl output, suggestions may not always be accurate or complete,

as we will observe later in this chapter.

Next, we will explore how the chat window can enhance code completion tasks within our IDE,

even when further exploration of a topicis needed (such as an explanation of the geometric mean).

Lab 3.1 — calculating geometric mean with chat
completion

In Lab 3.1, we will explore the geometric mean through the chatinteraction mode. The geometric
mean is a way of averaging numbers that are multiplicative in nature, such as financial portfolio
growth rates, population growth rates, or drug concentrations that vary exponentially over time.
Unlike the arithmetic mean, which calculates the sum of a sequence of numbers divided by its
length, the geometric mean is the n-th root of the product of the numbers:

n

1
Arithematic Mean = ;Z X;

i=1

|

n n
Geometric Mean = (H xl->

i=1
For example, the geometric mean of 5 and 20 is 10, because of the following:

1 1
(20.5)z = (100)zZ = Y100 = 10

58 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

Similarly, the geometric mean of 5, 20, and 10 is also 10, because of the following:
1 1
(20-5-10)3 = (1000)3 = Y1000 = 10

In this lab, we will use the chat window along with code completion. First, we will obtain an ex-
planation of the geometric mean using the chat window. Next, we will utilize Copilot to complete
an implementation based on a function signature, including the name, parameters, type hints,

and return values. Finally, we will print the function’s output by defining sample call parameters.

Lab 3.1 guided walk-through

Open Lab 3.1in the book’s repository at ch3/labs/lab31.py and ensure that you have a stable internet
connection, and that GitHub Copilot is ready.

The starter code consists of three parts:

Part 1isfor practice only, Part 2requires specifying the function signature for code completion,

and Part 3involves adding sample parameters and printing their response.

For Part 1, delete the comment, open the Copilot chat window and enter the following prompt:

Explain the geometric mean.

This prompt will provide an explanation of the geometric mean. Note that the explanation may
be truncated due to the max_tokens limit of Copilot, which we have no control over, or contain
raw mathematical formatting, such as LaTeX code instead of compiled equations. Despite this,

it should still provide enough information for us to understand the topic.

For Part 2, delete the comment and type the function signature to calculate the geometric mean

of two floating-point numbers:

def get_geometric_mean_of_two_numbers(
a: float,
b: float,

) -> float:

Chapter 3 59

This function signature, with its name, parameters, type hints, and return type, is considered a

complete prompt to Copilot that should yield a desirable implementation.

In Part 3, delete the comment and add a sample call that tests the implementation. Enter the

following prompt:

numl: float = 5.0
num2: float = 20.0

print

The print statement acts as the cue for Copilot, which will likely suggest a call to the get_

geometric_mean function using numl and num2 as arguments.

If you followed all the steps correctly, your code should look like this:

def get_geometric_mean_of_two_numbers(

a: float,
b: float,
) -> float:

return pow(a * b, 1 / 2)

5.0
20.0

numl: float
num2: float

print(get_geometric_mean_of_two_numbers(numl, num2))

Lab 3.1is now ready to run and will print the geometric mean of 5 and 20, which is as follows:

10.0

Lab 3.1 analysis

In this lab, we used Copilot chat to learn about the geometric mean. We also leveraged code

completion based on either a function signature as a starter code or a print call as a cue.

For your reference, here is the Copilot chat response to the prompt, Explain the geometric mean.
We generated it using the VS Code chat window with the GPT-40 model. The response includes

raw LaTeX code and is truncated before the full output:

>> The geometric mean is a measure of central tendency that is
particularly useful for sets of numbers whose values are meant to be
multiplied together or are exponential in nature. It is defined as the nth

root of the product of n numbers.

Formula

60 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

For a set of (n) positive numbers (x_1, x_2, \ldots, x_n), the
geometric mean (G) is given by:

[G = \left(\prod_{i=1}"{n} x_i \right)~{\frac{1}{n}}]

Steps to Calculate

Multiply all the numbers together to get the product.

Take the nth root of the product, where (n) is the total number of
values.

Example
Consider the numbers 2, 8, and 4:
Multiply the numbers: (2 \times 8 \times 4 = 64)

Since there are 3 numbers, take the cube root: (\sqrt[3]{64} =

Choosing the underlying models to power the chat is available in the bottom-right corner of the

chat window.

Working Set

+ Add Files...

h; P R Claude 3.5 Sonnet (Preview)
dit files in your workspace

- ol-mini (Preview)

ol-preview (Preview)

Ln1,Col 146 Spaces: 4 Spac®®

Figure 3.12: Model selection for the Copilot chat window

We found this response lacking due to the truncation of the example, as Copilot imposes a max_
tokens limit on model outputs, and the formatting of mathematics as raw LaTeX code. However,
for topics we are already familiar with, the chat window saves considerable time and eliminates

the need to use external tools, such as Google or ChatGPT.

Next, we will further explore GitHub Copilot’s code completion capabilities using a variety of

keyboard shortcuts to make our experience even smoother.

Chapter 3 61

Lab 3.2 — introducing completion and keyboard
shortcuts for geometric mean calculations

Keyboard shortcuts are vital for enhancing a programmer’s efficiency, especially when working
with Copilot, which provides a wide range of options to accept or reject suggestions partially or
fully. This lab will focus on implementing the geometric mean using code completion, incorpo-

rating keyboard shortcuts to do the following:

e Rejectasuggestion
e Regenerate a rejected suggestion
e Accepta full suggestion or parts of it

e Switch between different code options.

In this lab, we will implement the geometric mean for a sequence of floating-point numbers using
a function signature and an instructive prompt to validate the input arguments. We will explore

various implementation suggestions, selectively accepting or rejecting parts of them.

Important note

This lab includes standard keyboard shortcuts for working with Copilot. If any of
\G/\/ these are missing or you would prefer different shortcuts, you can customize them
by editing your keymap. In PyCharm, navigate to Settings | Keymap, and in VS Code,
go to Settings | Keyboard Shortcuts. For further assistance with keyboard shortcuts,

refer to the Appendix.

Lab 3.2 guided walk-through

Open Lab 3.2 in the book repository at ch3/labs/lab32.py and ensure that you have a stable internet
connection, and that GitHub Copilot is ready.

There is no starter code for this lab. Our taskis to begin by typing an instructive function signature

to calculate the geometric mean of a sequence of floating-point numbers.

Add the following code to the file. If you type it rather than copy and paste it, Copilot may offer

early completion suggestions. Ignore these until you complete the prompt:

def get_geometric_mean(*nums):

62 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

At this point, you should already see completion suggestions by Copilot. Use the following in-

structions for both PyCharm and VS Code to explore these suggestions:

ch3 > solutions > @ lab32.py > [get_geometric_mean
1 § def get_geometric_mean(
2% I *¥nums: float,
32) => float:

if not nums:
return @

product = 1

for num in nums:

product *

i o raditcF e f leninums))
return product = '.I / len{nums))

Figure 3.13: Copilot code completion example in VS Code

To experiment with Copilot’s keyboard shortcuts, follow these steps. If any of the keyboard short-

cuts are different or missing in your interface, make sure to find the alternate shortcuts:

1. Accept the entire code completion by pressing Tab.
2. Then,undoitby Ctrl+Z /cmd + Z.

3. In PyCharm, accept a single line from the suggestion by pressing Ctrl + Alt + the right

arrow (cmd + control + right if you are a Mac user).

4. InVSCode, thereis no default keyboard shortcut for this. Instead, hover over the suggested

text, click on the ellipsis (...), and select Accept Line.
5. Then, undo it by pressing Ctrl + Z [cmd + Z.

6. Accept a single word from the suggestion by pressing Ctrl + the right arrow (cmd + the

right arrow if you are a Mac user).
7. Then, undo it by pressing Ctrl + Z [cmd + Z.
8. Hide the suggestion by pressing Esc.
9. Retrigger the Copilot suggestion by pressing Alt + | (option + | if you are a Mac user).

10. Toggle to the next suggestion by pressing Alt + | (option + | if you are a Mac user). Go back

to previous suggestions by pressing Al + [(option + [if you are a Mac user).

11. InPyCharm, access the code completion pane by right-clicking on Copilot’s suggestions

and selecting Copilot: Open Completion.

12. In VS Code, access it by pressing Ctrl + Enter.

Chapter 3 63

Next, we encourage you to modify the prompt by adjusting the function name, arguments, type
hints, or return type. Keep practicing with the keyboard shortcuts and observe how the comple-

tions evolve with each change.

Lab 3.2 analysis

In this lab, we practiced keyboard shortcuts in PyCharm and VS Code to streamline pairing with

Copilot, making it easier to accept, reject, or switch between completion suggestions smoothly.

For your reference, a sample completion for the get_geometric_mean implementation in Py-

Charm is shown in Figure 3.14.

2 |ab32,

def get_geometric_mean(new*
2 *nums: float,
| 3) -> float:
[4 . ”n.
Get the geometric mean of a sequence of numbers

mare

product: float

if not len(nums):
raise ValueError("Cannot calculate =

oty sequence")

Next A |
product = reduce(lambda a, b: a * b, ny Previous NI
if product < @ and len(nums) % 2 == 0: Accept -

raise ValueError("Cannot calculate Accept Next Word 8

Accept Next Line ~¥->

return pow(product, 1 / len(nums))
Caopilot: Open Completions

Figure 3.14: Copilot inline menu in PyCharm

When right-clicking on the completion and selecting Copilot: Open Completion, the completion

pane displays various suggestions provided by Copilot.

64 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

GitHub Copilot r

JE

"""Calculate the geometric mean of the input numbers.™"""

return (len(nums) * (math.prod(nums))) *x (1 / len(nums))

Accept solution

return (prod(nums)) *x (1 / len(nums))

y sequence")
Accept solution

"""Calculate the geometric mean of a list of numbers.

Args:

nums: A list of numbers.

Returns:

The geometric mean of th

numbers.

Figure 3.15: Copilot code completion pane in PyCharm
We can then choose to accept any of these suggested solutions.

Similarly, VS Code will also display a variety of different completion suggestions.

GitHub Copilot Suggestions for lab32.py X m

GitHub Copilot Suggestions

10 Suggestions

Suggestion 1

) => float:

Calculate the geometric mean of the given numbers.

from functools import reduce
from math import pow

if not nums:
raise ValueError("No numbers provided")

return pow(reduce(lambda x, y: x * y, nums), 1 / len(nums))

Figure 3.16: VS Code Copilot code completion pane

Chapter 3 65

Here too, we can then choose to accept any of these suggested solutions.

Important Note

V4 In later chapters, we will explore best practices for prompt precision and prompt
\E/‘ engineering techniques. These will help us better structure a function’s content by

covering aspects like input validation, formatting with type hints, and handling side

effects such as monitoring and logging.

Next, we will explore Copilot’s code analysis options, demonstrating how they complement code

completion when working with existing code.

Analyzing code with Copilot

The recently introduced code analysis features in both PyCharm and VS Code complement GitHub
Copilot’s code completion capabilities. It can be accessed via the Copilot menu or the inline chat

window using commands such as /fix /explainand /test

To use these features, right-click on your code, select Copilot, and you will see the available op-

tions. This menu is accessible in both PyCharm and VS Code.

Here is how the menu appears in PyCharm:
Execute Line in Python Consale LDRE

Execute Cell in Console e
Simplify This
Run File in Python Console
Generate Docs
[E Compare with Clipboard
Generate Tests

Diagrams >
; Fix This
= Inzert HF Model
Explain This
) Create Gist...
& Analyze with SonarLint {reg Reference File in Chat
GitHub Copilot 5 + Inline Chat A

Lineage

Figure 3.17: Copilot code analysis in PyCharm

66 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

Here is how the menu appears in VS Code:

Show Call Hierarchy
Show Type Hierarchy

Copilot » Editor Inline Chat

Rename Symbol

Change All Ocecurrences Fix

Format Document Generate Docs
Format Document With... Generate Tests
Refactor...

i Add File to Chat
Source Action...

Figure 3.18: Copilot code analysis in VS Code

For quicker access, you can use Copilot inline chat commands. In VS Code, press Ctrl + I (cmd +
I for Mac).

> |

[ir=1
fc =]

‘ Jexplain 'Explain how the code in your active editor works

def get_geometric_mean{xnums: fleat} -> fleat:

Get the geometric mean of a sequence of numbers

if not len{nums):
raise ValueError("Cannot calculate the geometric mean of an empty

Figure 3.19: Copilot editor inline chat in VS Code

In PyCharm, press Ctrl + Shift + I (cmd + shift + I for older Mac versions of PyCharm).

& fexplain >

if not len(nums):
raise ValueError("Cannot calculate the geometric mean of an empty sequence")

product = reduce(lambda a, b: a * b, nums)
if product < 0 and len(nums) % 2 ==

Figure 3.20: Copilot inline chat in PyCharm

In the inline chat window, type your code analysis command, such as /fix or /explain.

Chapter 3 67

Analyzing code with Copilot editor window in VS Code
GitHub Copilot has recently introduced a dedicated editor window to enhance editing tasks and
streamline working across multiple files simultaneously. To access the window, open the chat

window and select Edit, as shown in Figure 3.21I:

<« O supercharge S I A= |
@ lab33.ipynb X & [0 - CHAT + 9O - x
ch3 > labs > @ lab33.ipynb > M+ Lab 3.3: Code analysis with GitHub Copilot > @ def get_geome @
<» Generate -+ Code - Markdown | [> RunAll - B select Kernel
Ask Copilot

Lab 3.3: Code analysis with GitHub

Copilot is powered by Al, so mistakes are possible.

Copilo‘t Review output carefully before use.
- @ or type # to attach context
>~ def get_geometric_mean_for_three_numbers(a, b, c): @ to chat with extensions

return (axbxc)*x(1/2)

Python Type / to use commands

from functools import reduce
Figure 3.21: Accessing Copilot’s edits window
In this editor window, you can add files you want to work on or target specific sections using the
annotation #selection, as shown in Figure 3.22:

%@ singleton.py @ lab33py X >~ @M - B 2 + X%

ch3 > labs > @ lab33.py > @ get_geometric_mean_for_three_numbers

1 from functools import reduce == @
2 g
3
4 def get_geometric_mean_for_three_numbers(a, b, c): Edit with COleOt
5 return- (axbxc)*k(1/2)
6 PREVIEW
7
8 def get_geometric_mean(#nums: float) -> float: Start your editing session by defining a set of files
9 e that you want to work with. Then ask Copilot for the
10 Get the geometric mean of a sequence of numbers changes you want to make.
1
12 Copilot is powered by Al, so mistakes are possible.
13 if not len(nums): Review output carefully before use.
14 raise ValueError("Cannot calculate the geometric

mean of an empty sequence')
15 fEyeasy @ ortype # to attach context
16 product = reduce(lambda a, b: a * b, nums)
17 if product < @ and len(nums) % 2 == Working Set (1 file) =
18 raise ValueError("Cannot calculate the geometric

& %@ lab33.py Open Editor

mean")
19 + Add Files...
20 return pow(product, 1 / len(nums))
21 #selection
22
23 B ¢ GPT40v B>

Figure 3.22: Working with #selection in Copilot edits window

68 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

The edits window supports the slash commands such as /fix, /explain, and /test, as well as
tailored instructions to modify your code. For instance, to add input validation for float inputs

to the following function:

def get_geometric_mean_for_three_numbers(a, b, c):

We can type the prompt:

Copilot will generate suggestions to include input validation for float types, as shown in Figure 3.23:

@ lab33py [¢] ® o [e) 5 o
ch3 > labs > @ lab33.py > @ get_geometric_mean_for_three_numbers .
1 from functools import reduce ‘ hilahersz

#selection add input validation for float inputs.

& r Selection

4 def get_geometric_mean_for_three_numbers(a, b, c}:

5 if not all(isinstance(i, float) for i in [a, b, c]): EIE)

6 raise TypeError("All inputs must be floats")

7 return (@xb¥c)x(1/2) & GitHub Copilot

8

9 > Used 1 reference

10 def get_geometric_mean(#nums: float) -> float:

1 lab33.py

12 Get the geometric mean of a sequence of numbers Add input validation to ensure all inputs are floats.
13 e .

14 % lab33py +2-0

15 if not len(nums):

16 raise ValueError(“Cannot calculate the geometric mean of an empty [Rae B2

. sequence™) working set (11ile) [0l R0 = &
18 product = reduce(lambda a, b: a % b, nums) @ lab33.py ch3/labs

19 if product < @ and len(nums) % 2 == 8: | Add Files.. B lab33.ipynb X

20 raise ValueError(“Cannot calculate the geometric mean")

Edit files in your workspace

22 return pow(product, 1 / len(nums)) =
23 Accept Discard | 10f1 T | B V) GPT 40 ~

Figure 3.23: Adding input validation with the edits window

With this prompt, Copilot presents suggestions in a version control format within the working
set file, allowing us to approve or revert each change individually. We can also click Accept to

apply all changes at once.

In the next chapters, we will explore best practices for crafting precise prompts to achieve more
desirable results with Copilot, including its edits window. Later in the book, we will delve deeper

into using the edits window for prompt engineering techniques and refactoring code.

Now that we have explored how to analyze and edit code with Copilot, we can practice addressing

and fixing a faulty implementation of the geometric mean, using both VS Code and PyCharm.

Chapter 3 69

Lab 3.3 — working with Copilot in VS Code’s Jupyter
Notebook for Code Analysis

The following lab focuses on code analysis. We will use the /fix command to fix an incorrect
implementation of the geometric mean for three floating-point numbers. We will then use the
/explain command to get a brief explanation of an implementation for the geometric mean of

a sequence of numbers.

The lab is available in two formats: a Jupyter Notebook or a Python script. If you are using VS Code,
choose the Jupyter Notebook version to explore Copilot’s features for notebooks. Since Jupyter
Notebook support is not yet available in PyCharm, a Python script version is also provided. In
Lab 3.3 guided walk-through, we will cover both formats and use Copilot’s code analysis features

to fix and understand code more efficiently.

Lab 3.3 guided walk-through

Open Lab 3.3 from the book repository: If you are using VS Code, go to ch3/labs/lab33.ipynb, and if
you are using PyCharm, go to ch3/labs/lab33.py. Make sure you have a stable internet connection,

and that GitHub Copilot is ready.

Our starter code includes two functions that we will apply code analysis to. The first function,
get_geometric_mean_for_three_numbers,incorrectly implements the geometric mean for three

floating-point numbers, as it takes the square root of their product instead of the cube root.

The second function, get_geometric_mean, calculates the geometric mean for a sequence of
numbers of any length. It first validates that there is at least one item in the sequence. Then, it
computes the product of all the numbers using a reduce operation. It also checks that the root
results in a real number, which occurs if either the product is positive, or the required root is odd.

Finally, after validation, it returns the n-th root of the product for a sequence of length »:

from functools import reduce

def get_geometric_mean_for_three_numbers(a, b, c):
return (a*b*c)**(1/2)

def get geometric_mean(*nums: float) -> float:

Get the geometric mean of a sequence of numbers

70 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

if not len(nums):

raise ValueError("Cannot calculate the geometric mean of an empty
sequence")

product = reduce(lambda a, b: a * b, nums)
if product < © and len(nums) % 2 ==

raise ValueError("Cannot calculate the geometric mean")
return pow(product, 1 / len(nums))

The calculation in get_geometric_mean_for_three_numbers is incorrect, as it takes the square

root of the product of the numbers instead of the cube root.
To fix this code, choose the fix option or type /fix in the inline chat.
Copilot should suggest replacing the incorrect square root with the cube root:

return (a*b*c)**(1/3)

For your reference, here is a sample output in VS Code with the proposed fix (note that this fix

could be implemented in your code using the Accept button):

def get_geometric_mean_for_three_numbers{a, b, c):
@ rrix

& | would modify the function to correctly calculate the geometric mean for three numbers by
raising the product to the power of 1/3 instead of 1/2.

| lAsk Copilot a6 |
[hccept | Accept & Run] Discard] O] = |

| return (@ * b * ¢) #= (1 / 3)

Figure 3.24: Copilot fix suggestion in VS Code

Chapter 3 71

In PyCharm, here is a sample output with the proposed fix. To accept it, click the Preview button
and then Accept.

def get_geometric_mean_for_three_numbers(a, b, c): Hila Paz Herszfang

&8

&3 GitHub Copilot Sa oo
3 steps completed successfully

The problem in the selected line is that the exponent should be (1/3) instead of (1/2) to correctly calculate the
geometric mean of three numbers.

return (a * b % c) *% (1 /[3)

Using 1 Reference

en

return (gkbxc)*x(1/2)
Figure 3.25: Copilot fix suggestion in PyCharm
In the top-left corner, the preview icon is the first on the left. Click it to open the preview mode:

S8 0

Preview

Figure 3.26: The Preview button for accepting Copilot changes in PyCharm

The preview window displays the original code on the left and the proposed fix on the right, with
an Accept button to confirm the changes.

72 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

8|

&3 GitHub Copilot EF@ O U

» 3 steps completed successfully

get_geometric_mean_for_thres_nu... net_nacmetric_mean_for_three_nu...

return (axb*c)**(1/2) 5 5 ¢ Accept n (a * b * c) *x (1 / 3)
~He

> Using 1 Reference

return (axbxc)#x(1/2)

Figure 3.27: Accepting Copilot fix suggestions in PyCharm
Accept this proposed implementation.

Next, move your cursor to the get_geometric_mean function and examine how Copilot explains
its four parts: validating the input length, computing the product, verifying that the geometric

mean is real, and returning the n-th root of the product.

Right-click on the code, select Copilot | explain, or use the keyboard shortcuts to open the inline

chat and type /explain. Copilot should cover all four steps of the function.

Lab 3.3 analysis

In this lab, we used the code analysis mode to efficiently review existing code. Since a sizable
portion of our work as software developers involves maintaining code rather than generating

new code, these extended capabilities are invaluable for enhancing our productivity.

Chapter 3 73

For reference, here is the code explanation we obtained in VS Code, covering the four steps of

the function:

The provided code defines a function get_geometric_mean that calculates
the geometric mean of a sequence of numbers. The function accepts a
variable number of floating-point arguments (*nums) and returns a
floating-point result.

The function begins by checking if the sequence of numbers is empty using
if not len(nums). If the sequence is empty, it raises a ValueError with
the message "Cannot calculate the geometric mean of an empty sequence".
This ensures that the function does not proceed with an invalid input.

Next, the function calculates the product of all the numbers in the
sequence using the reduce function combined with a lambda function (lambda
a, b: a * b). The reduce function applies the lambda function cumulatively
to the items of the sequence, effectively multiplying all the numbers
together.

After calculating the product, the function checks if the product is
negative and if the number of elements in the sequence is even (if product
< @ and len(nums) % 2 == @). If both conditions are true, it raises a
ValueError with the message "Cannot calculate the geometric mean". This
check is necessary because the geometric mean of a set of numbers that
includes an even number of negative values is not defined in the real
number system.

Finally, the function returns the geometric mean by taking the nth

root of the product, where n is the number of elements in the sequence
(pow(product, 1 / len(nums))). The pow function is used to compute the
nth root, which is equivalent to raising the product to the power of the
reciprocal of the number of elements.

Overall, the function is designed to handle various edge cases and ensure
that the geometric mean is calculated correctly for valid inputs.

74 A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

Overall, Copilot explains all four steps of the function well and addresses its input. However, the
interpretation of the real geometric mean outputis missing from Copilot’s explanation, as shown

in the highlighted part of the output:

After calculating the product, the function checks if the product is

negative and if the number of elements in the sequence is even...

Rather than being a limitation of the tool, this suggests that our implementation could be im-

proved. We will explore this further in Chapter 4.

Summary

In this chapter, we took our first steps with the GitHub Copilot by setting up subscriptions and
enabling Copilot in our IDE. Through three labs, we explored its three interaction modes: chat,

completion, and analysis.

After implementing a basic code completion program in Chapter 2, we were able to better under-
stand how GitHub Copilotis designed. Copilot enhances the code to be completed with contextual
information, such as recent edits, coding preferences, and Gitlogs. This information is processed
into user and system prompts, which are then fed to an LLM. The model’s output is further pro-

cessed before being presented to the user.

Throughout the three labs, we utilized the three interaction modes to implement and refine several
calculators of the geometric mean. We saw how a function signatures can be used as a prompt to
Copilot. We also experimented with various completion options using keyboard shortcuts. While
mastering these techniques requires some practice, they can significantly boost productivity

when working with Copilot.

In the next chapter, we will discuss the three pillars of good model output: model mastery, eval-
uation metrics, and precise prompts. We will also learn about the best practices in making our
prompt precise with the five S’s: having a structured prompt, providing surrounding context,

focusing on a single task, and having specific and short instructions.

Chapter 3 75

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions.
Question 1: Is Copilot a paid service?

Answer: Copilot is primarily a paid service, with a few exceptions including free limited access.
Students, educators, and maintainers of leading open-source repositories are also eligible for a

free subscription.
Question 2: What are the three interaction modes for GitHub Copilot?

Answer: Copilot’s original task of code completion is complemented by two additional features:
chat, which is available inline or through the chat window, and code analysis, which is accessible
via the Copilot right-click menu, using slash commands, such as /fix and /explain, or in the

edits window within VS Code.

Further reading

To learn more about the topics that were covered in this chapter, look at the following resources:

e GitHub Copilot documentation: https://docs.github.com/en/copilot/quickstart

e Copilot subscription plans: https://docs.github.com/en/copilot/about-github-
copilot/subscription-plans-for-github-copilot

e Copilotsetupinyour IDE: https://docs.github.com/en/copilot/setting-up-github-
copilot/setting-up-github-copilot-for-yourself

e Copilotbestpractices: https://docs.github.com/en/copilot/using-github-copilot/
best-practices-for-using-github-copilot

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before

you start.

https://docs.github.com/en/copilot/quickstart
https://docs.github.com/en/copilot/about-github-copilot/subscription-plans-for-github-copilot
https://docs.github.com/en/copilot/about-github-copilot/subscription-plans-for-github-copilot
https://docs.github.com/en/copilot/setting-up-github-copilot/setting-up-github-copilot-for-yourself
https://docs.github.com/en/copilot/setting-up-github-copilot/setting-up-github-copilot-for-yourself
https://docs.github.com/en/copilot/using-github-copilot/best-practices-for-using-github-copilot
https://docs.github.com/en/copilot/using-github-copilot/best-practices-for-using-github-copilot
http://packtpub.com/unlock
http://packtpub.com/unlock

Best Practices for Prompting
with ChatGPT

GenAlI applications excel in certain aspects of coding and often achieve high scores in coding
assignment tests. Ongoing improvements to these models continue to push the boundaries, as
they begin to master a wide range of coding-related tasks and supercharge the way we develop

and refine code.

To achieve good results from GenAl applications, we will focus on three pillars: model mastery of
the specific task at hand, evaluation metrics to critically assess the output, and crafting precise

prompts to clearly achieve the desired outcome.

This chapter focuses on best practices for crafting prompts in coding-related tasks, guided by the
five S’s: structured prompt, including surrounding context, focusing on a single task, providing
specificinstructions, and keeping the prompt as short as possible. Later in the book, we will delve
into advanced prompt engineering techniques, methods to construct manual and automatic

evaluation metrics, and strategies for improving the model’s mastery of specific tasks.

Through two interactive labs, we will explore how following best practices for crafting prompts
for coding-related tasks leads to reusable prompt structures. We will apply these principles to
refine a prompt for translating Graphical User Interface (GUI) actions into Command-Line In-
terface (CLI) commands. We will also review a sample prompt published by OpenAl and analyze
it through the lens of the five S’s for crafting prompts. This analysis will help us understand how
these examples yield desirable outcomes and highlight potential improvements, which we will

explore further in later chapters of the book.

78 Best Practices for Prompting with ChatGPT

In this chapter, we will cover the following topics:

e Can we trust GenAl for coding tasks?

e Best practices for crafting prompts for coding tasks
e Crafting prompts for ChatGPT

e Prompt samples by OpenAl

Technical requirements

To get the most out of this chapter, ensure you have the following:

e OpenAl account with access to ChatGPT

e Access to the book’s repository available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

If you need help creating an OpenAl account, refer to the Appendix for detailed guidance.

Can we trust GenAl for coding tasks?

Large language models (LLMs) are continuously improving their capabilities in mathematics
and coding, achieving impressive results in both areas. For instance, internal research by OpenAl
showed that the GPT-o0l model scored correctly on 11 out of 15 questions in the American Invi-
tational Mathematics Examination (AIME). This performance not only exceeds the threshold
required to qualify for the USA Mathematical Olympiad (USAMO) or the USA Junior Mathe-
matical Olympiad (USAJMO) but also places the model in the top percentile of participants. Sim-
ilarly, when evaluated on coding problems from the Codeforces competition website, the internal
research showed that the model performed at the 89th percentile, highlighting its proficiency in
tackling challenging coding tasks.

Yet, the web is filled with screenshots, videos, and examples of highly undesirable outputs from
certain prompts. Notlong ago, the author encountered a pull request (PR) containing a file named
new.env that exposed seven secret keys. A post-mortem meeting dedicated to thatissue revealed

that the data scientist who committed the file had used the following prompt:

How can I commit my files to GitHub from the PyCharm terminal?

The output included the following instruction:

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 4 79

The data scientist, who typically utilized PyCharm’s Git tool window and was used to choosing
the files to commit manually, failed to notice that the file named new. env with the secret keys
had been included in the commit. This incident highlights that following GenAl-generated in-

structions can sometimes lead to risky outcomes.

This example does not imply that we should distrust all GenAl output or validate every detail.
The fault did not occur because of the model’s hindsight about exposing secret keys through a
.env file. Instead, it stemmed from a poorly crafted prompt combined with the model’s bias to-

ward suggesting CLI commands such as git add ., which frequently appear in online manuals.

We argue that crafting a better prompt, such as the following, would lead to a more desirable

model output:

CONTEXT: You will be provided with PyCharm GUI steps enclosed with {{{
STEPS }}} to execute a process enclosed with {{{ PROCESS }}}.

TASK: Convert the steps to CLI commands.

PROCESS: {{{ Commit and push files to a remote git branch }}}

STEPS: {{{

1. Review changed files

2. Stage the desired files

3. Add a commit message

4. Commit the files

5. Validate branch name

6. Push the changes to the remote branch
13}
CLTI COMMANDS:

This prompt, which follows the best practices for crafting effective prompts, is structured, provides

surrounding context for the problem, focuses on a single task, is specific, and is short enough. In

this chapter, we will explore how to create such prompts and understand why following these

practices leads to better GenAl outputs.

The three pillars of good outputs

To achieve good results from GenAl applications, we will focus on the three pillars: model mastery,

evaluation metrics, and crafting precise prompts.

Model mastery refers to an LLM’s ability to handle a specific task described in a prompt. For
instance, GPT models are extensively trained in Python code and problems such as those found

on LeetCode, a platform for coding interview preparation. However, when the task deviates from

80 Best Practices for Prompting with ChatGPT

mainstream topics, such as integrating Python threading to parallelize code execution across
cores and virtual cores, there is significantly less training material available online, leading to
outputs that may not match the quality of those for well-covered topics. Keep in mind that for
such topics, LLM outputs may be suboptimal. However, we can enhance model mastery using
techniques such as fine-tuning to achieve more desirable outputs. This will be covered in greater

detail later in the book.

Evaluation metrics refer to the manual and automatic methods we use to assess the quality of
GenAl outputs. Effective prompting always involves evaluating the GenAl output, as it is not
guaranteed that good results will be achieved on the first attempt. Manual evaluations involve

tasks we can personally verify, such as the following:

e Reading code in a language we recognize, such as Python
e Asking for CLI commands we can identify as incorrect
e Evaluating visual outputs such as plots to see whether they align with our expectations
e Verifying straightforward outputs, such as ensuring a requested CSS color matches light
pink
Automatic evaluations rely on computational checks, such as:

e Compiling suggested code to ensure it runs without errors.
e Running unit tests to validate functional correctness.

e Using frameworks such as OpenAl Evals to systematically assess outputs.

These evaluations help detect faulty outputs and guide iterative improvements toward better

suggestions.

OpenAl Evals in brief

Evals is a system designed to assess the performance of LLM applications by using
a collection of prompts and expected outputs. These can include prompts and out-
\Q/’ puts provided by the system itself or custom examples that we create. Accessible
via both Python package installers and a CLI, it compares the application’s outputs
against the expected results and assigns a performance score to the full set. In later
chapters, we will delve into strategies for improving evaluation metrics and explore

how to effectively leverage the OpenAl Evals system for evaluating GenAl outputs.

Chapter 4 81

Precise prompts refer to how closely the instructions given to the model align with the actual
task we want it to perform. When prompts are ambiguous, the model is likely to fill in gaps with

assumptions based on its training data, which may not always align with the task at hand.

For example, the promptHow can I commit my files to GitHub from the PyCharm terminal?
isless precise than a prompt providing specific steps performed in the PyCharm GUI and arequest

to convert these steps to CLI commands.

Next, we will explore best practices for designing prompts for coding tasks and learn how to refine

these prompts into precise inputs that produce high-quality outputs.

Best practices for crafting prompts for coding tasks

When working with GenAl applications for coding-related tasks, the best practices for crafting

precise prompts can be summarized by the five S’s:

e Structured prompts with a clear separation between the instructions and provided data

e Surroundinginformation that provides context for the problem, such as the code language

for the provided code and whether it compiles
e Single-task focus to ensure each prompt addresses only one objective

e Specific instructions detailing how the coding task should be performed, rather than

using generic requests

e Short and minimal prompts that avoid fluff, redundant, or overly verbose instructions

Let us dive into each of these practices.

Structured

Just as well-written, functional Python code separates logic from data, a good prompt should
also distinguish instructions from provided data. When including elements such as steps, code
snippets, or code drafts, ensure they are separated from the main instructions and aliased ap-

propriately for clarity and reusability.

Replace unstructured prompts that mix supporting data with instructions, such as the following:

Convert the COBOL code
IDENTIFICATION DIVISION.
PROGRAM-ID.

to Python.

82 Best Practices for Prompting with ChatGPT

Use a structured approach that separates the instructions from the data:

CONTEXT: You will be provided with a COBOL code enclosed with {{{ COBOL
CODE }}}.

TASK: Your task is to convert it to Python, with the following guidelines:

COBOL CODE: {{{

31}
Python Code:

This structured prompt is simple to reuse with other COBOL snippets.

Surrounding information

When specifying the surrounding context, include information about the data relevant to the prob-

lem. Here are three examples of three different prompt pieces that could be used for different tasks:

e You are provided with Python code / a function / a function signature.
e You are provided with a Python function that contains a bug.

e You are provided with GUI steps.
These instructions are general and avoid specific details, making them reusable:

e The first and second examples do not specify any function

e The third example does not describe specific GUI steps

As a result, these prompt pieces are reusable across various tasks.

Single task per prompt

Always aim for a single task in your prompts. This approach not only improves your ability to
evaluate the model’s output by focusing on a single task but also increases the likelihood that
the model has encountered similar tasks during its training, enhancing its mastery of the topic.

For example, in refactoring tasks, refrain from combining multiple objectives, as follows:
Explain the following function and fix compilation bugs.
While LLMs are well trained on both individual tasks, combining them into a single prompt may

be less common, reducing the model’s mastery of the topic. Instead, focus on either explaining

the function or fixing its compilation bugs.

Chapter 4 83

Specific instructions

As software developers, it is tempting to use keywords such as optimize, improve, refactor, or scale.

However, these are broad and ambiguous, often leaving room for interpretation by the model.
To achieve better results, use specific instructions, such as the following:

. Use list comprehensions instead of for loops.
e Use np.array to vectorize for loop computations.
e Convert hard-coded integers to global constants.

e Cache function results using lru_cache.

Specificinstructions eliminate ambiguity, ensuring the model understands exactly what changes

or actions are expected, and increase the likelihood of producing the desired outcome.

Short prompts

Focus on including only relevant information, leaving fluff out, and avoiding ambiguity in your
language. Note that this does not mean that you should avoid valuable and relevant information.
With the GPT-ol model supporting over 65,000 tokens (about 164 pages), it can handle longer

prompts if its content is minimal and relevant.
For example, avoid phrases such as the following:

I think that the following function has a bug [...]

Prefer instructions such as the following:

find the compilation error in [...]

Additionally, avoid vague phrases such as the following:

It looks like this for loop could be converted to a list comprehension.

Prefer instead the following instruction:

Convert the for loop to a list comprehension.

Keeping your prompts minimal and relevant and avoiding fluff and ambiguity allows the model

to focus on the specific instructions at hand.

Next, we will see how to adapt these best practices to crafting prompts for ChatGPT.

84 Best Practices for Prompting with ChatGPT

Crafting prompts for ChatGPT

When crafting prompts for ChatGPT, we can apply the structured approach suggested earlier:

CONTEXT:
TASK:
SUPPORTING_DATA: {{{

39
COMPLETION:

Replace SUPPORTING_DATA with terms such as CODE, STEPS, OLD_CODE, or any other appropriate
label for the provided data. Replace COMPLETION with terms such as SOLUTION, CLI COMMANDS,
NEW_CODE, or another label that matches the desired model output.

When working with the GPT-40 model with the integrated canvas editor, apply the following

structure:

CONTEXT:
TASK:
SUPPORTING_DATA: {{{ }}}

To access it, start a new GPT-4o0 chat and type the following to launch the canvas editor:

Open Python editor

Then, add your supporting code to the Python editor as you would in any IDE, as shown in Figure
4.I.

@S @& cChatGPT 40 with canvas X New

import Random
a = random.randint(1,12)
b = random.randint(1,12)
for i in range(10):
© & New question = "What is "+at" x "+b+"? "
answer = input(question)
if answer = axb
Here you go! W'\L' would you like to work print (Well done!)
else:
print(“No.")

Open Python editor.

on?

CONTEXT: You will be provided with i

Python code in the Python editor with
explanation enclosed with

{{{ CODE_EXPLANATION }}} that may
rontain errars enclaced with {£{ FRRORS

0

ChatGPT can make mistakes. Check important
info.

Figure 4.1: GPT-40 with canvas editor for Python

Chapter 4 85

ChatGPT will edit your code based on your request and provide additional output in the chat

window, as shown in Figure 4.2:

€% & ChatGPT 4o with canvas X New
4. Error handling for input
casting import random
0

def multiplication_gquiz():
Seed for reproducibility
random. seed(42)

® Edited

for i in range{180):
The code has been corrected to address

a = random. randint(1, 12)
the issues. It now imports the correct b = random.randint(1, 12)

module, ensures reproducibility, uses
b G I cibility, question = f"What is {a} x {b}? "

logical variable scoping, and handles try:

input casting errors. Let me know if you answer =cIntiinputiquestion))
if answer == a * b:

need further adjustments! print("Well done!")
else:

Mo P print("No.")

except ValueError:
print("Invalid input. Please enter a number.")
Message ChatGPT
Run the quiz

L[j) m multiplication_quiz()

Figure 4.2: Sample edited code from canvas editor
Later in this chapter, we will use the canvas editor in ChatGPT to fix errors in a function.

In the upcoming lab, we will follow these practices to refine a ChatGPT prompt for converting
PyCharm GUI steps into Git CLI commands. We will also evaluate how these improvements

improve the model output.

Lab 4.1 — converting PyCharm GUI steps to CLI

When transitioning from GUI steps to working directly with the CLI for Git operations, we can
use ChatGPT to construct the steps required for committing and pushing staged files to a remote
repository. A critical part of this process involves manually reviewing the staged files to ensure

that only the desired ones are committed to our remote branch.

By applying the best practices for prompt precision, we will refine the following initial prompt

into a prompt that produces a more reliable output:

How can I commit my files to GitHub from the PyCharm terminal?

For reference, using this initial prompt alone may result in a response such as the one shown in

the following figure when entering it into the GitHub Copilot chat window:

86 Best Practices for Prompting with ChatGPT

Ask Edit -

Committing to a New GitHub Branch O +

Here's how to commit files to a new branch on GitHub using
the PyCharm terminal:

. Create and switch to a new branch
. Add files to staging

. Commit changes

. Push the new branch to GitHub

DNWN P

Create and switch to new branch

git checkout -b feature-branch

Add all modified files to staging

git add .

(| # Commit changes with a message

git commit -m "Your commit message"

Push new branch to GitHub
git push -u origin feature-branch

Can you explain how to resolve merge conflicts when
¢ pushing to GitHub?

%sk Copilot a question or type '/' for commands

aF Claude Sonnet 3.5 v

Figure 4.3: Copilot chat suggestion

Q, Quick tip: Need to see a high-resolution version of this image? Open this book
in the next-gen Packt Reader or view it in the PDF/ePub copy.

& The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR go to packtpub. com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

ORA0

Chapter 4 87

In our guided walk-through, we will apply the following best practices to craft a more effective

prompt:

Structured format: Separate the logic of the task from the actual steps to be converted

and the desired GUI process

Surrounding context: Provide the context of the data and structure

Single-task focus: Narrow the task to converting GUI steps into CLI commands

Specific instructions: Clearly indicate all steps previously executed from the GUI, avoid-
ing a generic request

Short prompt: Eliminate redundant details such as PyCharm terminal

We will then feed this refined prompt to ChatGPT and observe how applying these best practices

enhances the trustworthiness and reliability of the model’s output.

Lab 4.1 guided walk-through

Navigate to https://chatgpt.com/ and start a new chat with the GPT-o1-mini model. This model

has high proficiency in science, technology, engineering, and mathematics (STEM) tasks, par-

ticularly coding and mathematics. As of November 2024, it achieves the highest performance

among available GPT models on the Codeforces coding exam.

¥ @ ChatGPT o1-mini

GPT-40
Great for most tasks

GPT-40 with canvas eea
Collaborate on writing and code

What can | help with?

ol-preview
Uses advanced reasoning

ol-mini
o

Faster at reasoning o

More models
iarize text ¥ Help me write Surprise me Brainstorm [Code

(3 Temporary chat

Get advice Make a plan

Figure 4.4: ChatGPT model menu

https://chatgpt.com/

88 Best Practices for Prompting with ChatGPT

Our starter information consists of the following:

e Scenario: A data scientist aims to work with the terminal instead of the PyCharm GUI to

push changes into a desired branch
e Initial prompt:

How can I commit my files to GitHub from the PyCharm

terminal?

We will now address each of the five S’s best practices for coding-related prompts following these
four guidelines:

e Structure the prompt

e Add surrounding context

e Focus on a specific task

e Include specific instructions

Throughout the steps, we will follow the fifth best practice of keeping prompts short, ensuring

they remain minimal and free of unnecessary details and fluff.
Step 1— structure the prompt

Awell-structured prompt separates the instructions from the data, ensuring clarity and allowing
for simple adjustments. In this case, the instructions outline the task, while the data contains the
specific steps required to push the files to the remote branch. For ChatGPT, one strategy is to alias
the data by enclosing it within delimiters such as {{{ DATA }}} for easy reference:

Instructions with reference to data enclosed with {{{ DATA }}}
DATA: {{{
11}

Solution:

Chapter 4 89

Important note

We recommend using {{{ DATA }}} as an alias because the {{{ }}} delimiter is
\/V rare in both code and other types of data. However, choosing alternative separatorsis

also acceptable if they do not commonly appear in your code. For example, enclosers

nnn wnn

such as are used in Python for multi-line strings and could cause confusion

for the model if used as delimiters.

Step 2 — add surrounding context

A precise prompt should include information about the surrounding context of the problem and
the provided data. When converting GUI commands into terminal commands, a clear and relevant

surrounding context might look like this:

CONTEXT: You will be provided with PyCharm GUI steps enclosed with {{{
STEPS }}} to execute a process enclosed with {{{ PROCESS }}}.

By avoiding references to specific processes, such as committing and pushing files to a remote Git

branch, this context remains flexible and can be reused for similar tasks in the future.
Add this context at the beginning of your ChatGPT prompt to establish the context of the task.
Step 3 —single task

Our single task in this lab is to translate GUI steps into CLI commands. A clear phrasing of this

task could be as follows:

TASK: Convert the steps to CLI commands.

This prompt piece specifies that the GUI step needs to be converted into corresponding CLI com-

mands.

Add this prompt piece directly below the surrounding context information. Then, complete the

structured prompt with the following line at the end:

CLI COMMANDS:

This signals to the model that the output should be the list of CLI commands to execute.

90 Best Practices for Prompting with ChatGPT

Step 4 — specific instructions

In this lab, we aim to provide detailed and accurate instructions reflecting whatis typically done
when pushing changed files to a remote branch. In PyCharm, the first step of reviewing changed

files can be performed by navigating to the Git tool window icon in the left menu:

& PyCharm File Edit View Navigate Code Refactor Run|

o

® S | supercharge 7* main

[commit Shelf Stash

o & G
EQ B Changes 2 files
= lab4l.txt ch4/solutions

& & new.env
8%)

Amend (v 1 modified
o add lab solutions
oo

Commit Commit and Push.. o3

Figure 4.5: Git tool window

It is good practice to manually review your staged files in the working directory, ensuring that

files such as new. env, which should be ignored by Git, are not included in the commit.

After adding a commit message and clicking on Commit and Push, PyCharm pops up the push

window, indicating that the selected files are about to be pushed to the remote branch.

Chapter 4 91

[conmit Shelf Stash & style_guide.py 2 scratch_29.py 2 token_calculato

CONTEXT: You will be provided with PyCharm GUI steps

o SO ® X
TASK: Convert the steps to CLI commands.

g Changes 1 file, updating.. 3
&

= lab4l.txt ché4/solutions STEPS: {{{
& [] & Push Commits to supercharge
32 ch4-labs 3 origin : ch4-labs Wew S @ 2 |E S

add 1ab solutions I -
~ [Jch4a/solutions 1 file

L2.! = lab4l.txt

] Amend @
add lab solutio

@ For Commit and Push to non-protected branches, preview commits before push

? [[] Push tags: ALL Cancel m

Commit Cnmﬁm—m T T

Figure 4.6: Pushing a commit to a remote branch from PyCharm

In this figure, we can see that a single file, the solution to Lab 4.1, is being pushed to a new remote
branch called ch4-1abs.

Describing these steps may look like this:

STEPS: {{{
1. Review changed files

2. Stage the desired files

3. Add a commit message

4. Commit the files

5. Validate branch name

6. Push the changes to the remote branch
}

92 Best Practices for Prompting with ChatGPT

Include these steps in the prompt, placing them directly beneath the TASK line.

If you have followed all the steps correctly, your final prompt should look like this:

CONTEXT: You will be provided with PyCharm GUI steps enclosed with {{{
STEPS }}} to execute a process enclosed with {{{ PROCESS }}}.

TASK: Convert the steps to CLI commands.

PROCESS: {{{ Commit and push files to a remote Git branch }}}
STEPS: {{{

1. Review changed files

2. Stage the desired files

3. Add a commit message

4. Commit the files

5. Validate branch name

6

. Push the changes to the remote branch

CLI COMMANDS:

Your prompt is now ready to use in ChatGPT. Execute it and refer to the lab analysis for a sample

output generated by the model.

Lab 4.1 analysis

In this lab, we crafted a precise prompt by applying the five S’s best practices. When we ran the
prompt in ChatGPT using the GPT-o01-mini model, the output provided a set of CLI commands
for committing and pushing the desired files to a remote branch. The generated commands were

as follows:

Chapter 4

93

6. Push the changes to the remote branch

m

CLI COMMANDS:

bash (J Copy code

Step 1: Review changed files
git status

Step 2: Stage the desired files

git add <file_name> # Replace <file_name> with the specific file(s) you want to s
OR to stage all changes

git add .

Step 3: Add a commit message
git commit -m "Your commit message here"

Step 4: Commit the files (already combined with Step 3)

Step 5: Validate branch name
git branch # This shows the current branch

Step 6: Push the changes to the remote branch
git push origin <branch_name> # Replace <branch_name= with your current branch nai

ﬂl] @ GV

Figure 4.7: ChatGPT’s response to the Lab 4.1 prompt

This output is more desirable than the initial prompt because it directly references each of the six

steps we would perform using the GUI, providing explanations for each corresponding command.

Additionally, the output aligns with the prompt’s specificity, offering only the CLI commands

with minimal surrounding explanation.

\G/\/

Important note

Refining prompts using the five S’s best practices may seem like a lot of work initially.
However, over time, seasoned prompters develop their own reusable prompt tem-
plates, making the process more efficient. Well-structured prompts are reproducible
across different tasks and adapting them with varied data can often be done at scale.
In the next chapters, we will reuse prompts crafted with these best practices for a

variety of tasks.

94 Best Practices for Prompting with ChatGPT

Having introduced and implemented the best practices for crafting precise prompts, we can
now observe how applying the five S’s can further enhance outputs, even from prompts already
considered strong. Next, we will delve into OpenAI’s examples of good prompts, analyze them

through the lens of the five S’s, and refine a prompt further to achieve a more desirable output.

Prompt samples by OpenAl

OpenAl occasionally updates a collection of sample prompts tailored to various tasks, including
coding, content generation, translations, and grammar corrections. These prompts display the
core capabilities where the underlying models exhibit strong mastery. They have been carefully

crafted and have demonstrated consistent success across these use cases.

You can explore the full list of prompts and filter the samples by category at https://platform.

openai.com/docs/examples.

Prompt examples

Explore what's possible with some example prompts

Q Search... [Extract <]

All categories

" Summarize for a 2nd grader @ Parseuns Extract
Simplify text to a level appropriate for a second-grade Create tabl Generate
student.

Transform
. Code
Explain code p Keywords

Explain a complicated piece of code. Extract key Natural Language

Structured Data

Mood to color

Tweet classifier “
Detect sentiment in a tweet. Turn a text description into a color.
r!' Meeting notes summarizer ’ Review classifier

Summarize meeting notes including overall discussion, Classify user reviews based on a set of tags.

action items, and future topics.

Figure 4.8: OpenAl sample prompts

When clicking on a prompt sample from this page, we can observe the prompt itself, divided into
a system prompt and a user prompt, a sample response, and a code snippet demonstrating how

to implement the prompt using OpenAI APIL.

https://platform.openai.com/docs/examples
https://platform.openai.com/docs/examples

Chapter 4 95

> Improve code efficiency

Transform = Code

Provide ideas for efficiency improvements to Python code.

Prompt
SYSTEM You will be provided with a piece of Python code, and your task is to provide ideas for efficiency
improvements.
USER from typing import List

def has_sum_k(nums: List[int], k: int) -> bool:

wnn

Returns True if there are two distinct elements in nums such that their sum
is equal to k, and otherwise returns False.

wnn

n = len{nums)
foriin range(n):
for jin range(i+1, n):
if numsli] + nums[jl == k:
return True
return False

Sample response

Figure 4.9: Improve code efficiency prompt example

In this example, the system prompt contains general instructions describing the task to be per-
formed, while the user prompt includes the import statement and a function that could benefit

from efficiency improvements.

Next, we will critically analyze a sample prompt to assess how well it aligns with the five S’s.

Lab 4.2 — code debugging
In this lab, we will examine a Python bug fixer use case through the lens of our best practices.
Navigate to https://platform.openai.com/docs/examples and search for Python bug fixer. This

should yield the following prompt example to instruct the model to find a bug in a Python pro-

gram that quizzes a user on multiplication problems:

https://platform.openai.com/docs/examples

96
m Python bug fixer
Transform Code

Find and fix bugs in source code.

Best Practices for Prompting with ChatGPT

Prompt
SYSTEM You will be provided with a piece of Python code, and your task is to find and fix bugs in it.
USER import Random

a = random.randint(1,12)
b =random.randint(112)
foriin range(10):
qguestion = "What is "+a+" x "+b+"?"
answer = input(question)
if answer = a*b
print (Well done!)
else:
print("No.")

Sample response

There are several bugs in the provided code:

1. The import statement is incorrect. Python is case-sensitive, so "Random” should be "random”.

2.Variables "a’ and "b" are defined outside the loop, so they will not change for each iteration. They should be inside the loop if
you want to generate different questions.

Figure 4.10: Sample prompt for Python bug fixer

This prompt, like the code efficiency improvement prompt example by OpenAl, separates the
system and user prompts while providing a sample response. Scrolling further down the window

reveals the code necessary to implement this prompt with OpenAI APIL.

In the guided walk-through, we will identify the errors in the provided code, so we can better
evaluate the output of the model. In the analysis, we will analyze the usage of the five S’s and see

how we can improve the prompt even further.

Chapter 4

97

Lab 4.2 guided walk-through

Before we can analyze the output of the model, here are the errors in the user-provided functions:

e Compilation errors:

Typo in import statement: import Random should be corrected to import random.
Type error: The question variable cannot concatenate integers a and b with strings
directly. This needs to be resolved by converting integers to strings.

Missing colon: The if statement is missing a : character at the end, leading to
SyntaxError.

Invalid assignment: The answer = a*b statement attempts to assign a value
within the if condition. Modern Python compilers will raise SyntaxError as this
is an invalid syntax.

Invalid print statement: The stringWell done! is not enclosed with quotes and

therefore is an invalid syntax.

e Logical errors:

The a and b variables are generated once before the loop and remain constant
through all 10 iterations. This is not desirable.
The output from the user is a string, while the comparison is made against integers.

As aresult, answer of type str can never be equal toa * b, which is of type int.

e Reproducibility issue:

The code with random numbers is not reproducible across runs due to the absence
of a random seed set. Without this, the output will vary unpredictably between

executions.

Considering the output published on the OpenAl website, here is a summary of identified and

fixed code errors and issues:

Error type Problem Error Found | Fixed

Compilation | Invalid case import Random Yes Yes

Compilation Concatenate int and str a+"x"+b Yes Yes

Compilation | Missing colonin if if statement No Yes
statement

98 Best Practices for Prompting with ChatGPT

Error type Problem Error Found | Fixed

Compilation | Assignmentin if ifanswer=a*b Yes Yes
statement

Compilation | Missing quotes for str print(Well done!) Yes Yes

Logic Random numbers a, boutside the for loop No No

generated once

Logic str compared to int answer=a*b Yes Yes

Reproduce No seed set Missing random.seed(...), No No

or equivalent initialization

Table 4.1: OpenAl API’s performance in detecting and fixing errors

The proposed solution also introduced a new issue related to casting the input to an integer; there

is no proper error handling if an input such as hello cannot be cast.

The following is the full model response, as published on the OpenAl website:

There are several bugs in the provided code:

1. The import statement is incorrect. Python is case-sensitive, so
"Random" should be "random".

2. Variables "a’ and 'b" are defined outside the loop, so they will not
change for each iteration. They should be inside the loop if you want to
generate different questions.

3. In the question string, "a’ and "b" are integers, so you need to
convert them to strings using the “str() " function to concatenate thenm.

4. In the if statement, you are using a single equals sign "= which is
an assignment operator. You should use the double equals sign “==" for

comparison.
5. The print statement "Well done!" is not enclosed in quotes. In Python,
strings must be enclosed in quotes.

6. The input from the user is a string, so you need to convert it to an
integer using the “int()" function before comparing it with the product of
"a and "b.

Here is the corrected code:

Chapter 4 99

" python
import random
for i in range(19):
E random.randint(1,12)
b = random.randint(1,12)

question = "What is "+ str(a) +" x "+ str(b) +"? "

answer = int(input(question))

if answer == a*b:

print ("Well done!")
else:

print("No.")

Next, we will analyze the prompt through the lens of the five S’s, evaluate the quality of the out-
put based on the errors identified, fixed, and introduced, and propose improvements to achieve

a better outcome.

Lab 4.2 analysis

The prompt introduced in this example mostly aligns with the five S’s guidelines:

e Goodstructure: The instructions are clearly separated from the code, making the prompt
reusable and adaptable for other tasks.
o Sufficient surrounding context: The prompt provides context by mentioning Python

code as the supporting data.

e No single task: The prompt combines two related tasks, identifying and fixing errors in
the code. While these tasks are interconnected, focusing solely on fixing the errors could
improve the model’s response and responsibility.

e Specific: The task specifies that the model should identify and fix the errors in the code.
However, the instructions could be improved by explicitly stating the types of errors to

address, such as compilation, logical scoping, reproducibility, or error handling.
e Short: The promptis concise and avoids unnecessary or irrelevant details.
Overall, following most of the guidelines resulted in a decent output. Since we have strong eval-

uation capabilities and are aware of all the errors the model should address, we can continue

iterating to resolve all remaining issues in the code.

100 Best Practices for Prompting with ChatGPT

Alternatively, we could better align the best practices with the following prompt:

CONTEXT: You will be provided with Python code in the Python editor with
explanation enclosed with

{{{ CODE_EXPLANATION }}} that may contain errors enclosed with {{{ ERRORS
33}

TASK: Fix the errors in the code.

CODE_EXPLANATION: {{{

Run 10 random multiplication quizzes and provide feedback about each to
the user

Y3}

ERRORS: {{{

1. Compilation

2. Reproducibility of random number generation
3. Logical scoping of variable assignments

4. Error handling for input casting

11}
Using this prompt with GPT-40 with canvas resulted in an output that addressed all the required
fixes.
@5 & ChatGPT 4o with canvas X New

174 CONTEXT: You will be
provided with Python code in
the Python editor with def multiplication_quiz():
explanation enclosed with # Seed for reproducibility
{{{ CODE_EXPLANATION }}} random.seed(42)

import random

that may contain errors for i in range(1@):
enclosed with {{{ ERRORS a = random.randint(1, 12)
. b = random.randint(1, 12)

’ . question = f"What is {a} x {b}? "
TASK: Fix the errors in the

try:
code. answer = int(input(question})
if answer == a * b:
CODE_EXPLANATION: {{{ : print("Well done!")
e else:
Ru.n'l J, ndom rrTuIt|pI|cat|on print("Ne.")
quizzes and provide except ValueError:

print("Invalid input. Please enter a number.")
Message ChatGPT

Run the quiz
L[’J m multiplication_quiz()

Figure 4.11: Better output

Chapter 4 101

All compilation, logic, reproducibility, and error handling are addressed in the fixes.

Even better prompts

In the next chapters, we will explore advanced prompt engineering techniques such as iterative
prompting for creating a feedback loop with LLMs and chain-of-thought prompting for guiding
model reasoning. These techniques will enable us to refine prompts that yield decent results for

manual use and scale them effectively for broader applications.

Summary

In this chapter, we explored how to achieve high-quality GenAl outputs by focusing on the three
pillars: model mastery for handling a specific topic, evaluation metrics, and precise prompts. We
examined how imprecise prompts can lead to risky outcomes, such as CLI commands exposing
secret keys, and demonstrated how following best practices can produce far better and more

reliable model outputs.

We also learned about the five S’s of prompt precision best practices for coding-related tasks:
keeping a structured prompt, providing surrounding context, maintaining a single task per prompt
to best leverage model mastery and evaluation capabilities, ensuring that prompts are specific
rather than general and vague, and keeping the input as short as possible by removing irrelevant

information and fluff.

With two interactive labs, we explored how to implement those best practices in ChatGPT. With an
OpenAl example of a good prompt to a bug fix, we saw that even good prompts can be improved

to achieve more desirable results.

In the next chapter, we will explore how to apply the five S’s using OpenAI API and GitHub Copilot.
In later chapters, we will delve into advanced prompt engineering techniques to further refine

prompts and meet specific engineering needs in the Software Development Life Cycle (SDLC).

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: What are the three factors that determine the quality of output of an LLM?

Answer: Model mastery, evaluation capabilities, and prompt precision. Model mastery means
how much the LLM trained on this specific task, evaluation capabilities means how much we can
assess the desirability of the outcome, and prompt precision means to what extent the prompt is

crafted to tell the model what exactly we need.

102 Best Practices for Prompting with ChatGPT

Question 2: What are the best practices for a coding-related task prompt?

Answer: The best practices are the five S’s, structuring the prompt to accommodate supporting
data such as code and steps, including surrounding context on the task, focusing on a single task

per prompt, and keeping specific and short instructions.
Question 3: Which parts of a prompt can be reproducible?

Answer: When following the best practices of precise prompts, we can reuse the surrounding con-
text and the single task. These can be leveraged to many prompts and reused with a change of the
details, such as the function attached, steps to be converted to CLI commands, or improvements
required to a given function. This is highly efficient for large-scope refactoring tasks, repetitive

tasks, and many more examples we will see in the book.

Further reading

To learn more about the topics that were covered in this chapter, look at the following resources:

e OpenAl on GPT-ol performances: https://openai.com/index/openai-ol-mini-

advancing-cost-efficient-reasoning/

e American Invitational Mathematics Examination: https://en.wikipedia.org/wiki/

American_Invitational_Mathematics_Examination

e Codeforces: https://codeforces.com/

e Prompt best practices in OpenAl: https://help.openai.com/en/articles/6654000-
best-practices-for-prompt-engineering-with-the-openai-api

e Promptexamplesin OpenAl: https://platform.openai.com/docs/examples

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled
filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs
and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.1link/TRO5B or scan the QR code below.

O

https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://en.wikipedia.org/wiki/American_Invitational_Mathematics_Examination
https://en.wikipedia.org/wiki/American_Invitational_Mathematics_Examination
https://codeforces.com/
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://platform.openai.com/docs/examples
https://packt.link/TRO5B

Best Practices for Prompting
with OpenAl APl and GitHub
Copilot

In the concluding chapter of Part 1, we will explore how to apply best practices for crafting prompts
tailored to OpenAl API and GitHub Copilot. These practices are encapsulated in the five S’s:
structuring the prompt, providing surrounding context, focusing on a single task, including
specificinstructions, and keeping prompts short and fluff-free. While the core principles remain

consistent, their application varies slightly across different GenAl tools.

We will delve into working with Python objects such as functions, classes, and methods for cod-
ing-related tasks. We will leverage the built-in inspect package to extract key details about
objects, such as their source code, docstrings, and filenames. We will also learn how to integrate
this information into the system and user prompts offered by OpenAl API, combining context,

task focus, and concise, structured instructions.

Additionally, we will examine how GitHub Copilot inherently provides structure, context, and
single-task focus while generating short, specific prompts for us. We will learn techniques to ex-
tend Copilot’s capabilities by incorporating additional structure and precision, ensuring minimal

fluff and redundant comments.

104 Best Practices for Prompting with OpenAl API and GitHub Copilot

Through two interactive labs, we will implement these practices using a real-world example: a
Singleton design pattern to enforce single-instance creation per class. Using OpenAl API, we will
craft a docstring for the Singleton __call__ method, which controls the instantiation process of
anew class instance. Then, with Copilot, we will generate a unit test to validate the functionality

and fix a faulty implementation.
In this chapter, we will cover the following topics:

e Extracting properties from Python objects for OpenAl API
e Crafting precise prompts for OpenAl API

e Generating docstrings with OpenAI API

e Crafting precise prompts for GitHub Copilot

e Fixing faulty implementation with GitHub Copilot

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub Copilot account
¢ Integrated development environment (IDE) — either VS Code or PyCharm
e OpenAl account with access to OpenAl API

e Access to the book’s repository, which is available at https://github.com/
PacktPublishing/Supercharged-Coding-with-Gen-AI

e Virtual environment set up in VS Code or PyCharm

e OpenAl API token

For assistance setting up a GitHub Copilot account, refer to Chapter 2. For instructions on setting
up OpenAl API access and token generation, see Chapter 3. If you need help creating an OpenAl

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Extracting properties from Python objects for
OpenAl API

When using OpenAl for coding tasks, we often include details about Python objects such as
variables, functions, and classes in our prompts. This helps with various tasks such as debugging,
generating docstrings, creating unit test suites, or improving code. The information provided may

include the object name, arguments, return type, filename, docstring, and source code.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 5 105

Throughout this book, we frequently use the built-in inspect package to extract relevant details
from Python objects. Additionally, we leverage some special attributes, identified by a double
underscore (dunder), such as obj.__attribute_ , which store metadata about the object or

class. Here are some more examples:

e obj._ name__retrieves the name of the object

e obj._ class__._ name__retrieves the class name of an instance or function or the meta-

class name of a class

e o0bj._ doc__retrieves the docstring of the object

To extract the source code and filename of an object, we typically use Python’s built-in inspect

library:

e inspect.getsource(obj) retrieves the source code of the object

e inspect.getfile(obj) retrieves the file name of the object

For example, we can use inspect.getsource(obj) to retrieve the source code for the faulty
implementation of the multiplication_quiz function discussed in Lab 4.2 in Chapter 4. This
function is intended to execute 10 different multiplication quizzes, as outlined in its docstring,
but contains implementation bugs that we need to address:

def multiplication_quiz() -> None:

This function generates a multiplication quiz of ten different random
multiplication questions between 1 and 12.

The user is prompted to answer each question. If the user answers
correctly, the function prints "Well done!".

If the user answers incorrectly, the function prints "No."
a = random.randint(1, 12)
b = random.randint(1, 12)
score = 0
for _ in range(10):

question = "What is "+ a + " x " +b + "? "

answer = input(question)

if answer == a * b:

print("Well done!")

score += 1

106 Best Practices for Prompting with OpenAl API and GitHub Copilot

else:
print("No.")

print(f"Your score is {score} out of 10.")

@ Quick tip: Enhance your coding experience with the Al Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

Copy Explain

function calculate(a, b) { o [)
return {sum: a + b};

\ };

& The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

The code for the function can be extracted using the getsource function:

inspect.getsource(multiplication_quiz)

The returned value will be a string containing the function’s code as text, as shown here:

"def multiplication_quiz() -> None:\n """\n This function generates

a multiplication quiz of ten different random multiplication questions

between 1 and 12. ... the rest of the code is omitted for brevity ...

This formatis easily interpreted by GenAl applications and large language models (LLMs), and

we will use it to include Python objects and code blocks in our prompts, enclosed within {{{ }}}.

Next, we will explore how these objects are integrated into OpenAl prompts using the five S’s

best practices for crafting precise and effective prompts.

Chapter 5 107

Crafting precise prompts for OpenAl API

Applying best practices for building a precise prompt with OpenAl API enables us to automate

and scale the prompting process while ensuring quality outputs from the underlying LLMs.

We will revisit the five S’s best practices, beginning with structuring OpenAI API prompts. We
will craft system prompts that incorporate the surrounding context and focus on a single task,
enabling the development of reproducible and adaptable templates. Additionally, we will explore
how incorporating specific and short instructions helps transform diverse inputs into concise

user prompts.

Structured prompts

To structure prompts for OpenAl API, we use system prompts and user prompts to separate the
surrounding context and single task objective from specific details such as steps, source code,
and data. System prompts define the context and task, allowing for reuse across varying details
such as different source codes. In later chapters of the book, we will also explore how to integrate

assistant prompts to achieve even more refined results from our prompts.

In Python, this prompt structure usually includes a variable called SURROUND to provide the sur-
rounding context and a variable called SINGLE_TASK to specify the task for the model. It may be

structured as follows:

n

SURROUND = " Your surrounding context here
SINGLE_TASK = " Your task here "

def get_user_prompt(*args, **kwargs) -> str:
return "Utn
your code here

COMPLETION:

system_prompt = f"{SURROUND} {SINGLE_TASK}"

user_prompt = get_user_prompt(...)

messages = [

108 Best Practices for Prompting with OpenAl API and GitHub Copilot

{"role": "system", "content": "system_prompt"

{"role": "user", "content": user_prompt},

In this structure, the messages parameter combines both system_prompt and user_prompt to
form a precise prompt for OpenAl API. system_prompt integrates SURROUND and SINGLE_TASK,
while the get_user_prompt function provides details such as steps, source code, and object in-
formation, concluding with a lead-in cue such as COMPLETION to align with SINGLE_TASK, as we
will discuss in depth throughout this chapter.

Now that we have examined the structure that combines both system prompts and user prompts,

let us dive deeper into each, starting with system prompts.

System prompts with the surrounding context and single task

In OpenAl AP], system prompts are used to define the surrounding context and specify a single

task. These prompts are designed to be reproducible, accommodating varying supporting data.

For instance, a system prompt might state that the model is provided with a code snippet and
tasked with identifying the programming language:

SURROUND = "You will be provided with a code snippet enclosed with {{{

CODE }}}."

SINGLE_TASK = "Your task is to identify the programming language of the
provided code snippet."

system_prompt = f"{SURROUND} {SINGLE_TASK}"

The SURROUND context specifies that the provided data is a code snippet in an unidentified lan-
guage, while SINGLE_TASK clarifies that the expected output should identify the programming
language of the code.

In another scenario, the task might involve generating documentation for a Python function
where the programming language (Python) and object type (function) are already known. In such
cases, this information should be included in the surrounding context to help the model focus on
generating the docstring rather than determining the language or object type:

SURROUND = "You will be provided with a Python function enclosed with {{{

FUNCTION }}}."

SINGLE _TASK = "Your task is to generate a Google Style docstring for it."

system_prompt = f"{SURROUND} {SINGLE_TASK}"

Chapter 5 109

In this case, SURROUND provides context about the Python function, enabling the model to con-
centrate on the task of generating docstrings, as specified in SINGLE_TASK.

User prompts with specific instructions

To create an effective user prompt for OpenAl API call, we typically define a get_user_prompt
function that encapsulates the necessary task details along with a lead-in cue to align with the

system prompt.

For example, if the task is to identify the programming language from the source code, the func-

tion implementation might look like this:

def get_user_prompt(code_source: str) -> str:
return £"""

CODE: {{{{{{ {code_source} }}}}}}
PROGRAMMING LANGUAGE:

In the preceding implementation, {{ in f-strings are used to represent a literal {. As a result, { {{{{{
is required to represent {{{. Also, the source code is retrieved as a string, requiring no further

conversion.

In a different scenario involving Python objects, such as extracting the docstring for a class method,
the source code can be directly obtained from the object. The implementation of get_user_prompt
in this case might look like this:

def get_user_prompt(func: callable) -> str:
return £"""
FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}
DOCSTRING:

IR

In thisimplementation, the inspect. getsource function is used to extract the source code from

the function.

Next, we will combine system prompts and user prompts to observe how they work together to

produce high-quality outputs.

110 Best Practices for Prompting with OpenAl API and GitHub Copilot

Lab 5.1 — Generating docstrings with OpenAl API

In this lab, we will utilize OpenAl API to generate a docstring for the _ call__ method in a
Singleton design pattern, as outlined in the following steps. The __call__ method defines the

instantiation process, which involves creating or managing a new instance of the class.

Singleton design pattern

As Python developers, we often use design patterns to define and control the behavior of Python
objects, such as functions and classes. One such pattern is the Singleton pattern, which ensures

that only one instance of a class is created and used throughout the program’s execution.

Regular classes create a new instance from scratch with each instantiation, using either pro-
vided arguments or default parameters. For example, consider the following program with an

Environment class that defaults to the name Production:

class Environment:
def init (self, name: str = "Production"):

self.name = name

envl = Environment("Development™)
env2 = Environment()

print("envl name: ", envl.name)

print("env2 name: ", env2.name)

In this case, envl and env2 are two separate instances of the Environment class. For instance, the
name attribute of env1 is set to Development, while the name of env2 is set to Production based

on the provided default argument.

The output of this program is as follows:

envl name: Development

env2 name: Production

The Singleton design pattern ensures that only one instance of a class is created and maintained
throughout the program’s runtime. It is typically implemented using a metaclass, which acts as

a class of classes, defining how other classes are structured and behave.

Chapter 5 m

A typical Singleton implementation maintains a registry dictionary of instantiated classes. For
each class defined with metaclass=Singleton, whenever a new instance is requested, the Single-
ton checks its registry for an existing instance of that class. If an instance is found, it is returned,
otherwise, a new instance is created and added to the registry. Here is an example of such an

implementation:

class Singleton(type):

_instances = {}

def _ call_ (cls, *args, **kwargs):
if cls not in cls._instances:
cls. instances[cls] = super(Singleton, cls).__call_(*args,
**kwargs)

return cls._instances[cls]

In thisimplementation, the __call__method isinvoked whenever a class of the Singleton type,
referred to as c1s (a common name for a class argument), attempts to instantiate a new instance.
If an instance of the class already exists, it is stored in the _instances attribute with the class’s
hash as the key, and the existing instance is returned. Otherwise, a new instance of c1s is created

as usual and added to the _instances registry for future use.

To use classes of the Singleton type, such as Environment, we specify that the metaclass for the

classis Singleton, as shown here:

class Environment(metaclass=Singleton):
def __init_ (self, name: str = "Production"):

self.name = name

Assigning the Singleton metaclass ensures that all instances of the class refer to the same object.
When two instances are created, one with the Development name and the other without any

parameters, both Environment instances will share the name Development:

envl = Environment("Development™")

env2 = Environment()

print("envl name: ", envl.name)

print("env2 name: ", env2.name)

112 Best Practices for Prompting with OpenAl API and GitHub Copilot

In this case, envl and env2 are the same instance and env2. name is also expected to be Development.

The program output confirms this, as shown here:

envl name: Development

env2 name: Development

Next, we will see how to leverage OpenAl API to generate a docstring for the Singleton __call__

method.

Generating a docstring

A docstring is a special string literal in Python that provides a clear description of an object’s
purpose, behavior, arguments, and return values, typically for functions or classes, and would
be followed by the code implementation. For instance, here is a Google-style docstring for a
function that calculates the nth Fibonacci number:
def fibonacci(n):
Calculate the n-th Fibonacci number.

The Fibonacci sequence is a series of numbers where each number is the
sum

of the two preceding ones, starting from © and 1. This implementation
uses

an iterative approach for better performance with large values of n.

Args:

n (int): The position in the Fibonacci sequence (©-indexed).

Returns:

int: The n-th Fibonacci number.

Raises:

ValueError: If n is a negative integer.

Examples:
>>> fibonacci(9)
0
>>> fibonacci(1)
1

>>> fibonacci(5)

Chapter 5 13

non

We will explore how to effectively create and utilize high-quality docstrings for Python objects

in greater detail in Chapter 18.

In this lab, we will focus on crafting a simple Google-style docstring for the __call__ method

of the Singleton class, incorporating information about the source code of the Python object.

Lab 5.1 guided walk-through

Open Lab 5.1in the book repository at ch5/1abs/1ab51. py and ensure that you have either set the

OPENAI_API_KEY environment variable or configured your run settings to point to the . env file.

The starter code includes the implementation of the Singleton metaclass, along with placehold-
ers for the SURROUND and SINGLE_TASK strings, the get_user_prompt function, and the messages
parameter for OpenAl API:

import inspect
from openai import OpenAI

from openai.types.chat import ChatCompletion

SURROUND = ""
SINGLE_TASK = ""

class Singleton(type):

_instances = {}

def _ call_ (cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super(Singleton, cls).__call_(*args,
**kwargs)

return cls._instances[cls]

def get_user_prompt(func: callable) -> str:

114 Best Practices for Prompting with OpenAl API and GitHub Copilot

client: OpenAI = OpenAI()

completion: ChatCompletion = client.chat.completions.create(
model="gpt-40-mini",
messages=[],

)

print("Docstring:", completion.choices[0].message.content)

In the guided walk-through, we will complete the SURROUND and SINGLE_TASK strings, the get_

user_prompt function, and the messages parameter.

First, we will define the surrounding context and single task for the reusable system prompt.
Update the SURROUND and SINGLE_TASK strings as follows:
SURROUND = "You will be provided with a Python function enclosed with {{{
Function }}}."
SINGLE_TASK = "Your task is to generate Google Style docstring for it."

These strings inform the model that the provided source code is a Python function and specify

that the generated docstring should follow Google-style conventions.

Next, we will integrate specific and short instructions into the user prompt. Implement the get_
user_prompt function to encapsulate the source code of a provided function, along with alead-in

cue to generate a Google-style docstring:

def get_user_prompt(func: callable) -> str:
return """
FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}

GOOGLE STYLE DOCSTRING:

nun

Finally, complete the messages argument for OpenAl API call by including the system prompt with
the SURROUND and SINGLE_TASK strings, along with the output of get_user_prompt encapsulating
the __call__ method of the Singleton class:

messages=|[
{"role": "system", "content": f"{SURROUND} {SINGLE_TASK}"},
{"role": "user", "content": get_user_prompt(Singleton.__call_)},

1,

Chapter 5 115

If you have completed all the steps correctly, your lab code should appear as follows:

import inspect
from openai import OpenAl

from openai.types.chat import ChatCompletion

SURROUND = "You will be provide with a Python function enclosed with {{{
Function }}}."

SINGLE_TASK = "Your task is to generate Google Style docstring for it"

class Singleton(type):

_instances = {}

def _ call_(cls, *args, **kwargs):
if cls not in cls._instances:
cls. _instances[cls] = super(Singleton, cls).__call_(*args,
**kwargs)

return cls._instances[cls]

def get_user_prompt(func: callable) -> str:
return £"""

Function: {{{{{{ {inspect.getsource(func)} }}}}}}

GOOGLE STYLE DOCSTRING:

if __name__ == "__main__":
client: OpenAI = OpenAI()
completion: ChatCompletion = client.chat.completions.create(

model="gpt-40-mini",

messages=|[
{"role": "system", "content": f"{SURROUND} {SINGLE_TASK}"},
{"role": "user", "content": get_user_prompt(Singleton.__
call_)},
1,

)

print("Docstring:", completion.choices[0].message.content)

116 Best Practices for Prompting with OpenAl API and GitHub Copilot

Your lab is now ready to execute and generate a Google-style docstring. Stay tuned for the lab

analysis, where we will review a sample output from the run.

Lab 5.1 analysis

In this lab, we demonstrated how applying the five S’s best practices for precise prompts can
yield good results with just a few lines of code. Using OpenAl API, we successfully generated a

Google-style docstring for the __call__ method of the Singleton class.

For reference, here is a sample output from the lab, which produced a Google-style docstring that
clearly explains the method’s general purpose, its arguments, and its return value, ensuring that

the same single instance of the class is returned for every instantiation:

Docstring: "~ " python
def _call_ (cls, *args, **kwargs):

Overrides the default behavior of instance creation to ensure that
only one instance of

the class is created (Singleton Pattern).

This method checks if the class has already been instantiated. If not,
it creates a new instance

and stores it in the class's "~ _instances’ dictionary. Subsequent calls
will return the existing

instance.

Args:
cls: The class that is being instantiated.
*args: Variable length argument list for the class constructor.

**kwargs: Arbitrary keyword arguments for the class constructor.

Returns:

The single instance of the class.

This docstring accurately describes the _instances attribute of the Singleton metaclass, which
stores the single instances of the class, as well as the arguments of the __call__ method and its

return value.

Chapter 5 117

Having explored how to craft prompts for OpenAl API using the five S’s, including system and
user prompts that integrate information about Python objects for coding tasks, identifying the
programming language of a code snippet, and generating a Google-style docstring, we will now
turn to implementing the five S’s best practices for prompt precision when crafting prompts for
GitHub Copilot.

Crafting precise prompts for GitHub Copilot

When working with GitHub Copilot’s three interaction modes, code completion, chat, and code
analysis, many best practices are already built in. Copilot structures the prompt automatically,
providing surrounding context for these modes, each with a clearly defined single task, whether
it is completing code, engaging in a chat, or analyzing code. The prompts are also designed to

be specific and short.

However, we can use the five S’s more precisely and achieve even better results. In this section,
we will use the Singleton design pattern as an example to explore how Copilot supports code

completion, code analysis, and chat.

With an understanding of this pattern and its applications, let us examine how the five S’s are

implemented and can be extended within Copilot’s three interaction modes.

Structuring with a lead-in cue
Copilot automatically structures prompts for its three interaction modes while considering sur-
rounding context such as the filename, open files, code before and after the cursor, and Git history

to generate a prompt on your behalf.

To improve Copilot’s structured prompts, you can provide lead-in cues such as def func_name,
the start of a variable declaration, envl =, or the beginning of a return statement for an f-string,
such as return """.These lead-ins, like the closing cues used in ChatGPT and OpenAl prompts,

help clarify the starting point for Copilot’s generation and ensure it proceeds as intended.

For example, consider a prompt such as the following:

class Singleton

This is more effective than a comment such as the following:

118 Best Practices for Prompting with OpenAl API and GitHub Copilot

The first option provides a clear lead-in cue indicating the class to be implemented, while the

latter is likely to result in another comment instead of initiating the actual implementation.

For reference, here is a sample completion generated by Copilot, which includes an additional

comment on the next line:

#2 copilot_samples.py x

b # Implement a Singleton meta-class that ensures only one instance of a class is created.
2 k The Singleton class should be used to store the total cost of all prompts.

Figure 5.1: Comment completion with a code comment instead of an implementation

Copilotinterprets the request as an opportunity to elaborate further on the Singleton implemen-

tation as a comment rather than starting the actual implementation.

Here is a sample completion based on the lead-in cue, class Singleton:

% copilot_samples.py *

1 # Implement a Singleton meta-class that ensures only one instance of a class is created.

N

3 class Singleton(type): new *
_instances = {}

def __call__(cls, *args, *xkwargs):
if c¢ls not in cls._instances:
cls._instances[cls] = super(Singleton, cls).__call__(*args, *xkwargs)
return cls._instances[cls]

Figure 5.2: Lead-in code for Copilot to implement the Singleton metaclass

In this case, Copilot correctly inferred that it should generate the metaclass implementation even

before the Singleton class name was fully specified.

Surrounding with imports and hashtags

GitHub Copilot already supplies the underlying LLM with extensive context across its three in-
teraction modes. This includes information such as the filename, analysis of open files for coding
preferences and customization, import statements, code before and after the cursor, the program-

ming language being used, and preferred styling guidelines.

Chapter 5 119

When writing new code, we can enhance the surrounding context by explicitly including cues
about the import statements we plan to use. For instance, if we plan to use the built-in @dataclass
decorator, which simplifies data-focused classes by automatically generating boilerplate code
such asthe __init_ method, adding an import statement such as from dataclasses import

dataclass helps Copilot understand the decorators we want to work with:

@ copilot_samples.py 2, M @

ch5 > code_samples > @ copilot_samples.py > % Environment
1 from dataclasses import dataclass

2

3 class Singleton(type):

4 _instances = {}

5

6 def __call__(cls, *args, s*kkwargs):

7 if cls not in cls._instances:

8 cls._instances[cls] = super(Singleton, cls)._ call__ (*args,
*xkwargs)

9 return cls._instances[cls]

10

11 ddafadasgﬂ
12 class Environment(metaclass=Singleton):

Figure 5.3: Import cues for dataclass decorators

In this example, Copilot autocompletes the @ cue with the appropriate @dataclass decorator. See

the Further reading section for additional resources on data classes.

When using Copilot in VS Code, you can enhance the surrounding context in the chat by refer-
encing elements such as @workspace or @terminal. These annotations, while beginning with @,

do not refer to decorators but rather specify the environment the chat should consider.

Additionally, specific files or code selections can be referenced using the hashtag, #.

120 Best Practices for Prompting with OpenAl API and GitHub Copilot

For example, to request an explanation of the __call__method in the Singleton metaclass, you
can select the method, type #selection in the chat, and then use the /explain command, as

shown in Figure 5.4.

% copilot_samples.py 1, M X vt @ - F B + D -
ch5 > code_samples > & copilot_samples.py > % Singleton - »
1 from dataclasses import dataclass - ASk CopIIOt
3 —
3 class Singleton(type):) Copilot is powered by Al, so mistakes are
4 _instances = {} possible. Review output carefully before use.
5
6 def __call__(cls, *args, *xxkwargs):
7 | if cls not in cls._instances: 1 U ortype # to attach context
8 cls._instances[cls] = super(Singleton, cls).__call__(args, @ to chat with extensions
Fkkwargs)
9 return cls._instances[cls] ffix the problems in my code

11 @dataclass ftests add unit tests for my code

12 class Environment(metaclass=Singleton) 3 fexplain how the selected code works

#selection fexplain|
PROBLEMS (1) OUTPUT DEBUG CONSOLE TERMINAL PORTS QUERY RESULTS -+ +v oA X & copilot_samples.py:6-9 Current file B

. [Jzsh @ 0 0 GPT4o~ B>~

Figure 5.4: Using #selection /explain in VS Code/Copilot Chat

Q Quick tip: Need to see a high-resolution version of this image? Open this book
in the next-gen Packt Reader or view it in the PDF/ePub copy.

& The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR go to packtpub. com/unlock, then use the search bar to find this

/ book by name. Double-check the edition shown to make sure you get the right one.

This gives the chat context about the specific code snippet you want explained. For reference,

here is the explanation we received for the selected code:

This code defines a Singleton metaclass in Python. A Singleton is a design
pattern that ensures a class has only one instance and provides a global
point of access to it.

Here's a breakdown of the code:

1. Class Definition: class Singleton(type):

This defines a metaclass named Singleton. In Python, a metaclass is a

class of a class that defines how a class behaves. A class that uses this

Chapter 5 121

metaclass will follow the Singleton pattern.
2. Class Attribute: _instances = {}

This dictionary will store the single instances of the classes that use
this metaclass.

3. _call Method: def _ call (cls, *args, **kwargs):
This method is overridden to control the instantiation of the class.
cls refers to the class being instantiated.

*args and **kwargs are used to pass any arguments to the class
constructor.

4. Instance Check: if cls not in cls._instances:

This checks if an instance of the class already exists in the _instances
dictionary.

5. Instance Creation: cls. instances[cls] = super(Singleton, cls). call
(*args, **kwargs)

If the class is not in _instances, it creates a new instance using super()
and stores it in the _instances dictionary.

6. Return Instance: return cls._instances[cls]

This returns the instance of the class, ensuring that only one instance
exists.

In summary, this metaclass ensures that any class using it will only have
one instance, implementing the Singleton pattern.

Copilot identified the purpose of the Singleton metaclass and provided a clear explanation of

its key components.

Note

\E/‘ As of January 2025, adding additional surrounding context to Copilot Chat is not
yet supported in PyCharm.

Further narrowing the single task

While Copilot is already tailored to the three interaction modes, each aligned with a specific task,

there are cases where the task scope can be further refined.

For example, extracting hardcoded strings with arguments or global variables requires providing
more specific guidance instead of relying solely on the straightforward /fix command. Without

additional context, the /fix command might generate broader suggestions.

122 Best Practices for Prompting with OpenAl API and GitHub Copilot

For reference, here is an example of a /fix suggestion that unnecessarily proposes adding a

__post_init__method to the Environment class (see Figure 5.5).

10

@ rix

& The code provided does not have any errors, but to ensure compatibility with older versions
of Python, you can add a __post_init__ method to the t Environment class.

’ lAsk Copilot U O GPT4o~

11 @dataclass
12 class Environment(metaclass=Singleton):

13 name: str = 'Production' # This is the default environment
14 version: -str-=-"'1.0.0"' -# This-is the default version

15

16 def _ _post_init_ (self):

17 |- -pass

Figure 5.5: Copilot offers irrelevant fix

Always aim to include single-taskinstructions, even when using / commands. For instance, if the
goalis to extract hardcoded values, you can specify that the desired fix, extract the hard-coded
default values to global constants, alongside the /fix command. Narrowing down the
single task in this way helps Copilot better understand your intent and produces more accurate

recommendations:

11 @dataclass

1_ [fix extract hard-coded values to global constants U & GPTaov B+

12 class Environment(metaclass=Singleton):
13 [name: str-= 'Production' # This is the default environment
14 | version: str = '1.0.0"' # This is the default version

Figure 5.6: Single task narrowed to extracting hardcoded values

In this example, Copilot effectively understands the task and successfully extracts the hardcoded

values, proposing to extract DEFAULT_ENV_NAME and DEFAULT_ENV_VERSION:

Chapter 5 123

@ [fix extract hard-coded values to global constants

& To fix the code and extract hard-coded values to global constants, you can define the
constants at the top of the file and use them in the t1 Environment class.

_ lAsk Copilot 0 O GPTd4ov

Chcoept] Discars] O |

11 DEFAULT_ENV_NAME = 'Production' # This is the default environment
12 DEFAULT_ENV_VERSION = '1.0.0' # This is the default version

13

14 @dataclass

15 class Environment(metaclass=Singleton):

16 name: str = DEFAULT_ENV_NAME

17 version: str = DEFAULT_ENV_VERSION

Figure 5.7: Successful extraction of hardcoded values

In the green highlighted text in Figure 5.7, we can see that Copilot suggested extracting the hard-
coded default values into global constants named DEFAULT_ENV_NAME and DEFAULT_ENV_VERSION.

This demonstrates how applying the single task principle and narrowing it further, even when
using backslash commands such as \fix, helps us achieve more effective results when working

with Copilot.

Specific instructions with type hints, docstrings, descriptive
names, and unit tests

Copilot already preprocesses your files and surrounding context to include specific instructions,

ensuring tailored code completions, analyses, and chat responses.

To follow the specificity practice more precisely in our prompts, we can incorporate type hints,
docstrings, descriptive names, and unit tests into our code. These practices not only improve

the quality and readability of the code but also help Copilot generate better implementations.

For instance, if our code involves handling environment versioning as integers, adding clear

type hints and a meaningful name enables Copilot to better suggest appropriate default values:

@dataclass
class Environment(metaclass=Singleton):
name: str = 'Production' # This is the default environment

version: int = 1

Figure 5.8: Using type hints to specify desired completions

124 Best Practices for Prompting with OpenAl API and GitHub Copilot

In Lab 5.2, we will explore how adding a failing unit test can assist Copilot in identifying and

addressing issues in our code.

Short prompts without comment fluff

When working with Copilot, the goal is to supercharge our work without cluttering the code
base we work on. To follow the short principle, we should avoid adding comment fluff, which
we define as comments we would not include if not using Copilot and would likely remove after

code generation, as they add no value to the implementation.

A better approach is to use meaningful names, type hints, docstrings, and unit tests when gen-

erating code, along with a lead-in cue to hint to Copilot that it should start its implementation.

For example, to instruct Copilot for code completion, it is better to provide a meaningful class

signature that aligns with the intended implementation:

class TestSingleton(TestCase):

That is better than adding unnecessary comments such as the following:

Similarly, prefer a docstring instead of comments:

def recursive_fibonacci(n):

nun

Calculate the n-th Fibonacci number using a recursive approach.

Args:

n (int): The position in the Fibonacci sequence (©-indexed).

Returns:

int: The n-th Fibonacci number.

Raises:

ValueError: If n is a negative integer.

Examples:
>>> recursive fibonacci(9)
0

Chapter 5 125

>>> recursive fibonacci(1)
1
>>> recursive fibonacci(5)
5

That is better than using comments such as the following:

The former approach is not only more predictable for Copilot but also helps avoid clutter in the
code base if the comment is kept after the class generation, or confusion about the code’s origin

if the comment is removed.

Also, prefer variable names with type hints instead of inline comments:

product: float =

Use the preceding code instead of the following:

Here, too, the former approach is more predictable to Copilot and avoids clutter in the code base.

Next, we will explore how to implement the five S’s best practices with Copilot and apply them

in the upcoming lab to fix a faulty implementation of a Singleton metaclass.

Lab 5.2 — Fixing faulty implementation with GitHub
Copilot

In this lab, we will address a faulty Singleton implementation by adding a unit test to verify its
Singleton behavior, then use Copilot to analyze the error and suggest a fix. This lab is inspired
by a bug fix the author encountered earlier in her career, where an Environment class, intended

to function as a Singleton, failed to preserve attribute changes across instances.

126 Best Practices for Prompting with OpenAl API and GitHub Copilot

The initial faulty implementation of the Singleton metaclass was as follows:

class Singleton(type):

_instances = {}

def _ call__ (cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls.__name__] = super(Singleton, cls)._call _
(*args, **kwargs)

return cls. instances[cls._ name__]

This implementation is close to the correct implementation of a Singleton __call__ function:

class Singleton(type):

_instances = {}

def _call (cls, *args, **kwargs):
if cls not in cls. instances:
cls._instances[cls] = super(Singleton, cls).__call_(*args,
**kwargs)

return cls._instances[cls]

However, the faulty implementation searches for an instantiated class instance using the c1s
hash key but storesitunder the cls._ name__key. Thisinconsistency causes a bug that prevents

the Singleton from maintaining its intended behavior.

In this lab, we will address this logical error by first using Copilot to implement a unit test that

evaluates the behavior of the metaclass and then asking Copilot to fix the bug.

Lab 5.2 guided walk-through

Open Lab 5.2 in the book repository at ch5/1labs/1ab52.py and ensure that you have a stable

internet connection and that GitHub Copilot is ready.

The starter code includes the faulty Singleton implementation along with an import statement

for the TestCase class and the main runner from Python’s unittest package:

from dataclasses import dataclass

from unittest import TestCase, main

class Singleton(type):

_instances = {}

Chapter 5 127

def _ call_ (cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls.__name__] = super(Singleton, cls)._call _
(*args, **kwargs)

return cls._instances[cls._ name_]

@dataclass
class Environment(metaclass=Singleton):
name: str = 'Production'’

version: int = 1

if __name__ == "_ main__

",

main()

In the next steps, we will create a unit test to debug the faulty behavior of the Singleton metaclass,

analyze why it fails, and correct the implementation accordingly.

To test a metaclass’s behavior, we might want to include a class implementation that utilizes the

Singleton and compare different instances of it, as follows:

def test_something(self):
@dataclass

Class A(metaclass=Singleton):

a: int = 0
self.assertEqual(A(2), A())

To ensure Copilot follows this guideline, we will provide a lead-in cue to start the test case im-

plementation by beginning with the class name. Type the following lead-in:
class TestSingleton
As you type, Copilot should recognize that you are attempting to test the Singleton metaclass.

It may suggest a complete test case, but to tailor it more specifically to our requirements, accept

only the first line, which should be as follows:

class TestSingleton(TestCase):

128 Best Practices for Prompting with OpenAl API and GitHub Copilot

Continue by adding a descriptive name for the test case:

def test_singleton_should_return_same_instance(self):

Using descriptive names for unit tests is good practice, as it clearly conveys the purpose of the

test and serves as a documentation tool.

At this point, Copilot may suggest an implementation involving the Environment class. However,
the preferred approach is to test a designated class that uses the Singleton metaclass, as our goal
is to validate the metaclass itself rather than the Environment class. Begin the implementation

with the following:

@dataclass
class A(

At this point, Copilot should detect that we are testing an implementation of the metaclass. By

combining the test name and the lead-in cue, it may suggest a unit test such as the following:

@dataclass
class A(metaclass=Singleton):

a: int

self.assertEqual(A(2), A())

This unit test verifies that an instance of A initialized with a non-default value of 2 should be
equal to a new instantiation of the class without additional parameters, ensuring the Singleton

behavior is maintained.

We will delve deeper into writing unit tests with GenAl applications in Chapter 16. For now, accept

the suggested test case if it resembles the preceding one or tests similar functionality.

If you have completed all the steps correctly, your test class should look like this:

class TestSingleton(TestCase):
def test_singleton_should return_same_instance(self):
@dataclass
class A(metaclass=Singleton):

a: int = 0

self.assertEqual(A(2), A())

Chapter 5 129

Please note that this test will fail because the Singleton implementation has not yet been cor-

rected.

Next, execute the lab using the following shell command:

python -m unittest ch5/labs/lab52.py

This should result in a failing unit test:

® .venv+ supercharge git:(main) x python -m unittest ch5/labs/lab52_singleton.py
F

FAIL: test_singleton_behavior_should_return_same_instance (ch5.labs.lab52 singleton.TestSinglet
test singleton_behavior should return_same instance)

Traceback (most recent call last):
File "/Users/hila/PycharmProjects/private/supercharge/ch5/1labs/1lab52_singleton.py", line 26,
test_singleton_behavior_should_return_same_instance
self.assertEqual(A(2), A())
AssertionError: TestS[13 chars]_singleton_behavior_should_return_same_instance.<locals>.A(a=2)
TestS[13 chars]_singleton_behavior_should_return_same_instance.<locals>.A(a=0)

Ran 1 test in 0.001s

_ FAILED (failures=1)
Figure 5.9: Failing unit test for Singleton behavior

Failure is expected because the __call__ method of the Singleton is not properly implemented.
When a new instance of A is created, its attribute, a, is set to the default value of @ instead of

retaining the value from the previous instantiation of a=2.

If you are using VS Code, you can get an explanation of the terminal error by typing the following

in the Chat window:

@terminal /explain the failing unit test

130

Best Practices for Prompting with OpenAl API and GitHub Copilot

This prompt specifies that the context is the terminal, instructing Copilot to explain the test

failure as shown in the terminal trace. Here is an example explanation generated by Copilot Chat
using the GPT-40 model:

c hilahersz

@terminal [explain the failing unit test

@ lab52_singleton.py:15-30

Terminal
> Used 1 reference

The failing unit test is

e test_singleton_behavior_should_return_sam
e_instance inthe e TestSingleton class. The
test is failing because the two instances of class

el A are not equal. The assertion

e self.assertEqual(A(2), A()) is comparing an
instance of @@ A with @ a=2 to an instance
of 1 A with @ a=0 .

Figure 5.10: VS Code explanation for the failing unit test

Note that the objects in the explanation are clickable for added convenience. Clicking on objects

such as A will direct you to their location in the code:

o Ul B WNRELROW

A

ARERETETIA LR AR VAR AN

class TestSingleton(TestCase):
def test_singleton_behavior_should_return_same_instance(self):
@dataclass

class F\(metaclass=Singleton):
a: int = 0

self.assertEqual(A(2), A())

Figure 5.11: Clicking on A would highlight the objects in the file

Chapter 5 131

The explanation correctly identifies that the incorrect implementation of the Singleton metaclass

results in two different instances of the A class, causing the test to fail.

If you are using PyCharm, copy the failing traceback and paste it into the chat as follows, follow-

ing the five S’s:

CONTEXT: You will be provided with a failing Python unit test traceback
enclosed with {{{ TRACEBACK }}}.

TASK: Explain why the unit test is failing.
TRACEBACK: {{{
python -m unittest ch5/labs/lab52_singleton.py

FAIL: test_singleton_behavior_should_return_same_instance (ch5.labs.
lab52_singleton.TestSingleton.test_singleton_behavior_should_return_same_
instance)

Traceback (most recent call last):

File "supercharge/ch5/labs/lab52.py", line 26, in test_singleton_
behavior_should_return_same_instance

self.assertEqual(A(2), A())

AssertionError: TestS[13 chars]_singleton_behavior_should_return_same_
instance.<locals>.A(a=2) != TestS[13 chars]_singleton_behavior_should_
return_same_instance.<locals>.A(a=0)

Ran 1 test in 0.001s
FAILED (failures=1)

33
EXPLANATION:

This structured prompt, which includes surrounding context, a specific task to explain the failing
unit test, the traceback with an enclosed alias, and a lead-in explanation cue, will help us under-

stand why our test is failing.

132 Best Practices for Prompting with OpenAl API and GitHub Copilot

For reference, here is a sample output from Copilot Chatin PyCharm that correctly identifies the

cause of the failing test, specifically, the error in the singleton __call__ method implementation:

GitHub Copilot Chat : I

Debugging Singleton Pattern in Python ©+ - @

chars]_singleton_behavior_should_return_same_instance.<locals>.A(a

=2) = TestS[13
chars]_singleton_behavior_should_return_same_instance.<locals>.A(a
=0)</locals></locals> 3

<hr></hr> Ran 1 test in 0.001s Eg
FAILED (failures=1)
133

EXPLANATION:

& GitHub Copilot @ o P

> 4 steps completed successfully

The unit test is failing because the assertEqual statement is
comparing two instances of the A class, but they are not equal.
The first instance is created with A(2), which sets the attribute
a to 2, while the second instance is created with A(), which uses
the default value of a (B8).

In a singleton pattern, the same instance should be returned
every time the class is instantiated. However, the test is
failing because the __call__ method in the Singleton metaclass
does not correctly handle the arguments passed during
instantiation. It should ensure that the same instance is
returned regardless of the arguments.

Figure 5.12: Copilot Chat explanation for the failing unit test

Although this chat does not contain clickable elements, it accurately identifies the problem in

the _ call__ method thatis not implemented correctly.

Now that we have identified the issue with the Singleton metaclass, we can adjustthe __call__

method to properly maintain the single class instance design pattern.

Chapter 5 133

To fix the issue, navigate to the __call__method, highlight it, and prompt Copilot to fix the c1s

instantiation, as follows:

/fix cls instantiation

This prompt will suggest the correct fix for the c1s._instances registry. For your reference, here is

a sample output we received when using the Copilot extension in VS Code with the GPT-40 model:

7
@ /fix cls instantiation
& The problem is that the i Singleton class is using @ cls.__name__ as the key in
@ _instances dictionary, which should be @ cls instead.
I Ask Copilot U 0 GPTaov
8 def _ call_ (cls, *args, #xkwargs):
9 if -cls not in-cls._instances:
10 ; cls._instances[cls] = super(Singleton, cls)._ call__ (xargs,
*xkwargs)
T return cls._instances[cls]
12

Figure 5.13: Suggested fix for the cls instantiation

Copilot provided the correct implementation of the Singleton metaclass using cls._

instances[cls] instead of cl1s._instances[cls.__name__].

Accept this solution. At this point, your code should appear as follows:

from dataclasses import dataclass

from unittest import TestCase, main

class Singleton(type):

_instances = {}

def _ call_(cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super(Singleton, cls)._call_ (*args,
**kwargs)

return cls._instances[cls]

134 Best Practices for Prompting with OpenAl API and GitHub Copilot

Rerun the lab using the following shell command:

python -m unittest ch5/labs/lab52.py

The unit test should pass, confirming that the singleton is correctly implemented:

® .venv+ supercharge git:(main) python -m unittest ch5/labs/lab52.py

Ran 1 test in 0.001s

0K
Figure 5.14: Test ran with no errors

The unit test verifies that a new instantiation of the A class retrieves the previously created instance

with the argument of a=2, and the main() runner completes without errors.

Lab 5.2 analysis

In this lab, we debugged the Singleton implementation by creating a unit test that failed. Based
on the failure explanation, we used Copilot to fix the error. To accomplish this, we applied the
five S’s best practices across five different prompts. Let us examine how each prompt emphasizes

different practices of the five S’s, helping us achieve more desirable results.

Prompt 1 — following the structured prompt principle with a lead-
in cue

To create a test for the Singleton metaclass, we began with a code lead-in cue for Copilot:

class TestSingleton

We also followed the short best practice, by avoiding unnecessary comments. This was enough

for Copilot to suggest the name class TestSingleton(TestCase) for the test class.

Prompt 2— providing specific and short prompt principles
To generate a unit test that utilizes the singleton as a metaclass, we used a descriptive test name,
test_singleton_should_return_same_instance, along with a lead-in @dataclass decorator

and class implementation:

@dataclass

class A(metaclass=Singleton):

Chapter 5 135

This was sufficient for Copilot to understand that the test should validate the correct instantia-

tion of the Singleton:

class TestSingleton(TestCase):
def test_singleton_should_return_same_instance(self):
@dataclass
class A(metaclass=Singleton):

a: int = 0

self.assertEqual(A(2), A())

This test case compares two instances of the A class: one created with the default parameter and
another with a specified parameter. If the Singleton is implemented correctly, the two instances

should be equal.

Prompt 3 — adding surrounding context and focusing on a single
task with VS Code

After running the failing unit test, we enhanced the prompt with the additional surrounding

context and a single task by using the following:

@terminal /explain the failing unit test
This provided detailed information about the incorrectimplementation of the __call__method.

Prompt 4 — applying the five S's with PyCharm chat

When using PyCharm chat, we applied the same prompt techniques that work with ChatGPT.
We used a structured prompt with the surrounding context, focusing on a single task, and created

a specific and short prompt that led to an explanation of the traceback for the failing unit test.

Prompt 5 — narrowing down the single task to fix a method
implementation

Once Copilot identified that the issue was with the __call__ method’s cls instantiation, we

provided the following /fix command with a narrowed-down single task:

/fix cls instantiation

This allowed Copilot to focus on the correct fix required from this method.

136 Best Practices for Prompting with OpenAl API and GitHub Copilot

In summary, the five S’s for crafting precise prompts are essential when interacting with any of
GitHub Copilot’s three interaction modes. They help refine the structure by incorporating lead-in
cues, adding surrounding context to both chats and input statements, and narrowing the focus
to the specific task. This approach makes instructions more precise while avoiding unnecessary

comments and keeping prompts short and minimal.

In the upcoming chapters, we will explore advanced prompt engineering techniques to further

enhance our ability to achieve even better results from the GenAl applications.

Summary

In this chapter, we explored how to apply the five S’s best practices for crafting precise prompts
using both OpenAI API and GitHub Copilot. With OpenAI API, we learned how to extract valuable
information from Python objects, including attributes such as source code, docstrings, filenames,
object types, and more. When working with Copilot, we examined which aspects of the five S’s
are already implemented and identified how we can use those more precisely to improve outputs

from the GenAl application.

Through two interactive labs, we utilized the Singleton design pattern, commonly employed by
Python developers to enforce a single class instance with a designated metaclass. Using OpenAl
API, we generated documentation for the __call__ method of the Singleton. With GitHub Copilot,
we constructed a unit test that failed due to an undesirable behavior caused by faulty implemen-

tation, analyzed the test failure, and assisted Copilot in fixing the implementation.

With this, we conclude Part 1 of this book, in which we explored the best practices for crafting

precise prompts in ChatGPT, OpenAl API, and GitHub Copilot.

By now, we have learned how to use OpenAl AP], ChatGPT, and GitHub Copilot for a variety of use
cases. We examined the costs associated with each tool and observed the OpenAl rate limits. We
also explored Copilot’s architecture, built on the foundation of OpenAI AP], and gained insights

into using ChatGPT’s canvas editor effectively.

We discussed the three pillars of achieving quality outcomes from a GenAl application: model
mastery, evaluation metrics, and precise prompts. We emphasized the role of precise prompts by
implementing the five S’s: structured prompts, surrounding context, single-task focus, specific

instructions, and short prompts without unnecessary fluff.

Chapter 5 137

Next, we move on to Part 2, where we will delve deeper into understanding the underlying LLMs,
analyzing their risks and limitations, and learning how to take ownership of GenAl-generated

code, including critically reviewing code created from colleagues’ prompts.

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:

Question 1: How can we incorporate information from Python objects when working with
OpenAl API?

Answer: When working with OpenAl AP, we often include data about Python objects such as
functions, methods, classes, and variables. To extract details such as source code, docstrings,
filenames, and object types, we can use special attributes (dunder) methods, or the built-in

inspect package.
Question 2: Which of the five S’s for precise prompts are implemented in OpenAl API system
prompts?

Answer: OpenAl API system prompts incorporate surrounding context and single-task specifi-
cations, separated by a space. These prompts are reusable across different user prompts that are

typically handled by a function such as get_user_prompt.
Question 3: How can we extend the structured prompt practice with GitHub Copilot?

Answer: GitHub Copilot handles much of the structuring automatically. Adding a lead-in cue,
such as a function name (def func_name), variable type hint (product: float =), oraclassname

(class ClassName), serves as an effective cue for Copilot to begin the desired implementation.

Question 4: Are code comments such as# implement the following function effective when

working with Copilot?

Answer: Such comments are considered fluff and do not enhance the code’s readability or Copi-

lot’s output. Always prefer using lead-in cues instead of trivial comments.

138 Best Practices for Prompting with OpenAl API and GitHub Copilot

Further reading

To learn more about the topics that were covered in this chapter, look at the following resources:

e Singleton design pattern, by Geeks for Geeks: https://www.geeksforgeeks.org/
singleton-method-python-design-patterns/

e Metaclasses, by Real Python: https://realpython.com/python-metaclasses/

e Pythondataclass documentation: https://docs.python.org/3/library/dataclasses.
html

e The 3S’s best practices for GitHub Copilot for VS Code: https://techcommunity.
microsoft.com/blog/azuredevcommunityblog/single-short-specific---prompting-

github-copilot-for-visual-studio/4117226

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/
unlock, then search for this book by name.

Note: Keep your purchase invoice ready before

you start.

https://www.geeksforgeeks.org/singleton-method-python-design-patterns/
https://www.geeksforgeeks.org/singleton-method-python-design-patterns/
https://realpython.com/python-metaclasses/
https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html
https://techcommunity.microsoft.com/blog/azuredevcommunityblog/single-short-specific---prompting-github-copilot-for-visual-studio/4117226
https://techcommunity.microsoft.com/blog/azuredevcommunityblog/single-short-specific---prompting-github-copilot-for-visual-studio/4117226
https://techcommunity.microsoft.com/blog/azuredevcommunityblog/single-short-specific---prompting-github-copilot-for-visual-studio/4117226
http://packtpub.com/unlock
http://packtpub.com/unlock

Part 2

Basics to Advanced

LLM Prompting for
GenAl Coding

In Part 2 of this book, we explore how LLMs can be applied to consistently generate quality code.
It begins with a high-level guide on how LLMs work and then applies them to different tasks. By
the end of this part, you will understand which tools (ChatGPT, OpenAI AP, and GitHub Copilot)
can be best applied for a given task.

This part expands into prompt engineering, including advanced topics such as few-shotlearning,
Chain-of-Thoughtreasoning, iterative prompting, and chaining to better understand and refactor

code. It concludes with an exploration of fine-tuning methods.
This part contains the following chapters:

e Chapter 6, Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work
e Chapter 7, Reading and Understanding Code Bases with GenAl

e Chapter 8, An Introduction to Prompt Engineering

e Chapter 9, Advanced Prompt Engineering for Coding-Related Tasks

e Chapter 10, Refactoring Code with GenAl

e Chapter 11, Fine-Tuning Models with OpenAl

Behind the Scenes: How
ChatGPT, GitHub Copilot, and
Other LLMs Work

While most of the chapters in this book provide hands-on guides to using GenAI models for coding,
itis also useful to understand how they work under the hood. ChatGPT, OpenAI AP, and GitHub
Copilot are based around large language models (LLMs) that have been responsible for the sud-
den rise of GenAl not only in the technology space but across industries. By understanding how
LLMs work, you will understand when they can be most effective, know their limitations, and

appreciate their role in prompting. This will maximize your overall success with GenAl.
This chapter will introduce the following concepts:

e Statistical approach to finding similar letters
e Small and large language models for words

e Improving LLM output performance

e What are the limitations of LLMs?

e ChatGPT

e GitHub Copilot

142 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub Copilot account

e IDE —either VS Code or PyCharm

e OpenAl account with access to OpenAl API

e Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

e Virtual environment set up in VS Code or PyCharm

e OpenAl API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting
up OpenAl API access and token generation, see Chapter 2. If you need help creating an OpenAl

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Statistical approach to LLMs

Many users of ChatGPT and other LLMs often have an incorrect impression of how LLMs work.
They ask questions such as What fraction of the internet do they understand?. To introduce the un-
derlying concepts, this section focuses on a simpler problem using just statistics. This will allow us
to provide a foundation for discussing how models work before we shift into Al and deep learning.
The question we will address is whether we can use probabilities to predict the next letter given a
set of preceding letters. If we can, then we should be able to create true English from data without

any understanding of linguistic orthography, phonology, morphology, or even general language.

For this sample problem, we will use a medium-sized dataset called the Reuters-21578 dataset.
Itis available at the UCI Machine Learning Repository (https://archive.ics.uci.edu/) and
consists of 21,578 different news wire articles, which are just text stories across different topics.
While the main use of this dataset s to train and assess text classification algorithms, we are using
this as a large corpus of text that has over 15 million letters. The rest of this section describes the
process of using this corpus to predict the next letter using a statistical approach. A curious reader

can experiment further with the provided code available in the GitHub repository for Chapter 6.

Our first analysis step is to look at the frequencies of individual letters. Although the dataset
has not only letters but also numbers, punctuation, and other symbols, we will focus on just
the letters and the spaces between words. We will also ignore the case and convert everything

to lowercase. The frequencies of the individual letters are shown in Figure 6.1. The frequency of

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://archive.ics.uci.edu/

Chapter 6 143

words typically follows Zipf’s law, but not for letters. However, we do see the expected tapering
of frequencies when sorted by letter, although the distribution is not as smooth due to the limited

size of the dataset.

Frequency Per Letter
12%

10%

8%

6%

4%

HHIII

0% IIIII.II--_

umpdb fwg v X j q z
Figure 6.1: Letter frequencies for the Reuters-21578 dataset

With the frequencies or probabilities of the individual letters from Figure 6.1, we can produce words
by sampling from this distribution. We can sample proportional to the frequency of the letters
in the dataset and try to craft English words. We can do this by generating a random number
with a uniform distribution between 0 and 100%. If it’s < 12%, it would be an e. If it’'s in the 12 to
(12+9)% range, then it would be t. If it’s in the 19 to (19+8.5)% range, it would be a, and so on. The
results of this approach are shown in Figure 6.2. Each row represents a different example to show

some variation. As you can see, we have not replicated anything that looks vaguely like English:

1 eelnin ungia wwuetthgsaaeuuoiolifs ttelaroi ic so u dnli ohsaadociolid

2 t ape ui preirl y Idueeseihenw eioxtincplastmtcteughct ivirwataartrbi

3 ectee hcmasauisdeb eaeacwinsarsdu enti nuee dba io hagid kh aeeoa Ir

4 aelplilvprag el nl einrileadneirearoafr ndstey m iser e hnpatfut hllbi

5 appdsmn rstthylan mvlccirefrrchneahbrgbmefw schnygtof mormde neehc

Figure 6.2: Creating “words” from using just the individual word frequencies

Using the individual frequencies of words doesn’t use any context, and so it produces words that
do notresemble English. Context in this case refers to the order of the letters that come before it.
For instance, in the first line, no English words start with wwu or tte or dn. Similarly, the letter g

is usually followed by u in English.

144 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

To augment this with the context of preceding letters, we can use conditional probabilities. In
statistical terms, p(x[y) is read as the probability of x given y, and it means the probability of x
occurring given that y occurs. Mathematically, the formal definition is as follows:

_p(xy)
p(xly) = 200

If we think of playing cards, the probability of the queen of diamonds is 1/52, but the probability
of the queen of diamonds given itis a queen is 1/4. The probability of a queen of diamonds given

itis a diamond is 1/13.

In our context, we are going to use these conditional probabilities to compute the probability of
the nextletter. So, given the current letter is a g, the next letter is usually a u. In fact, we can build
a table of all the possibilities written as percentages for each combination of letters. Figure 6.3

shows the first letter as the column, and the conditional probability of the next letter as a row.

For instance, p(u/q) is 90.3%.

0.1 150 92 81 64 6.0113 205 34373 51104201 65 11167 07102150 63 48 7.6 169 56 4.219.7
19 06 01 02 09 00 00 00 08 00 03 0.2 30 01 08 01 00 03 02 00 27 00 01 0.0 1.7 038
35 03 16 01 55 01 01 00 69 01 00 05 04 73 21 65 00 21 1.8 03 51 0.0 0.019.3 1.0 0.2
41 01 01 22113 01 02 01 85 00 02 72 01162 24 02 00 25 03 04 28 00 01 00 1.0 04
0.1 24.0 13.5 342 3.7 12.8 26.2 53.7 3.3 14.1 52.2 13.7 24.5 11.3 0.3 154 0.0 28.6 16.1 16.8 4.7 56.1 20.2 10.6 44.4 34.4
09 00 01 00 14107 00 00 12 00 04 06 02 07118 00 00 02 02 01 06 0.0 0.0 0.0 03 0.2
27 00 01 11 10 01 12 00 23 00 02 01 00140 06 01 00 16 00 03 27 095 00 00 01 0.1
01 01111 01 03 00107 00 00 00 09 00 00 01 02 13 00 01 73288 01 00125 02 01 11
9.0 10.5 6.4 185 13214 6.6 103 0.0 2.012.2 13.2 109 53 1.3 31 11 9.8 93130 3316.9 252 7.1 7.1244
02 05 00 04 00 00 00 00 00 00 00 00 00 01 02 00 00 00 00 00 01 0.0 0.0 0.0 00 0.
1.1 00 33 00 05 00 01 00 03 00 03 05 00 25 08 00 00 22 06 00 01 00 01 0.0 01 0.1
10.8 81 33104 39 26 16 03 7.2 02 20146 S92 05 40 76 00 14 10 08 93 01 04 02 1.2 09
19 03 01 08 31 01 06 02 21 00 05 04 49 08 87 10 00 26 1.0 06 3.0 00 02 0.2 6.2 0.2
21.2 01 00 03111 00 50 05269 01 1.7 59 01 18217 00 00 26 01 01120 0.0 42 02 29 0.1
0.1 10.6 247 6.2 03245 95 6.9 85220 33 83105 55 13137 00115 59138 05 3.6150 14 7.3 69
23 04 01 02 17 00 01 00 09 01 0.2 04103 01 32 43 00 16 3.0 01 43 0.0 0.039.8 1.1 0.7
0.1 00 07 01 04 00 00 00 01 00 00 00 00 01 00 00 00 00 00 00 00 0.0 0.0 00 00 0.1
135 61 36 20202117155 32 29 05 11 56 01 01159226 00 19 01 57154 02 1.2 0.0 0.7 0.1
81 22 06 39130 07 38 09 84 0.0155 36 23 62 40 10 00 88 73 71100136 2.1 0.1182 04
120 25156 02 45 36 12 20126 00 0.2 43 05157 42 26 76 57228 13175 00 13140 11 02
11103 46 88 24 51 48 07 02235 12 28 22 17 87 36903 17 64 20 00 01 00 03 08 49
16 01 00 07 20 00 00 00 26 00 00 05 00 1.2 29 00 00 10 00 00 01 00 00 0.0 0.0 0.1
04 00 00 03 11 00 00 01 01 01 04 01 00 01 34 01 00 03 05 10 01 01 00 02 03 1.0
04 00 00 00 28 00 00 00 03 00 00 00 00 00 01 00 00 00 00 00 01 0.0 0.0 04 0.0 0.
25 82 12 13 10 03 15 02 0.0 00 20 70 06 22 04 01 00 33 08 14 08 05 01 05 00 1.2
03 00 00 00 01 00 00 00 04 00 01 00 00 01 00 00 00 00 00 01 01 0.0 00 00 01 158

TR -0 O~ T Q

— R s

N< X% <C +0n-~00ToO3 3

Figure 6.3: Percentage of conditional probabilities for next letters (rows) given letters (columns)

Chapter 6 145

The sampling is more complicated in the conditional probability case, so let’s use an example.
To create text, we might assume that our last letter is a q. To choose the next letter, we randomly
sample from the possibilities across all rows of the q column. We then generate a random value
from O to 100% representing a random probability drawn from a uniform distribution for the
next letter. We then consider which bucket the random number fell in. The letter a is .7%, b
through £ are all .0%. The letter I has a 1.1% chance. The letter ¢ has a 7.6% chance, and the
letter u has the largest probability of 90.3%. While it appears that these numbers do not sum
to 100%, this is due to round-off errors only. If we select based on these probabilities, the most
likely letter is u. We repeat the process with the u column, where the most likely letters are ¢, 7, ,
and s, and the least likely letters are g and u. You are likely wondering which words have these
strange letters, but remember that there may be acronyms, email addresses, and foreign names

included in the articles.

Now that we can generate words for conditional probabilities, does this approach work? Figure
6.4 shows the results. The word lengths are much closer, and there are a couple of real words, such

as it, as, and mag, but otherwise, they do not look like English words:

1 wmarerye icose verhe herer duvoucrpa tilllarast itout f cts coles t tere

2 quron ryeurod g tst venk es wedus d it pll inopo antopcol ediomoforen f
3 Izin terop zquntreve re h tha hentwhase ues tabr iningte as ithormarape
4 rhelds sa tonat ainserathaby sard d aran ido rerealdon itino iconderilos

5 bagalintenin bs cutr tha mag temes cr teat owa th ondes brsumesaistgt

Figure 6.4: Conditional probabilities for p(next_letter | current letter)

We can extend the model so thatinstead of justlooking at a letter given its preceding single letter,
we can consider a wider context. Specifically, we can consider the next letter given the preceding
j letters using the probability p(next_letter | preceding j letters). This makes the table much larger
since the number of columns would increase from 26 to combinations of 2 letters, 3 letters, or
more. For the next letter, based on all combinations of the 2 previous letters, the table would be
26 by 26” = 676. For the next letter based on the previous 3 letters, the table would be 26 by 26° =
17,576. However, with a longer context, we would expect better results. We will not show these

larger tables of percentages or probabilities, but show the results instead.

146 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

The result for the preceding two letters is shown here:

1 laa fith any sh wilhipect thenbleraqi alevid can of the sid in majoin sai

2 sciall appoilliv the takems red trichater jappetted siserseparcess feradd

3 ccpcts allansdaidebt cilliculeve remagre yestom the prify she and saiday

4 onhasharce by williedit salichansaid compansucers sankin connotin farkell

5 goo cout ovelucce any annes and a prommit sers consainse theartment ths w

Figure 6.5: Conditional probabilities for p(next_letter | preceding 2 letters)
For the preceding three letters, the result s as follows:

1 axistraders vice resgel ince trial pital pare to company and on mate donal

2 uma in the feeds under heasonal behinance out ints comesterly also for dea
3 mies are it wcashelp included to thanted quota committe of converal insti
4 jave affere in gover see west rainly of apriculates als of the tradio estm

5 tiall bancember shings offection this in chanies anding for tration aprice

Figure 6.6: Conditional probabilities for p(next_letter | preceding 3 letters)

For the preceding four letters, this is the result:

1 frn in and corp told keeping an from years to market of about there listerd
2 ow fluctane cited under fight pct on the large share into mazda ways to the
3 orb states all year oper shr longer board if of worldwident effort said und

4 logan outstandar years for that they said the fund dives for the right pres

5 ority and its proving exposures said internative to tights income for throu

Figure 6.7: Conditional probabilities for p(next_letter | preceding 4 letters)

For the preceding five letters, the result s as follows:

1 o at such a president quarter eased prices in london said subsidiary said it
2 res average of a dry eder chemical difficulture deterior quickly export cred
3 ten land ship offer committee changed mexico portugal item for example
price

4 men violated at federal of the projects to a strict of francs offer industry

5 f customers approval by their old starting earn that order the governments m

Figure 6.8: Conditional probabilities for p(next_letter | preceding 5 letters)

Chapter 6 147

Finally, the result for the preceding six letters is the following:

1 aize subsidized by nippon is expects offer of the agreement earlier today to
2 Id start of corporate property owned from the exports of the chairman rich in
3 alty shortly the year from a floor and judicious market will come of the two
4 she city more discharge as its views last year as he said it would add some o

5 ed on industrial country in narrowed to buy up to the italian declined there

Figure 6.9: Conditional probabilities for p(next_letter | preceding 6 letters)

As we can see, the results improve substantially as we increase the context window. In fact, most
of the output has real English words once we use the four preceding letters. With six preceding
letters, the sentence flow starts to make some sense, which may be surprising since we are only

looking at single letters.

It is important to understand what the model is learning. Although the statistics appear to be
producing English words and even some meaningful sentences in Figure 6.9, it does not under-
stand the concept of an English word or sentence structure. Furthermore, the model is not storing
knowledge or facts of the English language or words. It is only storing the probabilities of the next
letter from the preceding context. Our model focuses only on letters at this point, and the next
section describes the extension to word-level models. If we had training data that was a thousand

or amillion times larger, it would be merely doing a better job of estimating the same frequencies.

Extending the model to words

Our English model, which builds language from letters, is quite limited. To produce meaningful
language, we would need a much longer context of preceding words to understand the relation-
ships between words spaced throughout a sentence. Furthermore, we don’t think of language in
terms of letters—we think in terms of words. With our 26 letters in English and a space, each of

the precedingj positions can only have 27 possibilities, which means our model is relatively small.

148 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

Note

If we consider all combinations of the preceding 3 letters, there are 27 x 27 x 27, or
about 20,000 possibilities of letters. With 15 million letters in the dataset and 20,000
combinations, we have a 750:1 ratio of training to combinations, which provides
\E/’ excellent training. The average person knows 42,000 words, so if we use all combi-
nations of the preceding 3 words, it would be 42,000 x 42,000 x 42,000 ~ 7.4E13, or
74 trillion 3-word combinations possible, which is about 10x more than any PC hard
disk can handle today. However, if we have 15 million letters and the average word
plus a space character is 6 letters, then there would be 2.5 million words. The ratio

of training to combinations drops to a 2.5 million:74 trillion ratio, or 1in 30 million.

Based on the preceding information, we would need billions of times more data for similar ac-

curacy using the statistical model.

As a model becomes more complex, it requires more training data. We can think of a model as
a general function where we try to approximate a y value from different x values. This approxi-
mation process determines the best function parameters from a set of training data (x, y) pairs
representing the input, x, and the output, y. In the case of a linear model, the model must learn
the best slope and y-intercept to represent the data. The training data is collected and designed
to be representative of future data so that when the model fits well, it can be useful to predict

future y values.

Of course, most models are not simple linear models or functions. There may be multivariate
inputs with billions of parameters and large output dimensionality. Learning from such large
datasets requires significantly larger training data. Consider fitting a linear or a higher-order

linear model to a set of data points, as shown in Figure 6.10:

Figure 6.10: The number of training data points increases as the model becomes more complex

Chapter 6 149

We can fit a line with just two points, perhaps, but the seventh-order model on the right needs
far more data points to accurately fit. Al models often require data for trillions of parameters,
which introduces a problem where the model may suffer from insufficient training data available.
The accuracy of the model depends on the number of parameters in the model and the size of its

training dataset.

To summarize, the example with letters showed that a statistical model could approximate English
language words with a moderate training dataset since the number of combinations is reasonably
small. However, we need to store the probabilities of each letter given all preceding letter contexts,
which can be quite large. For even the context of just three preceding words, the frequencies are
prohibitive to store. In addition to the storage challenge, we would need vast quantities of data to
fill a word frequency table to achieve modest prediction accuracy, which is not readily available.

The next section uses Al rather than statistics to overcome these challenges for words.

Small and large language models for words

The statistical model clearly worked well for a medium-sized dataset with a small model based
on letters. Since grammar and meaning function at the word level, we need to be able to accu-
rately predict the next word rather than the next letter. Since the number of possible next words
is far larger than the number of next letters, the model will need to be many orders of magnitude
larger. If we think about code or even text, there are no datasets that are billions of times larger.
Al methods, and specifically LLMs, provide solutions that enable predictions more efficiently
than just probabilities. We describe two methods in this section: word2vec and the Transformer

deep learning model.

Word2vec

The word2vec model is arguably a small language model that uses a simple neural network. In-
spired by biology, neural networks are a particular type of machine learning algorithm thatlearn
from data. Although there are a variety of neural network models, this type learns a mathematical
function. Each output neuron is a nonlinear function of the weighted sum of the input values. In

the training step, the weights are adjusted so that the input values will predict the output values.

As an example, a neural network could learn to predict whether today is a good day to play tennis
based on the inputs of temperature, wind, precipitation, and humidity. The training data would use
past decisions to play tennis (output=1) or not play (output=0), and the corresponding weather
conditions. With only this data, a neural network could learn to classify future good days for tennis
based on the weather. The learned weights for wind and precipitation might be large negative

values since high wind speeds and precipitation make tennis unplayable.

150 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

Developed by Google in 2013, the word2vec algorithm (https://en.wikipedia.org/wiki/
Word2vec) trained a model to predict the target word from the context of two words before and
after that word. They also developed the opposite problem of predicting the surrounding context
from a single word. Essentially, this is equivalent to the next word prediction using the presence
of adjacent words rather than only preceding words. Backed with an efficient training algorithm,
the results proved reasonably predictive. Of greater importance, the word2vec weights formed an
embedding of the word or numeric vector representation that quantified the semantic and syntax func-
tion of words. In other words, the word2vec model learns to associate every trained word with a
numeric vector of numbers. These vectors can be compared, which is useful for comparing the

similarity of word meanings.

Deep learning

Deep learning is a subset of neural networks that involves learning functions of functions, essen-
tially. That s, the outputs of one layer form the inputs to a second layer, creating a deep stack of
functions. The Universal Approximation Theorem proved that neural networks could learn to
approximate any mathematical function, given a two-layer network under certain conditions.
Research has found that creating deep neural networks with tens, hundreds, or thousands of
layers is an efficient way of achieving accurate results. In each layer, the model adjusts its weights

based on the training data to learn functions with the results passed as input to subsequent layers.

In 2017, anew deep learning architecture called the Transformer was published in a famous paper
called Attention is All You Need from Google, the link to which can be found in the Further reading
section. Rather than relying on the context of adjacent words, the Transformer architecture ef-
ficiently learns the relationship between all words in a sentence. The training process learns the
relationship between words using a masking process, through which it hides each word separately

and learns to predict it from all the other words in each sentence.

A deep learning network describes an architecture in machine learning with a specific number of
inputs, outputs, layers, nodes per layer, inter-node connections, and weights throughout. Like
the previously described linear model, the architecture describes the solution and is trained to
solve a specific problem. LLMs are the result of training a deep learning network on large volumes
of text. They learn to correctly predict the next word much better than statistical and word2vec
models. Similar to the statistical next-letter prediction models, they can iteratively predict the next
word to generate sentences, paragraphs, and full texts. Researchers have found that by training
on ever larger volumes of text (or code), the accuracy continues to improve, so many LLMs have

been developed that use increasingly larger network sizes and more training data.

https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec

Chapter 6 151

LLMs by themselves offer significant capabilities in next-word prediction, but they are continuing
to expand into new areas of intelligence. Many of the breakthroughs are now coming from various
techniques that improve the performance of their respective LLMs. The next section describes

some steps that users can take with an LLM to improve the outputs of LLMs.

Improving LLM output performance

If the LLM does not answer questions well, there are four general courses of action: improving
prompt engineering, adding more data through the context window, providing examples (few-
shotlearning), fine-tuning, and retrieval-augmented generation (RAG). These will be discussed

in this section.

Prompt engineering

The discipline of prompt engineering has recently emerged as a human interface to the LLM. Us-
ers or programs can send commands to, ask questions of, and apply research reasoning through
the LLM. The discipline involves applying specific wording to maximize the chance of correct
outputs without producing erroneous or biased outputs, including hallucinations. The process
of writing prompts is often an iterative process where it may require multiple rounds to achieve
the desired output. Most of the prompts discussed in this book focus on a single task with specific
and clear wording, which is considered good practice. The five S’s framework outlined in this book
provides a useful general-purpose structured approach to writing the prompts. We’ll cover more

on prompt engineering techniques in later chapters.

Adding context

As discussed in this chapter, LLMs are not databases that store data, nor are they an oracle of
all knowledge (yet). They can perform a limited number of tasks and answer a finite number
of questions without further enhancements. To enable question-answering, interactive chats,
or other tasks such as code generation, the user can send the LLM both the question as well as

additional information within a context window.

Note

The context window is somewhat analogous to a human’s short-term memory in
\G/\/ that it has a limited size and may forget older information. However, the context
window is generally large enough to include documents, earlier inputs, and returned
outputs. A document can be provided as context, and the prompt engineer can ask

questions of the document.

152 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

Depending on the size of the context window, all or part of earlier outputs from the system and
pastinputs are automatically included in the next prompts associated with that user, so an entire
dialog or thought process is included in every interaction with the LLM. A short context window
might only allow a few papers to be uploaded and summarized together, while a longer context
window could enable a book to be uploaded with multiple interactive sessions kept as context.
This approach has several advantages over an LLM system, which will be discussed next as ways

of improving results.

Providing examples

The context window allows for documents and other data to be included along with the prompt
or question, but it also allows for examples. A prompt may ask the LLM to return a particular
nugget of information in a specific format. In many cases, this will be successful, and this is called
zero-shot learning. That is, there are no examples of how the LLM should form a response—it
justuses its baseline approach. However, the prompts can include one example of an input and an
output as part of the prompt. This is called one-shotlearning. If multiple examples are provided,
this is called few-shot learning. While many examples can be used depending on the context
window length, there is a law of diminishing returns. However, it is an effective approach to
instruct the LLM to tailor its outputs to meet a specific need. We will discuss few-shot learning

in depth in Chapter 8.

Fine-tuning

Training an LLM from scratch may cost $100 million to learn the trillions of weights that are
trained on prose, poetry, drama, literature, and science. Due to the prohibitive cost, it will not
be trained often. In fact, it is typically two years out of date, which means it does not have any
recent events or information. It also likely doesn’t have personal or corporate documents includ-
ed in its training. One solution discussed is to provide these in a context window. As discussed
in Chapter 2, for pay-for-service LLMs such as OpenAl, every transaction has two costs: a cost
to send information to the LLM and a cost for the output produced, both based on the length
of the information. As the amount of input information and the number of calls with the same

information increase, it may become a costly solution.

Fine-tuning offers an alternative to repeatedly sending a large context to the LLM. It essentially
adds a limited supplemental dataset to the LLM training in the form of documents or examples.

The training fine-tunes the weights of the neural network by making minor adjustments that are

Chapter 6 153

sufficient to produce improved outputs. Fine-tuning provides a cost-efficient way of improving
outputs without repeatedly sending large contexts of data to the LLM. We will dive deeper into
fine-tuning in Chapter 11.

Retrieval-augmented generation

RAG solves two major problems with the LLMs. First, OpenAl and ChatGPT are not databases
of information, so they cannot retrieve information like a web search. Second, their training
data is typically two years old and does not include personal or corporate documents. The RAG
architecture integrates the LLM with external information from a web search, database, or set
of documents. RAG uses the LLM to interpret the input from a user and then retrieves blocks of
text from various sources that it finds to be closely related to the input. The LLM then processes
the combination of the input and retrieved data to form an answer or response using the stan-
dard LLM processing. Essentially, RAG fills the context window with candidate answers relevant
to the question based on a search and then instructs the LLM to perform its usual summary or
question-answering on that context window. This enables a full system with an LLM to perform

web searches on current information or focus on specific documents when generating output.

Each of the approaches described in this section is widely used to improve LLM results. While
research continues to advance LLM capabilities, it is important to understand their limitations,

which are discussed in the next section.

What are the limitations of LLMs?

With both the statistical approach for the letters and the LLM approach for words, there is no
formal knowledge that many expect, given its ability to answer many questions. There is no
extensive knowledge base of topics, common sense, or anything except the word patterns it has
learned. What is surprising to researchers is the fact that the learned patterns and their relation-
ships somehow enable LLMs to perform new tasks for which they have never been trained. For
instance, LLMs have even shown some capability in some foreign languages that are not part
of their training set, through a process called zero-shot cross-linguistic transfer. Even if the
output has been trained, one may get slightly different results each time from a prompt due to
the randomness in the system. Much of the research in the prompt engineering area focuses on
how to receive consistent and correct outputs from LLMs by crafting the prompts with specific

phrases, commands, and context.

154 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

The deep learning approach will almost always produce syntactically correct and plausible-looking
output, but some of the output may be prone to hallucinations. There have been some famous
cases where the output was completely incorrect, technically wrong, and sometimes just made
up. A professor was accused of assault on a school trip that never happened. Many students
have been caught using ChatGPT since none of their references existed. Even a US government
health report was caught citing facts of a made-up reference. These incidents can be found in the
Further reading section. Hallucinations often occur when there is insufficient training to support
a particular output. The statistical methods do not have such an issue since they only sample

from the previously seen patterns.

It is currently nearly impossible to know in which areas exactly the LLM has expertise, and in
which areas they have limited training. A few years ago, the training of LLMs was generally re-
leased as part of its research publication. In the past couple of years, much of the LLM training has
become more secretive, so we do not know exactly which sources were used and cannot exactly
predict their domains of capability. However, OpenAl has been trained extensively on both texts
and code in multiple languages. OpenATI’s philosophy is to provide safe and beneficial general
Al across many domains. ChatGPT is a specialization using an OpenAl LLM and is discussed in

the next section.

ChatGPT

Launched by OpenAl in November 2022, ChatGPT was developed on the GPT-3.5 model. It be-
came a focal point of the Al growth since it worked through a conversational interface, unlike the
programming interface of other LLMs. The dialog-driven interface requires it to track the history
of the conversation, even across sessions. ChatGPT is a specialization of the LLM with improved

conversational capability.

One of the key technology improvements was the use of reinforcement learning from human
feedback (RLHF), which improved the dialog capability through training and feedback to give
better responses. As discussed earlier, fine-tuning can improve the LLM’s performance for specific
tasks. RLHF goes one step further and incorporates feedback from users to adjust the weights. As
a result, it delivers results that incorporate human preferences and even reasoning capabilities

in terms of responses and answers to questions.

Chapter 6 155

ChatGPT continues to be a leader in the growth of Al, in part due to its easy web interface that
makes it widely accessible with minimal training. It has led to greater research in natural lan-
guage processing (NLP) and multiple use cases. Although it can write code, its capabilities are
limited as compared to GitHub Copilot, which extends the GPT model for generative coding, as

described in the next section.

GitHub Copilot

GitHub Copilot was officially announced as a collaboration between GitHub, Microsoft, and
OpenAl, specifically for writing code, in 2021, and opened for technical review. At the time, it
started with the GPT-3 instance from OpenAl, and the three companies collaboratively trained it
to focus on code development, resulting in the OpenAl Codex. After GPT-4 was released, GitHub
Copilot adopted it and released GitHub Copilot X. Its optimization focuses on code completion,
fixing bugs, code comments, and tests based on billions of lines of code training beyond the GPT
models. The combination of the underlying GPT model with the code-training focus enables the

two-way natural language and computer language code writing and explanation.

GitHub Copilot uses a combination of technologies to provide its coding experience. When writing
code from a single file, it sends at least part of the current file through the internet to the Copilot
server. It will also use the prompt and other open files that are open within their respective VS
Code or PyCharm IDE for context. It uses this context to search for similar code using the RAG
approach, and then sequentially generates code one token at a time. The amount of code sent to

the Copilot server is based on the context length and certainly costs.

If part of your open code and possibly data is being sent to Copilot, it is natural to be concerned
about security. The information is encrypted when sent to and from Copilot. The exchange context
resides in memory but is deleted without being stored or used for training. The GitHub Copilot
Trust Center page, available at https://copilot.github.trust.page/, provides more infor-
mation about their data security, privacy, and related issues. It includes suggestions, feedback,
prompts, and user engagement data. None of the code exchanged while using GitHub Copilot s

used for training their system.

https://copilot.github.trust.page/

156 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

Summary

Statistical and Al approaches can learn patterns from sequential data such as text or code, which
can efficiently predict the next symbol. Due to the range of possible words, deep learning methods
scale well to efficiently predict the next words much better than statistical techniques and have
become the standard. Even so, they require vast training sets of text and code and an expensive

computational process to be effective.

While LLMs are highly effective, they are not perfect and are limited by their training set of data
and perhaps the time it was trained. The output can be limited for various domains and time pe-
riods, which can resultin hallucinations. While research continues in these areas, some solutions
to improve results include effective prompt engineering, providing contextual information such

as documents or examples, fine-tuning, and the RAG approach.

OpenAl and ChatGPT are trained on general data and code, and are quite effective at generating
code. GitHub Copilot is built upon OpenAlI and, with significant additional training on code, is

more efficient at generating code, tests, comments, and more.

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:

Question 1: How is the deep learning approach for words similar to and different from the sta-

tistical approach described for letters in this chapter?

Answer: Both the deep learning approaches and statistical approaches generate new text or code
using a combination of their trained model and randomness. Even though they are both trained
on data, they rely on randomness to select from the probable next words, which means their
outputs can be different each time. In both cases, if they are trained with insufficient data, they
may not produce satisfactory results. Neither has a conceptual understanding of the inputs or

outputs, so both are relying on patterns of inputs to predict patterns of outputs.

The deep learning approach is orders of magnitude more efficient in predicting the range of
possible next words or code using complex, less interpretable models. While both could easily
predict the next letters with a large training set, the conditional probabilities would not be able

to scale to predict next words as the deep learning approach can.

Chapter 6 157

Question 2: How is GitHub Copilot different from OpenAl in terms of code development?

Answer: OpenAl was optimized for general knowledge, and GitHub Copilot was optimized for
code generation. GitHub Copilot took the human language capabilities of GPT-4 from OpenAl
and further trained it on billions of lines of code, comments, and documentation. In this way, it
serves as a pair programmer with the ability to generate code from text, explain code as text, write

tests from code, and write comments from code.

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following

resources:

e Zipf’slaw: https://en.wikipedia.org/wiki/zZipf’s_law

¢ Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey (16 January 2013). Efficient Estima-
tion of Word Representations in Vector Space: https://en.wikipedia.org/wiki/Word2vec

e Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez,
Aidan N; Kaiser, Eukasz; Polosukhin, Illia (December 2017). Astention is All You Need. In 1.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(ed.). 31st Conference on Neural Information Processing Systems (NIPS). Advances in
Neural Information Processing Systems. Vol. 30. Curran Associates, Inc.: https://arxiv.
org/abs/1706.03762

e Pranav Dixit. US law professor claims ChatGPT falsely accused him of sexual assault, says ‘cited

article was never written’. Business Today: https://www.businesstoday.in/technology/
news/story/openai-chatgpt-falsely-accuses-us-law-professor-of-sexual-

harassment-376630-2023-04-08

e Loreben Tuquero. RFKJr.’s health report shows how Al slips fake studies into research: https://

www . poynter.org/fact-checking/2025/rfk-jr-fake-citations-medical-journals/

e GitHub Copilot Trust Center page: https://copilot.github.trust.page/

https://en.wikipedia.org/wiki/Zipf’s_law
https://en.wikipedia.org/wiki/Word2vec
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.businesstoday.in/technology/news/story/openai-chatgpt-falsely-accuses-us-law-professor-of-sexual-harassment-376630-2023-04-08
https://www.businesstoday.in/technology/news/story/openai-chatgpt-falsely-accuses-us-law-professor-of-sexual-harassment-376630-2023-04-08
https://www.businesstoday.in/technology/news/story/openai-chatgpt-falsely-accuses-us-law-professor-of-sexual-harassment-376630-2023-04-08
https://www.poynter.org/fact-checking/2025/rfk-jr-fake-citations-medical-journals/
https://www.poynter.org/fact-checking/2025/rfk-jr-fake-citations-medical-journals/
https://copilot.github.trust.page/

158 Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled
filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs
and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.1link/TRO5B or scan the QR code below.

O

Reading and Understanding
Code Bases with GenAl

Writing code is rarely an isolated task. We will typically have to incorporate our Python snippets
into a larger code base thatincludes project files, often structured under a /src folder, along with
dependencies listed in a requirements. txt file and other non-project files, such as a Dockerfile

that defines container specifications.

In this chapter, we will work with a code base that computes the Manhattan distance between
two matrices represented as pandas DataFrames. With the help of ChatGPT, GitHub Copilot, and
OpenAI AP, we will explore how various GenAl tools can support us in efficiently understanding
both non-project files and the main business logic. We will also examine how generating calls

with sample parameters can improve our understanding of more complex code.
Here are the key topics covered in this chapter:

e Reading and understanding the code base structure
e Using LLMs to explain code
e Interpreting non-project files

e Creating calls with example parameters

160 Reading and Understanding Code Bases with GenAl

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub Copilot account
e IDE —either VS Code or PyCharm
e OpenAl account with access to OpenAl API

e Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

e Virtual environment set up in VS Code or PyCharm

e OpenAl API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting
up OpenAl API access and token generation, see Chapter 2. If you need help creating an OpenAl

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Reading and understanding the code base structure

So far in the book, we have mostly explored code snippets that are limited to a single Python file.
In this chapter, we will shift our focus and see how GenAlI tools can support us in reading and

understanding a broader code base.

Getting to know a code base usually involves reading through a variety of files. For instance, when

a developer encounters a new project, they might do the following:

Explore entry points such as main.py or app.py

Identify the main project files, often found in a /src directory

Look for container and dependency managementfiles such as Dockerfile and requirements. txt
Experiment with specific parts of the code

In this book’s repository, we provide a small code base example located under ch7/. Here is a

directory tree view of its contents:

ch7/

— app.py

|— src/

| '— manhattan.py

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 7 161

— Dockerfile
— README.md

— requirements.txt

In this tree view, the core business logic that we will explore next is located in src/manhattan.

py. In addition, we have the following:

app. py, which serves as the entry point and handles basic Hypertext Transfer Protocol (HTTP)
POST requests, routing them to the business logic. As introduced in Chapter 2, HTTP POST is a

standard method for sending data to a server.

Dockerfile, a text file that outlines the steps and dependencies needed to build a container image

for running the application. We will return to this later in the chapter.

requirements.txt, which lists the application’s dependencies, such as pandas and Flask, as in-

troduced in Chapter 2.

README . md, a markdown file commonly used to provide documentation about a code base. In our

case, it includes examples of how to use the application.

Next, we will introduce the Manhattan distance, which serves as the core business logic of our

application.

Introducing the Manhattan distance

In this chapter, our code focuses on calculating the Manhattan distance between two points.
This distance is defined as the sum of the absolute differences along each dimension. In two-di-
mensional space, we can relate this to classic computer games such as Pacman, where movement
is restricted to vertical or horizontal directions, with no diagonal steps allowed. For example,

consider Pacman and a ghost positioned in locations (1,1) and (3, 2), respectively, in Figure 7.1.

Figure 7.1: Pacman and ghost positions

162 Reading and Understanding Code Bases with GenAl

In this figure, the characters can move either horizontally or vertically. The Manhattan distance

between them is two units along the x axis and one unit along the y axis, which totals 3:

Manhattan Distance = [3—1| + [2—1| =3

A simple Python implementation for calculating this distance might look like this:

def get_manhattan_distance(
x1: Tuple[int, int],
x2: Tuple[int, int],

) -> int:

abs(x1[0] - x2[@])
abs(x1[1] - x2[1])

x_dist: int

y_dist: int

dist: int = x_dist + y_dist

return dist

In this implementation, we use two-dimensional vectors represented as Tuple[int, int] to
represent a position on a board. However, the Manhattan distance can be generalized to higher

dimensions computed between matrices of floats, as we will see next.

Manhattan distance for matrices

The Manhattan distance, also referred to as the L1 norm, extends naturally to higher-dimensional
data. It is widely used in image analysis when comparing two images and in machine learning

research when evaluating prediction errors.

To compute the Manhattan distance between matrices, we can use pandas DataFrame objects.
pandasis a standard library for data manipulation and should be listed in the book’s requirements.

txt file and already installed in your virtual environment.
Here is an example of a DataFrame with two rows, A and B, and three columns labeled a, b, and c:

import pandas as pd

dfl: pd.DataFrame = pd.DataFrame(
data={
"A": [1, 2, 3],
"B": [4, 5, 6],
s

index=["a", "b", "c"],

Chapter 7 163

We can implement the Manhattan distance using the pandas methods . abs () for absolute values

and . sum() for summing along axes:

def get_manhattan_distance(
dfl: pd.DataFrame,
df2: pd.DataFrame,
) -> np.float64:
element_wise_dist: pd.DataFrame = (dfl - df2).abs()
dist: float = element_wise_dist.sum().sum().astype(float)

return dist

The distance calculation uses . sum() twice: first to sum across rows, and then again to sum the
resulting column totals. We convert the result to a float to standardize the output, since summing

over integer values may return a NumPy int64 data type.

Let’s take these two DataFrames:

A = [[1 3]
[2 4]]
B =[[57]
[6 8]]

Calling get_manhattan_distance on these will return the following:

[5-1] + |6-2]| + |7-3| + |8-4| = 16

Now that we have a clear understanding of the core business logic and supporting code around
the distance computation, we can explore how GitHub Copilot, ChatGPT, and OpenAl API can

help us navigate and familiarize ourselves with the code base.

Using LLMs to explain code

In Chapter 3, we noted that GitHub Copilot does not include the entire code base in the prompt.
This is due to context window limitations, potential cost, and the fact that much of the content

may not be relevant to the specific task.

However, this does not prevent GenAl from helping us understand the code bases we are working
with. Rather than relying blindly on Large Language Models (LLMs) to identify key components,

we will explore how to request explanations for both simple elements and more complex scenarios.

164 Reading and Understanding Code Bases with GenAl

Using the /explain command with GitHub Copilot

GitHub Copilotincludes several slash commands, among them the /explain command, which is
available in both the inline chat and the chat window. Unlike code completion tasks, the output

of this prompt is explanatory text covering arguments, data transformations, and return values.

The command can be used alone or with extra instructions. For example, in PyCharm, we can ask
Copilot to explain the get_manhattan_distance function by placing the cursor anywhere within
the function signature, opening the inline chat window, typing /explain, and hitting Enter, as

shown in Figure 7.2:

& /explain > X

7 dhf get_manhattan_distance(& usages
dfl: pd.DataFrame,
df2: pd.DataFrame,
) -> float:
element_wise_dist: pd.DataFrame = (dfl - df2).abs()
dist: float = float(element_wise_dist.sum().sum())
return dist

Figure 7.2: Using GitHub Copilot /explain for methods

Another available option is to select the contents of the function, open a chat window, and type
/explain. Note that in VS Code, you will need to choose @workspace /explain by either typing
it directly or selecting the /explain @workspace option in the drop-down menu after typing /

explain, as shown in Figure 7.3:

&« £ supercharge &8~ BN E D
@ manhattan.py X >~ @M - COPILOT EDITS ~ CHAT =
ch7 > src > @ manhattan.py > @ get_manhattan_distz Review output carefully before use.

i import pandas as pd

g /fix the problems in my code
4 def get_manhattan_distance([tests add unit tests for my code
5 dfl: pd.DataFrame, [explain how the selected code works
7) — float: Jexplain @terminal
® 3B element_wise_dist: pd.
DataFrame = (dfl - df2).abs() fex
9 dist: float = float @ 0 O GPT-40 v P>+

Figure 7.3: Choosing @workspace /explain in VS Code chat

For either IDE, Copilot is likely to yield a general explanation about the purpose of the function,

the data transformation, and the returned value, as shown in Figure 7.4.

Chapter 7 165
& £ supercharge a8~ I = |
& manhattan.py [>~ [0 - COPILOT EDITS CHAT + D o x

ch?
1

2
3
4

> src > % manhattan.py > §
import pandas
as pd

et

def
get_manhattan_di
stance(
dfl: pd.
DataFran
e,
df2: pd.
DataFram
e
}‘ - float:
element_wise
_dist: pd.
DataFrame =
(df1 - df2).
abs ()

@workspace /explain

& manhattan.py:4-10

<» Workspace

> Used 5 references

The provided code defines a function = get_manhattan_distance that calculates the Manhattan distance between two pandas

DataFrames,

w1 df1 and = df2 . The Manhattan distance, also known as the L1 norm, is the sum of the absolute differences

between corresponding elements in two datasets. This metric is commonly used in machine learning, statistics, and data analysis to
measure the distance between two points in a grid-like path.

The function begins by computing the element-wise absolute difference between the two DataFrames using the expression (dfl -
df2).abs() . Here, the subtraction operation (= df1 - df2) calculates the difference between corresponding elements in the two

DataFrames, and the = abs()

e df2 .

Next, the function calculates the sum of all elements in | =) element_wise_dist using the | @l sum()

difference

method is applied to ensure all differences are positive. The result is a new DataFrame,
&) element_wise_dist , where each element represents the

the cor elements of @ df1 and

method twice. The first

Figure 7.4: Sample /explain outputin VS Code

If we wanted a broader analysis of the arguments and their type, for example, we could use this

prompt:

/explain argument types

This should yield an extended explanation about the arguments, as shown in Figure 7.5.

@ m

anhattan.py X

by @ -

CHAT

ch7 > src > @ manhattan.py > (%) get_manhattan_distance

1

2
3
4
5
6
7
8
9

10

11
12
13
14

15
16
17
18
19
20
21
22
23
24
25

import numpy as np
import pandas as pd

def get_manhattan_distance(

<>

dfl: pd.DataFrame,

df2: pd.DataFrame,

) —> np.float64:

The function

element_wise_dist: pd.DataFrame =

(df1 - df2).abs() 1.
dist: float = element_wise_dist.sum
().sum().astype(float)

return dist

coordinates_a :
DataFrame({

x": [0, 1, 2],
[0, 1, 2],
z": [0, 1, 2]

ny

}

coordinates_a._constructor_from_mgr(
coordinates_a._mgr,

pd.DataFrame =

Workspace

> Used 4 references

)

@workspace /[explain argument types

+ O DX

@ manhattan.py:5-11

te] get_manhattan_distance takes two arguments:

) df1 : A pandas.DataFrame object. This is the first
DataFrame whose values will be compared to calculate the
Manhattan distance.

2. e df2 : A pandas.DataFrame object. This is the second
DataFrame whose values will be compared to e df1 .

pd.

« Both

el df1 and

Expected Argument Types:

e] df2 must be of type pandas.DataFrame .

They should have the same shape (i.e., the same number of rows
and columns) because element-wise operations like subtraction (

@) df1 - df2) require alignment of dimensions.

coordinates_a.axes,

@ Add Context...

hsk copilot

Ask v

GPT-40 v

@ manhattan.py:5-11 Current file /A"

Figure 7.5: Extended /explain argument types with GitHub Copilot

166 Reading and Understanding Code Bases with GenAl

Q Quick tip: Need to see a high-resolution version of this image? Open this book
in the next-gen Packt Reader or view it in the PDF/ePub copy.

@) The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR go to packtpub. com/unlock, then use the search bar to find this

¢ book by name. Double-check the edition shown to make sure you get the right one.

OfA0

Here, we see a detailed explanation of the arguments df1 and df2, including a note that df2 is
expected to have the same shape as df1 for the function to work properly. This expectation is not
mentioned in the plain /explain prompt, but when we ask about a specific aspect of the code,

we get a more in-depth explanation.

Next, we will see how we can replicate this outcome through direct prompting with ChatGPT
and OpenAI APL

Using ChatGPT to explain code

While Copilot includes a built-in slash command for code explanations, we can apply the five
S’s framework introduced in Chapter 4 to achieve similar results with ChatGPT, even when us-
ing older or more cost-effective models such as GPT-4o. Unlike GitHub Copilot, which follows
predefined instructions about what to explain based on the Python object, ChatGPT allows us

to tailor the explanation to our specific needs.

For instance, the following prompt focuses on describing the function’s purpose, its arguments

and types, the data flow, expected output, and possible edge cases:

CONTEXT: you are provided with:

1. A Python function enclosed with {{{ FUNCTION }}}

2. Explanation points enclosed with {{ HEADERS }}}.
TASK: Explain the function using the explanation points.
FUNCTION: {{{ ...omitted for brevity ... }}}

HEADERS: {{{

1. Function's purpose

Chapter 7 167

Arguments and their types
Step-by-step data flow
Output and its types

Potential edge cases

-« Ul b~ W N

b}

EXPLANATION:

When using GPT-4o0 with this structure, we received an explanation that covered all bullet points

with the headers, as partially shown in Figure 7.6:

ChatGPT 4o ~ 2 Share : ,ﬁ

PLUS

EXPLANATION:

Sure! Here's the explanation according to the provided headers:

1. Function’s logical purpose

The get_manhattan_distance function calculates the Manhattan distance (also
known as L1 distance) between two pandas DataFrames. This metric measures the sum
of the absolute differences between corresponding elements in the two data structures.
It is commonly used in various domains such as clustering, image processing, and

recommendation systems to quantify dissimilarity.

2. Arguments and their types
« dfl: pd.DataFrame — The firstinput DataFrame.

+« df2: pd.DataFrame — The second input DataFrame.

Figure 7.6: ChatGPT returned extended explanation

For reference, here is the output generated by ChatGPT under the edge cases header, which adds

value by uncovering situations where the function might fail or produce unexpected behavior:

5. Edge cases

Shape mismatch: If dfl and df2 do not have the same shape, the subtraction
operation will raise a ValueError.

Non-numeric columns: If the DataFrames contain non-numeric data, the
subtraction operation will raise a TypeError or produce NaNs that affect
the result.

Missing values (NaNs): If either DataFrame contains NaNs, the output

168 Reading and Understanding Code Bases with GenAl

distance may be NaN unless explicitly handled beforehand.

Empty DataFrames: If both inputs are empty DataFrames, the result will be
0.0.

Although writing a prompt for ChatGPT might take slightly more effort compared to using the
/explain command, it can be worthwhile when we need more targeted explanations, such as

uncovering edge cases.

Next, we will demonstrate how to achieve this using OpenAl API, which may be more appropri-
ate for scenarios where the repository becomes larger and we want to generate explanations for

many functions programmatically.

Using OpenAl API to explain code

Using the same prompt structure from ChatGPT, we can make a programmatic call to OpenAl,

following the best practices introduced in Chapter 5.

We will define the same system prompt components that mirror our ChatGPT prompt:

SURROUND = """... omitted for brevity ..."""
SINGLE_TASK = "... omitted for brevity..."
HEADERS = """...omitted for brevity"""

We will add a get_user_prompt function that merges the HEADERS prompt piece with the source

code of the function:

def get_user_prompt(func: callable) -> str:
return """
FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}

HEADERS: {{{{{{ {POINTS} }}}}}}
EXPLANATION:

non

Then, we can call OpenAl API using the gpt-4o-mini model:

n ",

if _ _name__ ==
client: OpenAI = OpenAI()

__main__

system_prompt = f"{SURROUND} {SINGLE_TASK}"

user_prompt = get user_prompt(get_manhattan_distance)

completion: ChatCompletion = client.chat.completions.create(

Chapter 7 169

model="gpt-40-mini",

messages=|[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},

1,

)

print("Explanation:", completion.choices[@].message.content)

Just as with ChatGPT, we will receive a detailed explanation of the function, covering all points

specified. For reference, here is a sample output from running this script:

Function's purpose: < ... omitted for brevity ... >

Arguments and their types: The function takes in two arguments:

* dfl: a pandas DataFrame, which represents the first set of data.

* df2: a pandas DataFrame, which represents the second set of data. Both
dataframes are expected to have the same shape and structure for the
calculation to be valid.

Step-by-step data flow: < ... omitted for brevity

Potential edge cases:

* If dfl and df2 have different shapes, the function may raise a value

error due to the inability to perform element-wise operations on

differently-sized frames.

* If either of the DataFrames is empty, the function will return a
distance of 0.0 as there are no elements to compute differences from.
* Handling of NaN (Not a Number) values might need to be considered,
as this could affect the calculations when present in either of the
DataFrames.

The output here also provides an overview of the edge cases. In later chapters of the book, we will

explore how to make use of this when designing a test suite for functions.

Next, we will explore how to extend the use of the /explain command beyond .py files using

various GenAlI tools.

Explaining non-project files
The /explain command is not limited to .py files or core business logic. For instance, in our
Manhattan distance code base, we can use Copilot to interpret an entire non-project file or a

specific section of it.

170 Reading and Understanding Code Bases with GenAl

Explaining an entire file

There are times when we may want a summary of a complete non-project file. For example, con-

sider the requirements.txt file in our project:

pandas==2.2.3
flask==3.1.0

To get a general explanation, we can highlight the entire content with the cursor, then open the
inline chat or chat window and enter /explain. Figure 7.7 shows an example of this using the

chat window in VS Code:

£ supercharge 5 % IR A=
requirementstxt X [[J - COPILOT EDITS ~ CHAT P
ch7 > requirements.txt > Used 1reference

2l pandas==2.2.3

2 flask==3.1.0
3 file, which is commonly used in Python projects to specify

the dependencies required for the project to run. This file is
particularly useful when working with pip, Python's
package installer, as it allows you to install all the necessl

The code above is a snippet from a requirements.txt

How do | create this file?
requirements.txt:1-3 Current file /@
Ask Copilot

@ @ 9 GPT-40 v

Figure 7.7: Chat window explanation of a full file highlighted content

In this case, Copilot accurately recognized that requirements. txt lists the dependencies needed
for the code base to run properly. For common non-project files, we can generally expect reliable

explanations since LLMs have encountered many similar examples during training.

Chapter 7 171

Next, we will look at how to ask for a more detailed explanation of a specific line within a non-proj-

ect file by providing the right context.

Explaining with context

Whileitis useful to understand a file as a whole, there are often specific lines that may be unclear

and require a deeper explanation.

Take the Dockerfile from our Manhattan distance project as an example. Docker is a widely used
tool among software developers for packaging applications in a consistent and reproducible way.
A key element in this process is the Dockerfile, a plain text file typically placed at the project
root that outlines the environment setup. This includes specifying a base image (such as a Python
environment), listing dependencies (like the pandas library), and providing commands to build

and run the container (such as opening a port to receive HTTP POST requests).

Below is the Dockerfile we used for our Manhattan distance application:

FROM python:3.10-slim
WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt
COPY .

EXPOSE 5000

CMD ["python", "app.py"]

172 Reading and Understanding Code Bases with GenAl

Copilot can provide an explanation for the entire file, but there are times when we want to focus
on a specificline. For instance, we may want to understand the meaning of EXPOSE 5000. Although
it might seem like this command publishes port 5000 for incoming requests, it serves as docu-
mentation only. The application will still need to explicitly expose this port when launching the
container, using a shell command such as docker run -p 5000:5000. When we highlight just this
line and request an explanation, Copilotincorporates context from nearby lines, the filename and

extension, and other signals to generate a relevant and accurate response, as shown in Figure 7.8:

& Dockerfile

COPY . -

8 x
& GitHub Copilot B <0 P
> 2 steps completed successfully
The line EXPOSE 5000 in the Dockerfile specifies that the container will listen for network
connections on port 5000. This is typically used to indicate the port on which the
application inside the container is expected to run. However, it does not actually publish
the port; it serves as documentation and a hint for tools Llike docker run or docker-compose
to map the container's port to the host system.
> Using 1 Reference

18 EXPOSE 5000

CMD ["python", "app.py"]

Figure 7.8: Copilot explanation about exposed port from the Dockerfile

Copilot correctly identified that the port specification indicates the port on which the application
islistening. For common files such as Dockerfile, the plain /explain command usually provides

a sufficient one-line explanation.

Next, we will explore how to get similar explanations in non-project files working with ChatGPT.

Explaining non-project files with ChatGPT

When seeking an explanation for a specific line within a non-project file or the entire file itself,
the best practice is to provide the full content of the file along with the line in question and the
standard filename and extension. In the case of a Dockerfile, there is no extension (such as . txt

or .py), so simply specifying Dockerfile is sufficient.

Chapter 7 173

For instance, if we want to understand the role of an exposed port in a Dockerfile, we should
include both the entire file contents and the specific line to get a more accurate explanation, as

demonstrated in the following prompt:

CONTEXT: you are provided with:

1. A Dockerfile enclosed with {{{ DOCKERFILE }}}
2. A line from the file enclosed with {{{ LINE }}}.
TASK: Explain the purpose of the line.

DOCKERFILE: {{{ ...omitted for brevity... }}}
LINE: {{{EXPOSE 5000}}}

EXPLANATION:

This prompt effectively identifies the function of the line in the Dockerfile, as shown in Figure 7.9:

ChatGPT 40 v & Share ‘fl\
PLUS

CMD ["python", "app.py"]
0

LINE: {{{EXPOSE 5000}}}

EXPLANATION:

The line EXPOSE 5000 in the Dockerfile serves to document that the containerized application is
expected to listen for incoming network connections on port 5000.

This does not actually publish the port to the host or make it accessible externally; it simply informs
Docker and users of the image that port 5000 is intended to be used. To make the port accessible, you
would need to use the —p flag when running the container, e.g.:

bash @ Copy v Edit

docker run -p 5000:5800 my-image

In this context, it's common for Python web applications (like Flask apps) to run on port 5000 by default.

Figure 7.9: Expose 5000 line explanation in ChatGPT

In general, when using ChatGPT to explain a line of code or a line from a non-project file, it is
helpful to include a broader context than just the target line. For example, when explaining a
method within a class, include the entire class definition. If a function uses a custom argument
type, include the definition of that type as well. This leads to more precise and useful explana-
tions. Later in the chapter, we will introduce debugging strategies for complex scenarios where

a simple textual explanation does not provide sufficient insight into the purpose of a code block.

Next, we will explore how to use a similar approach when working with OpenAI APIL

174 Reading and Understanding Code Bases with GenAl

Explaining non-project files with OpenAl API

Similar to ChatGPT, we can use OpenAl API to explain specific lines from non-project files. Let us

revisit the Dockerfile example and apply a comparable system prompt:

SURROUND = """you are provided with:

1. A Dockerfile enclosed with {{{ DOCKERFILE }}}

2. A line from the file enclosed with {{{ LINE }}}."""
SINGLE_TASK = "Your task is to explain the purpose of the line."

Unlike earlier examples where we passed a function’s source code to OpenAl API, this time we
want to send the entire Dockerfile content. We can do this by using Python’s built-in open

function inside the get_user_prompt function:

def get_user_prompt(path: str, line: str) -> str:
with open(path, 'r') as file:
dockerfile_content = file.read()

return """
DOCKERFILE: {{{{{{ {dockerfile_content} }}}}}}

LINE: {{{{{{ {line} }}}}}}
EXPLANATION:

We can then call OpenAl API using the following code:

if __name__ == "__main__":

client: OpenAI = OpenAI()

system_prompt = f"{SURROUND} {SINGLE_TASK}"
user_prompt = get_user_prompt(
"../../ch7/Dockerfile', 'EXPOSE 5000"')

completion: ChatCompletion = client.chat.completions.create(
model="gpt-40-mini",
messages=|[
{"role": "system", "content": system_prompt},

{"role": "user", "content": user_prompt},

Chapter 7 175

Is
)

print("Explanation:", completion.choices[@].message.content)

For reference, running this script produced the expected result, identifying the line’s purpose as

specifying the port to be exposed. Here is an example output:

Explanation: The line "EXPOSE 5000 in the Dockerfile serves to inform
Docker that the application running inside the container will be listening
for incoming network connections on port 5000.

When a container is created from this Docker image, port 5000 will be
exposed for external communications, making it possible for users or other

applications to connect to the service provided by the application running

in the container. However, it is important to note that this command does
not actually publish the port; to make the port accessible from outside
the Docker environment, the user must explicitly map it to a port on the
host machine when running the container, typically using the "-p° option
with the “docker run® command.

In summary, ~EXPOSE 5000° is a documentation feature that indicates the
intended service port and enhances the understandability of the Docker

container's purpose.

To conclude, both ChatGPT and OpenAlI API can deliver accurate results even when using smaller
models such as GPT-4o, if we supply the necessary context, including the filename and extension

if it exists, its contents, and the specific line we want explained.

GitHub Copilot s best suited for quick, informal explanations. For more control over the prompt
and instructions, ChatGPT is a better fit. When a programmatic solution is required, OpenAI API

becomes the preferred choice.

Next, we will explore how to harness the power of GenAl to handle more advanced cases where
a simple explanation is not enough, and interaction with the object is required for deeper un-

derstanding.

Creating calls with example parameters

As our Python objects or non-project files become more complex, a straightforward explanation
might not be enough to help us understand the code in front of us. This is especially true when
the Python object is part of a class, lacks type hints in its signature, contains no docstring, and

strays from best practices.

176 Reading and Understanding Code Bases with GenAl

Take, for instance, the private method _constructor_from_mgr in the widely used pandas
DataFrame class. This method constructs a DataFrame from a set of data blocks and their as-
sociated axes. For your reference, here is the source code, which lacks argument type hints, a

docstring, or any reference to tests:

def _constructor_from_mgr(self, mgr, axes) -> DataFrame:

df = DataFrame._from_mgr(mgr, axes=axes)

if type(self) is DataFrame:

return df

elif type(self)._ name__ == "GeoDataFrame":

return self._constructor(mgr)

return self._constructor(df)

Oneissue hereis the naming of the first argument. Although it is called manager, aname typically
associated with the _mgr property of a DataFrame, it refers to a block of data, which is essentially
the cell content without axis labels. This misleading name, combined with the absence of type
hints, a docstring, or proper testing, makes the code block hard to understand for both humans

and GenAl applications.

For reference, here is the explanation output from Copilot when prompting /explain from a
PyCharm inline chat:
The _constructor_from_mgr method is a helper function in the DataFrame

class. It is used to create a new DataFrame instance from a given
BlockManager (or ArrayManager) and its associated axes.

Key Points:

1. Parameters:

Chapter 7 177

mgr: The BlockManager or ArrayManager that holds the actual data for the
DataFrame.

axes: The axes (index and columns) for the new DataFrame.
2. Return Value:

It returns a new DataFrame object constructed from the provided manager
and axes.

Example Snippet:

def _constructor_from_mgr(self, mgr, axes) -> DataFrame:

df = DataFrame._from_mgr(mgr, axes=axes)

Here, _from_mgr is a class method that initializes a DataFrame from the
given manager and axes. This method ensures that the new DataFrame is
properly aligned with the provided data structure.

This output includes all the elements we are looking for, such as arguments, the return value,
and some level of data transformation. However, deciphering the explanation can be just as
challenging as deciphering the code itself. We propose a better approach by debugging the code

using the generated content.

Debugging with GitHub Copilot

Copilotis built for code generation, which makes it useful for interacting with our Python code. If
we take the get_manhattan_distance function as an example, prompting Copilot with a partial

call to the function can result in a completion that includes example arguments.

We can do this by writing the function call directly:

get_manhattan_distance(
Or, we can do it by assigning the result to a variable with a matching type hint for the function’s
return value:

d: float = get_manhattan_distance(

178 Reading and Understanding Code Bases with GenAl

In both cases, Copilot is expected to generate two DataFrame arguments for the function. An

example of this kind of completion in PyCharm is shown in Figure 7.10:

def get_manhattan_distance(7 usages Hila Paz Herszfang
dfl: pd.DataFrame,
df2: pd.DataFrame,
) -> np.floatb4:
element_wise_dist: pd.DataFrame = (dfl - df2).abs()
dist: float = element_wise_dist.sum().sum().astype(float)
return dist

dxstance = get_manhattan_distance(
15 bfi=pd.pataFrame([[1, 2], [3, 411),
df2=pd.DataFrame([[5, 6], [7, 8]1),

Figure 7.10: Sample call completed by GitHub Copilot

Keep in mind thatif your IDE automatically inserts a closing bracket,), after you type the opening

one, (, you may need to press Enter to activate Copilot’s suggestion.

This generated completion can serve as an entry point for interacting with the function through
the debugger. In PyCharm, we can initiate debug mode by right-clicking the filename and selecting
Debug, as illustrated in Figure 7.11:

14 distance = get_s

(> Run 'manhattan’ ~4R

dfl=pd.Datal
df2=pd.Datal ¥ Debug 'manhattan’ i)
) More Run/Debug >
Open In >

Figure 7.11: Debug mode in PyCharm

In VS Code, debugging is done by clicking the play icon in the top-right corner and selecting
Python Debugger: Debug Python File, as shown in Figure 7.12:

Chapter 7 179

= £ supercharge 8- e 0 80

@ manhattanpy M X b~) [

i Run Python File

> L Py 7 ...

ch? src > & manhattan Py Run Python File in Dedicated Terminal
import numpy as np

. Run Current File in Interactive Window
import pandas as pd

1

2

3 Python Debugger: Debug Python File

4 Python Debugger: Debug using launch.json
5
6
7
8

def get_manhattan_distance(
dfl: pd.DataFrame,
df2: pd.DataFrame,
) => np.float64:

Figure 7.12: Running the Debugger in VS Code

Running the file in debug mode allows us to step through the code line by line, offering a clearer under-
standing of its internal workings. For example, when using PyCharm’s debugger, we can inspect the

variables within the function and follow the data transformation as it happens, as seen in Figure 7.13:

#% manhattan.py

import numpy as np
import pandas as pd

def get_manhattan_distance(7 usages Hila Paz Herszfang
dfl: pd.DataFrame, dfi1: [0, 1] [@ 1 2] [1 3 4]
df2: pd.DataFrame, df2: [0, 1] [@ 5 6] [1 7 8]
) -> np.floaté4:
@] element_wise_dist: pd.DataFrame = (dfl - df2).abs() element_wise_dist: [P, 1] [0 4 4] [1 4 4]
10 dist: float = element_wise_dist.sum().sum().astype(float)
return dist

Figure 7.13: Debug mode in PyCharm showing internal function arguments
This gives us visibility into the intermediate values within get_manhattan_distance.

The authors frequently rely on debugging to interact with the code they read and write. This
hands-on approach supports faster development of intended functionality and offers deeper
insights into complex code logic. This far exceeds reading source code, using GenAl explanations,

or consulting docstrings.

Next, we will explore how generating sample calls can help us better understand complex code

blocks, such as the _constructor_from_mgr method in the pandas DataFrame class.

180 Reading and Understanding Code Bases with GenAl

Debugging dependency code

Just like with the get_manhattan_distance case, we can use Copilot to help generate sample
code for debugging the _constructor_from_mgr method. Since this is a class method, we will
split our prompt into two parts. The first prompt generates a sample instance of the class, and

the second invokes the method.

We will begin by asking Copilot to complete a DataFrame instance. A sample prompt may look
like this:

coordinates_a : pd.DataFrame =

This prompt offers sufficient context for Copilot to suggest an assignment. As shown in Figure

7.14, Copilot begins by proposing an initial completion for a pd.DataFrame.

& construct_from_mng.py

import pandas as pd

3 coordinates_a : pd.DataFrame = pd.DataFrame({

Figure 7.14: Initial completion in PyCharm

When we accept the suggestion, Copilot typically proposes sample data that fits the DataFrame’s

name, as illustrated in Figure 7.15:

@ construct_from_mng.py

import pandas as pd

coordinates_a : pd.DataFrame = pd.DataFrame({
2 et e, 1, 2],
5 ImUs i) als Al

Figure 7.15: Chained completion in PyCharm

At this point, we can either trigger additional columns by accepting chained suggestions or type
} to flag to Copilot that we do not want any additional columns. We then move on to the method

call with the following prompt:

coordinates_a._constructor_from_mgr(

Note that your IDE may automatically complete the closing bracket,). In that case, press Enter

between the brackets to let Copilot generate a completion suggestion.

Chapter 7 181

For example, in Figure 7.16, Copilot proposes using the coordinates_a._mgr and coordinates_a.
axes properties as the calling parameters.

coordinates_a : pd.DataFrame = pd.DataFrame({
"x": [0, 1, 2],
"y': [, 1, 2],
ngzts [0, 2, 21

)]

ceordinates_a._constructor_from_mgr(_
10 coordinates_a._mgr,

coordinates_a.axes,

Figure 7.16: Parameter completion

With the two proposed parameters, we can debug the method as shown in Figure 7.17 and gain a
better understanding of its behavior.

& construct_from_mng.py e frame.py

class DataFrame(NDFrame, OpsMixin):

def _constructor_from_mgr(self, mgr, axes) -> DataFrame: axes: [RangeIndex(start=8, stop=3, step=1), Index(['x', 'y’, 'z']

] - df = DataFrame._from_mgr(mgr, axes=axes) -
663 |

if type(self) is DataFrame:
This would also work "if self._constructor is DataFrame’, but

this check is slightly faster, benefiting the most-common case.
return df

elif type(self).__name__ == "GeoDataFrame":
Shim until geopandas can override their _constructor_from_mgr

be they have different behavior for Managers than for DataFrames
return self._constructor(mgr)

Figure 7.17: Debugging _constructor_from_mgr using Copilot’s suggestion

To conclude, Copilot can supercharge the process of debugging sections of the code base, allowing
us to better understand both simple and complex implementations. We rely heavily on debugging

as a daily practice to deepen their understanding of the code they interact with.

Next, we will explore how ChatGPT and OpenAl API offer distinct characteristics that we can utilize.

182 Reading and Understanding Code Bases with GenAl

Customizing call parameters with ChatGPT and OpenAl

GitHub Copilotis generally better suited for quickly generating debugging calls to trigger Python
objects, as it can access relevant context, such as the class code, when we are working with a
method. For cases where we want specific characteristics of the sample parameters, prompting

ChatGPT and OpenAl may be more suitable.

For example, to generate suitable arguments for debugging the get_manhattan_distance function,

we might want five rows and three columns, and can use the following prompt:

CONTEXT: you are provided with:

1. A Python function enclosed with {{{ FUNCTION }}}

2. Arguments requirements enclosed with {{ REQUIREMENTS }}}.
TASK: Call the function with the data requirements

FUNCTION: {{{ ... omitted for brevity ... }}}

REQUIREMENTS: {{{

1. 5 rows

2. 3 columns

3. floats and integers in cells

39
CALL:

For reference, the output is shown in Figure 7.18:

ChatGPT 4o

python @ Copy ¥ Edit

import pandas as pd
import numpy as np

Creating two DataFrames with 5 rows, 3 columns, and a mix of floats and integers
dfl = pd.DataFrame({

'A': [1.8, 2, 3.5, 4, 5.1],

‘B': [6, 7.2, 8, 9.1, 10],

'c': [11.3, 12, 13.4, 14, 15]
b

df2 = pd.DataFrame({
'A": [1.5, 2.5, 3; 4.5, 51,
'‘B': [6.5, 7, 8.5, 9, 108.2],
'c*: [11, 12.5, 13, 14.5, 15.2]
}H

Calling the function
distance = get_manhattan_distance(dfl, df2)
print(distance)

6 PD Y S hs

Figure 7.18: Call parameters for get_manhattan_distance

Chapter 7 183

In this example, both DataFrames, df1 and df2, have the same shape of five rows and three col-

umns, which makes them appropriate arguments for the function call.

The OpenAl API call is similar, and you can find the full script at ch7/prompts/openai_debug.

py for later reference.

To conclude, we turn to ChatGPT and OpenAl API when our data requirements are beyond trivial
for a quick completion that Copilot might otherwise handle well. Later in the book, we will explore

how to build on these data generation methods to create a robust test suite.

Debugging dependency code

When using ChatGPT or OpenAl API to generate test code for a dependency package, itis import-
ant to provide enough context for the model to produce a desirable call. The amount of context
required depends on how widely the library is used. For standard packages such as pandas, in-
cluding just the relevant method may be enough. For custom or private repository classes, it is

usually best to include the entire class definition.

For example, the DataFrame class in pandasis about 12,000 lines long, which is too much to include
in a prompt. However, because pandas is highly popular, we can provide only the _constructor_

from_mgr method and still receive a relevant response.

Below is a sample prompt used with ChatGPT to generate a call to the _constructor_from_mgr

method:

CONTEXT: Given Pandas DataFrame 2.2.3 class, you are provided with:
1. Pandas DataFrame method to be called enclosed with {{{ FUNCTION }}}
2. Arguments requirements enclosed with {{ REQUIREMENTS }}}.

TASK: Generate a method call with sample parameters that meet the data
requirements.

FUNCTION: {{{ ... omitted for brevity ... }}}
REQUIREMENTS: {{{

1. 5 rows

2. 3 columns

3. floats and integers in cells

33
CALL:

184 Reading and Understanding Code Bases with GenAl

Figure 7.19 shows an example output from GPT-4o in response to this prompt.
ChatGPT 40 ~ & Share |} .l}“s

CALL:

Here is a method call with sample parameters that meet the specified requirements:

python FCopy ¥ Eit

import pandas as pd

import numpy as np

Sample data matching the requirements
data = {
Wl (sl an, Skl Al el
"B": [le, 20, 39, 40, 501,
nc'; [9.1, 9.2, 9.3, 0.4, 0.5]
}
df = pd.DataFrame{data)

Extract the manager and axes
mgr = df._mgr
axes = df.axes

call the fi
df_result = df._constructor_from_mgrimgr, axes)
print(df_result)

inction

Figure 7.19: Sample test call to _constructor_from_mgr

Here, ChatGPT successfully generated a method call using df._mgr and df.axes, producing a

DataFrame with the required dimensions.

Since OpenAl API follows a similar pattern, we have provided the full script in ch7/prompts/

openai_debug_pandas.py for reference.

In later chapters, we will build on this approach to supercharge the generation of robust test suites.

Putting it all together

Now that we have reviewed different approaches to shorter objects, explored tailored
explanations for Python objects and non-project files, considered programmatic concerns,
and looked at scenarios where a textual explanation is not sufficient, we can summarize

everything in a pros and cons table for each of the tools:

Chapter 7 185

GenAl app Pros Cons

GitHub Copilot | Provides quick responses with Does not support tailored
relevant context. It supports the use explanations, such as when we
of /explain asis and allows us to add need to include edge cases for
additional requirements. get_manhattan_distance.

ChatGPT Enables tailored explanations and gives | Requires more effort to craft
us flexibility to add or remove context. prompts.

OpenAl API Suitable for programmatic solutions Significantly more effort
and automation. compared to GitHub Copilot and

ChatGPT.

In our own work, we typically begin with Copilot when we need an explanation. As our require-
ments expand, we move to Copilot’s chat window, ChatGPT, or OpenAl AP1. When dealing with
more complex objects, we always recommend incorporating debugging into the reading process

to better understand the code.

Summary

In this chapter, we expanded our focus beyond . py files and explored how GenAlI can help us un-
derstand entire code bases. Using GitHub Copilot, we applied the /explain commandinits plain
form as well as with more tailored instructions to grasp the role of the get_manhattan_distance
function. We also applied this command to understand non-project files such as requirements.

txt and Dockerfile.

Next, we used ChatGPT to craft prompts that offered useful explanations about edge cases and
argument types. We then moved on to OpenAl API to generate a script that programmatically

provided multiple explanations with one call.

We concluded by generating sample values that are useful for interacting with our code through
the debugger. This approach is especially helpful when dealing with more complex implemen-

tations.

In the next chapter, we will dive into prompt engineering techniques to improve the quality of our
generated code. Through few-shot learning, also known as in-context learning, we will guide
Copilot, ChatGPT, and OpenAl API to follow a specific style guide aligned with our production

standards. We will also explore additional techniques to shape prompts for better outcomes.

186 Reading and Understanding Code Bases with GenAl

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: How can we address explanations of complex Python objects?

Answer: In cases where the object s relatively simple, we can utilize the GitHub Copilot /explain
slash command to help us better grasp the arguments, data transformation, and return values.
For more complex objects, we can use debugging by generating calls to the object with GitHub
Copilot, ChatGPT, and OpenAI APL.

Question 2: When asking ChatGPT to explain a single line in a Dockerfile, what context should
be added?

Answer: Itis recommended to include the full contents of the Dockerfile along with the filename
and extension, and the specific line in question. This gives ChatGPT the context needed for a

more accurate expl anation.

Further reading

To learn more about the topics that were covered in this chapter, look at the following resources:

e Dockerfile, Wikipedia: https://realpython.com/primer-on-python-decorators/

e PyCharm debugging: https://www. jetbrains.com/help/pycharm/part-1-debugging-
python-code.html#step

e VS Code debugging: https://code.visualstudio.com/docs/python/debugging

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before

you start.

https://realpython.com/primer-on-python-decorators/
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html#step
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html#step
https://code.visualstudio.com/docs/python/debugging
http://packtpub.com/unlock
http://packtpub.com/unlock

An Introduction to Prompt
Engineering

In this chapter, we will introduce the practice of prompt engineering, a field of study that started
in 2020, which offers advanced techniques for refining prompts to achieve more reliable, predict-

able, and desirable outcomes in large language model (LLM)-based applications.

We will focus on an effective prompt engineering technique for code generation with GenAl:
few-shot learning, also known as in-context learning. This approach, when used in the context
of code-related tasks, guides the model toward producing outputs that align with a specific

coding style or objective.

We will focus on how the few-shot learning technique can enhance the model’s output for more
accurate and style-consistent code generation. While there are many different uses of few-shot
learning in code-related tasks, the focus on style is a useful example for maintaining consisten-
cy in a repository. This includes enforcing type hints, adding docstrings, or following a specific
logging convention. By aligning the generated code with the required style guide, we can reduce

the need for manual customization and accept the GenAl output as-is.
In this chapter, we will cover the following topics:

e Utilizing prompt engineering for coding
e Enhancing prompts with few-shot examples

e Leveraging few-shot learning with ChatGPT

188 An Introduction to Prompt Engineering

e Working with few-shot learning for OpenAl API
e Crafting a style guide for GitHub Copilot

e Introducing more prompt engineering techniques

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub Copilot account

e IDE —either VS Code or PyCharm

e OpenAl account with access to OpenAl API

e Access to the book’s repository, which includes the prompt samples and style guides fea-
tured in this chapter, available at https://github.com/PacktPublishing/Supercharged-
Coding-with-Gen-AI

e Virtual environment set up in VS Code or PyCharm

e OpenAl API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting
up OpenAl API access and token generation, see Chapter 2. If you need help creating an OpenAl

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Utilizing prompt engineering for coding

In Chapter 4, we explored the three pillars of achieving quality output: model mastery, evaluation
metrics, and precise prompts. We also discussed how following the five S’s best practices for
prompts (structured, surrounded, single-tasked, specific, and short) can significantly enhance
the quality of model output. Using OpenAl’s example of an effective prompt, we demonstrated
how aligning with these principles, such as focusing exclusively on error fixes and providing a

clear list of issues to address, could improve results.

As tasks grow more complex, advanced techniques are essential to guide models toward achieving
desired outcomes. LLMs may need additional instructions to adhere to a specific style guide, pass

a unit test suite, or fix reproducibility issues.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 8 189

Since the advent of LLMs in 2020, prompt engineering has developed into a practice that refines
and structures prompts to achieve better results and address more complex scenarios. There
are now many strategies that guide the model toward more desirable outcomes, including the

following:

e Structuring prompts in a way that aligns with LLM capabilities
e Providing additional context to clarify the problem

e Including specific guidelines for the desired output

e Guiding the model through a reasoning process

¢ Defining constraints and boundaries for the expected output

e Providing external feedback to iteratively refine results

In coding-related tasks, prompt engineering is valuable for a variety of applications including
creating style guides for code refactoring, breaking down complex challenges into manageable
steps, and generating production-standard code. We will explore in depth a range of prompt
engineering techniques designed to supercharge various stages of the software development
life cycle (SDLC) throughout this book.

Next, we will take an in-depth look at the few-shot learning technique, which incorporates spe-
cific guidelines for desired outputs, and examine its impact on shaping the coding style of the
model’s suggestions. Later in the chapter, we will preview other prompt engineering techniques

that will be explored in detail in later chapters.

Enhancing prompts with few-shot examples

Few-shotlearning, also known asin-context learning, is a prompt engineering technique where
we include a few examples of desirable outputs directly within the prompt. This method can be
extended to incorporate examples of incorrect output or edge cases, enabling the model to differ-
entiate between what constitutes a good result and what does not. By analyzing these patterns,

the model can infer how to structure an optimal response for the given task.

To delve deeper into the research behind this approach, refer to Language Models are Few-Shot
Learners by Brown et al. (https://arxiv.org/abs/2005.14165v4).

https://arxiv.org/abs/2005.14165v4

190 An Introduction to Prompt Engineering

Few-shot learning research demonstrates how, with a few examples (or shots) of input-output
pairs, a model can infer patterns from the relationships between these examples and complete
tasks in a style consistent with the provided samples. For instance, the following prompt, taken
from the study, illustrates the predictability and consistency of an LLM when solving arithmetic
problems. Utilizing few-shot prompting increases the predictability of the output, as the model
is likely to generate responses that align with the style of the provided few-shot examples as

shown here:

Instruction: Solve the following arithmetic problems.
Examples:
Problem: What is 5 + 3?

Answer: 8
Problem: What is 12 - 4?
Answer: 8

Problem: What is 7 x 6?
Answer: 42
Problem: What is 15 + 3?

Answer:

The model’s output was as follows:

Compared to prompts that only specify the task (Solve the following arithmetic problem),
this example-based approach reduces ambiguity. The model aligns its output more closely to the
expected structure, providing only the number as the answer, without additional explanation or

formatting inconsistencies.

Few-shot prompting is a useful technique for a variety of coding-related tasks, such as code re-
factoring, code analysis, and code generation. By including specific examples in the prompt, we

can guide the model to produce outputs that align with our desired patterns.

Few-shot learning for code refactoring

In a code refactoring scenario, we may want to transform print statements into structured logger
messages, a common practice for maintaining production-level software. Replacing the variety
of print statements across many files is both error-prone and tedious. However, we can use an
LLM with a prompt with clear instructions and a few examples. For example, we can enrich a

request to refactor the following print message:

print('Error! File not found: passwords.txt')

Chapter 8 191

We can refactor it to a log message, with a few examples:

0ld: print('Process started for config.txt')

Refactored: logger.info('Processing started', extra={'stage': 'start’',
file: 'config.txt'})

01d: print('Warning! Could not load user data from user_info.csv')

Refactored: logger.warning('User data failed to load', extra={'module’:
‘user_loader', ‘'status': 'failure', file: 'user_info.csv'})

0ld: print('Error! File not found: passwords.txt')
Refactored:

@ Quick tip: Enhance your coding experience with the Al Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

Copy Explain
function calculate(a, b) { ® ®
return {sum: a + b};

| +i

) The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

192 An Introduction to Prompt Engineering

The examples in this prompt highlight the distinctions between different logging levels with ex-
amples of transforming print messages into info and warninglogging messages. The examples
also demonstrate static log messages with additional information provided through the extra

parameter.

Next, we will see how enhancing our prompt with few-shot examples improves the output we
get from ChatGPT.

Leveraging few-shot prompting with ChatGPT

When using ChatGPT, if applying the five S’s framework from Chapter 4 does not produce the
desired results, we can enhance our prompts with a few-shot approach. In this case, we will still
follow the five S’s framework but incorporate indexed variables that represent a series of inputs

and outputs for the task.

Few-shot structure
A typical approach to implement few-shot prompting in ChatGPT is by extending the five S’s
framework to include indexed variables such as {{{ Input_i }}}and {{{ Output_i }}}.This

implies that the context references these variables, for example:

CONTEXT: You are provided with:
1. Python snippet enclosed with {{{ OLD }}}

2. Examples enclosed with {{{ OLD_i }}} followed by a desirable output
enclosed with {{{ REFACTORED_ i }}}

We then supply the OLD_i and REFACTORED_i examples, followed by {{{ OLD }}}, as such:

oLb_1: {{{ }}}
REFACTORED_1: {{{ }}}

ob_2: {{{ }}}
REFACTORED_2: {{{ }}}

oLd: {{{ }}}

Overall, a ChatGPT prompt that uses few-shot examples can be structured in this way:

CONTEXT: You are provided with:
ilg
2. Examples enclosed with {{{ Input_i }}} followed by a desirable output

Chapter 8 193

enclosed with {{{ Output_i }}}
TASK:

Input_1: {{{ ... }}}
Output_1: {{{ ... }}}
Input_2: {{{ ... }}}
Output_2: {{{ ... }}}

Input: {{{ }}}
CUE:

The labels for inputs and outputs should reflect their relationship and remain consistent across
examples. For example, when solving arithmetic problems, question and answer are appropriate
labels. When transforming print statements to log messages or performing other refactoring

tasks, old and refactored make more sense.

Improvement in output with code refactoring

Letus examine a case where we want to refactor print statements into structured logging. This in-

volves using appropriate logging levels, enforcing static messages, and including extra parameters.

To observe the default behavior without applying a few-shot approach, we can navigate to
https://chatgpt.com/, start anew conversation with the GPT-03-mini-high model, and prompt

it to refactor a print statement into a log message using the following:

CONTEXT: You are provided with a Python snippet enclosed with {{{ OLD }}}.
TASK: Refactor the snippet to a log message.

OLD: {{{ print('Error! File not found: passwords.txt') }}}

REFACTORED:

The GPT-03-mini-high model excels at coding tasks and is likely to generate a log message with
an error level. However, without explicit instructions on structuring the log message, it may not
use a logger instance nor distinguish the static log message from additional details such as the

filename, as shown in Figure 8.1:

https://chatgpt.com/

194 An Introduction to Prompt Engineering

@5 & ChatGPT 03-mini-high &, Share @
TASK: Refactor the snippet to a log message.

OLD: {{{ print('Error! File not found: passwords.txt'} }}}

REFACTORED:

Reasoned about log message refactoring for 5 seconds >
python & Copy
import logging
logging.error("File not found: passwords.txt")

o P Doy

Figure 8.1: Working with Canvas in ChatGPT

We can improve the model’s output by providing few-shot examples demonstrating how to ex-
tract key details from a print statement and use a logger instance. For example, we can refactor

a print message to include a filename and verbosity setting:

print('Process started for config.txt with verbose=True')

We can refactor it into a structured log message:
logger.info('Processing started', extra={'verbose': True, file: 'config.
txt'})
This example highlights the extraction of essential details to improve logging clarity. Similarly,
we can add another example with print statements containing user and file path information:

print('Warning! Could not load user U-232 data from user_info.csv')

We can refactor it into the following structured log message:

logger.warning('User data failed to load', extra={'user': 'U-232', 'file':
‘user_info.csv'})

A complete prompt with these few-shot examples might be structured as follows:

CONTEXT: You are provided with:
1. Python snippet enclosed with {{{ OLD }}}

2. Examples enclosed with {{{ OLD_i }}} followed by a desirable output
enclosed with {{{ REFACTORED_i }}}

Chapter 8 195

TASK: Refactor the snippet to a log message.

OLD_1: {{{ print('Process started for config.txt with verbose=True') }}}
REFACTORED_1: {{{ logger.info('Processing started', extra={'verbose':
True, file: 'config.txt'}) }}}

OLD_2: {{{ print('Warning! Could not load user U-232 data from user_info.

csv') 11}
REFACTORED_2: {{{ logger.warning('User data failed to load',

extra={'user': 'U-232', 'file': ‘'user_info.csv'}) }}}
OLD: {{{ print('Error! File not found: passwords.txt') }}}
REFACTORED:

Providing these two examples as guidance for the model will capture the desired output, as

illustrated in Figure 8.2:

@5 @& ChatGPT 03-mini-high 2, Share a
OLD_2: {{{ print("Warning! Could not load user U-232 data from
user_info.csv') }}}
REFACTORED_2: {{{ logger.warning('User data failed to load',
extra={'user': 'U-232", 'file': 'user_info.csv'}) }}}

OLD: {{{ print('Error! File not found: passwords.txt') }}}

REFACTORED:

Reasoned about log message refactoring for 6 seconds >
python @ Copy

logger.error('File not found', extra={'file': 'passwords.txt'})

Figure 8.2: Improved logging suggestion

This time, the model successfully extracted the parameters from the static log message and used
thelogger instance instead of a direct logging message, following the patterns demonstrated in the

few-shot examples. We will revisit logging practices in greater detail in Chapter 15, so stay tuned.

Next, we will explore how adopting a Python-formatted style guide with Copilot can go beyond
traditional linting and code formatting tools. This few-shot approach is proactive, adaptable, and

context-aware, enabling Copilot to predict our intended implementation easily.

196 An Introduction to Prompt Engineering

Crafting a style guide for GitHub Copilot

GitHub Copilot functions as a personalized Al assistant, predicting our next coding moves. Be-
cause LLMs excel at imitating style, Copilot quickly adapts to any style preferences it observes

during a session.

For example, suppose we have a file named ch8/code_samples/math_calculations.py with
two functions (get_area and get_arithmetic_mean), both implemented without type hints and

with single-line function signatures:

import numpy as np

def get_area(radius):

return np.pi * radius ** 2

def get_arithmetic_mean(xl, x2):
return (x1 + x2) / 2

If we then start typing a new function signature for get_euclidean_distance, Copilot is likely
to generate an implementation in the same style, with no type hints and one-line signatures, as

shown in Figure 8.3:

%@ math_computations.py 6, U @

ch8 > code_samples > %® math_computations.py > EB get_euclidean_distance
1 import numpy as np

2

3 def get_area(radius):

4 return np.pi * radius xx 2

5

6

7 def get_arithmetic_mean(x1, x2):

8 return (x1 + x2) / 2

9

10 def get_euclidean_distance(x1, x2):

return np.sqri(np.sum((x1 - x2) *x 2))
Figure 8.3: Copilot preserving our coding style

Alternatively, if our code implements type hints, hanging indents, and docstrings, Copilot will
generate suggestions that reflect this updated style. For example, here is an alternate implemen-

tation of get_area and get_arithmetic_mean:

import numpy as np
def get_area(

radius: float,

Chapter 8 197

) -> float:

Compute the area of a circle given its radius.
area: float = np.pi * radius ** 2
return area
def get_arithmetic_mean(
x1: float,
x2: float,
) -> float:

Compute the arithmetic mean of two numbers.

arithmetic_mean: float = (x1 + x2) / 2

return arithmetic_mean

Based on this coding preference, Figure 8.4 shows the suggested implementation of get_euclidean_
distance reflecting the new coding style:

@ math_computations.py 1,U @

ch8 > code_samples > ® math_computations.py > @ get_eucleadian_distance
3 def get_area(

6
7 Compute the area of a circle given its radius.
8
9 area: float = np.pi * radius *x 2
10 return area
11
12
13 def get_arithmetic_mean(
14 x1: float,
15 x2: float,
16) —> float:
17 e
18 Compute the arithmetic mean of two numbers.
19 i
20 arithmetic_mean: float = (x1 + x2) / 2
21 return arithmetic_mean
22
23
24 def get_eucleadian_distance(Im
x1: float,
yl: float,
x2: float,
y2: float,
) —> float:
Compute the Euclidean distance between two points.
eucleadian_distance: float = np.sqrt((x2 - x1) *x 2 + (y2 - y1) *x 2)
return eucleadian_distance
25

Figure 8.4: Copilot’s adapted coding style

198 An Introduction to Prompt Engineering

As developers, we would like a more robust method for informing Copilot of our preferred style
guidelines without having to repeat them every session. We can achieve this by using a few-shot

learning approach: creating a dedicated style guide file, as we will see next.

Style guide file

A simple way to include our preferred style guide in Copilot is to maintain a single file outside
the main project folder that we can copy and paste in place when we start a new Copilot session.
Copying and pasting this file’s content makes our coding style part of the active session, although
we hope that future versions of Copilot will introduce a more convenient method. For example,
a sample file located at ch8/code_samples/style_guide.py, shown in Figure 8.5, includes two

functions: get_area and get_arithmetic_mean.

@ style_guide.py M X

ch8 > code_samples > % style_guide.py > ...
import numpy as np

1

2

3 def get_areal

4 radius: float,

5) —> float:

6 area: float = np.pi * radius ** 2
7 return area

8

9

10 def get_arithmetic_mean(

11 x1: float,

12 x2: float,

13) —> float:

14 arithmetic_mean: float = (x1 + x2) / 2
157 return arithmetic_mean

16

Figure 8.5: Style guide

This file does not include a docstring, as adding one is considered a separate task from imple-

menting the function. We will explore this topic in more detail in later chapters.

Next, if we open a new file at ch8/code_samples/distances.py and begin typing the signature
of get_euclidean_distance, Copilot is likely to generate an implementation that aligns with

that formatting, as shown in Figure 8.6:

Chapter 8 199

@ style_guide.py M @ distances.py 1,U @

ch8 > code_samples > @ distances.py > @ get_eucleadian_distance
ik def get_eucleadian_distance(

w“

x1: float,
x2: float,
yl: float,
y2: float,

) —> float:
distance: float = ((x2 — x1) %k 2 + (y2 — yl1) %x 2) *%x 0.5
return distance

Figure 8.6: Preserved coding style

Our coding preferences remain consistent in the new file, showing that Copilot has effectively
captured our desired style. In later chapters, we will explore how adding more Python elements,

such as decorators, to the style guide can further refine and expand our preferred coding approach.

Style guide as a next-generation code formatter

If you are used to code formatters or linters, you will notice thatimplementing a style
guide may remind you of a code formatting initiative, but is more advanced. First,
\Q/\, because the style guide approach is proactive rather than reactive, we get suggestions
already formatted the way we want. Second, it offers more flexibility: we can adopt
the show, don’t tell method by simply demonstrating our preferred style to Copilot.
Finally, we can go beyond traditional formatters by including preferences such as

type hints, which are not always clear using older methods.

Next, we will explore how to apply few-shot learning with OpenAl, using this technique to re-

factor code at scale.

Working with few-shot learning for OpenAl API

For large-scale tasks, such as generating code implementations from function signatures, we can
use OpenAl API programmatically and apply few-shot learning to illustrate the desired outcome
effectively. To do this, we provide indexed examples of input and output and reference these

examples in the system prompt.

200 An Introduction to Prompt Engineering

The system prompt should reference the indexed input and output examples as follows:

SURROUND = """You are provided with:

1. A [...] enclosed with {{{ INPUT }}}.

2. Example [...] enclosed with {{{ INPUT_i }}} followed by the
corresponding [...] enclosed with {{{ OUTPUT_i }}}."""
SINGLE_TASK = "Your task is to [...]."

system_prompt = f"{SURROUND} {SINGLE_TASK}"

Next, we update the get_user_prompt function to include the provided examples, ensuring that

the labels align with those in the system prompt:

def get_user_prompt(some_input: str, few_shots: list) -> str:

prompt = ""

for i, (input_, output_) in enumerate(few_shots):
prompt += f"""

INPUT_{i + 1}: {{{{{{ {input_} }}}}}}

OUTPUT_{i + 1}: {{{{{{ {output_} }}}}}}"""

prompt += f"""

INPUT: {{{{{{ {some_input} }}}}}}

OUTPUT:

return prompt

Similarly, we replace INPUT_i and OUTPUT_i with task-specific labels, such as FUNCTION_i and

CODE_i for code completion tasks.

Implementing code with OpenAl API

In Chapter 2, we built a code completion program that generates a Python implementation based
on a function signature. For example, when implementing print_fibonacci_sequence, we pro-
vided a prompt that requested only the function’s implementation, without additional explana-

tions or output samples.

A more effective approach is to include a few examples that demonstrate the desired output
format. For instance, we can provide implementations for get_area and get_arithmetic_mean,

both based solely on their function signatures:

INPUT_1 = """def get_area(radius: float) -> float:"""

Chapter 8

201

OUTPUT_1 = """def get_area(radius: float) -> float:
area: float = np.pi * radius ** 2

return area

INPUT_2 = """def get_arithmetic_mean(x1: float, x2: float) -> float:"""

OUTPUT_2 = """def get_arithmetic_mean(x1: float, x2: float) -> float:
arithmetic_mean: float = (x1 + x2) / 2

return arithmetic_mean

FEW_SHOTS = [
(INPUT_1, OUTPUT_1),
(INPUT_2, OUTPUT_2),
]

With these examples, we can construct a system prompt and user prompt that encourage the

model to generate only the function implementation without additional explanations. The system

prompt would be structured as follows:

SURROUND = """You are provided with:
1. A Python function signature enclosed with {{{ FUNCTION }}}.

2. Example signatures enclosed with {{{ FUNCTION_i }}} followed by the
corresponding implementation enclosed with {{{ CODE_i }}}.

SINGLE_TASK = "Your task is to implement the function."

Next, we define a function to generate the user prompt, ensuring consistency with the system

prompt’s structure:

def get_user_prompt(signature: str, few_shots: list) -> str:

prompt = ""

for i, (input_, output_) in enumerate(few_shots):
prompt += f"""

FUNCTION_{i + 1}: {{{{{{ {input_} }}}}}}

CODE_{i + 1}: {{{{{{ {output_} }}}}3}"""

prompt += f"""

FUNCTION: {{{{{{ {signature} }}}}}}

202 An Introduction to Prompt Engineering

CODE:

return prompt

For the implementation of print_fibonacci_sequence, we define the system and user prompts

as follows:

system_prompt = f"{SURROUND} {SINGLE_TASK}"
user_prompt = get_user_prompt("def print_fibonacci_sequence(n: int) ->
None:", FEW_SHOTS)

Finally, we call the API with the following snippet:

client: OpenAI = OpenAI()

completion: openai.ChatCompletion = (
client.chat.completions.create(

model="gpt-40-mini",

messages=|[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},

1,

))

print(completion.choices[0].message.content)

By structuring the prompt this way, the model is more likely to follow the expected output format.
Running the preceding example, which is available in ch8/code_samples/openai_fibonacci.py,

we got the following function implementation:

def print_fibonacci_sequence(n: int) -> None:
a, b=29, 1
for _ in range(n):
print(a, end=" ")
a, b=b, a+b
print()

This implementation aligns with our provided examples and does not include surrounding ex-

planations.

Chapter 8 203

Fine-tuning as a better approach to OpenAl API

When scaling projects, fine-tuning offers a more effective way to specialize a model
\/v for a specific task, such as generating code in a preferred style. This process involves
training a pre-trained model such as GPT-4o0-mini on a set of high-quality examples,
allowing it to adjust its internal settings to better align with our preferences. We

will explore this topic in greater detail in Chapter 11.

Having explored few-shot learning with ChatGPT, GitHub Copilot, and OpenAl API, we will now
introduce additional prompt engineering techniques, which we will examine in greater detail in

the upcoming and later chapters of the book.

Introducing more prompt engineering techniques

Variations of few-shot prompting can include edge cases, progressively complex examples, or
contrastive examples that highlight both correct and incorrect outcomes. These variations on
few-shot prompting enhance a model’s ability to generalize across diverse task requirements.
The examples in this chapter on type hinting and style formatting are just the tip of the iceberg

of how prompt engineering can be used.

In other scenarios of the SDLC, we will see how using different prompt engineering techniques

can become handy.

Bug fix at scale with prompt engineering

Refer to the OpenAl example of effective prompts for fixing buggy code, enhanced with the re-
finements discussed in Chapter 4:
CONTEXT: You will be provided with Python code in the Python editor with
description enclosed with {{{ DESCRIPTION }}}
that may contain errors enclosed with {{{ ERRORS }}}.

TASK: Fix the errors in the code.

DESCRIPTION: {{{ Execute 10 multiplication quizzes for the user and
validate the answer }}}

204 An Introduction to Prompt Engineering

ERRORS: {{{

1. Compilation

2. Reproducibility of random number generation
3. Logical scoping of variable assignments

4. Error handling for input casting

Y3}

While this prompt successfully identified all errors in the code, we cannot guarantee that GenAl

applications will consistently capture all errors in different code snippets.

To improve results, we can explore techniques such as iterative prompting, where the output
is verified for compilation and refined through model reiteration if needed. Template-based
prompting can enforce a specific format for error descriptions, ensuring consistency and clarity
in the output. Additionally, chain-of-thought prompting helps guide the model through alogical
reasoning process, improving its ability to understand and fix code issues. Let’s explore these in

the next subsections.

lterative prompting

Iterative prompting involves engaging the model repeatedly within a feedback loop that refines its
output based on evaluations of previous responses. This feedback can be manual, such as asking
ChatGPT to revise its response to address unidentified errors, or automated, such as compiling
code generated by OpenAl API or running it against a suite of unit tests. The resulting feedback,
whether a traceback error message or failed test results, can be reintroduced to the model, con-

tinuing the cycle until specific criteria are satisfied.

For instance, if the goal is to address compilation issues, an iterative mechanism could involve
attempting to compile the output and feeding the traceback error messages back to the model

for refinement if the code fails to compile:

for i in range(10):
try:
exec(user_code)
print(f"successfully compiled:\n {user_code}")
break
except SyntaxError as se:

user_code = get_refined_output(user_code, traceback.format_exc())

Chapter 8 205

Here, we will repeatedly prompt the model with traceback messages from the suggested code
until it successfully compiles. Alternatively, we could evaluate the code by running it against a test

suite or using other evaluation mechanisms, which we will explore in later chapters of the book.

Template-based prompting

Template-based prompting involves providing specific guidelines for structuring the desired
output. For instance, when fixing code, we may want to understand the type of error being ad-
dressed, such as whether itis a compilation error, alogical issue, or something else. In such cases,

the output could follow this structure:

This code requires fix because of { ERROR TYPE}. The fixed code is { CODE

}.

To guide the model toward generating this output, we include hints about the template within

the context and provide a structure like this:

CONTEXT: You will be provided with Python code enclosed with {{{ CODE }}}
that does not compile, and an error traceback enclosed with {{{ TRACEBACK
}}}, along with a template of the output enclosed with {{{ TEMPLATE }}}.

TASK: Fix the errors in the code using the provided template.

TEMPLATE: This code requires a fix because of { ERROR TYPE }. The fixed
code is { CODE }.

Here, we guide the model by providing a specific template that includes placeholders for the
error type and the fixed code. This approach differs from few-shot prompting in how the output
is constructed; rather than offering input-output examples, we define the structure of the output
with variables for the model to populate. These two techniques can be used independently or in

combination to achieve the desired results.

Chain-of-thought prompting

Chain-of-thought (CoT) prompting involves guiding the model through a step-by-step reason-
ing process toward a final answer. In coding, we apply CoT by referencing functions that are yet
to be implemented, serving as a reasoning framework for the GenAlI tool, which later fills in the
implementation details. For instance, when validating that a code has no bugs, the process may

involve the following steps:

1. Validating syntax
2. Checking compilation

3. Ensuring reproducibility across runs

206 An Introduction to Prompt Engineering

Using CoT, we can explicitly reference functions that handle each of these steps while leaving the

actual implementation for GenAl to complete. In code, this might look like this:

def validate no_bugs in_source_code(sc: str) -> None:
validate_syntax(sc)
validate_compilation(sc)

validate_reoroducibility across_runs(sc)

Here, validate_no_bugs_in_source_code outlines the logical steps needed to verify that the
source code is bug-free but does not contain implementation details. GenAl tools are particularly
effective at generating low-level implementations, and when typing the first referenced function,

validate_syntax, Copilot can generate a suitable implementation, as illustrated in Figure 8.7:

@ chain_of_thought.py 3,R ®

ch8 > code_samples > @ chain_of_thought.py > ...
1} import ast

2
»
3
4 def validate_no_bugs_in_source_code(sc: str) —> None:
5 validate_syntax(sc)
6 validate compilation(sc)
7 validate reoroducibility across runs(sc)
8
[2
9
10 def validate_syntax(sc: str) —> None:
11 try:
ast.parse(sc)
except SyntaxError:
raise ValueError("Syntax error in source code")
3 7.

Figure 8.7: GitHub Copilot suggested implementation of validate_syntax

CoT is one of the most effective prompt engineering techniques for coding tasks, and we will

explore its applications further in the upcoming chapters.

Exploring additional methods

This book covers a selection of prompt engineering techniques among the many available. For a
broader exploration of prompting strategies, Unlocking the Secrets of Prompt Engineering: Master
the art of creative language generation to accelerate your journey from novice to pro by Packt delves

into numerous other techniques applicable to diverse use cases.

Chapter 8 207

Summary

In this chapter, we introduced few-shot learning as a prompt engineering technique to guide
LLMs toward more predictable and desired outcomes. We demonstrated its application in sce-

narios such as implementing a specific logging structure and following a particular coding style.

We explored how to implement few-shot prompting across different GenAl applications. In
ChatGPT and OpenAl API, we utilized specific keyword combinations such as question and
answer or old and refactored to structure the few-shot examples. With GitHub Copilot, we

leveraged a style guide file to influence code completion output.

We also introduced additional prompt engineering techniques that are valuable for scaling bug
fixes. Iterative prompting enables models to refine their output by utilizing feedback from com-
pilation checks until the code compiles successfully. Template-based prompting leads the model
toward producing outputs with a specific structure. Furthermore, CoT prompting breaks down

solutions into clear, step-by-step reasoning processes.

In the next chapters, we will delve deeper into the mechanics of CoT, and chaining, and see how
to apply them with ChatGPT, OpenAl API, and GitHub Copilot.

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: When should we use prompt engineering?

Answer: Prompt engineering should follow best practices to achieve desirable outcomes from
LLMs. However, when standard guidelines are insufficient, advanced prompting techniques may
be necessary. In this chapter, we saw how few-shot learning helped align outputs with a specific

style guide, making results more predictable and desirable.

Question 2: Can we use plain English to describe the desired outcome instead of providing few-

shot examples in code?

Answer: While itis theoretically possible to use plain English to describe coding styles and desired
outputs, this approach is less effective. Like mathematical equations or music notes, code acts
as a concise and precise notation system. LLMs, trained extensively on code, interpret it more

accurately than plain-text descriptions.

208 An Introduction to Prompt Engineering

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following

resources:

e PEP-8 Style Guide for Python Code: https://peps.python.org/pep-0008/

e Brown,T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ..., and Amodei, D.
(2020). Language Models are Few-Shot Learners. OpenAl. Retrieved from https://arxiv.
org/abs/2005.14165v4

e Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., and Chadha, A. (2024). A systematic
survey of prompt engineering in large language models: Techniques and applications. Indian In-

stitute of Technology Patna, Stanford University, and Amazon Al. Retrieved from https://
arxiv.org/abs/2402.07927v1

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled
filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs
and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.1link/TRO5B or scan the QR code below.

O

https://peps.python.org/pep-0008/
https://arxiv.org/abs/2005.14165v4
https://arxiv.org/abs/2005.14165v4
https://arxiv.org/abs/2402.07927v1
https://arxiv.org/abs/2402.07927v1
https://packt.link/TRO5B

Advanced Prompt Engineering
for Coding-Related Tasks

Some coding tasks extend beyond simple, single-task initiatives. For these more complex scenarios,
advanced prompt engineering techniques such as chain of thought (CoT) and chaining can be
highly effective when working with large language models (LLMs). This chapter will explore
how to use these techniques when working with OpenAl API, ChatGPT, and GitHub Copilot on

challenges that often require more than just the initial prompt to achieve the desired output.

We will walk through an example of implementing a geometric mean calculator for portfolio
returns that handles negative net returns. By applying CoT prompting, we will guide the model
with explicit reasoning steps and achieve desirable results, even with a lighter model such as
GPT-40 mini. Then, using chaining, we will improve the initial implementation by enhancing

its type hints and refining the docstring.
This chapter covers the following topics:

e Extending the promptimplementation scope
e Leveraging CoT reasoning for code completion

e Using prompt chaining with LLMs

210 Advanced Prompt Engineering for Coding-Related Tasks

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub Copilot account

e IDE —either VS Code or PyCharm

e OpenAl account with access to OpenAl API

e Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

e Virtual environment set up in VS Code or PyCharm

e OpenAl API token

For assistance with setting up a GitHub Copilot account, refer to Chapter 3. For instructions on
setting up OpenAl API access and token generation, see Chapter 2. If you need help creating an
OpenAl account or setting up a virtual environmentin your IDE, refer to the Appendix for detailed

guidance.

Extending the prompt implementation scope

Until now, we have mainly worked with short functions spanning only a few lines of code, ap-
plying our best practices for prompt precision to generate effective code using GitHub Copilot,
OpenAl, and ChatGPT.

However, in many real-world scenarios, our tasks will not fit within such a narrow scope. We
may need to handle input casting, switch cases, or adapt implementations beyond a raw mathe-
matical formula. This chapter explores how we can extend the scope of coding tasks by applying

advanced prompt engineering techniques.

Extending the geometric mean scope

Let us revisit the geometric mean implementation from Chapter 3. The geometric mean is a method
of averaging numbers that have a multiplicative nature, such as financial portfolio growth rates,
population growth rates, or drug concentrations that change exponentially over time. The geo-

metric mean is defined as the nth root of the product of the inputs, as follows:
1
n n
Geometric Mean = <| | xi>
i=1

For a more detailed explanation of the concept, refer to Chapter 3.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 9 211

However, when some of the inputs are negative, such as net portfolio returns, the standard for-
mula becomes insufficient. For example, consider IBM’s stock returns from 2000 to 2002, where

two years had negative returns:

IBM_YEARLY_RETURNS: Dict[str, float] = {
"2000": -0.2084,
"2001": 0.4300,
"2002": -0.3547

If we were to use the geometric mean formula as is, we would get an average yearly return of 32%:
1 1
G = (—0.2084 - 0.4300 - — 0.3547)3 = (0.031)3 = 0.32

This result, however, is incorrect. A $1,000 investment in IBM stock in 2000 would shrink to
approximately $730 by the end of 2002, reflecting a total decline of about 27%. Thus, we would

expect an average annual return closer to -10%.

One way to handle negative returns is by using gross returns instead. This involves converting

net returns to gross values, computing their product, and extracting the nth root:

from typing import Dict

import numpy as np
def get_average_return(

net_returns: Dict[str, float],
) -> float:

gross_returns: np.ndarray = np.array(list(net_returns.values())) + 1

power: float = 1 / len(gross_returns)

gross_average: float = np.prod(gross_returns) ** power

net_average: float = gross_average - 1

return net_average

212 Advanced Prompt Engineering for Coding-Related Tasks

Applying this function to IBM’s returns produces an average return of -10%:

net_returns: [-0.2084, 0.43, -0.3547]
gross_returns: [0.7916, 1.43, 0.6453]

gross_average: 0.9006

net_average: -0.099

This implementation is more extensive than the functions we have generated so far, so it may

require more advanced techniques to get desirable results with minimal iterations.

Next, we will compare baseline responses from GitHub Copilot, ChatGPT, and OpenAl API, ex-

amining their limitations and potential pitfalls.

Evaluating baseline outputs
In Chapter 6, we discussed how GitHub Copilot, ChatGPT, and OpenAl API each have strengths in

different coding-related tasks. Copilot excels at code completion but can fall short when gener-
ating larger blocks of starter code. ChatGPT is better suited for producing more extensive initial
code, though it often includes longer functions with excessive comments and computations.
OpenAl API requires more effort to craft effective prompts but offers greater flexibility through
programmatic automation and control over prompt history. For a refresher on these differences,

you can revisit Chapter 6.

These differences become apparent when implementing the geometric mean for portfolio returns
over multiple years. Each tool requires different strategies to refine and enhance the quality of

the generated output.

GitHub Copilot baseline

To apply best practices for prompt precision with Copilot, we can start by providing the function

signature for get_geometric_mean as follows:

def get_geometric_mean(
net_returns: Dict[str, float],
) -> float:

Chapter 9 213

This gives Copilot a clear starting point with the function name, an argument specifying the use
case of netreturns, and an expected return type. However, this prompt alone may not be sufficient

to guide Copilot in handling negative inputs, as demonstrated in Figure 9.1.

2 get_average_return.py

from typing import Dict

def get_geometric_mean(new =*
net_returns: Dict[str, float],
) =-> float:
6 product: float = 1
for key in net_returns:
product *= net_returns[key]
geometric_mean: float = product ** (1 / len(net_returns))

return geometric_mean

Figure 9.1: Copilot’s completion does not support negative net returns

This implementation would yield incorrect results for negative inputs and should not be used.

Later in the chapter, we will see how CoT can help us get the correctimplementation we are after.

ChatGPT baseline

ChatGPT, on the other hand, presents a different challenge. While newer models, such as 03, excel
at deeper reasoning (as discussed later in this chapter) and may produce more accurate imple-
mentations, more effortis required to prompt ChatGPT effectively than with Copilot. Additionally,

achieving a coding format that aligns with our preferences is more challenging.

To replicate the GitHub Copilot implementation, we used the following prompt:

CONTEXT: You are provided with a Python function signature enclosed with
{{{ FUNCTION }}}.

TASK: implement the function.

FUNCTION: {{{ defget_geometric_mean(\n\t\tnet_returns: Dict[str,
float],\n) -> float: }}}

CODE:

214 Advanced Prompt Engineering for Coding-Related Tasks

Using the 03-mini-high model, we generated a functionally correct implementation. Howev-
er, the resulting code was cluttered with excessive inline comments and docstrings, making it

time-consuming to clean up. Figure 9.2 illustrates this output in ChatGPT.
ChatGPT 40 v 2 Share (9

FIXED CODE:

Here's the fixed implementation of the code that will pass all the provided unit
tests:

python @ Copy ¥ Edit

import math
import cmath

def get_geometric_mean(a, b):
if a * b < 0:
return cmath.sqrt(a * b)
elif a <@ and b < 0:
a, b = abs(a), abs(b)
return math.sqrt(a * b) \Z

+ Ask anything g9 i
Figure 9.2: ChatGPT implementation

Q, Quick tip: Need to see a high-resolution version of this image? Open this book
in the next-gen Packt Reader or view it in the PDF/ePub copy.

@ The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this

¢ book by name. Double-check the edition shown to make sure you get the right one.

OfA0

Chapter 9 215

For reference, the proposed code by ChatGPT is as follows:

import math

from typing import Dict

def get_geometric_mean(net_returns: Dict[str, float]) -> float:
""" [... omitted for brevity ...] """
if not net_returns:

return 0.0

product = math.prod(1 + r for r in net_returns.values())

n = len(net_returns)

geometric_mean = product ** (1 / n) - 1

return geometric_mean

This code is functionally correct but includes several undesired elements:

e Unnecessary docstring
e Inputvalidation
e Excessive comments

e Inline computations

Later in the chapter, we will explore how CoT and chaining requests to the initial implementation

can help us achieve the desired output.

OpenAl API baseline

We used the 03-mini-2025-01-31 model via OpenAl API and found that its output closely mir-
rored what ChatGPT produced. To evaluate this, we ran the script located at ch9/baseline/
baseline_openai.py, using the following system and user prompts:

SURROUND = "You are provided with a Python function signature enclosed

with {{{ FUNCTION }}}."

SINGLE_TASK = "Your task is to implement the function."

SRC_CODE = """def get_geometric_mean(\n\tnet_returns: Dict[str, float],\n)
-> float:"""

216 Advanced Prompt Engineering for Coding-Related Tasks

def get_user_prompt(src: str) -> str:

return """

FUNCTION: {{{{{{ {src} }}}}}}

CODE:

We then called the model using the following code:

if __name__ == '__main__
client: OpenAI = OpenAI()

system_prompt = f"{SURROUND} {SINGLE_TASK}"

user_prompt = get_user_prompt(SRC_CODE)

completion: ChatCompletion = client.chat.completions.create(

model="03-mini-2025-01-31",

messages=|[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},

1,

)

output = completion.choices[0].message.content

print(output)

The output generated by OpenAI API was very similar to the one produced by ChatGPT, as seen

in the following sample result:

def get_geometric_mean(net_returns: Dict[str, float]) -> float:
Return 0.0 if there are no returns (could alternatively raise an
exception)
if not net_returns:
return 0.0

import math

Calculate the product of (1 + return) for each period
product = 1.0
n = len(net_returns)

for r in net_returns.values():

product *= (1 + r)

Chapter 9 217

Compute the geometric mean: nth root of product then subtract 1

geom_mean = math.pow(product, 1 / n) - 1

return geom_mean

In this implementation, the functionality is correct, but the formatting is less than ideal due to
excessive inline comments, unnecessary input validation, and even an import statement placed
inside the function. Later in the chapter, we will see how to refine this implementation using
CoT and chaining to achieve desirable results even when working with lower-cost models such

as GPT-40 mini.

In summary, as our implementation scope expands beyond simple and short functions, applying

more advanced techniques becomes essential to achieving the desired results.

Next, we will see how we can utilize advanced prompt engineering techniques and get the imple-
mentation we want faster, and see which application (either Copilot, OpenAl AP, or ChatGPT)

is most suitable for each technique.

Leveraging CoTl reasoning with LLM

In Chapter 8, we explored how guided reasoning with CoT can help LLMs produce better code
by following a step-by-step reasoning process. This step-by-step thinking encourages models to

tackle problems in a structured way, leading to more accurate and desirable outputs.
As a simple exercise, consider the following sequence:
17,34, 14, 28, 8, 16

This sequence follows two rules — first, multiply the previous number by 2 to get the next one;

then subtract 20 to get the following number:
34=17x2

14=34-20

28=14x2

8§=28-20

16=8x2

218 Advanced Prompt Engineering for Coding-Related Tasks

The next number should be -4, which is 16 - 20. However, prompting Copilot to predict the next

number in the sequence is not straightforward, as shown in Figure 9.3.

& get_average_return.py x

1 from typing import Dict

2

3 def get_geometric_mean(new *

4 net_returns: Dict[str, float],
5)95 float:

6 product: float = 1

for key in net_returns:

product *= net_returns[key]
geometric_mean: float = product xx (1 / len(net_returns))
return geometric_mean

Figure 9.3: Copilot fails to predict the correct next number

In this case, Copilot failed to predict the next number accurately, suggesting 4 instead of -4. This
demonstrates that the model did not fully grasp the sequence’s logic. To improve the outcome,
we can guide the model by prompting it to reason through the relationship between the current

number and the previous one before making a final prediction, as shown in Figure 9.4.

& cot_copilot.py X

1 # What is the next number in the sequence?

2

3 # Number 1: 17

4 # Number 2: 34. Relationship to Number 1: 2

5 # Number 3: 14. Relationship to Number 2: -20
Number 4: 28. Relationship to Number 3: 2

7 # Number 5: 8. Relationship to Number 4: -20

8 # Number 6: 16. Relationship to Number 5: 2

g/ ﬂ Number 7: 6. Relationship to Number é6: -20

Figure 9.4: Reasoning steps provided for the next number

Chapter 9 219

Figure 9.4 shows that, by adding comments in rows 4-8, Copilot predicted the next number in
the sequence correctly and also explained its reasoning for the final number, 6. Similarly, as we
will explore later in this chapter, incorporating reasoning steps into our coding tasks can help

the model produce more desirable outcomes.

CoT in the GPT-o series

CoT has proven so effective across a range of domains requiring complex reasoning that it was
builtinto the GPT-o series. This means the model will automatically identify the necessary steps

to complete a task before arriving at the final answer.

For the sequence completion example we explored earlier in the chapter, we could use the GPT-o1

model without additional guidance, as shown in Figure 9.5.

What is the next number in the sequence? 17, 34, 14, 28, 8, 16,

) Thought about number sequence pattern for 47 seconds

A concise way to see the pattern is that the terms alternate between "double the previous term”
and “subtract 20 from the previous term.” Concretely:

1. 1725 34
—20

2. 34 2 14

3. 14 % 98

4. 28 28

5. 82216

6. 16— _4

So the next number in the sequenceis —4 .

Figure 9.5: Built-in CoT in 01

From the ChatGPT output, we can see that the model recognized this as a sequence pattern
task, with an internal process for handling reasoning in such cases. The model took 47 seconds
to process the task, which included problem analysis, problem recognition, and estimating the

next number, as shown in Figure 9.6.

220

Advanced Prompt Engineering for Coding-Related Tasks

ChatGPT o1 ~

What is the next number in the sequence? 17, 34, 14, 28, 8, 16,

Figure 9.6: Thought process in ChatGPT

Here, we can see that ChatGPT is analyzing the sequence, which is one of the reasoning steps in

CoT to get to the final answer.

o-series adoption

Models from the o series are now available through ChatGPT and OpenAl API. However, they

come at a higher cost than their predecessors, as illustrated in Figure 9.7:

Our latest models

Reasoning models for complex, multi-step problems

OpenAl ol

Frontier reasoning model that supports tools, Structured

Outputs, and vision | 200k context length

Price

Input:
$15.00 /1M tokens

Cached input:
$7.50 /1M tokens

Output:
$60.00 /1M tokens

OpenAl 03-mini
Small cost-efficient reasoning model that’s optimized for

coding, math, and science, and supports tools and
Structured Outputs | 200k context length

Price

Input:
$110 /1M tokens

Cached input:
$0.55/1M tokens

Output:
$4.40 /1M tokens

Figure 9.7: Costs of o-series models for OpenAl API calls

The ol model, for example, is priced at $15 per million input tokens and $60 per million output

tokens, making it six times more expensive than GPT-40 and 1,000 times more expensive than

GPT-40 mini, as shown in Figure 9.8.

Chapter 9

221

GPT-4.5

Largest GPT model designed for
creative tasks and agentic
planning, currently available

GPT models for everyday tasks

GPT-40

High-intelligence model for

complex tasks | 128k context length

GPT-40 mini
Affordable small model for
fast, everyday tasks | 128k
context length

in a research preview | 128k
context length

Price Price Price

Input: Input: Input:

$75.00 /1M tokens $2.50 /1M tokens $0.150 /1M tokens
Cached input:
$1.25 /1M tokens

Cached input:
$0.075 / 1M tokens

Cached input:
$3750 /1M tokens

Output: Output: Output:
$150.00 / 1M tokens $10.00 /1M tokens $0.600 /1M tokens

Figure 9.8: GPT-4o pricing for OpenAl API calls

Due to this significant cost difference, o-series models are used less frequently in applications.
When selecting the right model for yourself or your company, itis important to weigh the trade-off
between cost and output quality. If more affordable models, such as GPT-4o, deliver satisfactory
results and meet expectations, it may be prudent to continue using them. However, the ol and 03
models have been shown to give significantly better outcomes, so it might be worth using them

first or as a fallback, even at a higher cost.

Using CoT for GitHub Copilot

The CoT approach is one of our most frequently used strategies when working with GitHub Co-
pilot. When applied effectively, it can simplify the development of entire code segments, leading

to cleaner and more readable implementations.

This method involves structuring the reasoning process by referencing functions that have yet
to be implemented. For example, when calculating the geometric mean for net returns, we can

break it down into three logical steps:

1. Convertinput to gross returns.
2. Compute the geometric mean of the gross returns.

3. Convert back to the net returns.

222 Advanced Prompt Engineering for Coding-Related Tasks

Expressing these steps in code involves defining each operation as a function, as shown in the

following code:

def get_average_return(
net_returns: Dict[str, float],

) -> float:
gross_returns: np.ndarray = get_gross_returns(net_returns)
gross_average: float = get_geometric_mean(gross_returns)
net_average: float = get_net_average(gross_average)

return net_average

This function does not include any implementation details and only outlines the functions or
steps to be completed. Since the functions are not yet implemented, typing their names in an

IDE may look like an error, as shown in Figure 9.9:

def get_average_return(Hila Paz Herszfang *
net_returns: Dict[str, float],
) -> float:
gross_returns: np.ndarray = gggagggﬁéﬁggggggg(net_returns)
gross_average: float = get_geometric_mean(gross_returns)
net_average: float = get_net_average(gross_average)
return net_average

Figure 9.9: Error underline in the CoT definition

This underlying error indicator is expected and resolved as Copilot generates the implementation

for the function at hand.

This reasoning approach facilitates the generation of accurate and predictable code when work-
ing with the Al pair programmer. As each function is implemented (such as get_gross_returns,
get_geometric_mean, etc.), Copilot learns enough context to write the correct provided param-

eters, how the return value is used, and the expected type hints.

Additionally, we can predict how Copilot will complete the code and in what order. The imple-
mentation will follow the sequence of function callsin get_average_return. Indeed, as we press
Enter twice and start typing def, Copilot will suggest an implementation for get_gross_returns,

as shown in Figure 9.10:

Chapter 9 223

from typing import Dict

import numpy as np

def get_average_return(Hila Paz Herszfang *
net_returns: Dict[str, float],
) -> float:
gross_returns: np.ndarray = get_gross_returns(net_returns)
gross_average: float = get_geometric_mean(gross_returns)
net_average: float = get_net_average(gross_average)
return net_average

15 defwget_gr'oss_r'eturns(~ new *
net_returns: Dict[str, float],
) -> np.ndarray:
gross_returns: np.ndarray = np.array(list(net_returns.values(})) + 1
return gross_returns

Figure 9.10: Copilot predicts the implementation of the first called function

Once we accept the implementation and hit Enter twice again, Copilot will suggest the next

function in the call sequence, get_geometric_mean, as shown in Figure 9.11:

def get_average_return(Hila Paz Herszfang *
net_returns: Dict[str, float],
) -> float:
gross_returns: np.ndarray = get_gross_returns(net_returns)
gross_average: float = get_geometric_mean(gross_returns)
net_average: float = get_net _average(gross_average)
return net_average

def get_gross_returns(1 usage Hila Paz Herszfang *
net_returns: Dict[str, float],
) -> np.ndarray:
gross_returns: np.ndarray = np.array(list(net_returns.values())) + 1
return gross_returns

22 bef get_geometric_mean(

Figure 9.11: Copilot predicting the next function definition

224 Advanced Prompt Engineering for Coding-Related Tasks

Here, we did not need to type anything. Just a two-line break, resembling the space between
get_average_return and get_gross_returns, was enough to trigger a fully predictable imple-
mentation in this file. This demonstrates the optimal use of Copilot, truly leveraging the power of

an Al pair programmer. For your reference, here is the full implementation suggested by Copilot:

def get_gross_returns(
net_returns: Dict[str, float],
) -> np.ndarray:
gross_returns: np.ndarray = np.array(
list(net_returns.values())
) + 1

return gross_returns

def get_geometric_mean(
gross_returns: np.ndarray,
) -> float:
gross_average: float = np.prod(gross_returns) ** (
1 / len(gross_returns)

)

return gross_average

def get_net_average(
gross_average: float,
) -> float:
net_average: float = gross_average - 1

return net_average

This implementation successfully captures the intended logic, and its structuring across different
levels of abstraction is superior to what even the most advanced 03 models produce via ChatGPT
and OpenAl API. This serves as a strong example of how effective prompting techniques can

outperform more powerful and costly models.

Educating your colleagues

V4 Next time you notice a colleague trying to use inline comments in GitHub Copilot
\@/ suchas# step 1: Compute the gross returns,suggest they try using CoT in-
stead. This approach will not only be more efficient and a better way to use Copilot,

but it will also help the team maintain higher-quality code.

Chapter 9 225

Next, we will explore how to replicate the desired outputs with ChatGPT and OpenAl API, even

when using more affordable models such as GPT-40 mini.

CofT for the geometric mean with ChatGPT

The same CoT approach can be applied to coding tasks, such as implementing a get_average_
return function that supports negative returns. Rather than supplying the function signature, we
will provide a full implementation of get_average_return as we did with Copilot and prompt

the model to complete the lower-level details. A prompt for this might look like the following:

CONTEXT: You are provided with a Python function enclosed with {{{
FUNCTION }}} that calls functions that should be completed.

TASK: Implement the missing functions.

FUNCTION: {{{def get_average_return(\n\t\tnet_returns: Dict[str,
float],\n) -> float: \n\tgross_returns: np.ndarray = get_gross_
returns(net_returns) \n\tgross_average: float = get_geometric_mean(gross_
returns) \n\tnet_average: float = get_net_average(gross_average) \n\
treturn net_average }}}

CODE:

This prompt outlines the necessary reasoning steps to generate the correct code. For reference,

here is the output produced by ChatGPT using the GPT-40 mini model with the given prompt:

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

. omitted for brevity ...

return np.array([1 + net_return for net_return in net_returns.
values()])

def get_geometric_mean(values: np.ndarray) -> float:

. omitted for brevity ...

return np.prod(values) ** (1 / len(values))

get_net_average(gross_average: float) -> float:

. omitted for brevity ...

return gross_average - 1

get_average_return(net_returns: Dict[str, float]) -> float:

gross_returns: np.ndarray = get_gross_returns(net_returns)

gross_average: float = get_geometric_mean(gross_returns)

226 Advanced Prompt Engineering for Coding-Related Tasks

net_average: float = get_net_average(gross_average)

return net_average

This output is more satisfactory than the baseline, even though it was generated with GPT-40
model instead of the more advanced O-series. It no longer includes inline comments or input val-
idation, which significantly reduces the amount of manual editing required. Later in the chapter,

we will see how chaining can help produce even more polished results that are ready to use as is.

Next, we will apply this approach using OpenAI AP

CoT with OpenAl API

We can leverage CoT prompting and provide a full implementation of get_average_return as

we did with Copilot and ChatGPT. The system and user prompts may look as follows:

SURROUND = "You are provided with a Python function enclosed with {{{
FUNCTION }}} that calls functions that should be completed."”

SINGLE_TASK = "Your task is to implement the missing functions."

def get_user_prompt(func: callable) -> str:
return """
FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}

CODE:

We will integrate these prompt pieces into an OpenAl API call, including the system prompt, user
prompt, and a GPT-40 mini model, as shown here:

if _name__ == "' main__
client: OpenAI = OpenAI()
system_prompt = f"{SURROUND} {SINGLE_TASK}"

user_prompt = get_user_prompt(get_average_return)

completion: ChatCompletion = client.chat.completions.create(

model="gpt-40-mini",

messages=|[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},

1,

Chapter 9 227

output = completion.choices[@].message.content

print(output)

Note that the code sample can be found in this book’s repository at ch9/cot/cot_openai.py. For

reference, here is sample output from the call:

import numpy as np

from typing import Dict

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

Convert net returns to gross returns.

return np.array([1 + r for r in net_returns.values()])

def get_geometric_mean(gross_returns: np.ndarray) -> float:

Calculate the geometric mean of a numpy array of gross returns.

return np.prod(gross_returns) ** (1 / len(gross_returns))

def get_net_average(gross_average: float) -> float:

Convert gross average back to net average.
return gross_average - 1

def get_average_return(net_returns: Dict[str, float]) -> float:

. omitted for brevity ...

Here, we obtained a better implementation than the baseline, maintaining the desired level of

abstraction and avoiding input validation and inline comments.

While leveraging CoT is highly effective when using GitHub Copilot, it is not always sufficient
to produce ready-to-use code with ChatGPT or OpenAl API. To address this, we can incorporate

chaining through follow-up prompts, as we will demonstrate next.

Using prompt chaining for LLMs
Prompt chaining is another highly effective prompt engineering technique that helps us achieve
better results from LLMs. It involves breaking down tasks into smaller, sequential steps that are

more efficiently completed individually.

228 Advanced Prompt Engineering for Coding-Related Tasks

For instance, when implementing get_average_return, we may want to enhance ChatGPT’s
or OpenAr’s initial output by adding type hints and avoiding inline calculations in the return
statement. With GitHub Copilot, we might want to construct a barebones implementation first

and add a Google Style docstring later.

Although we could include all these elements in the initial prompt, it is often more natural and
effective to start with an implementation that is functionally correct. From there, we can refine

the code step by step through a series of follow-up prompts.

Chaining with ChatGPT

Applying chaining with ChatGPT is very intuitive given that the Ul is already designed for a con-
versational style. The chat history helps us reference previous prompt pieces without needing

to retype them.

For instance, say that we wanted to improve the implementation of get_average_return with
a Google Style docstring rather than an arbitrary one, and type hints to variables in all functions.
Including all these elements in one prompt would defy the single-task best practice and result

in suboptimal outputs. Instead, we recommend the following approach:

e For chained prompts with the same context, focus only on the new task

e Forchained prompts with a different context, such as adding test cases, use a full prompt

following the five S’s best practices

For the task of coding get_average_return, adding type hints for variables, revising the docstring

to be in a Google Style format, and adding a test suite can be done with the following strategy:

e Prompt 1: Write the full code prompt using the five S’s for the get_average_returnim-

plementation with a CoT.
e Prompt 2: Add type hints to all variables.
e Prompt 3: Change the docstring to Google Style.

e Prompt 4: Write unit tests. In this step, we will specify the test cases we want to cover,
creating a new context. As a result, we need to provide a complete prompt that follows

the five S’s best practices.

Chapter 9 229

For example, prompt 2, which focuses on the single task of removing comments, is simply as

follows:

Add type hints to all variables.

This will produce an updated implementation without the inline comments, as shown in Figure

9.12.

ChatGPT 40 & Share ‘

Add type hints to all variables.

Sure! Here's the updated version with explicit type hints for all variables inside the functions:

python @ Copy v Edit

import numpy as np
from typing import Dict

def get_gross_returns(net_returns: Dict[str, float]l) -> np.ndarray:

Convert net returns (e.g., 0.05 for 5%) to gross returns (e.g., 1.05)

gross_returns: np.ndarray = np.array([1 + r for r in net_returns.values()])
return gross_returns

def get_geometric_mean(gross_returns: np.ndarray) -> float:

Compute the geometric mean of an array of gross returns.
N2
product: float = np.prod(gross_returns)

Figure 9.12: Added type hints to variables

Theinitial implementation has been updated to include type hints for variables across the different
functions. For instance, in the first function, get_gross_returns, the gross_returns variableis

now correctly annotated with the np.ndarray type and returned in the following line.

In prompt 3, the focus shifts to improving the docstring. We continue with a single-task prompt:

include Google Style docstring.

230 Advanced Prompt Engineering for Coding-Related Tasks

This prompt is expected to yield a better implementation, as demonstrated in Figure 9.13.

ChatGPT 40 & Share 0

include Google Style docstring.

Sure! Here's the version with full Google Style docstrings and all variable type hints:

python & Copy » Edit

import numpy as np
from typing import Dict

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

"""Converts net returns to gross returns.

Args:
net_returns (Dict[str, float]): A dictionary of net returns,

where the key is typically a time period and the value is the net return

Returns:
np.ndarray: An array of gross returns (e.g., 1.05 for a 5% net return).

o 2

gross_returns: np.ndarray = np.array([1 + r for r in net_returns.values()])

Figure 9.13: Refined docstring

The result confirms that we successfully obtained the desired docstring for the get_gross_return
function in Google Style format. For reference, here are the docstrings generated by ChatGPT for
the get_geometric_mean, get_net_average, and get_average_return functions:
def get_geometric_mean(gross_returns: np.ndarray) -> float:
"""Calculates the geometric mean of gross returns.
Args:

gross_returns (np.ndarray): An array of gross returns.

Returns:
float: The geometric mean of the gross returns.

... omitted for brevity ...

def get_net_average(gross_average: float) -> float: Converts gross
average return to net average return.

Args:

gross_average (float): The geomet mean of gross returns.

Chapter 9 231

Returns:
float: The corresponding net average return.

. omitted for brevity ...

def get_average_return(net_returns: Dict[str, float]) -> float:

Calculates the geometric mean of net returns from a dictionary of net
returns.

Args:

net_returns (Dict[str, float]): A dictionary of net returns per
period.

Returns:

float: The geometric mean of the net returns.

. omitted for brevity ...

In later chapters of the book, we will explore a more robust approach to generating docstrings,

along with additional chained tasks such as input validation, monitoring, and unit testing.

One limitation of the ChatGPT interface is the lack of control over how prompts are constructed
and sent to the underlying model, especially as the conversation grows longer. In the next section,

we will see how to gain more control over the chat history by using OpenAI APIL.

Selective history with OpenAl API

When working with OpenAI API for chained tasks, we can take a selective approach and explicitly

choose which parts of the conversation history to include in each prompt.
Let us consider the first three prompts from the previous ChatGPT session:

e Prompt 1: Leverage CoT for the get_average_returnimplementation
e Prompt2: Add type hints

e Prompt 3: Refine the docstring

A straightforward way to replicate this workflow with OpenAI API is to continuously append the

chained prompt and the corresponding output to our messages list, as shown here:

messages = [{"role": "system", "content": system_prompt}]

prompt_1 = get_user_prompt(get_average_return)

232 Advanced Prompt Engineering for Coding-Related Tasks

prompt_2 = "Add type hints to all variables."
prompt_3 = "include Google Style docstring."

for prompt in [prompt_1, prompt_2, prompt_3]:

messages.append({"“role": "user", "content": prompt})

completion: ChatCompletion = client.chat.completions.create(
model="gpt-40-mini",

messages=messages,

output: str = completion.choices[@].message.content

messages.append({"role": "assistant", "content": output})

In this naive setup, each user prompt and corresponding model response is appended to the con-
versation history. By the time we reach prompt_3, we expect the output to closely resemble what
ChatGPT would generate. For reference, here is a sample response from the API that successfully
produced a correct implementation, complete with Google Style docstrings and properly typed

variables:

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

Convert net returns to gross returns.

Args:
net_returns (Dict[str, float]): A dictionary where keys are
identifiers

(such as tickers) and values are net return values (as decimal).

Returns:

np.ndarray: An array of gross returns corresponding to the net
returns.

gross_returns: np.ndarray = np.array([1l + return_value for return_
value in net_returns.values()])

return gross_returns

For reference, the full script can be found in ch9/chaining/naive_chaining_openai.py.

Chapter 9 233

The naive approach works reasonably well when there are fewer than 5 follow-up prompts. How-
ever, as the chain grows, so does the length of the accumulated prompt, leading to increased
token usage. For instance, running the preceding script peaked at 1,253 tokens by prompt_3, as
illustrated in Figure 9.14.

35 output: str = completion.choices[B].message.content output: "Here's the implementation of the functions
messages.append({"role": "assistant", "content": output})

L 2 print(output)

& ® Evaluate

Expression:

[completion.usage.prompt_tokens

Result:
Threads & Ve 10 pesult = {int} 1253

Figure 9.14: prompt_3 with 1,253 tokens

As more prompts are added, the total token count increases, which results in higher usage costs

and the risk of distracting the LLM from the specific task at hand.

A more efficient alternative for longer chains is a selective history strategy, where only the relevant
parts of the interaction are passed along. Instead of including the entire interaction history in
each follow-up request, we can simply pass the code generated in response to the first prompt,

along with a new system prompt tailored to the next transformation task.

To isolate just the code from the assistant’s response, we can use the following utility function:

def get_refactor_user_prompt(assistant_output: str) -> str:
code: str = re.sub(
r"(.*?)" " Tpython(.*?) " (.*)",
r"\2",
assistant_output,
flags=re.DOTALL

).strip()

user_prompt: str = f"""

OLD: {{{{{{ {code} }}}}}}
REFACTORED:

nnn

return user_prompt

234 Advanced Prompt Engineering for Coding-Related Tasks

This extracts the relevant code and formats it into a new user prompt for the next step in the chain.

In contrast to the static system prompt used in the naive approach, we now update the system

prompt with each task:

prompt_1: str = f"{SURROUND} {SINGLE_TASK}"

prompt_2: str = "You are provided with a Python code enclosed in {{{
FUNCTION }}}. Your task is to add type hints to all variables.™
prompt_3: str = "You are provided with a Python code enclosed in {{{

FUNCTION }}}. Your task is to include Google Style docstring."

We can then use a prompts dictionary to associate each prompt with the appropriate input-gen-
eration function, linking prompt_1 to get_user_prompt for the initial implementation, and the

subsequent prompts to get_refactor_user_prompt for the refactoring steps:

prompts: Dict[str, callable] = {
prompt_1: get_user_prompt,
prompt_2: get_refactor_user_prompt,

prompt_3: get_refactor_user_prompt}

This allows us to generate the user prompt dynamically for each task using the correct function:

for prompt, func in prompts.items():
completion: ChatCompletion = client.chat.completions.create(
model="gpt-40-mini",
messages=|[
{"role": "system", "content": prompt},
{"role": "user", "content": func(next_input)},
1B
)

next_input: str = completion.choices[0@].message.content

Notice how each API call now contains only a system prompt and a single user message. This
keeps the interaction focused, passing along only what is necessary rather than the full chain of

previous prompts and outputs.

For reference, here is a sample output from prompt_3 using the selective history strategy:

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

Convert net returns to gross returns.

Chapter 9 235

Gross Return is calculated as:

Gross Return = 1 + Net Return.

Args:

net_returns (Dict[str, float]): A dictionary where keys are

identifiers (e.g., asset names) and values are the corresponding net

returns.

Returns:

np.ndarray: An array of gross returns derived from the provided
net returns.

gross_returns: np.ndarray = np.array([1l + net_return for net_return in

net_returns.values()])

return gross_returns

This output mirrors the quality of the naive approach, including type hints and a Google Style
docstring. The key difference is efficiency: using selective history, we reduced the token count to

just 296, which is less than 25% of the naive approach, as shown in Figure 9.15:

Expression:

completion.usage.prompt_tokens

Result:
o3 result = {int} 296

Figure 9.15: Selective history reduces input tokens by over 75%

As chained tasks become more complex, the selective history strategy helps keep prompts short
and focused. In later chapters, we will explore additional use cases for chaining across various
stages of the Software Development Life Cycle (SDLC).

236 Advanced Prompt Engineering for Coding-Related Tasks

In summary, OpenAl API allows both automated execution of chaining and control over prompt
history. By including only relevant information, we can reduce costs and help the model concen-
trate on the specific task at hand.

In the final subsection of this chapter, we will look at how chaining can be applied with GitHub

Copilot, where we aim for the initial implementations to already follow the desired formatting.

Chaining with Copilot

When working with Copilot for code completion tasks, we can also leverage chaining by breaking
down the task into smaller steps. For tasks that go beyond the barebones implementation, such
as adding docstrings, input validations, logs, and tests, itis best to align with a chained approach.
For the chained tasks, we can use the chat interaction mode with Copilot. In later chapters of the

book, we will see how to leverage code completion for chained tasks as well.

For example, a chaining flow to extend get_average_return with a docstring and input valida-

tion might look as follows:
1. Initial task: Implement get_average_return with CoT.
2. Chained task 2: Add docstrings to all functions.
3. Chained task 3: Add input validation.
After generating the initial implementation of get_average_return, as shown earlier in the

chapter, we can proceed to the second chained task, which focuses on adding docstrings to all

functions in the file.

In VS Code, we can use Copilot Edits for this task by opening the chat window and selecting Edit.
We will ensure that the working setincludes the current file, ch9/chaining/get_average_return.

py, and enter the following prompt:

Add Google Style docstring to all functions.

This prompt will result in suggestions for adding type hints to the variables, as shown in Figure 9.16.

Chapter 9

237

6

13
14
15
16
17

18
19
20
21
22
23
24

26

27
28
29

30
31
32
33
34

def get_average_return(
returns.

Returns:

float: The computed net average return.
gross_returns: np.ndarray = get_gross_returns
(net_returns)
gross_average: float = get_geometric_mean(gross_returns)
net_average: float = get_net_average(gross_average)
return net_average

def get_gross_returns(
net_returns: Dict[str, float],
) -> np.ndarray:
"""Convert net returns to gross returns by adding 1 to
each element.

Args:
net_returns (Dict[str, float]): Dictionary of net
returns.

Returns:
np.ndarray: Array of gross returns.
gross_returns:

values())) + 1 Keep Chat Edits in this File

Keep Undo | 10f4 N U
np.ndarrav = np.a

Add Google Style docstring to all functions.

@ get_average_return.py:1-33 @ get_geometric_mean.py

& GitHub Copilot

get_average_return.py
Add Google Style docstrings to all functions.

@ get_average_return.py +32 -0

O G &

keep | uno JE

@ get_average_return.py ch9/chaining

1 file changed

@ Add Files

Edit files in your workspace

5[]{ 03-mini (Preview) v

Figure 9.16: Suggested edits to add a docstring

Here, we can see that Copilot correctly added a docstring to all functions with our preferred Google

Style; for example, in line 26, a correct description of get_gross_return was added to the function.

In PyCharm, open GitHub Copilot Chat by clicking the Copilot icon in the bottom menu and

selecting Open GitHub Copilot Chat or using the Ctrl + Shift + C keyboard shortcut. Enter the

following prompt:

Add Google Style docstring to all functions.

Copilot will suggest the necessary edits, adding a docstring to all functions, as seen in Figure 9.17:

R
7

def get_return_mean(2 usages < E

Hila Paz Herszfang *
net_returns: Dict[str, float],
) -> float:
gross_returns: np.ndarray = get_gross_returns(net_returns)
gross_average: float = get_geometric_mean(gross_returns) 1
net_average: float = get_net_average(gross_average)
return net_average

def get_gross_returns(1 usage new *
net_returns: Dict[str, float],
) -> np.ndarray:
gross_returns: np.ndarray = np.array(
list(net_returns.values())
)+ 1
return gross_returns

def get_geometric_mean(new *
gross_returns: np.ndarray,

Adding Google Style Docstrings to Functions

o+ -

net_average: float = get_net_average(gross_average)
return net_average

def get_gross_returns(
net_returns: Dict[str, float],
) -> np.ndarray:
“""Converts net returns to gross returns.

Args:
net_returns (Dict[str, float]): A dictionary of net returns.
Returns:

np.ndarray: An array of gross returns.

gross_returns: np.ndarray = np.array(
list(net_returns.values())
)+ 1

Figure 9.17: Suggested edits to add a docstring using PyCharm

238 Advanced Prompt Engineering for Coding-Related Tasks

Inboth VS Code and PyCharm, Copilot suggests the appropriate docstring for each function. Later
in this book, we will apply chaining along with other prompt engineering techniques to address
SDLC tasks. For example, in Chapter 14, we will explore how to combine CoT and chaining to

profile the runtime and space complexity of our code.

Summary

In this chapter, we explored how to achieve desirable outcomes from LLMs by effectively applying

CoT and chaining for coding tasks with an extended scope.

With CoT prompting, we saw how introducing reasoning steps into our prompts enables the
model to handle more nuanced challenges, such asimplementing a geometric mean function that
supports negative net returns. We used function names as intermediate reasoning steps, while

relying on Copilot, ChatGPT, and OpenAl API to fill in the implementation details.

Through chaining, we began with an initial implementation that is functionally correct and
iteratively improved by adding type hints and refining docstrings. When using OpenAI API, we
introduced a selective history approach to make chaining more efficient, which still holds as the

chain of tasks gets longer.

In the next chapter, we will delve deeper into refactoring code with GenAl applications. Later in the

book, we will introduce advanced prompt engineering techniques at various stages of the SDLC.

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: Is prompt engineering always necessary when working with GenAI?

Answer: Not always. For tasks with a smaller scope, such as implementing a short function, the
five §’s framework is often enough to guide the model toward a good result. Prompt engineering
becomes more important when the task grows in complexity, requiring us to either break it into

smaller parts or guide the model with reasoning steps to help it succeed.
Question 2: How is CoT applied with GitHub Copilot?

Answer: To apply CoT with Copilot, we specify our reasoning steps in abstracted functions. This
approach helps Copilot understand the reasoning behind the desired implementation, allowing

it to generate the next lines of code with minimal input, often just by hitting Enter.

Chapter 9 239

Question 3: Is chat history irrelevant when using prompt chaining?

Answer: No. In chaining, we make use of the previously provided context and supporting data,
such as code specifications and reasoning steps, and refer to them again, just as we would ref-
erence variables in our code. When additional context is needed, such as test cases to include in

our test suite, we rebuild the full prompt.

Further reading

To learn more about the topics that were covered in this chapter, refer to the following resources:

e Geometric mean in financial applications, Wikipedia: https://en.wikipedia.org/wiki/

Geometric_mean#Financial

e OpenAl learning to reason (CoT): https://openai.com/index/learning-to-reason-
with-11lms/

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before

Yyou start.

https://en.wikipedia.org/wiki/Geometric_mean#Financial
https://en.wikipedia.org/wiki/Geometric_mean#Financial
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
http://packtpub.com/unlock
http://packtpub.com/unlock

10

Refactoring Code with GenAl

Software developers write in programming languages to instruct a computer to perform specific
tasks. The source code in the programming language is translated by a compiler or interpreter
into executable computer instructions. One might conclude that programming is only artificial

communication with a computer, but it is much more than that.

The true, implicit goal of a computer program is to communicate with other developers. Once
code is written, it is frequently read many times, hours, weeks, or even years later, by the same
or other developers. The developers will read the code to understand it, debug it, and integrate
it with other systems. The goal must be to communicate with the precision required by software,

while maintaining clarity for future developers.

Thus, code is written once but read many times. Before GenAl code generation became common,
Python practitioners invested significant effort into code quality and style. Today, we can use

prompting techniques with GenAlI to enhance code quality and style more efficiently.

In Chapter 7, we introduced techniques for quickly reading and debugging GenAl-generated code.
In this chapter, we will focus on using GenAl for refactoring, which means rewriting existing

code to improve readability, structure, or performance while preserving its original functionality.

We will examine a poorly implemented function that computes the distance between two matri-
ces. By applying the five S’s framework for prompt precision as introduced in Chapter 4, we will
convert a nested loop into a vectorized operation. With chain-of-thought (CoT) prompting, we
will restructure the function and delegate implementation details to GitHub Copilot, ChatGPT,
and OpenAI APL

242 Refactoring Code with GenAl

Topics covered in this chapter include the following:

e Introducing code refactoring
e Refactoring for better structure with GenAl

e Refactoring for performance with GenAl

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub Copilot account

e IDE —either VS Code or PyCharm

e OpenAl account with access to OpenAl API

e Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

e Virtual environment set up in VS Code or PyCharm

e OpenAl API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting
up OpenAl API access and token generation, see Chapter 2. If you need help creating an OpenAl

account or setting up a virtual environment in your IDE, refer to Appendix for detailed guidance.

Introducing code refactoring

Code is intended as communication to future software developers. Code that effectively and

clearly communicates the purpose and mechanisms is described as clean code.

As described by Robert C. Martin (better known as Uncle Bob), clean code can be achieved through
refactoring. Code refactoring is not merely modifying code, but a disciplined approach to contin-
uously improving code. One aspect is removing the indiscriminate code smell that qualitatively
characterizes poorly written code (see Further reading). A second aspect is improving the code’s
actual design, which should improve its readability and maintainability. This is critical since firms
spend an estimated 75% of their software development costs on the evolution and maintenance

of software (Sommerville).

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 10 243

Software developers frequently dedicate time to refactoring, which involves rewriting sections of
existing code while keeping the original functionality and purpose intact. The goal is to improve
readability, structure, or performance. Thisis particularly evident in Agile software development,
where continuous refactoring is linked to the sustainable evolution of code. The Extreme Pro-
gramming (XP) agile methodology explicitly embraces refactoring along with ideals of collective

ownership and the use of Test-Driven Development (TDD), as will be discussed in Chapter 13.

IDEs such as PyCharm and VS Code offer built-in tools for tasks such as extracting variables, func-
tions, and methods, renaming code elements, and formatting code. Still, they fall short when it

comes to more complex scenarios such as extracting a function from non-consecutive lines of code.

Next, we will use an example of a function that computes two types of distances and identify
hidden issues caused by poor implementation. Later in the chapter, we will refactor it using

GenAl tools.

Manhattan and Euclidean distance

In Chapter 7, we introduced the Manhattan distance between two matrices, also known as the
L1norm, defined as the sum of absolute differences between corresponding elements. The code
example provided used a Flask application that receives matrix data through HTTP requests. If

you need a refresher on this topic, refer to Chapter 7.

Another way to measure the distance between matrices is the Euclidean distance, which is simply
the straight-line distance. In two dimensions, the distance between points (x1, y1) and (x2,)2) is

calculated as follows:

Distance = /(x; — x,)2 + (y; — ¥,)?

When applied to a pair of two-dimensional matrices X and Y of the same shape (with the same

number of rows and columns), the distance is calculated as follows:

n m
Distance = ZZ(XU - YU)Z

i=1 j=1

This measure is also referred to as the L2 norm or Frobenius norm. Itis widely used in tasks such

asimage similarity and machine learning, where it often represents the squared error of a prediction.

244 Refactoring Code with GenAl

Implementing the distance function

If we want to implement a function that computes both L1 and L2 norms based on a request, one
way to approach this is to build upon our Chapter 7 implementation of the Manhattan distance
(L1) and extend it to include the Euclidean distance (L2) as well. A sample implementation, al-

though poorly written, is as follows:

@app.route("/distances"”, methods=["POST"])
def calculate_distance():

data = request.get_json()

dist_type = data.get("distance")

if dist_type == "L1":
print("Info: computing L1 distance...")
a = data.get("df1")
b = data.get("df2")
dist = np.sum(np.abs(a - b))
return jsonify({"distance": dist})

elif dist_type == "L2":
print("Info: computing L2 distance...")
a = data.get("df1")
b = data.get("df2")
dist_ 2 =0
for i in range(len(a)):

for j in range(len(a[i])):
dist_2 += (a[i][]] - b[i][j]) ** 2

dist = np.sqrt(dist_2)
return jsonify({"distance": dist})

Chapter 10

245

Q Quick tip: Enhance your coding experience with the Al Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

Copy Explain

function calculate(a, b) { o ®
return {sum: a + b};

b

& The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

Maintaining this code may be challenging. For example, reading the parameters a and b is dupli-

cated, so if we want to add validations such as checking that both matrices have the same shape,

we need to do it twice. Such duplication of code is considered poor programming practice. If we

plan to add unit tests, every test needs to mock the request. Adding another distance function

would make the function even longer and harder to read.

Next, we will categorize the several types of refactoring and see how they apply to this example.

Types of refactoring

When we refactor code, our goal is to maintain its functionality while improving its quality. There

is always a risk that the modifications will break the code or inadvertently change the functionality.

To avoid this, unit tests should be in place before making any significant changes to ensure that

the code still runs correctly. In addition, refactoring should be performed as a set of incremental

changes that do not alter the behavior of the code.

packtpub.com/unlock

246 Refactoring Code with GenAl

The term refactoring alone is not specific enough to define a single task, according to the five S’s
framework introduced in Chapter 4. The changes we aim to make can vary from simple tasks such

as renaming a variable to more extensive efforts such as redesigning an entire module.

To achieve clean code, there are several common refactoring approaches. First, larger and more
complex functions should be divided into several that perform a single task. Second, duplicate
code should be removed or abstracted by the Do not Repeat Yourself (DRY) principle. Variables
and functions should be named for clarity. This principle also applies to arbitrary numeric con-
stants and strings, so there should not be hardcoded values (also referred to as magic numbers),

but instead have these values assigned to a meaningful constant name.
We typically divide refactoring tasks into three categories:

e Readability: This includes tasks such as renaming objects, removing redundant imports
or excessive comments, introducing constants instead of hardcoded numbers, or adding
type hints. For example, within the implementation of calculate_distance, we might
change the name of the variable a to df1 to indicate that it represents a matrix in the
request. We might also want to add type hints to the request parameters.

e Structure change: This involves organizing code in a better way, such as extracting
long code blocks into functions or classes. For example, within the implementation of
calculate_distance, we mightreplace print statements with logger calls, improving
how our code handles output. We might also extract the L1 and L2 calculations into
separate functions.

e Performance: This means adjusting the implementation to better handle space or runtime
constraints. For example, within the implementation of calculate_distance,instead of
using a nested for loop to calculate L2, we might apply vectorization using the NumPy

library to improve efficiency.

There are already good capabilities for refactoring code, particularly for readability, using the

built-in tools of our IDEs, as we will see next.

Chapter 10 247

Improving readability before GenAl

Modern IDEs such as VS Code and PyCharm offer built-in refactoring tools that help improve code

readability. For example, in PyCharm, we can right-click a parameter we would like to rename

and select Refactor | Rename to update the variable and all its references within the relevant

scope (in this case, the calculate_distance function). This option is illustrated in Figure 10.1.
® @Papp.route(rule: "/distances", methods=["POST"]) new =

def calculate_distance():

data = renuest.aet dson()

dist_ O Show Context Actions a
if di
q [Z) Paste 3V
13 E Copy / Paste Special >
b Column Selection Mode {368
d - .
i Find Usages \F7
elif Go To >
P Folding >
a
b Refactor > Rename.. TFé
d Generate... %N Change Signature... ®F6
f [> Run 'app (1)' ~4R Introduce Variable... aev
{r Debug 'app (1)' ~§D Introduce Constant... %C
d More Run/Debug > Introduce Field... 36F
1 Introduce Parameter... 6P
Open In >
Local Histary s Extract Method... seM
Git > Extract Superclass...

[> if __name
Figure 10.1: PyCharm built-in refactoring tools for refactoring/renaming

This figure also highlights other refactoring options such as changing a callable signature, ex-
tracting constants or methods, and more. The authors frequently use these features when refining

existing code.

248 Refactoring Code with GenAl

Similarly, VS Code allows us to right-click the parameter we want to change and select Rename
Symbol to update the variable and all its references within the relevant scope, as shown in Figure
10.2.

7 g @app. route("/distances", methods=["POST"])

8 def calculate_distance():

9 data = request.get_json()
10 diSt— Go to Definition E")
11 if di Go to Declaration
12 p Go to Type Definition distance...")
13 # Go to Implementations
14 b Go to References

Peek >
15 d b))
16 r Find All References " diSt})
. Find All Implementations
L7 elif Show Call Hierarchy . "
18 p Show Type Hierarchy distance...")
19 a
20 b Copilot >
21 d Rename Symbol
22 £ Change All Occurrences
Format Document]

?3 Format Document With... :_L])):

Figure 10.2: VS Code Rename Symbol

The Rename Symbol option appears fourth from the bottom in the figure and performs a similar

renaming operation as in PyCharm.

Next, we will explore the limitations of these built-in tools. Later in the chapter, we will use GenAl

to address those challenges.

Limitations of code refactoring with IDE tools

PyCharm and VS Code offer powerful refactoring features, but these are still limited.

For example, we may want to extract argument parsing logic for a, b, and dist_type into a sep-

arate function, such as the following:

def parse_request_parameters(r: request) -> Tuple[np.ndarray, np.ndarray,
str]:
a = np.array(r["df1"])
b
dist_type = r["distance"]

np.array(r["df2"])

return a, b, dist_type

Chapter 10 249

This kind of structural refactoring helps reduce code duplication. However, current IDE tools are
unable to extract these three parameters into a single function because they are not written in

consecutive lines in the original implementation, as shown in Figure 10.3.

= /distances

@ @app.route(rule: "/distances", methods=["P0OST"]) new =
def calculate_dic+annaf-
data = req @ Cannot perform the Extract Method refactoring using the selected elements
e S bl — =
13 if dist_type F: "Lt

print("Info: computing L1 distance...")
a = data.get("df1")

b = data.get("df2")

dist = np.sum(np.abs(a - b))

return jsonify({"distance": dist})

Figure 10.3: Limitation of extracting a code block to a function

Q Quick tip: Need to see a high-resolution version of this image? Open this book
in the next-gen Packt Reader or view it in the PDF/ePub copy.

& The next-gen Packt Reader is included for free with the purchase of this book. Scan
the QR code OR go to packtpub.com/unlock, then use the search bar to find this

¢ book by name. Double-check the edition shown to make sure you get the right one.

In this figure, we cannot extract dist_type, a, and b into a separate function since the lines are
not written in a continuous block. As functions become more complex, this approach might no

longer be practical.

Next, we will examine how to handle structural refactoring challenges that are beyond the ca-

pabilities of IDE tools alone.

packtpub.com/unlock

250 Refactoring Code with GenAl

Refactoring with chain-of-thought

In Chapter 9, we introduced chain-of-thought (CoT) as a key prompt engineering technique for
working with GenAl to generate code. This method involves writing a high-level function as the

prompt, while leaving the implementation details for the GenAl application to complete.

When refactoring code, we want to include the old implementation as an additional context for
the model. This can help it better understand the intended functionality. For instance, in the case
of the calculate_distance function, the previous implementation can clarify which parameters

need to be extracted from the JSON request: a, b, and dist_type.

Refactoring for a better structure

When reviewing the implementation of the calculate_distance function, we can break it down

into three main steps:

1. Extracting the request parameters
2. Deciding whether to compute L1 (Manhattan) or L2 (Euclidean) distance

3. Calculating the distance

A CoT prompt that reflects these steps could look like this:

@app.route("/distances"”, methods=["POST"])
def calculate_distance():

a, b, dist_type = parse_request_parameters(request)

dist_func = {"L1": get_manhattan_dist, "L2": get_euclidean_dist}.
get(dist_type)

dist = dist_func(a, b)

return jsonify({"distance": dist})

In this high-level implementation, we can observe the three main steps:
1. Call a function called parse_request_parameters that should return the values for a, b,
and dist_type.
2. Mapdist_function based on the value of dist_type from the request.

3. Compute the distance using a and b.

Chapter 10 251

Note that we have considerable flexibility in how we map dist_type to a function. This could
involve more than an inline dictionary, such as using a function or an external dictionary. A less
Pythonic but also acceptable approach would be to use a switch-case structure or an if-else
block.

With this function in place, we can now explore how to implement a complete prompt for GitHub
Copilot, ChatGPT, and OpenAI API.

CofT for refactoring with GitHub Copilot

When using GitHub Copilot, the best practice is to start our prompt with the same function signa-
ture as the function we want to refactor. This tells Copilot that we are planning to re-implement
the function. Note that Copilot may already suggest an implementation based on the signature
alone. However, such an implementation is only as good as asking ChatGPT to refactor a function,
since the promptis not specific enough. For reference, one early completion that Copilot produced

from the signature alone is shown in Figure 10.4.

@app.route("/distances", methods=["P0OST"])
def calculate_distance():

Fata = request.get_json()

dist_type = data.get("distance")

if dist_type = "L1":
print("Info: computing L1 distance...")
a = np.array(data.get("df1"))
b = np.array(data.get("df2"))
dist = np.sum(np.abs(a - b))
return jsonify({"distance": dist})

elif dist_type == "L2":
print(“"Info: computing L2 distance...")
a np.array(data.get("df1"))
b = np.array(data.get("df2"))
dist 2 =0
for 1 in range(len(a)):

for j in range(len(a[i])):
dist_2 += (a[1i][j] — b[1][]]) *x 2

dist = np.sqrt(dist_2)
return jsonify({"distance": dist})

w oo
AR RN

@app.route("/distances", methods=["P0OST"])
def calculate_distance():

[
ARRRRRMAR RIS,

Figure 10.4: Copilot produced a weak refactoring suggestion

252 Refactoring Code with GenAl

In this example, the refactoring involved converting the a and b parameters to NumPy arrays.
While this vectorization can be beneficial in some cases, it may be unnecessary in others. To
guide Copilot toward a more suitable output, we use the CoT approach by providing the full CoT
high-level implementation as shown earlier in the chapter. Like in Chapter 9, Copilot is expected
to generate the implementations of the missing functions called by the high-level implementation,

as illustrated in Figure 10.5.

7 @app.route("/distances", methods=["POST"])

8 def calculate_distance():

9 a, b, dist_type = parse_request_parameters(request)

10 dist_func = {"L1": get_manhattan dist, "L2": get_euclidean dist}.get
(dist_type)

11 dist = dist_func(a, b)

12 return jsonify({"distance": dist})

13

14

15 def parse_request_parameters(request):

Figure 10.5: CoT approach triggers an implementation of missing functions

In this case, Copilot correctly proposed starting with the parse_request_parameters function.
Once accepted, it suggested a correct implementation for parsing a, b, and dist_function, as

shown in Figure 10.6.

7 @app.route("/distances", methods=["POST"])

8 def calculate_distance():

9 a, b, dist_type = parse_request_parameters{request)

i adsk iune =a0s gebnpnhEEEsnoginh M e mug e dis ke
(dist_type)

11 dist = dist_func(a, b)

12 return jsonify({"distance": dist})

13

14

15 def parse_request_parameters(request):]

data = request.get_json{()

a = np.array(data.get("df1"))

b = np.array(data.get("df2"))
dist_type = data.get("distance")
return a, b, dist_type

[y
o
ERCCEN

Figure 10.6: Copilot implementation for parse_request_parameters

Chapter 10 253

Here, Copilot effectively used the context from the previous version of the function. It suggested
reading the value of a from the df1 key in the request JSON, b from df2, and dist_type from

distance. This highlights how providing relevant context can lead to desirable results.

For reference, here are the three implementations Copilot generated:

def parse_request_parameters(request):
data = request.get_json()
a = np.array(data.get("df1"))
b = np.array(data.get("df2"))
dist_type = data.get("distance")
return a, b, dist_type

get_manhattan_dist(a, b):
print("Info: computing L1 distance...")

return np.sum(np.abs(a - b))

get_euclidean_dist(a, b):
print("Info: computing L2 distance...")
dist 2 = o

for i in range(len(a)):

for j in range(len(a[i])):
dist_2 += (a[il[]] - b[i][j]) ** 2
return np.sqrt(dist_2)

These functions mirror the original logic from calculate_distance while offering improved
abstraction and avoiding code duplication. In a later section of the chapter, we will explore how

to refactor for performance, including replacing nested loops with vectorized operations.

Next, we will explore how to apply the CoT approach for refactoring with ChatGPT and OpenAl

APIL. This requires a bit more effort to set up effectively.

254 Refactoring Code with GenAl

Leveraging CoT for refactoring with ChatGPT and OpenAl
API

Just like GitHub Copilot, we can also make use of ChatGPT and OpenAI API to refactor our code
to have a better structure. To achieve this, we need to provide these tools with both the original

implementation for context and the new structure we want to complete.

A structural refactoring prompt for ChatGPT can follow this general template:

CONTEXT: You are provided with

1. Python function enclosed with {{{ fUNCTION }}} with calls to missing
implementations.

2. 0l1d implementation enclosed with {{{ OLD }}} for reference.

TASK: implement the missing functions.

FUNCTION: {{{ ... omitted for brevity ... }}}
OLD: {{{ ... omitted for brevity ...}}}
CODE:

Note thatin contrast to CoT for new code, refactoring prompts requires giving ChatGPT both the
new structure of the function and the reference implementation enclosed in {{{ OLD }}}. This
format is like how we prompt Copilot and produces desirable results that preserve functionality,
even when using more cost-effective models such as GPT-4o. Figure 10.7 shows the output we

received from GPT-4o for this prompt.

Chapter 10 255

ChatGPT 40 ~ &share i fh

return jsonify({"distance": dist})

m

CODE:

Here is the full implementation with the missing helper functions
parse_request_parameters , get_manhattan_dist, and get_euclidean_dist filled in

based on the OLD logic:

python & Copy ¥ Edit

from flask import Flask, request, jsonify
import numpy as np

app = Flask(__name__)

def parse_request_parameters(req):
data = req.get_json()
dist_type = data.get("distance",

Figure 10.7: ChatGPT suggested refactoring

Here is the implementation for the missing functions proposed by ChatGPT:

def parse_request_parameters(req):
data = req.get_json()
dist_type = data.get("distance")
a = np.array(data.get("df1"))
b = np.array(data.get("df2"))
return a, b, dist_type

get_manhattan_dist(a, b):
print("Info: computing L1 distance...")

return float(np.sum(np.abs(a - b)))

get_euclidean_dist(a, b):

print("Info: computing L2 distance...")
return float(np.sgrt(np.sum((a - b) ** 2)))

256 Refactoring Code with GenAl

This output resembles the structure Copilot suggested, focusing on extracting the distance calcu-
lations into smaller functions and removing redundancy. One notable difference is that ChatGPT
was more consistent and used NumPy vectorization for both distance functions, and not just the

Manhattan distance method.

OpenAl API prompt

When we refactor code for improved structure, GitHub Copilot and ChatGPT often prove to be
more suitable than OpenAl API. This is because using the API typically requires more manual
effort to craft the prompt programmatically. OpenAI API becomes more practical only when we
need to scale changes across multiple similar functions, and we find that refactoring the structure

with CoT might not be one of these cases.

In summary, GenAl supports the restructuring of existing code by combining prior implemen-
tations with new instructions. We recommend trying this technique with code you encounter in

your day-to-day work or even in third-party libraries.

Next, we will briefly introduce refactoring for performance using GenAl, a topic we will cover

more extensively in Chapter 14.

Performance refactoring with GenAl

Performance refactoring refers to changes made to the code that preserve its functionality while
improving runtime or memory efficiency. One common approach is to use vectorized compu-
tations. These can reduce the runtime by benefiting from cache, lower overhead, and parallel

computation.

For instance, in the GitHub Copilotimplementation of calculate_distance example, this would
mean replacing a nested for loop with a vectorized computation of the Euclidean distance. We
will explore further runtime and space complexity in Chapter 14, including when and why to
scale system capacity and the trade-offs involved. Until then, let us demonstrate how a simple

optimization through vectorization might be applied.

Performance refactoring with GitHub Copilot

As with the CoT approach, we will leverage the context of existing code along with our desired
structure. This time, we will specify the library we would like to implement a code block instead

of the original implementation.

Chapter 10 257

For example, consider the function Copilot extracted for us to compute the Euclidean distance:
def get_euclidean_dist(a, b):

print("Info: computing L2 distance...")

dist 2 = ©

for i in range(len(a)):

for j in range(len(a[i])):
dist_2 += (a[i][]] - b[i][j]) ** 2
return np.sqrt(dist_2)

This function computes the squared distance dist_2 and then returns its square root.

To vectorize the squared distance computation, we can use NumPy, a widely used Python library
that supports optimized operations on arrays and matrices. In our prompt, our goal is to preserve
the original logic:

1. Compute the squared distance

2. Compute the distance
To guide Copilot toward the desired refactoring, we can add a cue using a NumPy function call.

The first prompt would be placed near the squared distance step:

Dist_2 = np.

This is shown in Figure 10.8:

def get_euclidean_dist(a, b): 1usage new*
= print("Info: computing L2 distance...")
30 dist_2 = np.sum((a - b) ** 2)_

dist_2 = 0
for 1 in range(len(a)):
for j in range(len(al[il])):
dist_2 += (alil[j] - b[i]1[3]) #* 2
return np.sart(dist_2)

Figure 10.8: Prompt with an np. library call as a cue

Then, for the square root step, we would add another cue:

dist = np.

258 Refactoring Code with GenAl

This is sufficient context for Copilot to complete the correct implementation using NumPy, as
shown in Figure 10.9:
def get_euclidean_dist(a, b): 1usage new*
print("Info: computing L2 distance...")

9 gist 2 = np.sum((a - b) #** 2)
31 dist = np.Jsgrt(dist_2)_

dist_2 = @
for 1 in range(len(a)):
for j in range(len(a[i])):
dist_2 += (a[il[j] - b[i][3j]) »=* 2
return np.sqrt(dist_2)

Figure 10.9: Copilot recognized the correct function from the cue

These inline completions can be highly effective. However, before applying performance opti-
mizations, it is important to determine whether scaling or optimizing code is necessary. We will

explore these considerations further in Chapter 14.

Next, we will look at how to achieve the same outcome using ChatGPT and OpenAl.

Performance refactoring with ChatGPT and OpenAl

When using ChatGPT and OpenAl API for performance refactoring tasks such as vectorizing
computations, common transformations such as adopting the NumPy package can be achieved
by following the five S’s best practices, as introduced in Chapter 4. Like in Chapter 7, where we
include the full file content in the prompt along with the specific line we want to explain, here, we

also provide the complete function implementation together with the files that need refactoring.

Here is a sample prompt template that can be used in ChatGPT:

CONTEXT: You are provided with:

1. A Python function implementation enclosed with {{{ FUNCTION }}}

2. Lines to be refactored enclosed with {{{ OLD }}}

3. A library to be used in the new code enclosed with {{{ LIBRARY }}}
TASK: Return a new implementation for the old lines using the specified
library.

FUNCTION: {{{ ... }}}

oLD: {{{ cee 1}

Chapter 10 259

LIBRARY: {{{ ... }}}

REFACTORED CODE:

Note thatin this template, we are not requiring the model to follow the same sequence of steps as
in Copilot, such as first computing dist_2 and then applying the square root. This allows ChatGPT
to suggest more common implementations that may take a different route. By specifying LIBRARY,

we are explicitly guiding the GenAl tools toward an expected solution.

Important note

In Chapter 14, we will learn how to replace the library constraint with constraints on
\/V runtime and space capacity. If we do not specify either constraints or a library, the
model will suggest the most popular implementation, which may not align with
our goals. As a result, the response often lacks specific instructions and does not

follow the five S’s framework.

For reference, let us consider a vectorization prompt for the get_euclidean_distance function
thatis available in this book’s repository at ch1@/prompts/performance_refactoring_chatgpt.

txt. The response we got from ChatGPT with the GPT-40 economic model is shown in Figure 10.10.

ChatGPT 40 - ashare ik

return np.sart(dist_2) }}}
Library: {{{ NumPy }}}

REFACTORED CODE:

python ¥ Edit

v
o
]

diff = np.asarray(a) - np.asarray(b)
return np.linalg.norm(diff)

G0 Qdy oy .

Ask anything

+ @B search 4 Deep research @ Create image) o

Figure 10.10: ChatGPT proposed vectorized implementation

260 Refactoring Code with GenAl

The implementation shown in the figure is a common implementation for calculating Euclide-
an distance. It vectorizes the element-wise distance and then uses the linear algebra module in
NumPy to compute the norm. This version is typically easier to read and more flexible than what

Copilot suggested.

Note

V4 This prompt structure can be reused when comparing implementations across mul-
\G/‘ tiple libraries offering similar functionality. For instance, when evaluating alter-
natives between SciPy and NumPy, this format allows us to generate and compare

implementations quickly.

Next, we will look at how to achieve equivalent results using OpenAI API.

Vectorizing with OpenAl API

Creating a prompt for OpenAl API usually takes more effort than using ChatGPT to get comparable
results. This approach is most suitable when we want to produce multiple new implementations

at scale, such as converting many for loops to vectorized NumPy expressions.

To create a system prompt, we can adapt our ChatGPT prompt structure into two components:

SURROUND = """You are provided with:

1. A Python function implementation enclosed with {{{ FUNCTION }}}

2. Lines to be refactored enclosed with {{{ OLD }}}

3. A library to be used in the new code enclosed with {{{ LIBRARY }}}."""

SINGLE_TASK = "Your task is to return a new implementation for the old
lines using the specified library."

LINES = """dist_2 = @
for i in range(len(a)):
for j in range(len(a[i])):
dist_2 += (a[i][j] - b[i][]]) ** 2

nnn

We can define a get_user_prompt function as such:

def get_user_prompt(func: callable, library: str, lines: str) -> str:
return """
FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}

Chapter 10 261

LINES: {{{{{{ {lines} }}}}}}

LIBRARY: {{{{{{ {library} }}}}}}

REFACTORD:

nun

We can then use both prompts when calling the service:

" ",

if __name__ ==
client: OpenAI = OpenAI()

__main__

system_prompt = f"{SURROUND} {SINGLE_TASK}"

user_prompt = get_user_prompt(get_euclidean_distance, "NumPy", LINES)

completion: ChatCompletion = client.chat.completions.create(

model="gpt-40-mini",

messages=|[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},

1,

)

print("Explanation:", completion.choices[@].message.content)

For reference, the full script is available in ch18/prompts/performance_refactoring_openai.

py. The output we obtained was equivalent to the result from ChatGPT.

To conclude, GitHub Copilot is the quickest way to get performance refactoring suggestions.
ChatGPT is more suitable when we want widely adopted implementations or to quickly assess
different libraries’ implementations with a reusable prompt. OpenAl API is helpful in less com-

mon cases when we want to generate bulk transformations across many files or a large code base.

More advanced performance refactoring
In Part 3 of the book, Chapter 14 will address runtime and space complexity optimization. We will
demonstrate how combining code completion tools with prompt engineering techniques such

as chaining can help us find the right balance between space and time complexity.

262 Refactoring Code with GenAl

We will use GitHub Copilot, ChatGPT, and OpenAl to assess the program’s current performance,
estimate its runtime and space complexity in terms of Big-O notation, and introduce optimized
solutions to extend input capacity with minimal trade-off. Stay tuned for a detailed exploration

of these topics.

Summary

In this chapter, we explored how GitHub Copilot, ChatGPT, and OpenAl API can assist in rewriting
code while preserving its original functionality. These tools can enhance readability, improve

structure, and boost performance.

Clean code is a shared goal among software developers, especially as projects grow and become
complex. Most IDEs already offer strong built-in tools for refactoring, which we frequently use.
However, when those tools reach their limits, GenAl can step in. It can support structural refac-
toring by using CoT techniques with the original implementation, or it can optimize performance

through the five S’s framework.

Although refactoring is useful, writing clean and structured code from the startis usually simpler.
In the next chapter, we will introduce fine-tuning with OpenAl API as an alternative to few-
shotlearning. Fine-tuning enables us to adapt a pretrained model to a specific domain, such as
generating clean and well-organized code. Unlike prompt engineering, fine-tuning separates the

specialization process from the prompt itself, which can be beneficial for larger-scale projects.

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: Why do we need GenAl for refactoring tasks if IDEs already provide built-in tools?

Answer: While built-in tools are powerful, they have limitations. For example, they can only ex-
tract code blocks to external functions when the lines are written consecutively in a single block.
GenAI allows us to restructure Python objects more flexibly, using the CoT technique with the

original implementation as a reference.

Question 2: How does the CoT approach differ when refactoring existing code compared to

generating new code?

Chapter 10 263

Answer: When generating new code, we typically describe the high-level function we want GenAl
to complete. For refactoring, we also include the original implementation in the prompt. This
helps GenAl understand the intended functionality, such as parsing specific JSON request keys

or assigning them to specific variable names.

Further reading

To learn more about the topics that were covered in this chapter, look at the following resources:

Clean Code: A Handbook of Agile Software Craftsmanship by Robert C. Martin (aka Uncle Bob):
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882

Code smell: https://en.wikipedia.org/wiki/Code_smell

Refactoring: Improving the Design of Existing Code, Second Edition: https://www.amazon.com/
Refactoring-Improving-Existing-Addison-Wesley-Signature/dp/0134757599

Design Patterns: Elements of Reusable Object-Oriented Software: https://www.amazon.com/Design-
Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

Mariane Anaya. Clean Code in Python: Develop maintainable and efficient code, Second Edition, 2021:
https://www.packtpub.com/en-us/product/clean-code-in-python-9781800560215

Kent Beck and Cynthia Andres, Extreme Programming Explained: Embrace Change,2004: https://
www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/©321278658

Ian Sommerville. Software Engineering, 2015: https: //www.amazon.com/Software-Engineering-
10th-Ian-Sommerville/dp/0133943038

https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://en.wikipedia.org/wiki/Code_smell#cite_note-7
https://www.amazon.com/Refactoring-Improving-Existing-Addison-Wesley-Signature/dp/0134757599
https://www.amazon.com/Refactoring-Improving-Existing-Addison-Wesley-Signature/dp/0134757599
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.packtpub.com/en-us/product/clean-code-in-python-9781800560215
https://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658
https://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038

264 Refactoring Code with GenAl

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled
filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs
and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.1link/TRO5B or scan the QR code below.

O

https://packt.link/TRO5B

11

Fine-Tuning Models
with OpenAl

Concluding Part 2, this chapter explores how to train large language models (LLMs) to specialize
in completing a specific task. This is achieved by fine-tuning the model’s parameters, known as
weights, through the OpenAlI platform. This is quite like the prompt engineering strategy few-
shot learning, sometimes referred to as in-context learning, which we introduced earlier in
the book as a technique for helping the model to specialize in a particular domain. Fine-tuning,
however, is best suited for larger-scale projects where we want to separate the specialization

aspect from the actual prompt.

We will delve into a use case where this specialization of the model is required to produce code
while avoiding comments clutter. We will examine how outputs from the GPT-40 mini model may
be programmatically correct but fail to follow our style guidelines and requirements for concise
explanations and code comments. We will construct a fine-tuning JSONL file with high-quality
examples thatillustrate desired outcomes, initiate a fine-tuning job through the OpenAl website,

and compare the improved results with the output of the base model.
This chapter covers the following topics:

e Fine-tuning LLMs toward a specialization

e Experimenting with the OpenAl Playground
e Crafting aJSONL file for fine-tuning

e Fine-tuning a model with the OpenAl GUI

e Comparing our results

266 Fine-Tuning Models with OpenAl

Technical requirements

To get the most out of this chapter, ensure you have the following:

e An OpenAl account with access to OpenAl API
e Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

For instructions on setting up OpenAl API access, see Chapter 2. If you need help with creating

an OpenAl account, refer to the Appendix for detailed guidance.

Fine-tuning LLMs toward a specialization

When working on complex coding tasks with LLMs, we may need to employ prompt engineering
techniques. In Chapter 8, we saw how including a few examples in the promptimplicitly instructs
the model to follow the expected coding style when writing code. This show, don’t tell approach

effectively guides the model by enriching our existing prompt, as illustrated in Figure 11.1:

Few-shot learning

enhanced

prompt

better

LLM output

Figure 11.1: Few-shot learning prompt enrichment

By using this approach, the model adapts to produce outputs that align with the examples pro-

vided, effectively specializing in the given task.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 11 267

LLMs specialization

A specialization for LLMs focuses on a specific task or a set of closely related tasks. Here are some

examples of specializations you might want your model to develop:

e Generating completion code that follows a specific coding style

e Creating a unit test suite that covers key scenarios such as happy paths, bad inputs, edge

cases, and error handling
e Assessing the quality of a function’s docstring

e Refactoring for loops into comprehensions

We typically identify a specialization as either a single system prompt or a set of closely related
system prompts, each incorporating the surrounding context and a single-task focus. These
tasks are generally non-trivial for an LLM, such as code completion to reverse a string, requiring

additional effort in prompt crafting, such as prompt engineering or fine-tuning.

For certain tasks, few-shot learning can be particularly effective. For example, if refactoring for
loops into comprehensions never involves more than two levels of nesting, providing a few ex-

amples in the prompt may be sufficient to achieve reliable results.

However, for deeper specializations, such as breaking longer functions into helper functions
to improve code quality, we may need to incorporate a larger set of training examples with the
desired output, rather than just a few. We might include examples of naming conventions and
indentation. Some examples may show the extraction of code blocks into helper functions, and
others may show how to eliminate unnecessary explanations that come along with the code.
Including all these examples directly in the prompt increases the prompt’s length and, therefore,

the cost associated with the input token length. It also makes it harder to maintain.

Fine-tuning an LLM

Fine-tuning a modelis a process that aims to achieve better outputs by using a pre-trained model
such as GPT-40 mini and training it toward a specialization using a small set of training exam-
ples that depict the intended output. The fine-tuning process adjusts the model’s parameters
(or weights, as discussed in Chapter 6) to achieve the desired outcomes shown in the provided

examples. This specialization process is shown in Figure 11.2:

268 Fine-Tuning Models with OpenAl

Fine-tuning

training
examples LLM
\
fine-tuned better
LLM output

Figure 11.2: Leveraging fine-tuning for a better output

The specialization process uses the crafted training examples to fine-tune the LLM, resulting

in a new LLM that is ready to be prompted without requiring further examples in the prompts.

Favoring fine-tuning over prompt engineering

Based on studies, and confirmed with our experience, fine-tuning requires more training examples
than few-shotlearning because the examples are retraining the model’s parameters, rather than
simply being part of the prompt. In this chapter, we use 15 examples, which is slightly above the
OpenAI API’s minimum of 10 for initiating a fine-tuning job. For more complex cases, tens or even

hundreds of examples may be necessary, which can be time-consuming to find.

Fortunately, for most of our daily coding tasks, we will find that few-shot learning is sufficient
where only a few examples are needed. However, for larger-scale projects, or when few-shot
learning does not meet our needs, fine-tuning may be a better alternative. Generally, it is good
practice to begin with the few-shot technique and turn to fine-tuning only when the results are

not satisfactory.

Task specializing in cleaner code

In Chapter 7, we noted that LLMs often include explanations and example usage along with the
code. The LLMs also add code comments when function implementations become longer to
compensate for less readable code. When working with higher-quality code, we may prefer the
model to return only the code without extra explanations. Additionally, rather than relying on
comments in lengthy functions, we might want the model to break the logic into smaller, more

manageable functions.

Chapter 11 269

This is a perfect use case for fine-tuning since the effort invested in creating a training file of
examplesisjustified as it can be applied to an entire repository using short prompts alone. Later
in the book, we will explore how fine-tuning supports advanced refactoring initiatives, such as

extracting logging, monitoring, and error-handling responsibilities into separate functions.
tracting logging, toring, and handling responsibilit to separate funct

Next, we will explore how to experiment with the OpenAl API Playground and observe that the
GPT-40 mini model requires improvements in its output implementation. Later in the chapter,

we will address these improvements through the fine-tuning process.

Experimenting with the OpenAl API Playground

In this section, we will use OpenAl’s graphical user interface (GUI) Playground to quickly view
our results for a given preset, which represents a combination of a model and the selected call
parameters. This interface is an excellent tool for rapid experimentation and for comparing models

before implementing them programmatically in our software.

To access the Playground, ensure that your OpenAl account has credits applied to unlock tier 1, as
explained in Chapter 2. Then, go to https://platform.openai.com/playground/chat. You can
also reach it by navigating to the home page, https://platform.openai.com, selecting Play-
ground from the top-right menu, and then choosing the Chat option from the left menu. The

opening screen of the Playground is shown in Figure 11.3:

° Pazpaz the coder © Supercharged Coding with GenAl < Playground Dashboard Docs APl reference @ a
[PLAYGROUND Prompts > Code “< Compare O History [Responses APl C
& Your prompts Save
@ Prompts
a1 Realtime Mode! gpt-4o < Fos
text.format: te
[} stants
o REHEEE tokens: 2048 tc Textformat text &
9 TTS store: true
Temperature 1.00 @
Tools Create...
Max tokens 2048 r conversation will appear here

System message

Top P 1.00

Store logs

¢/» Cookbook

282 Forum ~
0] > Auto-clear

@ Help Add messages to describe task or add context +

Figure 11.3: Opening screen of the Playground interface for OpenAl

https://platform.openai.com/playground/chat
https://platform.openai.com

270 Fine-Tuning Models with OpenAl

On this page, we can craft prompts for OpenAl, as introduced in Chapter 2, and try different pre-
sets. Thisincludes the system and user prompts, along with parameters such as temperature and

maximum tokens. Additional parameters include the following:

e Top Pis an alternative to the temperature, setting a minimal probability threshold that

the model’s output must meet. In some cases, higher values can prevent hallucinations.

e The Store logs checkbox saves the prompt so it can be restored later.

We can also modify the response format and add functions. These topics will be discussed in

detail in later chapters of this book.

Note that the experimentation in the Playground is free for tier 1 or higher accounts, but not all
models are available. For instance, as of April 2025, GPT-o1 and GPT-ol-preview models are not

available in the reasoning models for experimentation. Figure 11.4 shows the available models.

° Pazpaz the coder = Supercharged Coding with GenAl &

[PLAvGROUND Prompts
{2 Prompts & Your prompts Save
a1 Realtime

Model gpt-41 & P
Q Assistants ‘op_p: 1.00

Q 't a model...]
& 118 [
REASONING
Tool
ool od4-mini +

QOwr faster, cost-efficient reasoning model
- +
System mes delivering strong performance on math, +
coding and vision

Describe ol-pro esponse style)
Aversion of o1 that uses maximum compute
for more reliable responses.

ol

01-2024-12-17

Figure 11.4: Available reasoning models in the OpenAl API Playground

Chapter 11 271

For the examples in this chapter, we will use the GPT-40 mini 2024-07-18 model, which is cheaper

to use with the API compared to the GPT-o series models.

Computing quadratic roots with GPT-40 mini

As abenchmark for the model output, we will evaluate how GPT-40 mini handles implementing
functions that extend beyond a few lines of code, such as computing the quadratic roots of the
equation ax? + bx + ¢ = 0. To find the roots of this equation, we compute the two values that

satisfy the quadratic formula:

—b +Vb? — 4ac
le = 5
’ 2a

In our case, we want to return the roots only when they are real, which occurs when the discrim-

inant b? — 4ac is larger than or equal to O.

To obtain a function implementation that returns the real roots only, we define the function
signature:

def get_quadratic_roots_only if real (a:int, b:int, c:int) -> Tuple[float,
float]

We will use this function signature in our prompt to the model. As usual, we will structure our
prompt according to the five S’s framework, as introduced in Chapter 4, where the system prompt
provides the surrounding context and specifies the single task to be completed, and the user

prompt includes supplementary details, such as the function signature and a lead-in cue.

For the system prompt, we will add the following instruction:

You will be provided with a Python function signature enclosed with {{{
FUNCTION }}}. Your task is to implement it.

This instruction provides the model with sufficient context for the code completion task using

a Python function signature.

For the user prompt, we will ask it to implement the get_quadratic_roots_only if_real func-
tion and include the CODE lead-in cue:
FUNCTION: {{{def get quadratic_roots only if real (a:int, b:int, c:int) ->
Tuple[float, float] }}}
CODE:

272 Fine-Tuning Models with OpenAl

The function’s name, get_quadratic_roots_only_if_real, signalsthe model to return the qua-

dratic roots only if they are real.

Implementing the quadratic roots calculator

A typical approach to computing quadratic roots and returning them if they are real involves the

following steps:

1. Compute the discriminant b? — 4ac.
2. Verify that the discriminant is positive so that the roots are real.

3. Return the two roots if real.

Since this function requires more than just a few lines of code, the LLM is likely to introduce

comments within the code and include surrounding explanations with the implementation.

For reference, Figure 11.5 shows the explanation provided by the model before the actual code

implementation.

Chat & Clear <) Code % Compare O History

User
FUNCTION: {{{def get_real_quadratic_roots(a:int, b:int, c:int) -> Tuple[float, float] }}}
CODE:

Assistant

To implement the ‘get_real_quadratic_roots’ function, we can utilize the quadratic formula to find
the roots of the quadratic equation \(ax*2 + bx + ¢ = 0 \). The roots are given by:

\[x = \frac{-b \pm \sqrt{b”2 - 4ac}}{2a}\]

Here's a step-by-step breakdown of how we can implement this:

1. **Calculate the Discriminant™: First, calculate the discriminant using \(\Delta = bA2 - 4ac \). This
value will determine the nature of the roots.

2.**Check if Roots are Real**: + © 13,363m5 SIILE «bSeat (3 Request 10 yiccriminant (\(\Delta \)) is

Figure 11.5: Base model output with supplementary explanations

Chapter 11 273

The following is the code output generated by the model:

" python
import math
from typing import Tuple
def get_quadratic_roots_only if real(a: int, b: int, c: int) ->
Tuple[float, float]:
Calculate the discriminant
discriminant = b * b - 4 * 3 * ¢
If discriminant is negative, there are no real roots

if discriminant < 0:

raise ValueError("The equation does not have real roots.")

Calculate the two solutions using the quadratic formula
sqrt_disc = math.sqgrt(discriminant)

x1 = (-b + sgrt_disc) / (2 * a)

x2 = (-b - sqgrt_disc) / (2 * a)

return (x1, x2)

This implementation covers all three required steps: computing the discriminant, checking for
real roots, and returning the two solutions when appropriate. However, the solution includes
redundant explanations and a function that s cluttered with comments. Later in the chapter, we
will see how fine-tuning can help us achieve improved results by fine-tuning the LLM to return

only code for code completion tasks.

Next, we will see how to prepare the training data to fine-tune the GPT-40 mini model. We will

later compare this model with those of the default GPT-40 mini model.

Crafting a JSONL file for fine-tuning

One of the initial challenges in fine-tuning a model is gathering enough training examples. When
fine-tuning a model through OpenAl, a minimum of 10 training examples is required. However,
for most tasks that are beyond trivial, tens or even hundreds of examples might be necessary,
depending on the task. According to OpenAl’s official documentation, satisfactory results are

typically achieved with 50 training examples.

274 Fine-Tuning Models with OpenAl

In our case, where we want to fine-tune a model to produce outputs consisting solely of code
without comments, 15 examples are sufficient, as we will see later in the chapter. When crafting
our training set, we will utilize two techniques: desirable examples that are like few-shot learning
and contrastive learning. Contrastive learning builds on the idea of in-context learning by first
presenting an incorrect or incomplete output, followed by an additional user-assistant prompt pair

that provides the desired output. For more details, see the Further reading section in this chapter.

Fine-tuning file structure

We will upload aJSONL file as the training data for our fine-tuning process, where each line in the
file is a valid JSON object representing one training example. A minimal prompt should include
a system prompt and a training example with a user prompt and an assistant prompt. Each as-
sistant prompt is attributed with a weight of O for undesirable output and 1 for desirable output.
In the following desirable example, the assistant prompt has a weight of 1, and line breaks have

been added for clarity:

{"messages": [

{"role": "system", "content": "You will be provided with a Python
function signature enclosed with {{{ FUNCTION }}}. Your task is to
implement it."},

{"role": "user", "content": "FUNCTION: {{{def get_euclidean_distance(x1,
yl, x2, y2):}}}\n CODE: "},

{"role": "assistant", "content": "def get euclidean_distance(x1, y1, x2,
y2): \n return ((x1-x2)**2 + (yl-y2)**2)**@.,5", "weight": 1}

1}

This format may look familiar, as it resembles the messages parameter used in OpenAlI API calls.
However, in this case, we assign a weight to the assistant message. The preceding example is a
training instance included in the fine_tuning. jsonl file for this chapter, located at ch11/fine_
tuning.jsonl, demonstrating the expected implementation of the get_euclidean_distance

function.

A minimal training line template should be as follows, containing at least one user prompt and

one assistant prompt. Here, too, line spaces are added for clarity:

{"messages": [
{"role": "user", "content": "Your Content Here"},

{"role": "assistant", "content": "Your desired output here", "weight":

131}

Chapter 11 275

We could also incorporate a system prompt if it helps refine the specialization, as we will explore

later in the chapter.

With contrastive learning examples, we will include additional user prompt and assistant prompt
pairs. The first pair represents an undesirable output and is assigned a weight of 0, as such:
{"messages": [

{"role": "system", "content":

{"role": "user", "content": "FUNCTION: {{{def sum_of_squares(n: int) ->
int:}}}\n CODE: "},

{"role": "assistant", "content": "Sure! here is the code:\n\n " python\

'...omitted for brevity..."},

ndef sum_of_squares(n: int) -> int:\n return sum(i * i for i in range(1, n
+ 1))\n """, "weight": @},

{"role": "user", "content": "Include only code."},

{"role": "assistant", "content": "def sum_of squares(n: int) -> int:\n
return sum(i * i for i in range(1, n + 1))", "weight": 1}]}

In this example, we provide two sets of user and assistant messages. The initial assistant response
is undesirable because it includes explanatory text alongside the code, so it is assigned a weight
of 0. The second user prompt corrects this by explicitly instructing the assistant to provide only

the code, and this response is given a weight of 1.

Strategy

A practical approach to constructing a fine-tuning training file is to start with the simplest cases
of desired outputs and gradually introduce more complex examples to cover the specialization
we want the model to develop. While the few-shot examples we saw in Chapter 8 included one
or two cases, for fine-tuning, we will use 15 examples, allocating 7-8 examples to each of the

following objectives:

e Code-only: Positive and contrastive

e No comments: Positive and contrastive

These examples will be sufficient to generate code without surrounding explanations and with-
out comments within the function. The complete JSONL file is available in this book’s repository
atchll/fine_tuning.jsonl. Next, we will present a single example from each of the preceding

objectives.

276 Fine-Tuning Models with OpenAl

Code-only — five training examples

In these cases, we will include simple implementations of functions spanning 1-2 lines. Each
example consists of a single user and assistant prompt pair, ensuring that the output consists

solely of code. Take the following example:

{"messages": [

{"role": "system", "content": "You will be provided with a Python function
signature enclosed with {{{ FUNCTION }}}. Your task is to implement it."},
{"role": "user", "content": "FUNCTION: {{{def get_arithmetic_mean(a,
b)}}}\n CODE: "},

{"role": "assistant", "content": "def get_arithmetic_mean(a, b): \n return
(a+b)/2", "weight": 1}]}

In this example, we provide a desirable implementation of get_arithmetic_mean without any
surrounding explanations. Note that the actual JSONL line contains no extra line breaks. This is
an example of the training pattern with just a single positive example indicated by the weight 1.
Additionally, we will include three more examples for the get_euclidean_distance, reverse_

string,is_even, and is_odd functions.

Contrastive code-only — three training examples

In addition to providing high-quality examples, we can also include contrastive examples. These
scenarios involve an initial assistant response thatis undesirable, such as including explanations
or comments in the code, followed by a chained request to refine the output into a more desirable
version. The chained user prompt should follow the best practices introduced in Chapter 9, such

as the following:

e Include code only
e Remove code comments

e Extractlower-level details to functions

As introduced in Chapter 9, when crafting chained prompts, we avoid unnecessary phrasing
such as “Your answer is wrong!” since it does not follow the short best practice and adds no value.
Instead, we should determine whether the assistant’s output is significantly incorrect or if only

minor adjustments are needed.

Chapter 11 277

In the first case, if the output is far off, the user prompt should be refined to produce a more desir-
able result, and this example should not be included in our training data. In the second case, if the
model’s output only requires minor refinements, we should focus on providing clear guidance on
the necessary adjustments, such as instructing the model to return only code or extract low-level

details into helper functions. This type of direction is more precise and informative.

For example, the following is a contrastive code-only training example for an implementation
of is_palindrome, where the first assistant promptincludes an explanation along with the code.
This output is marked with a weight of @ to indicate undesirability. It is followed by a chained
user prompt instructing the assistant to return only the code, leading to arefined implementation

with a weight of 1:

{"messages": [

{"role": "system", "content": "...omitted..."},

{"role": "user", "content": "FUNCTION: {{{def is_palindrome(s: str) ->
bool:}}}\nCODE: "},

{"role": "assistant", "content": "A palindrome is a word, phrase, or [...]
otherwise “False .\n\n " "python\ndef is_palindrome(s: str) -> bool:\n s =

s.lower()\n return s == s[::-1]\n """, "weight": @},
{"role": "user", "content": "Include code only."},
{"role": "assistant", "content": "def is_palindrome(s: str) -> bool:\n s =

s.lower()\n return s == s[::-1]", "weight": 1}]}

The final assistant message consists solely of the implementation code and is assigned a weight
of 1 to indicate a desirable output. The fine-tuning file also includes similar contrastive examples

for sum_of squares and flatten_list of_lists.

Code with no comments — five examples

In these examples, we focus on functions that go beyond simple 1-2 line implementations, breaking
down more complex tasks into lower-level abstraction functions. This approach enhances read-
ability in the main function and eliminates the need for inline comments. For instance, consider
the implementation of get_reversed_longer_string, which takes two strings as input and

returns the reverse of the longer string. It can be structured as follows:

def get_reversed_longer_string(sl:str, s2: str) -> str:
longer_s = get_longer_string(sl, s2)
reversed_longer_s = reverse_string(longer_s)

return reversed_longer_s

278 Fine-Tuning Models with OpenAl

def get_longer_string(sl, s2):

return s1 if len(sl) > len(s2) else s2

def reverse_string(s):

return s[::-1]

While more concise implementations exist, they may be less readable. The preceding structure
keeps get_reversed_longer_string clear and shifts the implementation details to dedicated

lower-level functions.

To include this approach in our training examples, we will add the following:

{"messages": [{"role": "system", "content": "...omitted for brevity..."},
{"role": "user", "content": "FUNCTION: {{{def get_reversed_longer_
string(sl, s2):}}}\n CODE: "},

{"role": "assistant", "content": "def get_reversed_longer_string(sil,
s2):\n longer_s = get_longer_string(sl, s2)\n reversed_longer_s = reverse_
string(longer_s)\n return reversed longer s\n\ndef get longer string(si,
s2):\n return s1 if len(sl) > len(s2) else s2\n\ndef reverse_string(s):\n
return s[::-1]", "weight": 1}]}

This aligns with our preferred coding style of extracting lower-level functionality into separate

functions. Similarly, we will include example implementations for the following:

e get _max_multiplication_from_lists
e get_maximal_second_element_squared
e get_sum_of_absolute_differences

e get_highest_even

These five implementations will demonstrate the separation of abstraction levels in functions,

serving as a guideline for the fine-tuning process.

Contrastive no comments — two examples

To complete our dataset, we will include examples of initial implementations with excessive
comments, followed by a refined version where low-level details are extracted into separate
functions. For instance, consider a function that, given a list of lists, computes the average of the

second elements of each sublist:

get_average_of_second_elements(numbers: List[List[int]])

Chapter 11 279

This function involves more complex logic than our previous examples, which may lead to an
implementation with excessive comments. To steer the model toward a solution that separates
levels of abstraction, we first provide an implementation with inline comments, followed by a

chained prompt that refines the output. An initial incorrect assistant response might look like this:

def get_average_of_second_elements(numbers: List[List[int]]) -> float:
if not numbers: # Check if the input Llist 1is empty
return 0O

second_elements = [sublist[1] for sublist in numbers] # Extract second
elements

return sum(second_elements) / len(second_elements) # Compute the
average

While this implementation is correct, the inline comments add unnecessary fluff. When including

this negative example in our dataset, we assign it a weight of 0.

Next, we chain a user prompt requesting a refinement:

Extract low level details to functions

This results in a cleaner implementation:

import statistics

def get_average_of_second_elements(numbers: List[List[int]]) -> float:
second_elements = get_second_elements(numbers)
return statistics.mean(second_elements)

def get_second_elements(numbers: List[List[int]]) -> List[int]:

return [sublist[1] for sublist in numbers]

By abstracting the extraction logic into a separate function, get_average_of_second_elements
remains more readable. The corresponding example looks like this:

{"messages": [{"role": "system", "content":
{"role": "user", "content": "FUNCTION: {{{def get_average_of_second_

elements(numbers: List[List[int]]):}}}\n CODE: "}, {"role": "assistant",
"content": "def get_average_of_second_elements(numbers: List[List[int]])

...omitted for brevity..."},

-> float:\n if not numbers: # Check if the input list is empty\n return
0\n \n second_elements = [sublist[1] for sublist in numbers] # Extract
second elements\n return sum(second_elements) / len(second_elements) #
Compute the average", "weight": 0},

{"role": "user", "content": "Extract low level details to functions"},

{"role": "assistant", "content": "import statistics\n\n\ndef get_average_

280 Fine-Tuning Models with OpenAl

of_second_elements(numbers: List[List[int]]) -> float:\n second_elements
= get_second_elements(numbers)\n return statistics.mean(second_elements)\
n\n\ndef get second_elements(numbers: List[List[int]]) -> List[int]:\n
return [sublist[1] for sublist in numbers]", "weight": 1}]}

Additionally, we will include a similar contrastive example for get_smallest_squared, bringing

our total to 15 training examples.

With the finalized JSONL dataset, we can now proceed with fine-tuning using OpenAI’s GUI.

Fine-tuning a model with the OpenAl GUI

Fine-tuning an LLM with OpenAl can be done either programmatically via an API call or through

OpenAl’s GUL In this chapter, we will focus on using the GUI to initiate fine-tuning jobs.

Costs of fine-tuning a model

Fine-tuning an LLM comes with two types of costs:

e Job cost: As of April 2025, fine-tuning a model costs $3 per 1M tokens. For reference, the
JSONL file provided earlier, which contains approximately 12K tokens (2K tokens in the
file x 6 iterations), would cost around $0.04 to fine-tune. There are no associated storage
costs for the model or training files.

e Application: The pricing of using a fine-tuned model depends on the base model used. For
instance, the cost for GPT-40 mini-based modelsis $0.30 per 1M input tokens and $1.20 per
IM output tokens, and much cheaper than the GPT-40 models, as illustrated in Figure 11.6:

Fine-tuning our models

Customize our models to get even higher performance for your specific use cases.

GPT-40 GPT-40 mini
Fine-tuning price Fine-tuning price
Input: Input:

$3.750 / 1M tokens $0.30 /1M tokens
Cached input: Cached input:
$1.875 /1M tokens $0.15 /1M tokens
Output: Output:

$15.000 /1M tokens $1.20/ 1M tokens
Training: Training:

$25.000 /1M tokens $3.00 /1M tokens

Figure 11.6: Fine-tuning costs for GPT-40 models

Chapter 11 281

As of April 2025, using a fine-tuned GPT-40 mini model costs exactly twice as much as using the
model without fine-tuning. However, while the per-token cost is higher, a fine-tuned model can
be more efficient, as its specialization allows for more concise inputs and outputs, potentially

reducing overall costs.
To check the latest pricing for current and legacy models, visit OpenAI’s pricing page: https://

openai.com/api/pricing/.

With these costs in mind, we can now proceed with initiating the fine-tuning process.

Initiating a fine-tuning job
We can fine-tune a model using our JSONL file directly through OpenAI’s API GUI While fine-tun-
ing can also be done programmatically, we will focus on the GUI method since it is by far the

most common way.

To initiate the job, go to OpenAl’s platform home page at https://platform.openai.com/, click
on Dashboard in the upper-right menu, and then select Fine-tuning from the left-hand menu,

as shown in Figure 11.7:

° Pazpazthe coder ¢ / Supercharged Coding with GenAl & Playground ~ Dashboard ~Docs APl reference (3 O
D oasHeoaRD Fine-tuning
®) ErECH e Al Successful Failed O Learn more
@ Assistants
@ Thread ft:gpt-40-mini-2024-07-18:pazpaz-th 2/23/2025, 12:03 PM MODEL
hreads
code3:B43DvxhK ft:gpt-40-mini-2024-07-18:pazpaz-the-coder:clean-
{5} Batches code3:B43DvxhK
@ Evalustions ft:gpt-40-2024-08-06:pazpaz-the-coder:AsQxSAQL 1/22/2025,10:45 AM
O Status © Succeeded
& Fine-tuning
® JobID ftjob-Xxc30qkNxAjsYfgceVj3tagd
Stora
8 storage ® Training Method Supervised
db Usage 8 Suffix clean-code3
& APlkeys @ Base model gpt-40-mini-2024-07-18
@ Output model ft:gpt-40-mini-2024-07-18:pazpaz-the-cc
@ Createdat Feb 23,2025, 12:03 PM
83 Trained tokens 16,407
< Epochs 9

Figure 11.7: Fine-tuning page in the OpenAl API platform

https://openai.com/api/pricing/
https://openai.com/api/pricing/
https://platform.openai.com/

282 Fine-Tuning Models with OpenAl

To start a new fine-tuning job, click the Create button in the upper-right corner of the screen.
This will open the setup popup, as shown in Figure 11.8:
Create a fine-tuned model

Method

Specify the method to be used for fine-tuning.

<

Supervised

Base Model
gpt-4o0-mini-2024-07-18 <

Training data

Add a jsonl file to use for training. By providing the file, you confirm that
you have the rights to use the data.

Upload new @ Select existing Browse files »

file-Y NXuSpLGGDT5GeC15Lv55G
Validation data
Add a jsonl file to use for validation metrics.

Upload new Select existing @ None

Suffix

Add a custom suffix that will be appended to the output model name.

[c\ean-code| J

Seed

Learn about fine-tuning 7 Cancel

Figure 11.8: Fine-tuning job popup
We used the following settings for fine-tuning:

e Method: Supervised mode. Based on our experience, this is the most effective approach
for coding style specialization.

e Base Model: gpt-40-mini 2024-07-18 (or the latest available mini model). This model
provides sufficient results for our use case and is cost-effective.

e Training data: The JSONL file introduced earlier in the chapter.

e Suffix (optional): This is appended to the model’s name for identification and does not

need to be unique across fine-tuning jobs. We added the clean-code suffix for future

reference.

Chapter 11

283

Now, we can start the fine-tuning job by clicking Create.

With 15 training examples, the process should take about five minutes to complete. Once finished,

a success message will appear, as shown in Figure 11.9:

Fine-tuning

All Successful Failed

ft:gpt-40-mini-2024-07-18; the der:clean-

code:B5Ayo5q1

ft:gpt-40-mini-2024-07-18:pazpaz-the-coder:clean-

code:B4PRRWKG

ft:gpt-40-mini-2024-0
code:B40JINzq

ft:gpt-40-mini-2024-07-18;

code3:B43DvxhK

the-coder:clean-

the-coder:clean-

ft:gpt-40-mini-2024-07- the-coder
style:AydMPYCg

2/26/2025, 2:34 PM

2/24/2025,11:43 AM

2/24/2025,10:35 AM

2/23/2025,12:03 PM

2/8/2025,1:24 PM

MODEL

ft:gpt-40-mini-2024-07-18:pazpaz-the-coder:clean-

code:B5Ayo5qi

Status

Job ID

Training Method
Suffix

Base model

Output model

0 ® & © ©® O

Created at

00
o

S Trained tokens

@ Succeeded
ftjob-06U5Wk2ufLOEU1460PWVLIi5
Supervised
clean-code
gpt-40-mini-2024-07-18
ft:gpt-40-mini-2024-07-18:pazpaz-the-cc

Feb 26,2025, 2:34 PM

Figure 11.9: Successful completion of fine-tuning job

The fine-tuning job processed 12,500 tokens, running six iterations (or epochs) of our file, which

contains approximately 2,000 tokens. The fine-tuned model can be used in any OpenAl API call

or accessed through the Playground, as we will explore later in this chapter.

To monitor the cost of the fine-tuning job, navigate to the OpenAl usage page athttps://platform.

openai.com/usage, scroll down to Spend categories, and review the fine-tuning expenses, as

shown in Figure 11.10:
Usage View legacy dashboard

AP| capabilities Spend categories

ft-gpt-4o0-mini training

$0.094
||
Feb 26,2025
@ ft-gpt-4o-mini training $0.04
Feb11

ft-gpt-4o0-mini, input

$0

Feb 11

Supercharged Coding ...

Feb 26

Figure 11.10: Incurred fine-tuning costs

O 02/11/25 - 02/26/25 ¢ L Export

Users Services APl Keys

@ hila hersz 38

https://platform.openai.com/usage
https://platform.openai.com/usage

284 Fine-Tuning Models with OpenAl

Here, we can see that fine-tuning the model with 15 training examples and 12K tokens resulted

in a total cost of $0.04.

Using the fine-tuned model
The fine-tuned model can be accessed either through the OpenAl Playground or programmati-
cally. In Figure 11.9, OpenAl gave a formal name for our fine-tuned model under Output model,

in the following format:

ft:{base model}:{account name}:{fine-tuning suffix}:{id}

For example, our model’s name is shown here, but your model will be named differently:

ft:gpt-40-mini-2024-07-18:pazpaz-the-coder:clean-code:B5Ayo5ql

To use the fine-tuned model in code, replace the standard model reference:

completion: openai.ChatCompletion = (
client.chat.completions.create(
model="gpt-40-mini",

messages=[{...]))

The updated call using the fine-tuned model will look as follows:

completion: openai.ChatCompletion = (
client.chat.completions.create(
model="ft:gpt-40-mini-2024-07-18:pazpaz-the-coder:clean-
code:B5Ayo5ql”,
messages=[{...]))

The fine-tuned model is also available in the OpenAlI Playground, as shown in Figure 11.11:

Supercharged Coding with GenAl < Playground Dashboard Docs APl reference @ O

Chat & Clear ¢ Code % Compare) History &3 Your presets 3
System message L B Model ft:gpt-40-mini-2024-07-18:pa... <

Q Select a model...
gpt-3.5-turbo-1106
gpt-3.5-turbo-0125
gpt-3.5-turbo
FINE-TUNES

v ft:gpt-40-mini-2024-07-18:pazpaz-the-
coder:clean-code3:B43DvxhK

Figure 11.11: Playground models, including our fine-tuned model

Chapter 11 285

Within the Playground interface, we can compare its results with the base model, which we will

explore next.

Comparing our results

Now that we have fine-tuned our custom model, we can evaluate how its outputs compare to
those of the base model. To do this, navigate to the OpenAl Playground, https://platform.
openai.com/playground/chat, select gpt-40-mini-2024-07-18 as the base model, and click on

Compare, as shown in Figure 11.12:

Chat & Clear </> Code “« Compare O History 8 Your presets S

System message <2 Generate A Model ft:gpt-40-mini-2024-07-18:pa... <

Figure 11.12: Playground comparison selecting the base model to compare

Next, add the fine-tuned model, as shown in Figure 11.13:

Chat & Clear D History
gpt-40-mini-2024-07-18 © e & X ft:gpt-do-mini-2024-07-18:pazpaz-the-coder:clean-code:B5Ayo5qt & -+ &
Q Select a model...
System message 4 ©

gpt-3.5-turbo-1106
gpt-3.5-turbo-0125
gpt-3.5-turbo
FINE-TUNES

ft:gpt-40-mini-2024-07-18:pazpaz-the-coder:clean-
code:B4PRQD6S: ckpt-step-54

ftigpt-40-mini-2024-07-18:pazpaz-the-coder:clean-
code;B4PRQXNB:ckpt-step-r2

v ft:gpt-40-mini-2024-07-18:pazpaz-the-coder:clean-
code:BSAyo5ql

Figure 11.13: Adding a model for comparison

We will use the same system message from earlier in the chapter that will be applied to both

models:

You will be provided with a Python function signature enclosed with {{{
FUNCTION }}}. Your task is to implement it.

https://platform.openai.com/playground/chat
https://platform.openai.com/playground/chat

286

Fine-Tuning Models with OpenAl

Next, we will enter the same user message as earlier in the chapter:

FUNCTION: {{{def get_quadratic_roots_only if real(a:int, b:int, c:int) ->

Tuple[float, float] }}}
CODE:

Our comparison can be run by clicking Run, generating responses from both models. The base

model’s outputincludes explanations and inline comments, while the fine-tuned model provides

amore structured implementation, as shown in Figure 11.14:

Chat

gpt-40-mini-2024-07-18 * - 2

User

FUNCTION: {{{def get_quadratic_roots_only_if_real(a:int, b:int,
c:int) -> Tuple[float, float] }}}

CODE:

Assistant

To implement the function ‘get_quadratic_roots_only_if_real’, we
need to find the roots of the quadratic equation given by the
coefficients ‘a’, 'b’, and 'c’. The roots can be calculated using the
quadratic formula:

\[
x = \frac{{-b \pm \sqrt{{b"2 - 4ac}}}}{2a}
\]
v
However, the natiira af tha rante iraal ar camnlav) dapends on the

discriminant (L~ 227 ...

& Clear O History

ft:gpt-40-mini-2024-07-18;] the-coder:clean-code:B5Ayo5q1 & =+ &

User

FUNCTION: {{{def get_quadratic_roots_only_if_real(a:int, b:int,
c:int) -> Tuple[float, float] }}}

CODE:

Assistant
def get_quadratic_roots_only_if_real(a: int, b: int, c: int) ->
Tuple[float, float]:
discriminant = calculate_discriminant(a, b, ¢)
if discriminant < O:
raise ValueError("Complex roots")
return calculate_quadratic_roots(a, b, discriminant)

def calculate_discriminant(a: int o ntc: int) -> float:

return b**2 - 4%~*~
(9 5,383ms 170t V179t (P Request ID

Figure 11.14: Comparing the base model (left) and the fine-tuned model (right)

The fine-tuned model returns a cleaner implementation that abstracts computations into sep-

arate functions, keeping the main function concise and readable. For your reference, here is the

full implementation proposed:

def get_quadratic_roots_only_if_real(a: int, b: int, c: int) ->

Tuple[float, float]:

discriminant = calculate_discriminant(a, b, c)

if discriminant < @:

raise ValueError("Complex roots")

return calculate_quadratic_roots(a, b, discriminant)

def calculate_discriminant(a: int, b: int, c: int) -> float:

return b**2 - 4*a*c

def calculate_quadratic_roots(a: int, b: int, discriminant: float) ->

Tuple[float, float]:

Chapter 11 287

rootl = (-b + discriminant**0.5) / (2*a)
root2 = (-b - discriminant**0.5) / (2*a)

return rootl, root2

This output aligns with our fine-tuning objective of separating computations into helper functions
while keeping the primary function, get_quadratic_roots_only_if_real, clear. Additionally,
the base model generates 535 tokens, compared to 179 tokens from the fine-tuned model. Despite

the higher per-token cost of the fine-tuned model, it is ultimately more cost-efficient.

To conclude, we successfully fine-tuned the model to specialize in returning clean, code-only
outputs. This targeted specialization was achieved with 15 JSONL examples, using a combination

of positive and contrastive learning to guide the model’s behavior.

Fine-tuning enables us to adapt a pre-trained LLM for specific tasks, making it especially valu-
able for automated and large-scale coding projects. In later chapters, we will explore ways to
further improve fine-tuning, such as refining the training data to separate validation logic from

core functionality.

Fine-tuning in action

Currently, we use just two fine-tuned models for coding tasks. The firstis for code implementation
as we constructed in this chapter, providing an alternative perspective on new implementations.
The other is for docstring maintenance, ensuring that a function’s code remains consistent with
its docstring. For more narrowly scoped tasks, few-shot learning is usually sufficient and prefer-
able since it requires less effort. In general, fine-tuning is only considered when simpler prompt
engineering techniques are ineffective or when the project operates at a repository-wide scale,

making the investment worthwhile.

We encourage you to experiment frequently with prompt engineering and fine-tuning. In the
next section of the book, we will introduce additional software development life cycle (SDLC)

use cases that you can start applying to your code base right away.

Summary

In Part 2 of the book, we explored LLMs in greater depth. We explained how they work, what they
excel at, and how to leverage prompt engineering techniques to achieve more effective results.

We also covered strategies for evaluating their outputs to ensure reliability.

288 Fine-Tuning Models with OpenAl

This chapter took the concept of few-shot learning a step further by demonstrating how to fine-
tune an LLM to specialize on a given task. Through positive and contrastive training examples,
we guided the model to generate function implementations based solely on their signatures,
returning clean code without inline comments. This approach can be applied more broadly to
tasks such as generating unit test suites, maintaining docstring quality, or refactoring for loops

across an entire repository.

With this deeper understanding of LLMs, prompt engineering, and output evaluation, we now
have the essential tools to become supercharged coders. We can determine the best tool for a given
task, whether ChatGPT, OpenAl AP, or Copilot, and craft prompts that maximize effectiveness
using best practices and advanced techniques. Moreover, we now have the skills to assess the

quality of the model’s output with confidence.

In the third part of the book, we will apply this knowledge to advanced SDLC tasks. We will
explore how GenAl can assist in areas such as documentation, testing, scaling applications for
runtime and memory efficiency, logging, monitoring, and error handling. Some tasks will rely on
the five S’s framework for coding-related tasks, while others will require more advanced prompt

engineering strategies or fine-tuning to achieve optimal results.

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: When is fine-tuning a good approach?

Answer: Fine-tuning is beneficial for large-scale projects where a repetitive task needs to be
performed consistently, such as generating function implementations from signatures while
following specific coding standards. Instead of relying on few-shot learning or complex prompt
engineering techniques within each request, fine-tuning allows the specialization process to be

separate from the prompt, making it easier to maintain and, in some cases, more cost-effective.
Question 2: What are the costs involved in fine-tuning?
Answer: Fine-tuning involves two types of costs:

e Training cost: A one-time cost incurred when running the fine-tuning job.
e Usage cost: Fine-tuned models typically have higher per-token costs for input and output
compared to their base models. For example, with GPT-40 mini, using fine-tuned models

costs twice as much as those from the base model.

Chapter 11 289

However, the true cost of fine-tuning lies in the time and effort required to carefully construct

training examples that ensure the model aligns with the desired specialization.
Question 3: Why does fine-tuning require more training samples than few-shot learning?

Answer: The specialization process in fine-tuning is fundamentally different from few-shot learn-
ing. In few-shot learning, examples are simply provided within the prompt, guiding the model

without altering its internal parameters.

Fine-tuning, on the other hand, adjusts the model’s weights to align with the desired behavior.
Given that the base model was pre-trained on vast amounts of data, requiring tens or even hun-

dreds of fine-tuning examples is relatively modest in comparison to the scale of its original training.

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following

resources:

e Brown, T. B.,, Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D.
(2020). Language Models are Few-Shot Learners. OpenAl. Retrieved from https://arxiv.
org/abs/2005.14165v4

e Deepchecks on contrastive learning: https://www.deepchecks.com/glossary/
contrastive-learning/

e OpenAl API fine-tuning: https://www.datacamp.com/tutorial/fine-tuning-large-
language-models

e OpenAIlAPIrequestparameters: https://platform.openai.com/docs/api-reference/
responses/create

e Data camp fine-tuning tutorial for LLMs: https://www.datacamp.com/tutorial/fine-
tuning-large-language-models

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before

you start.

https://arxiv.org/abs/2005.14165v4
https://arxiv.org/abs/2005.14165v4
https://www.deepchecks.com/glossary/contrastive-learning/
https://www.deepchecks.com/glossary/contrastive-learning/
https://www.datacamp.com/tutorial/fine-tuning-large-language-models
https://www.datacamp.com/tutorial/fine-tuning-large-language-models
https://platform.openai.com/docs/api-reference/responses/create
https://platform.openai.com/docs/api-reference/responses/create
https://www.datacamp.com/tutorial/fine-tuning-large-language-models
https://www.datacamp.com/tutorial/fine-tuning-large-language-models
http://packtpub.com/unlock
http://packtpub.com/unlock

Part 3

From Code to Production
with GenAl

In Part 3 of this book, we branch from simple coding to the full software development life cycle
(SDLC). We first focus on writing docstrings, followed by testing, since these are almost universally
required for production-ready code. The next advanced topicis scaling applications for systems in

terms of runtime and memory. The part will also cover logging, monitoring, and error handling.

The techniques for completing these SDLC steps build on both the five S’s framework and ad-

vanced prompt engineering techniques discussed in Part 2.

The final chapter examines the current trends, including vibe coding, and suggests what might
be next for the field of GenAl.

This part contains the following chapters:

e Chapter 12, Documenting Code with GenAl

e Chapter 13, Writing and Maintaining Unit Tests

e Chapter 14, GenAl for Runtime and Memory Management

o Chapter 15, Going Live with GenAlI: Logging, Monitoring, and Errors

e Chapter 16, Architecture, Design, and the Future

12

Documenting Code with GenAl

In Part 3 of the book, we will introduce advanced practices from the software development life-
cycle (SDLC) when working with ChatGPT, OpenAl API, and GitHub Copilot. Using the five S’s
framework introduced in Chapter 4, and prompt engineering techniques introduced in Chapter

8 and Chapter 9, we will see how to productionize our Python applications.

In this chapter, we will introduce docstrings for Python objects, which already has a built-in slash
command (i.e., /doc) with GitHub Copilot. We can use this slash command with the vanilla format
or extend it with specific docstring requirements. Docstrings are already a feature of most IDEs
as a template structure where arguments will be formatted with a fixed style, but the standard
template does not include any descriptive information about the function or its parameters

beyond their name. GitHub Copilot will usually produce a full docstring for high-quality code.
The topics covered in this chapter include the following:

e Introducing software documentation

Using GenAl to write docstrings

e Finding outdated docstrings with GitHub Copilot, ChatGPT, and OpenAl API

Practical insights

294 Documenting Code with GenAl

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub Copilot account

e IDE —either VS Code or PyCharm

e OpenAl account with access to OpenAl API

e Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

e Virtual environment set up in VS Code or PyCharm

e OpenAl API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting
up OpenAl API access and token generation, see Chapter 2. If you need help creating an OpenAl

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Introducing software documentation

Software engineers not only write a lot of code, but they also need to read and understand code
written by others. The code could be written the same day by other developers or be part of a
legacy system maintained over multiple decades. While clean, well-written code is a critical

aspect, code documentation is also a fundamental way of communicating with other developers.

Software documentation comes in multiple forms that serve different needs. Technical documen-
tation includes the comments in source code, API descriptions, database schemas, and software
architecture diagrams. User documentation is a guide on how an end user can use software. The
software engineering process also adds specific documentation on requirements, specifications,
testing plans, CI/CD pipelines, sprint planning, and much more. This chapter focuses on the

documentation of the source code.

A general guideline is that the documentation should focus on the “why” rather than the “what.”
That s, the code is readable and one can figure out what it does, but the reason for its implemen-
tation is what should be documented. The rationale is that well-written code is self-explanatory
about what it does, but the reason for the code (the why) can be better understood through
documentation. The code documentation can therefore explain the code, improve its readability,

and aid later software maintenance.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 12 295

In Python, the convention for documentation within the code is the docstring. Docstrings typically
occur at the beginning of Python modules, classes, and methods. The purpose is to explain their
function and the reason for their inclusion. Python’s docstrings are enclosed in triple quotes (single
or double quotes) even if they are just one line. However, for the most common docstrings used

to document methods, they should include arguments, return types, and any exceptions raised.

Docstrings serve a few different purposes. First, they provide documentation for a module, class,
method, or function for developers. They can be compiled into formal documentation resources.
In addition, these forms of documentation are accessible using Python’s help() function. Using

docstrings makes the code easier to maintain, which reduces the lifetime cost of code.

The second purpose of docstrings is based on Miller’s Law, also known as the Magical Number
Seven, Plus or Minus Two. Based on George Miller’s 1956 paper (https://psychclassics.yorku.
ca/Miller/),itstates thathumans canretain 5 to 9 pieces of information in their working memory.
A software developer trying to understand even a medium-length Python file must understand
the interaction of several methods. The docstring and naming conventions facilitate a quick

understanding of the abstracted methods.

Although docstrings may appear to be standard, there are actually four common formats. The
PEP 257 convention is the official Python standard, consisting of a single line with no string
formatting that emphasizes readability. The Google style is among the most common and still
emphasizes readability. It uses multi-line formatting for the arguments passed in, method returns,
and exceptions raised. The NumPy/SciPy style is widely used, but primarily for scientific software.
It has similar content to the Google style but uses different formatting. The reStructuredText
(reST) or Sphinx style includes more detailed information than the others. This style is used by
the Sphinx documentation generator, which produces HTML, PDF, and LaTeX documentation
manuals directly from the source code with full hyperlinking and other advanced features. This
chapter will focus on both single-line PEP 257 and Google styles due to their widespread use, but
other styles are directly supported by requesting specific docstring styles. We have included a

few sources in the Further reading section that describe comment styles for Python in more detail.

https://psychclassics.yorku.ca/Miller/
https://psychclassics.yorku.ca/Miller/

296 Documenting Code with GenAl

Working with the /explain GitHub Copilot command

As aworking example in this chapter, we use Flask routines that support the distance calculation

found in Chapter 10. The base code is shown in the GitHub repository and copied for reference here:

from flask import Flask, request, jsonify

import numpy as np
app = Flask(__name_)

@app.route("/distances", methods=["POST"])
def calculate_distance():
data = request.get_json()
dist_type = data.get("distance")
a = np.asarray(data.get("df1"))
b = np.asarray(data.get("df2"))
if a.shape != b.shape:
return jsonify({"error": "Matrices must have the same shape"})
if dist_type == "L1":
dist = np.sum(np.abs(a - b))
return jsonify({"distance": dist})
elif dist_type == "L2":
dist = np.sqrt(np.sum((a - b) ** 2))
return jsonify({"distance": dist})
else:

return jsonify({"error": "Invalid distance type"})

In VS Code, by simply highlighting the method, right-clicking and selecting Copilot, and selecting
Generate Docs as shown in Figure 12.1, a docstring can be automatically written. Note that we
have ignored Generate Docstring shown under Copilot. That command is VS Code’s template
approach for docstrings, which creates placeholders for the docstring and parameters but does

not use any Al to write the comment or description.

Chapter 12

297

¥ File Edit

Selection View

@ base_flask_distances.py 2 X

C: > Users > Peter > Dropbox > Bo

2

[T BN RV, B S TY)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1mport numpy as np

@app.route("/distan:
def calculate_distai
data = request.;
dist_type = dati

if dist_type ==

a = data.ge’

b = data.ge

if np.asarri

return :

dist = np.si

return json:

elif dist_type -

a = data.ge’ Copilot >

b = data.ge
if np.asarri
return

dist = o
for i in rai
for-j-ii
dis:
dist = np.s¢
return json:

else:

‘ return json:

e

Go to Definition F12
Go to Declaration

Go to Type Definition
Go to Implementations
Go to References

Peek

Kite: Find Related Code From Line
Find All References Shift+Alt+F12
Find All Implementations
Show Call Hierarchy Shift+Alt+H

Show Type Hierarchy

Generate Docstring Ctrl+Shift+2
Rename Symbol F2
Change All Occurrences Ctrl+F2
Refactor... Ctrl+Shift+R
Source Action...

Cut Ctrl+X
Copy Ctrl+C

O search 8-

ces.py > @ calculate_distance

same shape"})

Editor Inline Chat Ctrl+1
Explain
Fix

Review and Comment

Generate Tests

Add Selection to Chat
Add File to Chat

Figure 12.1: By highlighting the method and right-clicking, Copilot generates a docstring

The generated docstring is shown in Figure 12.2. Trying this several times, we obtained several

variations on the docstring, some of which had exceedingly long lines or different formats, and

some included different information. Regardless, the docstring format has a simple one-line

description, but the remainder has a random format that does not follow any of the style guides.

Specifically, the “expects...” section of the docstring is unclear.

298 Documenting Code with GenAl

4 @app.route("/distances”, methods=["POST"])

5 def calculate_distance():

5 wan

7 Calculate the distance between two matrices based on the specified distance type.
8

9 This function expects a JSON payload with the following structure:
10 {
11 "distance": "L1" or "L2", # Type of distance metric to use
12 “dfi": [[...1, [...11, # First matrix (list of lists)
13 "df2": [[...], [...]1] # Second matrix (list of lists)
14 }
15
16 Returns:
17 - A JSON response containing the calculated distance if the input is valid.
18 - A JSON error message if the matrices have different shapes or if the distance type is invalid.
19
20 Distance types:
21 - "L1": Manhattan distance (sum of absolute differences).
22 - "L2": Euclidean distance (square root of the sum of squared differences).
23
24 Error cases:
25 - If the matrices "dfl’ and "df2° do not have the same shape, an error message is returned.
26 - If the “distance’ type is not "L1" or "L2", an error message is returned.
27 e

Figure 12.2: GitHub Copilot produces a vague docstring for a poorly constructed function

Another common case is for GitHub Copilot to produce multiple lines of text as the docstring,
excluding the parameters, returns, and so on. Figure 12.2 fails in this respect, with two lines of
explanation followed by the expects (This endpoint expects...) and returns sections. While
both multi-line and one-line docstrings exist, the preference is for one line rather than an elab-
orate description, particularly for low-level methods. If such a method requires multiple lines,
it is often considered good practice to refactor the method into multiple simpler methods that

each perform a single task.

Copilot’s docstring creation is usually quite good, but can occasionally be incorrect. As in the
previous example, you will encounter cases where it does not perform well. Some of these cases
are due to the complexity of the underlying code. Rather than fixing the docstring, a preferred
solution would be to refactor the code into a simpler form and recreate docstrings. In many cases,
the /explain function is quite informative. In Figure 12.3, we apply /explain to the same code

by using the GitHub Copilot Editor Inline Chat from within the same function:

Chapter 12 299

CHAT 9 -+ @ {5}

</> Workspace
> Used 8 references

The provided code defines a Flask route function, e calculate_distance , which computes the distance between two matrices based on the
specified distance type. It uses JSON data from an HTTP request to determine the type of distance calculation (L1 or 'L2) and the input
matrices (df1 and df2). The function handles errors, such as mismatched matrix shapes, and returns the computed distance or an error
message as a JSON response.

The function begins by extracting the JSON payload from the request using @ request.get_json() and retrieves the distance type. If the
distance type is L1, the function calculates the Manhattan distance (sum of absolute differences) between the two matrices. It first ensures
that the matrices have the same shape using (@ np.asarray(a).shape != np.asarray(b).shape . If the shapes mismatch, it returns an error
message. Otherwise, it computes the Manhattan distance using 1 np.sum(np.abs(a - b)) and returns the result.

If the distance type is L2, the function calculates the Euclidean distance (square root of the sum of squared differences). Similar to the L1
case, it checks for shape mismatches and returns an error if the shapes differ. The Euclidean distance is computed using nested loops to iterate
over each element of the matrices, summing the squared differences, and then taking the square root of the total. The result is returned as a
JSON response.

If the distance type is neither L1 nor L2, the function returns an error message indicating an invalid distance type. This ensures that the
function handles unexpected input gracefully.

The code relies on NumPy functions like € np.asarray to ensure the input is treated as arrays and @ np.sum for efficient summation. It
also uses Flask's @ jsonify to format the responses. However, the nested loops in the L2 calculation could be replaced with a more efficient
NumPy operation, as NumPy is optimized for array-based computations. Additionally, the repeated shape-checking logic could be refactored
into a helper function to improve code readability and reduce redundancy. °

Oty P
Figure 12.3: Using /explain for calculate_distance describes a complex method

A similar functionality occurs within the GitHub Copilot Chat with the /explain calculate_
distance() command, which often returns explanations that are more verbose. Although both
provide a clear explanation, their content is technically complex, which is why we recommend

refactoring the code as shown:

import numpy as np

from flask import Flask, request, jsonify
app = Flask(__name_)

@app.route("/distances"”, methods=["POST"])
def calculate_distance():

a, b, dist_type = parse_request_parameters(request)

dist_func = {"L1": get_manhattan_dist, "L2": get_euclidean_dist}.
get(dist_type)

dist = dist_func(a, b)

return jsonify({"distance": dist})

300 Documenting Code with GenAl

def parse_request_parameters(request):
data = request.get_json()
a = np.array(data.get("df1",))
b = np.array(data.get("df2",))
dist_type = data.get("distance")
return a, b, dist_type

def get_manhattan_dist(a: np.ndarray, b: np.ndarray) -> float:
return np.sum(np.abs(a - b))

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:
return np.sum((a - b) ** 2)

This section has introduced one way of instructing GenAl to write a docstring. The next section

provides other approaches.

Using GenAl to write docstrings

This section describes different techniques for creating docstrings for a single method and for a
full Python file. Docstrings improve code readability and are often required by organizations as
part of their continuous integration/continuous development (CI/CD) pipelines. Using GenAl

to create docstrings can increase the speed of the software development process.

Docstring for a single method

The simplest approach to generating a docstring in VS Code is simply typing three double quotes
“““or the equivalent in single quotes on a blank line following the method signature, as shown in
Figure 12.4, with results shown in the code block that follows, which can be accepted by pressing

tab:

def get_euclidean_distance(a: np.ndarray, b: np.ndarray) -> float:

A

return np.sum((a - b) ** 2

Figure 12.4: Initiating the request for a docstring with three single or double quotes

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:
'''Calculates the squared Euclidean distance between two arrays.'"''

return np.sum((a - b) ** 2)

Chapter 12 301

As we can see, it describes the method but is the simplest form of the PEP 257 style with a single

line string and no parameters or return values.

If we want to have a different docstring style, we can request it using the Copilot Editor Inline Chat

(/doc Google style) or any other specified style. Figure 12.5 shows the results for the Google style.

/doc Google style

‘Ask Copilot GPT-40v @ & B+ I

& &

52 def get_euclidean_distance(a: np.ndarray, b: np.ndarray) -> float:

53 n

54 Calculates the Euclidean distance between two points represented as NumPy arrays.
55 Args:

56 a (np.ndarray): The first point as a NumPy array.

57 b (np.ndarray): The second point as a NumPy array.

58 Returns:

59 float: The Euclidean distance between the two points.

60 n

61

62 return np.sum((a - b) ** 2)

Figure 12.5: Docstring in Google style using the inline /doc Google style

This approach with the online Editor Inline Chat will not create docstrings for all the methods

within a file. Other techniques for working at a file level are discussed next.

Similarly, with the GitHub Copilot chat, we can highlight a single method, such as get_euclidean_
dist, and request a Google-style docstring using the /doc Google style command. Shown on
the left of Figure 12.6, the original (above) and new (below) docstrings are presented with the

options to keep or undo the changes.

34 def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

fdoc Google style
"""Calculate Euclidean distance.™™"

@ refactored_flask_distances.py:34-37

35 = . .
. . ¥ GitHub Copilot
36 Calculate the Euclidean (L2) distance between two vectors. B
37
@ refactored flask distances.py +10 -2
38 Args:
39 .nd : The first tor. N -
& (p-LaTEy) @ Tirst vector I have updated the docstring for the |get_euclidean dist function to
49 b (np.ndarray): The second vector. .
" follow the Google style format. Let me know if you need further
42 Returns: R
43 float: The Euclidean distance between the two vectors. [OINY
aa
45 return np.sum((a - b) ** 2) Fl

Keep Undo 1of1 T 4

Figure 12.6: Using GitHub Copilot chat on a single method to change to Google style

302 Documenting Code with GenAl

Docstrings for an entire file

GitHub Copilot and ChatGPT can be used to produce docstrings for all methods within a single
file at once using the chat mode, which can be quite useful. This may not work with the inline
chat, depending on the version you are using of VS Code or PyCharm, so the code may be produced
in the chat window and will have to be copied and pasted back into the code base. We find this
approach useful at the end of the day, when you are trying to submit code before a deadline. In
practice, though, we recommend writing docstrings with the code since the GenAl should be
verified, which is best accomplished when writing the code. A later section, Finding outdated doc-

strings with GitHub Copilot, ChatGPT, and OpenAI API, will describe strategies for stale comments.

The first step is asking GitHub Copilot to write the docstrings for your current Python file, as
shown in Figure 12.7. We will use the same code as we did earlier, using the Flask-based distance

calculation.

write all docstrings for my current file

&8 GitHub Copilot

Please provide the code from your current file, or upload the file, so | can write docstrings for all the functions
and methods it contains.

Figure 12.7: GitHub Copilot chat request to produce docstrings for the entire file

After uploading or pasting the file, the results are shown in the following code block. The results
appear in the chat and must be copied from it to the code development window. We have not
specified the type of docstring, and it may default to the Google style or the equivalent of /doc
Google style. By modifying the prompt to /doc single line style, the code will produce
the corresponding single-line docstrings. Both versions are included in the GitHub repository
for this book.

from flask import Flask, request, jsonify
app = Flask(__name_)

@app.route("/distances", methods=["POST"])

def calculate distance():

Chapter 12 303

Calculate distance between two vectors.

a, b, dist_type = parse_request_parameters(request)

dist_func = {"L1": get_manhattan_dist, "L2": get_euclidean_dist}.
get(dist_type)

dist = dist_func(a, b)

return jsonify({"distance": dist})

def parse_request_parameters(request):

Parse and validate request parameters.

data = request.get_json()

a = np.array(data.get("df1",))

b = np.array(data.get("df2",))
dist_type = data.get("distance")

return a, b, dist_type

def get_manhattan_dist(a: np.ndarray, b: np.ndarray) -> float:

Calculate Manhattan distance.

return np.sum(np.abs(a - b))

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

Calculate Euclidean distance.

return np.sum((a - b) ** 2)

304 Documenting Code with GenAl

@ Quick tip: Enhance your coding experience with the Al Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

Copy Explain
function calculate(a, b) { o ®

return {sum: a + b};

\ };

& The next-gen Packt Reader is included for free with the purchase of this book.
Scan the QR code OR visit packtpub. com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

With these methods, we can create documentation for a single method or an entire file. Refac-
toring code often leads to a problem where the code and the docstrings are out of sync. The next

section discusses strategies to overcome this problem.

Finding outdated docstrings with GitHub Copilot,
ChatGPT, and OpenAl API

Afrequent debate among software engineers is whether documentation should be written when
writing the code or later, when the code has stabilized. One line of thinking is that the docstring
(and test cases) should be written at the same time. The primary argument is that the intention
of the code is clearest when the developer is working through its logic and understands its pur-
pose. The problem is that, as code is routinely refactored, the docstring comments and test cases
must be adapted, making the original versions obsolete. The other line of thinking is that the
documentation can and should be written later, once the code settles, to minimize the repeated

rewriting of the comments.

Chapter 12 305

New GenAl technology makes the debate irrelevant since it offers two solutions. The first solution
is simply to regenerate and update all the comments at the method or file level. The previous
section described this strategy. We can use GitHub Copilot or ChatGPT to write the docstrings

for the entire file, which will update or redo all the docstrings.

The second strategy is more specificin that it can detect outdated or stale comments so that these
can be manually or automatically adjusted. The advantage of this approach is that individual
methods can be updated, leaving previously generated or verified comments unchanged. If we
have individually written, verified, or otherwise invested effortin the docstrings, we do not want

them to be overwritten.

For the comments, we have taken the previous example and created two versions of the Euclidean
distance by copying one and modifying the code. The new code is shown here. As you can see,
the first method returns the Euclidean distance and the second method returns the Euclidean
distance squared, yet the docstrings have not been updated and are, in fact, identical due to our
copy and paste approach.

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

Return the squared Euclidean (L2) distance between two arrays.

return np.sqrt(np.sum((a - b) ** 2))

def get_euclidean_squared_dist(a: np.ndarray, b: np.ndarray) -> float:

non nnn

Return the squared Euclidean (L2) distance between two arrays.

return np.sum((a - b) ** 2)

Using GitHub Copilot or ChatGPT, we can simply ask whether any of the docstrings are out of
sync, as shown in Figure 12.8. The approach cleverly recognizes the squared root function call in

get_euclidean_dist and suggests an update to the docstring:

306 Documenting Code with GenAl

are any of the docstrings out of sync? ‘

> Used 2 references
Yes, the docstring for the @ get_euclidean_squared_dist function in # distances_checking.py is out of sync with its actual functionality.
The docstring states:

"""Return the squared Euclidean (L2) distance between two arrays."""

However, the function does not return the squared Euclidean distance; it returns the sum of squared differences. The squared Euclidean
distance is typically understood as the sum of squared differences without taking the square root, which matches the function's behavior.
To align the docstring with the function's behavior, it should be updated as follows:

Return the sum of squared differences between two arrays.

Figure 12.8: Using GitHub Copilot to identify stale docstrings

A better approach is to use OpenAl API to compare the code and docstrings individually across
afile. The sample code can be found in the repository for this chapter called openai_docstring_
review.py, which runs on the distance_versions.py file. The resulting output is shown next

for each of the methods.

The output explains the logic and provides an answer as to whether the docstring correctly corre-
sponds to the code implementation. It correctly identifies that the get_euclidean_dist method

does not match.

Function: calculate_distance

Docstring: Calculate distance between two arrays from a POST request.
Source: @app.route("/distances", methods=["POST"])

def calculate distance():

<..code deleted for space..>

Matches: The docstring matches the implementation. Both the docstring and

the function's purpose convey that the function is designed to calculate

the distance between two arrays based on parameters received from a POST
request. Therefore, the conclusion is:

MATCHES: Yes

Function: get_euclidean_dist

Docstring: Return the squared Euclidean (L2) distance between two arrays.

Chapter 12 307

Source: def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:
<..code deleted for space..>

Matches: The provided docstring states that the function returns

the "squared Euclidean (L2) distance between two arrays," but the
implementation actually returns the Euclidean distance (not squared) by
taking the square root of the sum of squared differences. Therefore, the
docstring does not accurately describe the implementation.

Thus, the conclusion is that the docstring does NOT match the
implementation.

Function: get_euclidean_squared_dist
Docstring: Return the squared Euclidean (L2) distance between two arrays.

Source: def get _euclidean_squared _dist(a: np.ndarray, b: np.ndarray) ->
float:

<..code deleted for space..>

Matches: The docstring and the function implementation match. The function
“get_euclidean_squared_dist”™ computes the squared Euclidean distance (also
known as the L2 distance) between two numpy arrays “a’ and “b’, and the
docstring accurately describes this functionality.

Therefore, the answer is:
MATCHES

Function: get_manhattan_dist

Docstring: Return the Manhattan (L1) distance between two arrays.

Source: def get_manhattan_dist(a: np.ndarray, b: np.ndarray) -> float:

<..code deleted for space..>
Matches: MATCHES: Yes

The chapter has covered several techniques for creating docstrings. It has also introduced different
strategies for finding problems with stale comments. In the next section, we provide recommen-

dations based on how we approach writing docstrings with GenAl.

308 Documenting Code with GenAl

Practical insights
Given the choices of GitHub Copilot, ChatGPT, and OpenAI API, we find that Copilot is the most

convenient for writing docstrings. The convenience of pair programming in the integrated envi-
ronment simply makes it easier to request documentation, rather than copying and pasting code
to other places. Copilot chat can usually accurately locate stale comments by itself. One issue we
have encountered is that the context of sending code to Copilot is not visible. If you copy code and
askif the comments are current, it may miss some methods that were notincluded in the context.

This can be solved by copying and pasting the code in place to renew the context.

We recommend that the docstrings be created after writing the code for each method, or atleast
after the code for a method has stabilized, if not after each refactoring. We further suggest check-
ing that the docstring accurately reflects the implementation. At the beginning of the chapter,
we discussed that documentation should reflect why a particular method was written rather
than describing what the code does. The current technology is quite reasonable for the what but

ignores the why, which is an opportunity for software engineers to elaborate.

Summary

Docstrings are a standard practice for maintaining high-quality code. They enable future readers
of the software to understand the code, which is important for debugging, feature enhancements,
and more. We recommend docstrings be included as soon as the code has been written. GitHub
Copilot offers multiple ways of writing docstrings for a single method, including three single or
double quotes, using the Copilot menus on a highlighted method. These approaches will produce

single-line docstrings, the Google docstring style, or others when specified as a command.

A challenge in writing software is keeping docstrings up to date with the code. All methods can
identify discrepancies between the code and docstrings, which is the preferred method for iden-
tifying issues that can be resolved. Alternatively, docstrings can be updated at a method or file

level, replacing any existing docstrings.

Chapter 12 309

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: What are three ways of generating docstrings for code?

Answer: The three ways discussed in this chapter are as follows:

1. GitHub Copilot can recommend code by opening """ or ' ' ' for a method on the line after
the method signature
2. GitHub Copilot can be invoked by highlighting a method and using its menu to generate

a docstring

3. ChatGPT or Copilot can be used to add docstrings to all methods
Question 2: What are two approaches for keeping docstrings consistent with the underlying code?

Answer: The first approach is simply overwriting any docstrings. This ensures that the GenAl pro-
duces a docstring for all methods based on the underlying code. If a docstring were inconsistent,
then it would be overwritten. Unfortunately, this overwrites all previously created docstrings,

which may be undesirable if you have invested time and effort into writing or checking any of them.

The second approach uses GitHub Copilot or ChatGPT to ask if there are discrepancies between
the code and the docstrings. One can also use OpenAl API to match each code implementation
against the docstring and return whether they match on a case-by-case basis as was shown with
the openai_docstring_review.py, sample code. Any of the options in the second approach are

preferred if docstrings are current and verified.

Question 3: Given that GenAl can produce quality docstrings, is it necessary to check the doc-

strings, or can they simply be regenerated?

Answer: While the quality is usually quite high, inaccurate docstrings can confound future de-
velopers. Itis strongly recommended to use GenAl to save time, but to use human intelligence to

verify that they are correct. At the present time, trust but verify is the best approach.

310 Documenting Code with GenAl

Further reading

e Miller’s Law, also known as Magic Number 7 plus or minus 2: https://en.wikipedia.

org/wiki/The_Magical_Number_Seven, Plus_or_Minus_Two
e Types of docstring formats: https://www.geeksforgeeks.org/python-docstrings/

e Further formatting of docstrings: https://www.linkedin.com/pulse/python-
docstrings-formats-samuel-thomas/

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled
filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs
and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://www.geeksforgeeks.org/python-docstrings/
https://www.linkedin.com/pulse/python-docstrings-formats-samuel-thomas/
https://www.linkedin.com/pulse/python-docstrings-formats-samuel-thomas/
https://packt.link/TRO5B

13

Writing and Maintaining
Unit Tests

The task of software engineering can be interpreted as the ability to deliver quality products that
contribute to the business value of customers. In this age of technology, customers have high

standards and demand excellence.

The notion of quality has been interpreted in different ways over the years. However, here are

two key aspects:

e Thatit must meet the user requirements

e Itmustbe free of defects

These two requirements are captured by verification and validation processes, which assert that
the software achieves the intended goal without any defects. There are many software engineer-
ing techniques that aim to achieve these goals, including code reviews, pair programming, and
so on, but the most common is testing. Although there are many books that focus on the art and
practice of software testing, this chapter focuses on unit testing, which is the most widely used
approach. Test-driven development (TDD) is a popular agile approach for software development.
Rather than writing the code first and ensuring it functions correctly with unit tests, TDD involves
writing the unit test cases first and subsequently writing the minimum code that passes the tests.
Proponents of the practice claim superior code quality and an inherently testable design. In this
chapter, we will refer to the primary code under development as the implementation code, and

the unit tests as the test code.

312 Writing and Maintaining Unit Tests

With GenAl coding, one can argue that testing is even more critical than conventional program-
ming. The generative Al process involves crafting code based on comments and/or method signa-
tures from other code, which lacks the precision that a developer would normally apply, given the
trade-off for supercharged, faster coding. Unit testing serves as a check that the code functions
correctly, as specified by tests. Combined with code inspection while creating the code, it offers

a check of correctness.

This chapter is dedicated to working with both GitHub Copilot and ChatGPT to supercharge our

creation of unit tests. In this chapter, we will cover the following topics:

e Unit tests with GenAl

e Data-driven tests

e Test-driven development

e Sample data creation with GenAl

e Practical insights

Technical requirements

To get the most out of this chapter, ensure you have the following:

e AGitHub account
e Access to your preferred IDE — either VS Code or PyCharm

e Access to the book’s repository available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

e Avirtual environment set up in your preferred IDE, VS Code, or PyCharm

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting
up OpenAl API access and token generation, see Chapter 2. If you need help creating an OpenAl

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Unit tests with GenAl

GenAl can save considerable time in writing unit tests. As the name suggests, each unit test is
designed to test a single unit or aspect of the code. In fact, they are focused on the smallest frag-
ments of code that can be separated and tested in isolation. Together, they provide confidence
that the code functions correctly at the component level and provide an early signal of issues
when the code is refactored. The same developer typically writes the code implementation and
unit tests. The unit tests prove that the code functions correctly, as understood, and may also

help define the requirements.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 13 313

By their nature, unit tests require a deep understanding of the business and software requirements

and how each method fulfills those requirements. One must consider the intended functionality
as well as the variety of edge cases for each method separately and incorporate those into the test
framework. This includes decisions on the test framework, method call, test nomenclature, asser-
tion form, and the actual test. IDEs can certainly help with the test framework, but the actual test
requires developer time, thought, and perhaps a strategy. These often become hurdles for junior
or less motivated developers who perhaps see them as superfluous to the core software coding
task. The current GenAl tools provide two-way functionality in writing unit tests for existing code

as a common approach or writing code from existing unit tests, which is TDD.

The GenAl capability is not a substitute for testers or testing, but makes skilled testers much more
efficient. The developer can write more tests in less time and focus on the more complex cases.
The generic and simpler unit tests can be written by GenAl, usually with high accuracy. However,
if the resulting tests are incomplete, one can request or prompt the GenAl to create additional

tests to provide better coverage and confidence in the code.

As example code, we use the concept of creating n-grams for a given text string, which we intro-
duced in Chapter 6. N-grams are simply adjacent groups of N letters starting at any and every
point within a string without exceeding the left or right side of the string. For example, the
3-grams from the sequence “abcde” are [“abc”, “bed”, “cde”]. Since we wanted to limit the range
of possible characters, we only considered lowercase letters and spaces, but left tabs and line feeds.
Uppercase letters were converted to lowercase, and both numbers and symbols were removed.
Additionally, since English type uses single spaces, we replaced all adjacent spaces with a single

space. This portion of the code is as follows:

import re

def lowercase_remove_punct_numbers(text, supercharte=True):

return re.sub(r'[”a-z\s]', "', text.lower())

def multiple to_single spaces(text):
letters_single_spaces = re.sub(r'\s+', ' ', text)

return letters_single_spaces

def create_ngrams(text, n) -> list:
""'create a list of n-gram tuples from the input text.'''
processed_text = lowercase_remove_punct_numbers(text)

single_space_processed = multiple_to_single_spaces(processed_text)

314 Writing and Maintaining Unit Tests

u = [single_space_processed[i:i+n] for i in range(len(single_space_
processed)-n+1)]

return u

if _name__ == "_ main_ ":
text = "This is a sample text $ABC% for creating n-grams."
n=3

print(create_ngrams(text, n))

The output of this function is a list of 3-grams that span the text input string:

['thi', 'hiS', Vs ‘; ' i', ' iS', v s ' a., 2,

‘sam', ‘amp', 'mpl', 'ple', 'le ', 'e t', ' te', 'tex',
a', ' ab', 'abc', 'bc ', 'c f', ' fo', 'for', ' 'S ' c', "cr', 'cre',

'rea', 'eat', 'ati', 'tin', 'ing', 'ng ', 'gn', ' ng', 'ngr', 'gra‘,
‘ram', 'ams']

If we start unit testing and have not set up the testing framework, we can use GitHub Copilot Chat
with the prompt @workspace /setupTests, which will present an option to use either of the two
main frameworks: pytest or unittest, as shown in Figure 13.1. The instructions are useful if you

are installing unittest for the first time.

@workspace /setupTests
® ngrams.py:1-23
</> Workspace
> Used 1 reference
Since your project is a Python script, the most common and effective testing frameworks are pytest and unittest.
Pytest is popular for its simplicity and powerful features, while unittest is included in the Python standard library.
Pick a testing framework

Pick from these options, or use chat to tell me what you'd prefer:

Figure 13.1: @workspace /setupTests provides a choice of the two main test frameworks

To generate unit tests, first select a single method from the implementation code, such as the
lowercase_remove_punct_numbers code. Then, type the @workspace /tests generate unit

tests command. Alternatively, explicitly type the name of the target method, such as @workspace

Chapter 13 315

/tests generate unit tests for lowercase_remove_punct_numbers,into the GitHub Copilot
Chat. It will first explain the tests that it will generate and then write the corresponding unit test

file. The test explanation is shown in Figure 13.2:

@workspace /tests generate unit tests for lowercase_remove_punct_numbers
2 ngrams.py:1-19
</> Workspace
> Used 1 reference

Here is the unit test file for the 1 lowercase_remove_punct_numbers function using the unittest framework:

Plan:

1. Import the = lowercase_remove_punct_numbers function using an absolute import.
2. Write test cases to cover:
o Text with punctuation, numbers, and uppercase letters.
o Text with only lowercase letters.
o Text with spaces and special characters.
© Empty string input. °

Figure 13.2: The test plan from GitHub Copilot is provided along with the code for the method

The user will be prompted to save the resulting test file. The following code shows an example of

what the output unit tests may look like, although it will vary in order and even the number of tests:

import unittest

from src.ngrams import lowercase_remove_punct_numbers
File: test_ngrams.py

class TestLowercaseRemovePunctNumbers(unittest.TestCase):
def test_mixed_input(self):
text = "Hello, World! 123"
expected = "hello world"

self.assertEqual(lowercase_remove_punct_numbers(text), expected)

def test_lowercase_only(self):
text = "this is a test"
expected = "this is a test”

self.assertEqual(lowercase_remove_punct_numbers(text), expected)

316 Writing and Maintaining Unit Tests

def test_punctuation_and_numbers(self):
text = "1@#$% &*()1234567890"

expected =

self.assertEqual(lowercase_remove_punct_numbers(text), expected)

def test_empty_string(self):
text = ""

expected =

self.assertEqual(lowercase_remove_punct_numbers(text), expected)

def test spaces_and special characters(self):
text = " Hello!! World?? "
expected = " hello world "

self.assertEqual(lowercase_remove_punct_numbers(text), expected)

if __name__ == "_main__

unittest.main()

The test code is quite reasonable in the sense thatit mostly proves that the regular expressions and
lowercase are correct. The tests can be run from the parent level using the python -m unittest

test_lowercase_remove_punct_numbers.py command.

Creating tests is an iterative process, and some of the test functions created by GenAl may be un-
necessary or incorrect. In other cases, additional tests may be warranted, and the GitHub Copilot
Editor Inline Chat is useful for creating those tests from within the test file. As an example, we
used /tests with a request to include 10-digit phone numbers to prove they would be correctly

handled, which produced inline code in the test file. This process is shown in Figure 13.3:
/tests add a test for a 10-digit phone number

Ask Copilot GPT40v @ ¢ B~

def test_with_phone_number(self):
text = "Call me at 123-456-7890"
expected = "call me at "
self.assertEqual (lowercase_remove punct numbers(text), expected)

Figure 13.3: Using Editor Inline Chat within the test code to add a new test

Chapter 13 317

In some cases, the Editor Inline Chat is more convenient since it will add directly to the code,
whereas GitHub Copilot Chat may create a new test file. In either case, a request for a single test,
such as a phone number or punctuation, may result in multiple additional tests. The developer
can accept or reject these tests individually with the click of a button. Reviewing tests is important

since the accuracy of the tests relates to the correctness of the code.

Rather than write tests for each method separately, the entire file can be converted into unit
tests. Using GitHub Copilot chat and the @workspace /tests create unit tests for ngrams.
py command, Copilot will often, but not always, produce a test plan for each of the methods in
ngrams.py. Then, it will create an output test file that you must name to save. Using the unittest
conventions, each method will have its own class of one or more unit tests within that file. The
full set of tests is not shown here but can be found in the test_ngrams.py file in the book’s

GitHub repository.

There are guidelines for adding additional tests to the test file using a comment format. By typing
a comment (starting with # in Python), GitHub Copilot reads the comment and suggests code.
Although it should be equivalent, we have found this approach to sometimes be less accurate
than using the Editor Inline Chat or GitHub Copilot Chat. As shown in Figure 13.4, the expected

answer incorrectly includes numbers that should have been removed:

192 # test create ngrams with 1@-digit phone numbers including area codes

103 def test phone_number(self):

104 self.assertEqual(

1085 create _ngrams("(123) 456-7898", 2),

106 ["12", "23", "3a4", "a45", "s56", "67", "78", "89", "90"]
107)

Figure 13.4: This test, generated from the #comment, incorrectly includes numbers

Revising the test with the #test create_ngrams with a 10-digit phone number and make
sure the numbers are removedrequestresulted in fewer numbersincluded in the test. However,
the variability of the unit tests with correct and incorrect responses means that checking them

must be part of the verification process.

If we repeat a similar process of adding a zip code of the form 12345-6789 using the Editor Inline
Chat feature, the results are more promising, as shown in Figure 13.5. Not only did it correctly
produce the test, but it also added several additional tests. However, as a note of caution, the

Inline Chat did not always produce accurate tests and sometimes incorrectly included numbers.

318 Writing and Maintaining Unit Tests
/tests add a new test for a zip code of the form of five digits - 4 digits

Ask Copilot GPT4iv @ O B v
Close O v

108 def (self):

109 # Should remove all digits and punctuation, leaving only spaces (if any)

110 self.assertEqual(

111 create ngrams("12345-6789", 2),

112 [1

113)

114

115 def (self):

116 self.assertEqual(

117 create ngrams("abcdefg”, 5),

118 ["abcde", "bcdef", "cdefg"]

119)

120

121 def (self):

122 self.assertEqual(

123 create_ngrams("a b c¢”, 3),

124 [*fab", " b ™, "bc"]

125)

198

Figure 13.5: The tests from Editor Inline Chat produced a correct test and others as well

This section has described how GitHub Copilot can create unit tests from the implementation

code, either for a single method or an entire file. The next section describes how ChatGPT can

achieve similar results.

ChatGPT for testing

ChatGPT can also be used to write unit tests. An example prompt to write Python unit tests is

as follows:

You are a Python testing assistant.

Given Python code enclosed within {{{ }}}, generate unit tests using the
unittest framework. For each function or method in the code:

1.Create a corresponding test method within a unittest.TestCase subclass.
2.Use meaningful test method names that reflect the function being tested.

3.Include appropriate assertions based on the function's logic and
expected behavior.

4.Use mock objects or patching where necessary (e.g., for I/0, APIs, or
external dependencies).

5.If a function has multiple logical branches or edge cases, include test
cases for them.

6.Do not include the original code in the output—only the test code.

Chapter 13 319

7.Import any modules or classes necessary for the tests to run.

8.Format your output as a complete, valid Python test file using the
unittest module.

Input:
python

{{
Paste Python code here

39

Output:

Applying this template to the ngrams.py code produced seven different tests without further
elaboration. The file is listed in test_ngrams_chatgpt. py in the GitHub repository for the book.
One of the tests created was incorrect and subsequently failed, as shown in Figure 13.6. The test

incorrectly suggests that a $ and s are equivalent, instead of replacing the dollar symbol with a
space.

12 def test lowercase_remove_punct_numbers_with_symbols(self):

13 self.assertbEqual(

14 lowercase_remove_punct_numbers("Te$ting #punctu@ation &numbers 456™),
15 "testing punctuation numbers "

16)

PROBLEMS o QUTPUT DEBUG CONSOLE TERMINAL PORTS

sooclfos

FAIL: test lowercase remove_punct_numbers_with symbols (tests.test ngrams_chatgpt.TestTextUtils.test_lowerc
ase_remove_punct_numbers_with_symbols)

Traceback (most recent call last):
File "C:\Users\PeterH\Documents\Euro 2025\Book Writing\testing chapter\src\tests\test ngrams chatgpt.py”,
line 13, in test_lowercase remove punct_numbers_with_ symbols
self.assertEqual(
AssertionError: 'teting punctuation numbers ' = 'testing punctuation numbers '
- teting punctuation numbers
+ testing punctuation numbers
7o+

Figure 13.6: ChatGPT produced one incorrect test out of seven for ngrams.py

320 Writing and Maintaining Unit Tests

When prompted Are there additional tests that should be included?, ChatGPT produced

an additional set of tests shown in Figure 13.7, each with code, and offered to convert them into
a code library:

Summary of Suggested Additions

Function Suggested New Tests

lowercase remove punct numbers Empty string, all punctuation, all alpha, mixed whitespace
multiple to_single spaces Empty, only whitespace, already spaced

create_ngrams Empty, small/large n, edge alignment cases

Figure 13.7: Additional ChatGPT tests that it suggested when prompted

As a supplement to the unit tests, additional tests can also be run directly within ChatGPT and
included in the overall test suite. The test_ngrams_chatgpt_extra.py file in the GitHub repos-
itory shows the tests generated. In addition to running the tests in ChatGPT, this platform also
explains why tests fail. Figure 13.8 presents a valuable discussion of the test failure and the han-
dling of tabs and newlines, which could be a failed test or an issue with the original code. Such

insightinto the code will help improve the overall quality. ChatGPT made suggestions to change
the tests and rerun them:

X Failed Test 1: test_lowercase_remove_punct_numbers_whitespace mix
Why it failed:

The function lowercase_remove_punct_numbers preserves tabs (\t) and newlines (\n) as whitespace, but

your test expected them to be replaced with regular spaces.
Fix:

The re.sub(r'[*a-z\s]', '", text.lower()) pattern retains all whitespace characters (\s includes tab,
newline, space). So the actual return includes \t and \n.

2 Update the test to reflect actual behavior or modify the function to normalize whitespace. Here's the

adjusted test:

python @ Copy ¥ Edit

def test_lowercase_remove_punct_numbers_whitespace_mix(self):

selF.asser‘tEqual(lowercase_r‘emove_punct_nuw‘\l;l"s("AEC\tDEF\nGHI"), "abc\tdef\nghi™)

Figure 13.8: Explanation of a failed text from ChatGPT

Chapter 13 321

ChatGPT is clearly effective at writing unit tests, even if it requires multiple requests. It is also pos-

sible to write other kinds of tests, such as data-driven tests, which is the topic of the next section.

Data-driven tests

The GitHub Copilot or ChatGPT prompt can enable data-driven or random testing that supple-
ments the unit test coverage. Using the Generate data driven tests for lowercase_remove_

punct_numbers prompt with Copilot gave the following code:

import unittest

from src.ngrams import lowercase_remove_punct_numbers

class TestLowercaseRemovePunctNumbers(unittest.TestCase):
def test data driven(self):

test_cases = [

("Hello, World! 123", "hello world "),
("ABCdef", "abcdef"),

("1234'@#$", ""),

("Al! b2@ C3#", "a b c"),

(R P

¢t),

("Python3.8_is#awesome!", "pythonisawesome"),
("No PUNCTUATION", "no punctuation"),

("MiXeD CaSe &*7%", "mixed case "),

("newline\nTab\tSpace ", "newline\ttab\tspace "),
for input_text, expected in test_cases:
with self.subTest(input=input_text):
self.assertEqual(lowercase_remove_punct_numbers(input_
text), expected)

if __name__ == "__main__":

unittest.main()

322 Writing and Maintaining Unit Tests

This file can be found as test_data_driven_ngrams.py in the book’s GitHub repository. This
example and the unit tests in the previous section show how GenAlI can create tests from the
implementation code. GitHub Copilot and ChatGPT use this code to identify meaningful test
cases, including many edge cases. To improve the coverage, additional tests can be written man-
ually, semi-manually with GenAl, or by simply requesting additional tests. These unit tests can
be extended similarly to other types of testing, such as integration testing, performance testing,

and A/B testing.

As discussed in these two sections, both unit tests and data-driven tests can be written using
GenAl from the implementation code. While creating test code from the implementation code
works, one should consider writing the tests first rather than the implementation. This approach

is called test-driven development and is described in the next section.

Test-driven development

Test-driven development (TDD) is one component of the Extreme Programming (XP) agile soft-
ware methodology proposed by Kent Beck in the 1990s. Two of his books can be found in the Further
reading section. The main concept of TDD is that the unit tests are written first and subsequently
fail since there is no code to support them. The software engineer then writes the code until the
tests pass. Itis widely accepted that this practice improves code design and enhances testability.
Empirical studies such as that by Mékinen & Jiirgen Miinch (https://link.springer.com/cha
pter/10.1007/978-3-319-03602-1_10) generally support the value of TDD. The approach also

focuses the software engineer on passing tests rather than adding other features.

Whether to write tests first or last often becomes a religious debate with devout followers on
either side. We will not attempt to resolve the issue here. If we believe that GenAl always writes
perfect code that exactly and cleanly meets all the requirements, then it does not matter whether
the tests or the code are used to write the other. A recent 2024 IEEE study by Jiri et al. (https://
ieeexplore.ieee.org/document/10685204) showed that unit tests written by humans have
fewer errors than unit tests by GenAl, but the technology is advancing rapidly and closing this gap.
This leaves us with a conundrum that the code may be flawed, and the tests may not be perfect,
yet we need both to be accurate. The more common convention of software engineers is to write
the code using GenAl and then use GenAl to write the tests, which mirrors their development
practice. With TDD, there is a potential to write the perfect tests, perhaps with GenAl, and then
use GenAl to prove that the implementation passes the tests and their perceived requirements. In

fact, we can go further and use GenAl to iterate and craft the code that meets these requirements.

https://link.springer.com/chapter/10.1007/978-3-319-03602-1_10
https://link.springer.com/chapter/10.1007/978-3-319-03602-1_10
https://ieeexplore.ieee.org/document/10685204
https://ieeexplore.ieee.org/document/10685204

Chapter 13 323

As an example for this section, we will use the intersection of two rectangles problem, which
simply identifies the overlapping area between two rectangles. To simplify the problem, we
restrict the rectangle definition to use two points—the x and y coordinates of the lower-left and
upper-right corners of the rectangle. In our notation, the rectangle is represented as (xII, yil, xur,

yur) as shown in Figure 13.9:

(x2ur, y2ur)

B
|
1 (xlur, vlur}:

|
|
|
|
|
(x21l, y21l) —_——l

(x1l1, y11l) @

Figure 13.9: Intersecting rectangle problem

Rather than immediately start coding the result, we will instead consider the various test cases,

which are broken down into the following:

1. Intersecting rectangles (Figure 13.10):

L | S I N o
ey I LY]
1 1 I— = mm I 1 ! ey
| IR ! i] I 1
1 A it 1 1
|]
Figure 13.10: Example test cases for overlapping rectangles
2. Non-intersecting rectangles (Figure 13.11):
i T
i H I
| i |
Joou ity R |
———

Figure 13.11: Example test cases for non-overlapping rectangles

324 Writing and Maintaining Unit Tests

3. Invalid rectangles (Figure 13.12):
(x1It, y1H)

(x1ur, ylur)

Figure 13.12: Example test cases for invalid rectangles that fail our definition

As part of the TDD process, we begin by coding the unit tests using GenAl. Using descriptive test
names facilitates the accurate creation of the test code. A few tests are shown to illustrate the
ideain the following code snippet (the full file with 21 unit tests is available in the book’s GitHub

repository as test_rectangle_intersection.py):

import unittest

from rectangle_intersection import rect_intersection_area

class TestRectangleIntersectionArea(unittest.TestCase):
def test_intersecting rectangles(self):
rectl = (0, 0, 4, 4)
rect2 = (2, 2, 6, 6)
self.assertEqual(rect_intersection_area(rectl, rect2), 4)

def test_intersecting_rectangles_swapped(self):
rectl = (2, 2, 6, 6)
rect2 = (0, 0, 4, 4)

self.assertEqual(rect_intersection_area(rectl, rect2), 4)

def test_non_intersecting_rectangles(self):
rectl = (0, 0, 2, 2)
rect2 = (3, 3, 5, 5)

self.assertEqual(rect_intersection_area(rectl, rect2), ©0)

For the tests to appropriately fail as the next step of the TDD process, we need a stub file, rectangle_
intersection.py, containing rect_intersection_area(rectl, rect),which arbitrarily returns

None. An example of this code is shown as follows and is stored as rectangle_intersection.

Chapter 13 325

py in the same folder. These names are based on the import statement at the beginning of the

preceding test file code, as shown:

def rect_intersection_area(rectl, rect):

return None

With the TDD process, we have encoded the requirements of the code as tests. The only missing
piece is the actual implementation. Normally, we would iterate between writing the implemen-
tation and running the tests to ensure that the code functions as expected. Using GenAl, we can
replace this process with a request to GenAl to iteratively write the code until it passes all the tests.
We will discuss how this can be achieved using GitHub Copilot in both VS Code and PyCharm
IDEs, and then show the TDD approach using ChatGPT.

TDD using GitHub Copilot within VS Code

The TDD approach within VS Code is arguably the most straightforward. First, we ensure that
both rectangle_intersection.py and test_rectangle_intersection.py are open, then run

the latter unit test file. Then, we can use this command in the Copilot chat window:

@terminal /fix rect_intersection_area according to the unit test failure

This produces an updated set of code in the same chat window that we copied and pasted as a

replacement for the rectangle_intersection.py implementation. This is shown as follows:

def rect_intersection_area(rectl, rect2):

Calculate the area of intersection between two rectangles.
Each rectangle is represented as a tuple (x1, yl, x2, y2):
- (x1, y1): bottom-left corner

- (x2, y2): top-right corner

x_overlap = max(0, min(rectl[2], rect2[2]) - max(rectl[0@], rect2[0]))
y_overlap = max(0, min(rectl[3], rect2[3]) - max(rectl[1], rect2[1]))

return x_overlap * y overlap

326 Writing and Maintaining Unit Tests

Running the same unit tests against this new implementation reduced the number of tests that
failed from 21 to 9. Most of the failures are caused by the lack of exceptions raised for invalid

rectangles. These were included in the tests but ignored by the GenAl.

We repeated the process with the same /fix command to produce the next iteration of code
implementation, but the errors persisted. In some cases, running the process two or three times
resolved the errors. In other cases, we needed to manually revise the /fix command with more

explicit instructions:

@workspace /fix rectangle_intersection_area according to the unit test

failure and be sure to raise ValueError for invalid rectangle dimensions

The generated implementation passed all the unit tests and is shown as follows:

def rect_intersection_area(rectl, rect2):
Calculate the area of intersection between two rectangles.
Each rectangle is represented as a tuple (x1, y1, x2, y2):
- (x1, y1): bottom-left corner
- (x2, y2): top-right corner

nun

if rectl[0] >= rectl[2] or rectl[1] >= rectl[3]:
raise ValueError(f"Invalid rectangle dimensions for rectl:
{rect1}")
if rect2[0] >= rect2[2] or rect2[1] >= rect2[3]:
raise ValueError(f"Invalid rectangle dimensions for rect2:
{rect2}")

x_left = max(rectl[@], rect2[0])
y_bottom = max(rectl[1], rect2[1])
x_right = min(rectl[2], rect2[2])
y_top = min(rect1[3], rect2[3])

if x_left < x_right and y_bottom < y top:
return (x_right - x_left) * (y_top - y_bottom)
else:

return ©

Chapter 13 327

In this section, we used a simple one-line command within the VS Code chat to create an im-
plementation. It uses the implementation code, unit tests, and the output of the tests directly to

write an improved version of the implementation code.

TDD using GitHub Copilot within PyCharm

Using the TDD approach within PyCharm is not quite as simple as with VS Code. As of January
2025, GitHub Copilot cannot access PyCharm’s terminal window, which means it cannot access
the failed unit tests directly. The output of failed tests informs Copilot what needs to be fixed
in the implementation, and so this is a critical component. As a solution, we can paste the error

message of the failed messages into the GitHub Copilot chat window:

CONTEXT: You will be given an error message enclosed in {{{ERROR}}}.
TASK: Fix the implementation of rectangle_intersection_area _mean so it
passes all tests.

ERROR: {{{ ... <omitted for brevity> ... }}}
FIXED CODE:

This prompt, whether used in an inline chat or a chat window, should generate a fully functional

implementation that passes the unit tests.

For TDD with PyCharm, we need to use a more complete template call within the chat that passes
the output of the failed unit tests. With this information, as well as the implementation and test
code, a new version of the implementation code aims to solve the issues and pass the unit tests.

A similar approach can be used with ChatGPT, which will be described next.

TDD using ChatGPT

As part of the TDD process, ChatGPT can also be used to generate improved implementation code
based on the combination of the existing implementation code, unit test code, and the errors or

results of the unit test execution. We use triple brackets to enclose each of these components:

CONTEXT: You are provided with

1. Python function enclosed with {{{ FUNCTION }}} that has a bug.
2. Test suite code enclosed with {{{ UNIT TESTS }}}.

3. Error message enclosed with {{{ ERROR }}}.

TASK: Fix the function implementation

FUNCTION: {{{def rect_intersection_area(rectl, rect2):

return None

328 Writing and Maintaining Unit Tests

13}
UNIT TESTS: {{{ ... omitted for brevity ... }}}
ERROR: {{{ ... omitted for brevity ... }}}
CODE:

In this instance, ChatGPT produced the following output code, which is similar but mildly differ-
ent from the GitHub Copilot output. ChatGPT explained the implementation, and all the created

tests passed in the first iteration.

def rect_intersection_area(rectl, rect2):
x1_1, y1 1, x2_1, y2_1 = rectl
x1 2, yl 2, x2_2, y2 2 = rect2

Validate input rectangles
def is_invalid_rect(x1, y1, x2, y2):
return x1 >= x2 or yl >= y2

if is_invalid_rect(x1_1, y1 1, x2_1, y2 1) or is_invalid_rect(x1_2,
yl 2, x2_2, y2_2):
raise ValueError("Invalid rectangle with non-positive width or
height")

Find intersection bounds
inter_left = max(x1_1, x1_2)
inter_right = min(x2_1, x2_2)
inter_bottom = max(yl_1, yl_2)
inter_top = min(y2_1, y2_2)

Check if rectangles intersect
if inter_left >= inter_right or inter_bottom >= inter_top:

return 0

Compute and return intersection area

return (inter_right - inter_left) * (inter_top - inter_bottom)

Chapter 13 329

If the tests had not passed, the new code would need to be copied and pasted into the IDE, replacing
the previous version. The unit tests would need to be rerun against the new code. The revised im-

plementation code and resulting unit test errors must be copied again into the ChatGPT template.

The advantage of the TDD approach is that it asserts that the implementation is correct based
on the fact that the code passes the unit tests. The code produced in this simple example is quite
reasonable, but more complex tasks may produce functional code of lower quality. In such cases,
the code should be refactored. However, this is much easier with a full set of tests that continue

to prove the code is meeting the functional requirements.

Whether TDD is the ideal strategy is still up for debate. Without TDD, the user focuses on the
implementation, from which the GenAl can certainly create reasonable tests. As we observed,
some of the tests may fail, and some may indicate limitations of the implementation. The software
developer must then understand all the tests and provide enough logical coverage to be confident
in the implementation. With TDD, the cognitive effortis in assuring the tests are sufficient, from
which code can be generated. If the GenAl provides an implementation, the most the developer

will have to do is refactor the code.

Whether the code or tests are written first, the tests often require meaningful datasets. The next

section describes how GenAl can be used to create realistic data.

Sample data creation with GenAl

One aspect of testing is the availability of data that is representative of the kind you will encoun-
ter in the wild. If you have been involved in creating mock data in years past, you will certainly
appreciate GenAl approaches to this problem. The new techniques can create a variety of types
of data with as specific a prompt as you need. For example, the following prompt works in either
ChatGPT or GitHub Copilot:

create a table with 10 rows and the following columns:
5 digit integer id called "ID"

first name

last name

address consisting of a number, street name, and whether it is a st., dr.
or ave.

city

country

disease

age

330 Writing and Maintaining Unit Tests

The resulting table outputis shown in Figure 13.13, which includes typical names, address formats,
diseases, and so on. This kind of data can be saved to a file and used for testing. Although such
data could be generated on the fly, the purpose of unit testing is to create repeatable tests that
achieve consistent results. Tests are usually added to a regression test package as part of the CI/
CD methodology and rerun periodically to ensure that past errors do not recur as code versions

evolve. Therefore, the data should be stored and reused.

& GitHub Copilot

ID First Name Last Name Address City Country Disease Age
10234 Alice Smith 123 Maple St. Boston USA Influenza 34
20458 Brian Johnson 456 Oak Dr. Toronto Canada Diabetes 45
31567 Carla Lee 789 Pine Ave. London UK Hypertension 52
42689 David Kim 321 Cedar St. Sydney Australia Asthma 28
53790 Emma Patel 654 Birch Dr. Mumbai India Malaria 41
64821 Frank Muller 987 Elm Ave. Berlin Germany Arthritis 60
75932 Grace Rossi 159 Spruce St. Rome Italy COVID-19 37
86043 Henry Dubois 753 Willow Dr. Paris France Tuberculosis 50
97154 Irene Chen 852 Aspen Ave. Beijing China Hepatitis 29
18265 Jack Lopez 951 Walnut St. Madrid Spain Dengue 33

Figure 13.13: Example table of mock data produced by GitHub Copilot

Of course, the data is not limited to addresses but can be more technical, such as the Create a
FASTA file with 3 sequences of length 15 to 25 nucleotides prompt, which returns

three bioinformatics DNA sequences as shown in Figure 13.14:

Here's the FASTA-formatted file with 3 randomly generated DNA sequences, each 15-25 nucleotides long:

shell @ Copy ¥ Edit

>Sequence_1
GAAATTACCGACGGCCGGLCC
>Sequence_2
TGAAAGGACCCGCTCCTTA
>Sequence 3

TTCAGACGGTCTACTT

Let me know if you'd like to download this as a .fasta file or generate more sequences. [>-)

Figure 13.14: A FASTA bioinformatics sequence file with three DNA sequences

Chapter 13 331

As can be seen from the previous output, it suggests saving the file as a . fasta file. In fact, it can

create and save data in any format, including tables, JSON, CSV, and so on.

Another use case that is often convenient when scripting is to create some temporary data for a

function, perhaps in a Jupyter notebook. Consider the Euclidean distance method:

def get _euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

nun

Return the squared Euclidean (L2) distance between two arrays."""

return np.sqrt(np.sum((a - b) ** 2))

GitHub Copilot used the Create sample inputs for get_euclidean_distance() prompt to

produce a few samples of inputs that can be directly applied, as shown in Figure 13.15:

& GitHub Copilot

Here are some sample inputs for get_euclidean_dist() :

import numpy as np

Example 1: 1D arrays
= np.array([1, 2, 3])
b = np.array([4, 5, 6])

w

Example 2: 2D arrays
a2 = np.array([[1, 2], [3, 4]1D)
b2 = np.array([[5, 6], [7, 8]])

Example 3: Negative values
a3 = np.array([-1, -2, -3])
b3 = np.array([1, 2, 3])

You can call get_euclidean_dist(a, b), get_euclidean_dist(a2, b2), or get_euclidean_dist(a3, b3) with these

inputs.

Figure 13.15: GitHub Copilot creates example inputs for functions for informal testing

In the TDD process, developers write the unit test code first, and the implementation code is
written to pass the unit tests. The unit tests can be written by developers using standard Ge-
nAl approaches to verify that the implementation code will meet the requirements. From either
VS Code or PyCharm, GitHub Copilot can iteratively create the implementation code from the
unit test code alone. ChatGPT offers similar functionality through a prompt template. The next
section provides recommendations on how GenAl approaches can best be used to complete the

implementation and test code.

332 Writing and Maintaining Unit Tests

Practical insights

Testing has been a focus of technology from the templates of “vintage AI” to the present time
with GenAl. There has always been a tendency to write the code and eventually write the tests
to make it acceptable to your organization. These new GenAl tools can definitely increase the
velocity of the coding process. The verification process to check the code should not be just a
one-time visual inspection but should involve unit tests that can be applied repeatedly to assert

the correctness of the code.

The different GenAlI solutions produce slightly different results, but we generally prefer GitHub
Copilot for creating tests since the close integration with the code and iterative approach is easier
using the single tool within the IDE, whether VS Code or PyCharm. By keeping similar test code

open in the browser, accuracy and style improve due to the extra context.

Regardless of the particular GenAl tool used, it is critical to check the implementation and test
code. Using GenAl to create the test code from the implementation or vice versa helps minimize
errors since the implementation code that passes unit tests achieves at least a first level of re-
quirement verification. Failing unit tests provide a chance to rethink code requirements for the

implementation and test code.

Summary

In this chapter, we explored various aspects of testing using GenAl. Although there are many
types of tests and they are the topic of many books, the most common tests are unit tests. In unit
testing, each test should test a single point of functionality and should be independent of other
tests. Together, a complete set of unit tests proves that the code implementation functions as
expected. If the code is refactored, augmented, or integrated in the future, the same unit tests

assert the correctness of the functionality.

The chapter described a few approaches to creating tests from the implementation. GitHub Co-
pilot and ChatGPT can both be used to easily write unit tests for a single method or an entire
Python file. Both techniques have some variability in terms of the types of tests and coverage that
they provide in a first pass. In some cases, the tests may not be correct and may need additional
prompting or manual correction. In other scenarios, prompting may be useful to add further tests
to improve the coverage of the edge cases. Developers must be cautious that the tests accurately

capture the requirements and are sufficient to assert the correctness of the code.

Chapter 13 333

TDD is a methodology from Extreme Programming where unit tests are written first and, by defi-
nition, fail. The implementation code is written to pass all the unit tests. GenAl can help suggest
the test code, especially when descriptive method names are used. Using a set of tests, either
GitHub Copilot or ChatGPT can iteratively generate the implementation code automatically. The
process repeats until the unit tests pass. By writing the full set of tests first, the developer conveys
the scope of the tests and behavior in various edge cases. The only required interaction with the
generated implementation code is possibly refactoring it to improve quality, which is easier to

achieve with the unit tests.

Two additional topics were covered in the chapter, which involved enriching data for tests. GenAl
can create more elaborate tests by synthesizing different scenarios. Data-driven testing creates
test pairs for inputs and outputs to test multiple scenarios. In addition, the technology can create

realistic test sets applicable to a wide range of disciplines.

In the next chapter, we introduce ways that GenAl can identify capacity limits in terms of execution
speed and memory management. We will also show how GenAl can optimize code to improve

performance under these two constraints.

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: What are the advantages of TDD?

Answer: TDD, or test-driven development, is a methodology where the tests are written first,
and the implementation code follows. The tests cover the range of required functionality and
edge cases to ensure they meet expectations. Using TDD ensures that the tests are written and
that the code (written by humans or GenAl) functions correctly. Empirical results show that the

implementations are generally structured better and are more amenable to tests.

Question 2: If software includes both implementation and unit tests, does it need to be manually
verified?

Answer: Without question, a full set of unit tests and correct implementation help identify failures
or misinterpretations of the requirements. A failed test is likely due to a flawed test or a flawed
implementation and provides an opportunity to review the requirements. While testing helps
identify such issues, we have observed many cases where the generated tests lack full coverage
and may be incorrect. Similarly, there are numerous examples of incorrectimplementations. The

authors recommend manual verification in addition to complete unit tests.

334 Writing and Maintaining Unit Tests

Further reading

e Kent Beck’s book on extreme programming. 2000. Extreme Programming Explained: Em-
brace Change.

e KentBeck’sbook on test-driven development. 2002. Test- Driven Development by Example.

e Effectsof Test-Driven Development: A Comparative Analysis of Empirical Studies. Simo Méakinen &
Jurgen Miinch: https://1link.springer.com/chapter/10.1007/978-3-319-03602-1_10

e Leveraging Large Language Models for Python Unit Test. Medlen Jiri, Bari Emese, Patrick
Medlen. 2024: https://ieeexplore.ieee.org/document/10685204.

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/
unlock, then search for this book by name.

Note: Keep your purchase invoice ready before

you start.

https://link.springer.com/chapter/10.1007/978-3-319-03602-1_10
https://ieeexplore.ieee.org/document/10685204
http://packtpub.com/unlock
http://packtpub.com/unlock

14

GenAl for Runtime and
Memory Management

In the age of big data, artificial intelligence, and intensive data processing, an essential char-
acteristic of well written Python programs is their ability to efficiently manage both memory
usage and runtime performance. As part of the Software Development Life Cycle (SDLC), it
is common practice to profile our programs, anticipate performance limitations and strive for

efficiency in both aspects.

In addition to utilizing traditional tools for profiling program performance and addressing inef-
ficiencies, we can leverage the model mastery of Large Language Models (LLMs) to code profile

snippets, analyze maximal capacities, and optimize code to handle larger workloads.

In this chapter, we will examine two examples of inefficient implementations: a Fibonacci calcu-
lator with significant runtime overhead and a statistical analysis function that demands excessive
memory for large matrices. By utilizing prompt precision best practices and chaining prompt
engineering technique, we will demonstrate how GenAl applications can help profile performance

metrics, estimate maximum capacities, and optimize the code to handle larger inputs effectively.
The topics covered in this chapter include:

e Introducing time and space complexity analysis
e Profiling runtime and memory consumption with GitHub Copilot
¢ Analyzing maximal capacity with ChatGPT

e Optimizing code with chained prompts

336 GenAl for Runtime and Memory Management

Technical requirements

To get the most out of this chapter, ensure you have the following:

e GitHub Copilot account

e IDE —either VS Code or Pycharm

e OpenAl account with access to ChatGPT and OpenAl API

e Access to the book’s repository available at: https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

e Virtual environment set up in VS Code or PyCharm

e OpenAl API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting
up OpenAl API access and token generation, see Chapter 2. If you need help creating an OpenAl

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Introducing time and space analysis

In our current technology cycle, most companies are leveraging big data and artificial intelligence
to improve their businesses. For example, videos on the YouTube and TikTok platforms are viewed
over a billion times per day which generates recommendations and advertising value. In these

cases, even 1% gains in efficiency for storage or computation may save millions of dollars.

According to Lambda Labs, training the generative pre-trained transformer model GPT-3 involved
about 700 gigabytes of Random Access Memory (RAM) and thousands of powerful Nvidia GPUs
operating in parallel, with a cumulative compute time equivalent to 355 years. Even a minor
inefficiency in implementing these models could lead to substantial costs or, in the worst case,

create a bottleneck that would prevent the model from running effectively.

The runtime of a program

The runtime of a program refers to the time it takes to execute the tasks defined in the source
code on a specific hardware configuration with a given input. The runtime duration of a program
depends on factors such as the computational complexity (the number of operations required to

complete the task) and the hardware such as the central processing unit (CPU).

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 14 337

For example, consider an inefficientimplementation of the Fibonacci number computation using
recursion:
def fibonacci_recursive(n):
if n <= 1:
return n

return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)

In this implementation, each Fibonacci number computation involves two recursive calls: one
for the previous number and another for the one before that. Each of these calls triggers two

additional recursive calls, and so on, until the base condition n <= 11is met.

To illustrate how quickly the runtime of this implementation grows, here are examples of recorded

runtimes on a MacBook Pro with an M1 chip using this implementation:
Runtime for fibonacci_recursive(5): 0.000006 seconds

Runtime for fibonacci_recursive(35):1.7051 seconds

Runtime of fibonacci_recursive(40):19.5045 seconds

Computing the fibonacci_recursive(100) is estimated to take 15 trillion seconds, or approxi-
mately 475,000 years, making it completely impractical. This exponential growth represents one
of the least desirable complexities in algorithm design as it remains inefficient regardless of the

hardware used, as we will now explore.

Runtime complexity refresher

Since computers vary in speed, it is widespread practice to measure runtime complexity in general
terms using Big-O notation, denoted as O(...). This notation describes how the runtime scales

relatively to the size of the input data.
For instance:

e Finding the minimum number in an unsorted array of length nhas a runtime complexity
of 0(n)
e Printing all (i, j)combinations of elements in an array of length nhas a runtime com-

plexity of 0(n?).

Retrieving the nth Fibonacci number using fibonacci_recursive has a runtime complexity of
o@m).

338 GenAl for Runtime and Memory Management

If youneed a further refresher on Big-O notation or are unfamiliar with it, we recommend checking
the Further Reading section at the end of this chapter. Big-O notation is an essential concept for

developers, both in application design and day-to-day problem-solving.

The space consumption of a program

The RAM consumed by a program during execution reflects its memory space usage. For instance,
a MacBook Pro with 16 gigabytes (GB) of RAM can hold about 2 billion float64 values where each
float64 occupies 8 bytes.

Consider the following inefficient function get_top_video thatreads acomma-separated values
(CSV) file into memory as a Pandas DataFrame and returns the video with the highest average

watch percentage:

def get_top_video(path):
interactions = pd.read_csv(path)
avg_ratio = interactions.mean(axis=0, skipna=True)

return avg_ratio.idxmax()

The input CSV file may represent a matrix as follows, where each cell indicates the percentage of

a specific video watched by a user:

video_1 | video_2 | video_3 | video_4 | video_5 | video_6

user_1 0.5 1

user_2 0.1 0.7 0.9

If the input dataset contains 50,000 users (rows) and 50,000 videos (columns), this would involve
loading 2.5 billion cells into memory. Such a large dataset exceeds the 16 GB RAM limit, leading

to an out-of-memory error and causing the function to fail.

Space complexity

To assess memory usage, developers often use space complexity, expressed in Big-O notation, to
describe how memory usage scales with the size of the data structure. For example, in get_top_
video, the space complexity is O (m x n) for a CSV file with mrows and ncolumns, as the function

loads the entire dataset into memory.

Chapter 14 339

Balancing efficiency tradeoffs

When designing programs, it is common to encounter tradeoffs between memory usage and
runtime efficiency. For instance, caching is the process of storing information such as a function’s
calculated output values in RAM rather than recomputing them. This can significantly improve
the speed of repeated calculations but also increases memory consumption. In a program that
calls fibonacci_recursive repeatedly with the same input, such as n=35 which previously took

1.7 seconds to run, caching the result could save 1.7 seconds for each subsequent call.

Another tradeoff is with the get_top_video we read the entire file into memory before starting
the calculations. It may be more practical to read smaller batches of data from disk and compute
the cumulative top videos for each batch sequentially rather than handling the entire dataset at
once. Reading and processing smaller chunks of large CSV files might take more time but helps

avoid exceeding RAM limitations.

Now that we grasp the importance of runtime and space efficiency, how to assess their complexity,
and the trade-offs involved, we can move forward and explore how GenAl can assist with each

step in managing and optimizing program efficiency.

Profiling runtime and memory consumption with
GitHub Copilot

Profiling runtime and memory usage is a straightforward process. The built-in time moduleis
useful for tracking runtime and the third-party memory_profiler library monitors memory usage.
The next two sub-sections describe how GitHub Copilot can assist by either completing our imple-
mentation or generating the code from scratch for these two cases. At the end of this section, we

will ask ChatGPT to predict runtimes and memory size constraints using these analyses as input.

Profiling runtime

Measuring the runtime of a function in Python helps evaluate whether the time taken to complete
the tasks in the source code aligns with acceptable thresholds and identifies potential areas for

improvement. This can be achieved using a script like the following:

start = time.process_time()
recursive_fibonacci(35)
end = time.process_time()

print(f"Time taken: {end - start:.3f} seconds")

340 GenAl for Runtime and Memory Management

By recording the time before and after execution, we can calculate the runtime as the difference

between these times to compute the 35th Fibonacci number.

In Chapter 15, we will explore how to use decorators to log application performance. For now, we

will simply use start and end times to measure program runtime.

Since the profiling code is short and straightforward, the authors mostly use GitHub Copilot for
such tasks. The following example demonstrates how Copilot can understand the purpose of

our file, profile_runtime.py, by applying the five S’s for prompt precision as shown in Figure 14.1:

 profile_runtime,py

import time

from fibonacci import fibonacci_recursive

[> it __name__ == '__main__':
6 start o time.time()_

Figure 14.1: Copilot completion

In this example, we named the file profile_runtime.py and included the necessary imports for the
time package and the fibonacci_recursive function to establish a clear context for Copilot.
Based on these, Copilot is likely to identify our goal of profiling the fibonacci_recursive func-

tion and suggests a complete implementation for runtime profiling.

Alternatively, we can use chat, ChatGPT or OpenAl API to generate the profiling script from scratch.

For example, we could use the following prompt in Copilot chat:

print the runtime of fibonacci_recursive for n=35

Chapter 14 341

Below is a sample implementation provided by Copilot in PyCharm:

0 hilahersz 3 0

print the runtime of fibonacci_recursive for n=35

& GitHub Copilot @0 g

> 4 steps completed successfully

To print the runtime of fibonacci_recursive for n=35, you can use the time module to measure the
start and end times of the function call. Here is the complete code:

import time @ -2
from fibonacci import fibonacci_recursive

n = 35

start_time = time.time()
result = fibonacci_recursive(n)
end_time = time.time()

print(f"Result: {result}")
print(f"Runtime: {end_time - start_time} seconds")

Figure 14.2: Copilot chat to write the full method from a profiling suggestion

This code can be used as-is to profile the runtime of the function. Alternatively, we can make

slight modifications, such as rounding the runtime value for better readability.

Here is an output from running the suggested profiling script:

Result: 9227465

Runtime: 1.7093181610107422 seconds

While a runtime of 1.7 seconds for n=35 might seem reasonable, the runtime for larger inputs, such
as 50 or 100, becomes impractical. Later in this chapter, we will explore techniques to identify

and address these challenges.

342 GenAl for Runtime and Memory Management

Profiling space usage

Profiling a program’s memory usage can be achieved with the @profile decorator from the
memory_profiler package. This lightweight tool monitors memory usage for every line within
a function. The package should be included in the requirements.txt file of this book’s repository,

so it should already be accessible in your virtual environment.

For example, to profile the function get_top_video, which retrieves the video with the highest
average watch percentage, we can add the @profile decorator before the function definition. A call
to the function with the file interactions_10_000.csv that records 10,000 users’ watch percentages

0f 10,000 videos will log the memory consumption for each line:

import pandas as pd

from memory_profiler import profile

@profile
def get_top_video(path):
interactions = pd.read_csv(path)
avg_ratio = interactions.mean(axis=0, skipna=True)

return avg_ratio.idxmax()

get_top_video('interactions_10 000.csv')

The profiling output provides details such as line numbers, total memory usage, incremental
memory usage, the number of times each statement was executed, and the content of those

executions. For reference, Figure 14.3 shows the output from the code above:

Line # Mem usage Increment Occurrences Line Contents
5 130.7 MiB 130.7 MiB 1 @Bprofile
6 def get_top_video(path):
7 1020.4 MiB 889|.7 MiB 1 interactions = pd.read_csv(path)
8 1113.4 MiB 93.0 MiB 1 avg_ratio = interactions.mean(axis=0, skipna=True)
9 1113.4 MiB 0.0 MiB 1 return avg_ratio.idxmax()

Figure 14.3: Profiler output showing memory consumption by line

Chapter 14 343

The file interactions_10_000.csv contains 10,000 x 10,000 cells of type float64, requiring 8 bytes

each, and the expected memory usage is approximately:

10,000 x 10,000 x 8 ~ 800 MB

This aligns closely with the memory consumption recorded at line 7, where loading the CSV file
into a Pandas DataFrame consumed 889.7 MB. This includes both the memory required for the
cell data and the overhead associated with the Pandas DataFrame object such as column and

row names, metadata, and type.

Having learned how to use GitHub Copilot to simplify the creation of profiling scripts for runtime
and space complexity, we can move forward and explore how to use Copilot to profile multiple

runs and ChatGPT to estimate the maximum input capacity that our functions can manage.

Analyzing maximal capacity with ChatGPT

Identifying the maximal capacity of a function means determining the largest input beyond
which it will fail due to either memory limitations or unacceptable runtime. One strategy for
such predictions involves profiling its performance for a few input sizes, identifying the runtime
or space growth, and then estimating the maximal capacity the function can handle. GenAl can
assist in this two-step process by automating profiling for different inputs and using the results

as supplementary data for a prompt to compute the maximal capacity.

Profiling runtime across multiple runs

Copilot can assist us in creating a profiling loop for fibonacci_recursive like we did for a single
profile. For instance, if we want to profile the runtime of the function for inputs ranging from 10

to 40 in steps of 5, we can start by adding the following import statements to the file:
import time
from fibonacci import fibonacci_recursive

Then use a prompt in Copilot chat like this:

print the runtime of fibonacci_recursive for n=10:41:5

344 GenAl for Runtime and Memory Management

This prompt, along with the surrounding context of the import statements in the file, is likely to

generate a code to profile runtimes for varying arguments:

0 hilahersz

print the runtime of fibonacci_recursive for n=10:41:5

@ profile_runtime.py:1-4

& GitHub Copilot
> Used 1reference

To print the runtime of @ fibonacci_recursive for n values in the range 10 to 41 with a step of 5, you can
use the = time module to measure the execution time. Here's how you can modify your code:

import time
from fibonacci import fibonacci_recursive

for n in range(10, 42, 5):
start_time = time.time()
fibonacci_recursive(n)
end_time = time.time()
print(f"Runtime for fibonacci_recursive({n}): {end_time - start_time} seconds")

This code will print the runtime for @ fibonacci_recursive for n values 10, 15, 20, 25, 30, 35, and 40. °

Figure 14.4: Profiling suggestion for profiling multiple Fibonacci inputs

We can use the generated code as-is or make minor adjustments, such as rounding the recorded
times to four decimal places or changing the range’s stop value to 41. When executed on an M1

MacBook Pro with a 16GHz CPU, the following runtime profiling was recorded:

Runtime fibonacci_recursive(10): 0.0000 seconds
Runtime fibonacci recursive(15): 0.0002 seconds
Runtime fibonacci_recursive(20): 0.0013 seconds
Runtime fibonacci_recursive(25): 0.0150 seconds

Runtime fibonacci_recursive(30): 0.1571 seconds

Runtime fibonacci_recursive(35): 1.7051 seconds

Runtime fibonacci_recursive(40): 19.5045 seconds

This runtime profiling will be used as input for a GenAlI application to analyze the function’s

complexity and determine the input size capacity.

Chapter 14 345

Profiling memory consumption across multiple runs

Profiling the memory consumption across multiple runs of get_top_video function can be done

with a straightforward approach:

paths = ['interactions_100.csv',
‘interactions_1000.csv',
"interactions_10 _000.csv']
for p in paths:
print("top video: ", get_top_video(p))

In this example, the files interactions_100.csv, interactions_1000.csv, and interactions_10_000.csv
represent datasets of user-video interactions of row and column length corresponding to the

numbers in their filenames.

Copilot can assist by completing the for loop, after including the filenames, as shown below:

< profile _space.py
import pandas as pd
from memory_profiler import profile

Bprofile new *

def get_top_video(path):
interactions = pd.read_csv(path)
avg_ratio = interactions.mean(axis=0, skipna=True)
return avg_ratio.idxmax()

paths = ['interactions_180.csv',
'interactions_1000.csv',
e 'interactions_10_0080.csv']
15 for p‘Jin paths:
print(get_top_video(p))

Figure 14.5: Copilot code completion suggestion

The generated code can be used as-is or modified slightly, for instance, by enhancing the print

statement to include information about the file size.

346 GenAl for Runtime and Memory Management

For reference, running this code produced the following profiling:

Filename: /Users/hila/PycharmProjects/private/supercharge/chl4/profile_space.py

Line # Mem usage Increment Occurrences Line Cantents

93.2 MiB 93.2 MiB 1 (@profile

5

b def get_top_video(path):

7 93.8 MiB 0.6 NiB 1 interactions = pd.read_csv(path)

8 94.0 MiB 0.2 MiB 1: avg_ratio = interactions.mean(axis=0, skipna=True)
9 94.0 MiB 0.0 MiB 1 return avg_ratio.idxmax()

top video: video_82
Filename: /fUsers/hila/PycharmProjects/private/supercharge/chlé4/profile_space.py

Line # Mem usage Increment Occurrences Line Contents
5 94.0 MiB 94.0 MiB 1 @profile
6 def get_top_video(path):
7 124.0 MiB 29.9 MiB q: interactions = pd.read_csv(path)
8 131.6 MiB 7.6 MiB 1 avg_ratio = interactions.mean(axis=0, skipna=True)
9 131.6 MiB 0.0 MiB 1 return avg_ratio.idxmax()

top video: video_4629
Filename: /Users/hila/PycharmProjects/private/supercharge/chla/profile_space.py

Line # Mem usage Increment Occurrences Line Contents

5 130.7 MiB 130.7 MiB 1 Bprofile

6 def get_top_video(path):

7 1020.4 MiB 889.7 MiB 1 interactions = pd.read_csv(path)

8 1113.4 MiB @3.0 MiB 1 avg_ratio = interactions.mean(axis=8, skipna=True)
9 1113.4 MiB 0.0 MNiB 1 return avg_ratio.idxmax()

top video: video_7238
Figure 14.6: profiling memory usage output
The memory usage for reading the CSV files grows as follows:

e 0.6 MB for a100 x 100 matrix
e 29.9 MBfor a1,000 x 1,000 matrix
e 889 MB for a10,000 x 10,000 matrix
This memory consumption data can be included as supplementary information in our prompts

included as supplementary information in our prompts to estimate maximum matrix sizes that

the function can handle, as we see next in this chapter.

Chapter 14 347

Determining maximal capacity within runtime constraints

The GPT-401 model is specifically designed to excel in chain-of-thought reasoning, making it
highly effective for determining maximum capacities under runtime constraints. To leverage this
capability, we can create precise prompts following the five S’s, including the function’s source

code and associated profiling. An ideal structure for these prompts might look as follows:

CONTEXT: You are provided with:

1. Python function enclosed with {{{ FUNCTION }}}

2. Runtime profiling enclosed with {{{ PROFILING }}}.
3. Runtime limit enclosed with {{{ LIMIT }}}

TASK: What is the maximal input the function can run in the time limit?

FUNCTION: {{{ ... }}}
PROFILING: {{{ ... }}}
LIMIT: {{{ ... }}}

MAXIMAL INPUT:

For example, when using this prompt with a runtime limit of 100 seconds, the GPToI-mini model
in ChatGPT provided the following reasoning steps:

1. Profiling Analysis: Repeatedly reviewed the reported profiling.

2. Observations: Identified the exponential growth in runtime.
3. Calculations: Computed the largest input within the time limit.
4

Conclusion: Determined the maximum input to be 43.
These reasoning steps result in the final answer, the conclusion step, as illustrated in Figure 14.7:
Conclusion
« Maximal Input (n_max): 43
« Runtime at n=43 : Approximately 78.5 seconds (within the 100-second limit)

« Runtime at n=44 : Approximately 123 seconds (exceeds the limit)

Therefore, the maximal input n that the fibonacci_recursive function can handle within 100

seconds is 43.

Maximal Input: 43
@O PO

Figure 14.7: GPT-401-mini maximal capacity conclusion

348 GenAl for Runtime and Memory Management

The model predicted a runtime of 78.5 seconds for n=43 and 123 seconds for n=44. When we mea-
sured the actual runtime using our script, it was 81.08 seconds and 129.07 seconds respectively,

demonstrating a close match and correct identification of the maximal capacity:

Elapsed time for n=43: 81.08 seconds

Elapsed time for n=44: 129.07 seconds

For your reference, here is the full prompt used in this example:

CONTEXT: You are provided with:
1. Python function enclosed with {{{ FUNCTION }}}
2. Runtime profiling enclosed with {{{ PROFILING }}}.
3. Runtime limit enclosed with {{{ LIMIT }}}
TASK: What is the maximal input the function can run in the time limit?
FUNCTION: {{{
def fibonacci_recursive(n):

if n <= 0:

return 0
if n ==
return 1

return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
11}
PROFILING: {{{
Runtime for fibonacci_recursive(10): ©.0000 seconds
.0002 seconds
.0013 seconds
.0150 seconds
.1571 seconds
.7051 seconds
Runtime for fibonacci_recursive(40): 19.5045 seconds
11}
LIMIT: {{{ 100 seconds }}}
MAXIMAL INPUT:

Runtime for fibonacci_recursive(15):
Runtime for fibonacci_recursive(20):
Runtime for fibonacci_recursive(25):

Runtime for fibonacci_recursive(30):

P ® ®©® ®© ® ©

Runtime for fibonacci_recursive(35):

In the upcoming chapters, we will explore how to intentionally collect data for integration with

OpenAlI API as part of SDLC automation.

Chapter 14 349

Determining maximal capacity within memory constraints

A similar prompt structure to the one used for identifying maximum capacities under runtime

constraints can also be applied to memory constraints:

CONTEXT: You are provided with:

1. Python function enclosed with {{{ FUNCTION }}}

2. RAM usage profiling enclosed with {{{ PROFILING }}}.
3. RAM usage limit enclosed with {{{ LIMIT }}}

TASK: What is the maximal input the function can run in the RAM limit?

FUNCTION: {{{ ... }}}
PROFILING: {{{ ... }}}

LIMIT: {{{ ... }}}

MAXIMAL ROWS / MAXIMAL COLUMNS:

Here, the cue in the prompt is adjusted slightly to MAXIMAL ROWS / MAXIMAL COLUMNS,to empha-

size the 2D dimensions of the input.

For instance, when using this template for the get_top_video function in ChatGPT with the
GPT-40l model, along with recorded results from sparse matrices of sizes 100 x 100, 1,000 x 1,000,
and 10,000 x 10,000, the model generated the following reasoning steps:

1. Profiling Analysis: Included an understanding of the memory usage data and its scaling
behavior.

2. Conclusion: Estimated the largest input for a memory limit of 5GB.

3. Final Recommendation: Suggested a matrix size of 22,000 x 22,000 as the largest fea-

sible input.

These reasoning steps result in the final answer, the final recommendation step, as illustrated

in Figure 14.8:

350

GenAl for Runtime and Memory Management

ChatGPT o1-mini

Conclusion

I, Share

The maximal input size that the get_top_video function can handle within a
5 GB RAM limit is approximately 22,000 rows by 22,000 columns.

Note: This estimation assumes a square matrix and linear scaling based on the

provided benchmarks. Actual memory usage may vary slightly due to factors like

data types, overhead, and system-specific memory management. To ensure

stability, it's advisable to use input sizes slightly below the estimated maximum,
such as 20,000 rows x 20,000 columns.

Figure 14.8: GPT-401-mini reasoning for maximal capacity

When executing the script with a file containing a 22,000 x 22,000 matrix, the recorded memory

usage peak was 4.63 GB, closely aligning with the model’s prediction.

Line # Mem usage

Increment Occurrences

Line Contents

93.1 MiB

4643.5 MiB

5
6
7 3562.4 MiB
8
9 4643.7 MiB

93.1 MiB

3469.3 MiB
1081.1 MiB
0.2 MiB

@profile
def get_top_video(path):
interactions = pd.read_csv(path)
avg_ratio = interactions.mean(axis=0, skipna=True)

return avg_ratio.idxmax()

Figure 14.9: Memory usage below 5GB

This memory usage aligns with ChatGPT’s capacity assessment and is below the required 5GB

RAM limit.

For reference, here is the complete prompt used to generate this output:

CONTEXT: You are provided with:

1. Python function enclosed with {{{ FUNCTION }}}

2. RAM usage profiling enclosed with {{{ PROFILING }}}.

3. RAM usage limit enclosed with {{{ LIMIT }}}

TASK: What is the maximal input the function can run in the RAM limit?
FUNCTION: {{{ def get_top_video(path):

interactions = pd.read_csv(path)

avg_ratio

interactions.mean(axis=0, skipna=True)

Chapter 14 351

return avg_ratio.idxmax() }}}
PROFILING: {{{...}}}
LIMIT: {{{ 5 GB }}}
MAXIMAL ROWS / MAXIMAL COLUMNS:

The profiling information was omitted due to brevity constraints and includes a direct copy-paste
of the terminal output, as shown in Figure 14.6. The full prompt can be found at ch14/code_samples/
chatgpt_maximum_input_prompt.txt. This prompt successfully predicted a maximum input size
0f 22,000 rows and 22,000 columns.

In both these cases, ChatGPT is certainly extrapolating the input values to predict the runtime
or maximum dimensions. It requires sufficient input values to make such a prediction and may

not be as accurate as performing your own calculations, but it is a reasonable approximation.

Next in this chapter, we will explore how to use GenAl and increase the capacity of the functions

such as algorithms with better runtime complexity and dealing with chunks.

Optimizing code with chained prompts
The previous examples depict the simple coding and estimation capability of LLMs. However,

LLMs can do much more. They can create code for improved algorithms and even balance specific

runtime and memory efficiency goals.

To effectively increase the input capacities, we will chain our optimization prompt to the results
of the maximal capacity prompt. The initial prompt already provides essential details, such as
the function, runtime or memory limits, and profiling various inputs. The optimization prompt

should also include the following key information:

e Optimization goal: Clearly specify the primary goal, either on improving runtime com-
plexity, reducing memory usage, or both. Detail the desired approach as much as possible,
such as batching, or improving algorithm complexity.

e Function docstring: Provide a concise description of the function’s purpose, along with
any constraints or requirements.

e Inputrequirements: Define the new input goals under the runtime or memory constraints,
such as computing the 1,000,000 Fibonacci number or handling a matrix with 100,000

rows and 100,000 columns.

352 GenAl for Runtime and Memory Management

For more complex scenarios, additional details may be helpful, such as previous optimization
attempts, dependencies on external functions or resources, frequency of function calls or con-
current usage patterns, and acceptable trade-offs, such as allowing longer runtimes in exchange

for reduced memory usage.

This information will be integrated into a chained prompt, following the five S’s for precision

and clarity.

Runtime optimization

Letus examine a runtime optimization for the fibonacci_recursive function. Below is an exam-
ple of a chained prompt, building on an initial prompt of maximal capacity as presented earlier in

the chapter. This promptrequests an improved implementation with better runtime complexity

to handle an input of 1,000,000:

CONTEXT: You are provided with the function's docstring enclosed with {{{
DOCSTRING }}} and the required input enclosed with {{{ REQUIRED_INPUT }}}.

TASK: Optimize the function to run in a better time complexity within the
runtime limit.
DOCSTRING: {{{ """
Calculate the nth Fibonacci number using a recursive approach.
Args:
n (int): The position in the Fibonacci sequence.
Returns:
int: The nth Fibonacci number.

39
REQUIRED_INPUT = {{{ 1,000,000 }}}

IMPROVED IMPLEMENTATION:

This prompt includes a docstring describing out specific task of optimizing runtime complexity
to achieve the target input of 1,000,000. Providing different constraints, such as a smaller input

size, will yield a different output from the model.

A typical approach for Fibonacci calculations has a 0(n) complexity, however GPT-401 suggest-
ed a more efficient implementation for large inputs, achieving a runtime complexity of O(log n)

through the fast-doubling recursive approach:

Chapter 14 353

ChatGPT o1-mini

Why Fast Doubling?

The recursive method for calculating Fibonacci numbers has a significant drawback: it
recalculates the same subproblems multiple times, leading to an exponential time complexity. Fast
Doubling addresses this by computing Fibonacci numbers in pairs and utilizing previously
calculated values to build up to the desired n , thereby avoiding redundant calculations.

Fast Doubling Algorithm Overview

The Fast Doubling method calculates two Fibonacci numbers at a time, specifically F(n) and
F(n + 1), using the following identities:

F(2k) = F(k) x [2F(k + 1) — F(k)]
F(2k +1) = Fk + 1)* + F(k)?

Figure 14.10: Fast-doubling approach for handling large inputs

And here is the code proposed by GPT-4ol:

def fib_pair(n):
if n ==
return (0, 1)

a, b = fib_pair(n // 2)
a* ((2 *b) - a)
d=a*a+b*b
if n & 1:

return (d, c + d)

©

else:

return (c, d)

While this implementation also uses recursion, itmakes acallton //2 (n + 2withoutremainder)
reducing the number of function invocations to approximately log(n). To illustrate its efficiency,

here are performance comparisons for calculating the 1,000,000” Fibonacci number:

Fast-doubling approach: 0.057893 seconds

Iterative (memoization) approach: 9.175633 seconds

As another benchmark, computing the 10,000,000 Fibonacci number with fibonacci_fast_
doubling took 2.26 seconds, whereas the iterative approach did not complete within a 10-minute

time limit.

354 GenAl for Runtime and Memory Management

This method leverages the mathematical identities:

F(2k) = F(k) - (2F(k + 1) — F(k))
F(2k+1) = F(k+1)? + F(k)?

Where F (k) is the k-th Fibonacci number.

Using these identities, once F(k) and F(k + 1) are calculated, F(2k) and F(2k + 1) can be de-
termined efficiently. This means we do not need to compute all Fibonacci numbers sequentially
up to the 1,000,000™ number but only focus on its halves, significantly reducing the required

computations.

Space optimization
Like the runtime optimization prompt, we can chain a request to optimize a function to fit within
RAM constraints. The prompt structure remains similar, but it describes a memory limit instead

of a runtime limit, along with an optimization request to address memory usage.

For example, consider the following chained prompt requesting an optimization for the get_top_

video function to handle a matrix 0of 100,000 rows by 100,000 columns within a 5GB RAM limit:

CONTEXT: You are provided with the function's docstring enclosed with {{{
DOCSTRING }}} and the required input enclosed with {{{ REQUIRED_INPUT }}}.
TASK: Optimize the function to run in batches within the RAM limit.

DOCSTRING: {{{ """

Reads a CSV file containing video interactions, calculates the average
watch ratio for each video,

and returns the video with the highest average watch ratio.

Args:
path (str): The file path to the CSV file containing video
interactions.

Returns:

str: The identifier of the video with the highest average watch
ratio.

33

Chapter 14 355

REQUIRED_INPUT = {{{ 100,000 rows x 100,000 columns matrix}}}

IMPROVED IMPLEMENTATION:

This prompt specifies the size of the input matrix (100,000 rows by 100,000 columns) and builds
upon the previously defined RAM limit of 5GB.

ChatGPT o1-mini

53

top_video = average_ratio.idxmax()
p_ 9e_ (P Copy code

return top_video

Explanation of Improvements
1. Chunked Reading with chunksize :

+ Purpose: To handle large CSV files without exceeding the RAM limit, the function reads

the file in smaller portions (chunks) instead of loading the entire file into memory.

+ Implementation: The chunksize parameterin pd.read_csv specifies the number of
rows per chunk. In this implementation, it's set to 1000 , but you can adjust it based on

your system's performance and memory constraints.

2. Cumulative Sum and Count:

Figure 14.11: ChatGPT suggestion for chunk-based processing

Based on this information, ChatGPT suggested processing the CSV file in batches of 1,000 rows,

which is an appropriate solution for handling data of this size efficiently.

In this scenario, specifying the input requirements is vital. For larger matrices, working with a
Pandas DataFrame may become impractical, necessitating an alternative solution. Conversely,

for matrices with fewer columns, larger column chunks might be sufficient.

For your reference, here is the implementation for processing the matrix in chunks provided by

ChatGPT with the prompt above:

def get_top_video(path):
cumulative_sum = None
cumulative_count = None
chunksize = 1000
for chunk in pd.read_csv(path, chunksize=chunksize):
chunk_sum = chunk.sum(skipna=True)

chunk_count = chunk.count()

356

GenAl for Runtime and Memory Management

if cumulative_sum is None:

cumulative_sum = chunk_sum

cumulative_count = chunk_count

else:

cumulative_sum += chunk_sum

cumulative_count += chunk_count

average_ratio = cumulative_sum / cumulative_count

top_video

average_ratio.idxmax()

return top_video

When profiling the implementation with an input of 100,000 rows and 100,000 columns, the

chunked implementation concluded with a memory usage of 4,326.1 GB:

def find_top_watch_ratio_video(path):
cumulative_sum = None
cumulative_count = Hone

for chunk in pd.read_csv(path, index_col=0, chunksize=chunksize):
print (f"chuni {i}")

chunk_sum = chunk.sum(skipna=True)
chunk_count = chunk.count()

if cumulative_sum is None:
cumulative_sum = chunk_sum

cumulative_count = chunk_count

cumulative_sum += chunk_sum
cumulative_count += chunk_count

if cumulative_sum is None or cumulative_count is None:
raise ValueError("The provided CSV file is empty or only contains NaN values.")

average_ratio = cumulative_sum / cumulative_count

top_video = average_ratio.idxmax()

Line # Mem usage Increment Occurrences Line Contents
5 93.1 MiB 93.1 MiB 1 (@profile
[
7 93.1 MiB 8.8 MiB 1
8 93.1 MiB 8.8 MiB 1
?
10 93.1 MiB 0.0 MiB 1 chunksize = 1000
11
12 93,1 MiB 8.6 MiB 1 i=0
13 4326.1 MiB -25998.3 MiB 101
14 4326.1 MiB -9687.8 MiB io@
15 4326.1 MiB -9687.9 MiB 108 iv=1
16 4420.9 MiB 162.9 MiB 108
17 4515.5 MiB 131.7 MiB io@
18
19 4515.5 MiB -9323.6 MiB 100
20 2221.3 MiB 6.6 MiB 1
21 2221.3 MiB 8.8 MiB 1
22 else:
23 4515.5 MiB -9303.6 MiB 99
24 4515.5 MiB -9307.2 MiB 9%
25
26 2657.0 MiB -1669.2 MiB 1
27
28
29 2657.0 MiB 8.0 MiB 1
30
31 2657.0 MiB 6.1 niB 1
32
33 2657.0 MiB 0.6 MiB 1

return top_video

Figure 14.12: Improved memory utilization with chunking

In line 13, we can see that the matrix was processed in 100 chunks, with each chunk containing

1,000 columns.

Chapter 14 357

The proposed solutions can be further refined to meet both memory and runtime requirements.
Itis always advisable to test new implementations against both criteria to ensure the solution is

satisfactory in terms of both efficiency and performance.

Further runtime and space optimization

The previous optimizations focused on single CPU algorithms. GenAl can go beyond these and
recommend additional techniques. For instance, it may be appropriate to use parallelization with
threads, leverage graphical processing units (GPUs), or adopt more efficient file formats like
sparse matrices or Apache Parquet. In the function get_top_video, processing different videos
can be performed in parallel by integrating threading. Further acceleration could be achieved
by leveraging GPUs, as each column can be processed independently of others. Alternatively,
converting the file format from CSV to a more efficient option could enhance performance. For-
mats like compressed sparse row (CSR) or compressed sparse column (CSC) from SciPy are
well-suited for sparse data, while columnar storage formats like Apache Parquet are ideal for

handling large datasets.

Summary

In this chapter, we explored how LLMs can assist in ensuring efficient applications by profiling
runtime and memory usage, identifying maximal capacities, and suggesting optimized code to

increase those capacities.

Using the recursive Fibonacci example, we saw how adopting a more efficient algorithm sig-
nificantly reduces runtime. With the get_top_video function, we tackled large matrices under
RAM constraints, assisting GenAl to optimize memory usage through chunking. GitHub Copilot
assisted in profiling runtime and memory consumption and profiling runs across different in-
puts. ChatGPT estimated the maximal capacity within runtime and RAM constraints. Leveraging
chained prompts, ChatGPT demonstrated the ability to vastly improve the implementation to

achieve larger capacities and can do much more.

In the next chapter, we will further explore how to integrate GenAl into the SDLC, focusing on

logging, monitoring applications, and error handling.

358 GenAl for Runtime and Memory Management

Quiz time

Before you proceed to the next chapter, make sure that you can confidently answer the following

questions:
Question 1: How can Copilot assist in profiling the runtime and memory usage of a program?

Answer: Profiling runtime and memory usage in Python can be achieved using the built-in time
module and the third-party memory-profiler package. Copilot can assist by either completing

a starter code or generating that functionality from scratch based on a precise prompt.
Question 2: How can ChatGPT help identify maximal inputs under runtime or RAM constraints?

Answer: By crafting precise prompts that include the function’s source code, runtime or RAM
constraints, and profiling results, we can utilize the GPT-40l model, designed for chain-of-thought

reasoning, to calculate the largest input manageable within those constraints.
Question 3: How can chaining prompts help increase program input capacity?

Answer: After identifying the maximal input a function can handle without becoming a bottle-
neck, a chained prompt can include the desired input size and a specific optimization request.
GPT-4ol can leverage this information to propose an optimized solution that follows the runtime

and/or memory constraints.

Further reading

To learn more about the topics that were covered in this chapter, look at the following resources:

e Wikipedia, CPU: https://en.wikipedia.org/wiki/Central_processing_unit

e Geeks for geeks memory consumption: https://www.geeksforgeeks.org/how-to-get-
current-cpu-and-ram-usage-in-python

e Introduction to memory profiling in Python: https://www.datacamp.com/tutorial/
memory-profiling-python

e Big-o Python package: https://pypi.org/project/big-0-calculator/
e Lambda Labs on GPT-3 training costs: https://lambda.ai/blog/demystifying-gpt-3

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit

https://www.geeksforgeeks.org/how-to-get-current-cpu-and-ram-usage-in-python
https://www.geeksforgeeks.org/how-to-get-current-cpu-and-ram-usage-in-python
https://www.geeksforgeeks.org/how-to-get-current-cpu-and-ram-usage-in-python/

https://www.datacamp.com/tutorial/memory-profiling-python
https://www.datacamp.com/tutorial/memory-profiling-python
https://www.datacamp.com/tutorial/memory-profiling-python

https://pypi.org/project/big-O-calculator/
https://pypi.org/project/big-O-calculator/

https://lambda.ai/blog/demystifying-gpt-3

Chapter 14 359

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled
filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs
and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.1link/TRO5B or scan the QR code below.

O

https://packt.link/TRO5B

15

Going Live with GenAl: Logging,
Monitoring, and Errors

Large Language Models (LLMs) can supercharge our going-live processes, which refers to de-
ploying code to production. But if prompted incorrectly, they can also degrade code quality. In
this chapter, we will examine how, even when following the five S’s to prompt GenAl for logging,
monitoring, and input validation, the resulting code can become cluttered, combining these
elements with core functionality and violating the single responsibility principle. For instance,
models sometimes suggest using print statements instead of proper logging, handling input
validation within functions, or incrementing counters without reporting their values. This vio-

lates the single responsibility principle and reduces overall code quality.

To address this, we will apply the Chain-of-Thought (CoT) prompt engineering technique to
GitHub Copilot to generate well-monitored code without interfering with the function’s core
functionality, leveraging decorators as a design pattern. We will also leverage few-shot learning
to guide it toward following a coding style. While GitHub Copilot is well suited for these tasks,
we will explore how similar results can be achieved using CoT with few-shot learning in ChatGPT

and CoT with fine-tuning in OpenAI APIL.
The key topics covered in this chapter include the following:

e Introducing logging, monitoring, and raising errors
e Leveraging GenAl for higher-level coding patterns
e Applying inverse CoT with ChatGPT and OpenAl

e Utilizing few-shot learning and fine-tuning as style guides

362 Going Live with GenAl: Logging, Monitoring, and Errors

Technical requirements

To get the most out of this chapter, ensure you have the following:

e A GitHub Copilot account

e Anintegrated development environment (IDE) — either VS Code or PyCharm

e An OpenAl account with access to ChatGPT and OpenAl API

e Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

e Avirtual environment set up in VS Code or PyCharm

e An OpenAl API token

For assistance with setting up a GitHub Copilot account, refer to Chapter 3. For instructions on
setting up OpenAl API access and token generation, see Chapter 2. If you need help with creating
an OpenAl account or setting up a virtual environment in your IDE, refer to the Appendix for

detailed guidance.

Introducing logging, monitoring, and raising errors

When Python software goes live in the production stage and serves clients, it is important to verify
thatitis consistently working as expected in real-world use cases. If some problems are identified,
understanding the behavior of these issues is critical. Thus, logging, monitoring, and raising errors
for problematic inputs are an essential aspect of the Software Development Life Cycle (SDLC).
They involve tracking key checkpoints within internal processes, which are usually performed
by loggers, and these facilitate debugging and other analyses. Recording performance statistics
such as counting function calls is often used with profiling to improve performance. Lastly, han-
dling unexpected scenarios, such as receiving arguments of an invalid type, is a process to ensure
that the code is robust against the wide range of user inputs. These three aspects help maintain

software quality, minimize unexpected issues, and simplify debugging when problems occur.

In this chapter, we will focus on these three fundamental practices since these are typically the
first going-live initiatives in any project, and they are likely to be relevant to your software as well.
As your strategy expands to additional metrics and error-handling techniques, these standard
approaches using GenAl tools can easily be generalized and extended from what we introduce

in this chapter.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI

Chapter 15 363

The FizzBuzz use case

To explore how monitoring efforts can be integrated into our code, let us consider developing a
program that generates the FizzBuzz sequence, a coding challenge introduced in Chapter 2. As
part of the monitoring efforts for this program, we want to log each function call along with its
arguments, maintain a counter of total function calls, and ensure inputs are positive integers
less than 500.

As a starting point, a basic implementation of FizzBuzz can be generated from the function sig-

nature:

def print_fizzbuzz(limit: int) -> None:
Figure 15.1 shows an implementation suggested by GitHub Copilot in PyCharm:

e fizzbuzz_printer.p

def print_fizzbuzz(limit: int) -> None: new *
3 for i in range(1, limit + 1):
ifi%3==0and i %5 ==
print("FizzBuzz")
elif i ¥ 3 ==
print("Fizz")
elif i ¥ 5 ==
print("Buzz")
else:
print(i)

Figure 15.1: Copilot’s initial FizzBuzz implementation

This implementation serves as a foundation for incorporating going-live features. Before intro-
ducing best practices for monitoring with prompt engineering techniques, we will first explore
how simply chaining logging, monitoring, and error-raising requests can degrade code quality.
Adding GenAl implementation for these tasks results in a longer and more complex function.
However, techniques such as CoT and few-shot learning can help add these functionalities yet

maintain clean, well-structured code.

364 Going Live with GenAl: Logging, Monitoring, and Errors

Logging

Logs are generated text records that serve as a diary of our program’s execution. For example, at the
start of the FizzBuzz sequence, we may want to log the call’s arguments. While using a simple print
statement is an option, the built-in logging library is a much better choice as it can write to the
console but also provides more control over the output and where the logs can be written, such as
files and remote servers. It enables the structured formatting of records and log-level management,

which can report all outputs for debugging, or a subset of warnings based on importance.

To use the logging library, we typically define a logger instance with the module’s name:

import logging

logger = logging.getlLogger(__name__)

This creates a logger instance linked to the module name using the __name__ special attribute
(also referred to as a magic attribute). This association allows better filtering and customization

of log messages in that file.

When using GenAl for logging, it is essential to separate the logging task into its own prompt,
rather than embedding it within the implementation prompt. This approach aligns with the

single-task principle, one of the five S’s best practices introduced earlier in the book.

For example, when working with Copilot in VS Code’s edits window, we can select the print_

fizzbuzz implementation and use the following prompt:

#tselection log the function arguments

For your reference, here is the suggestion we got when using the 3o0-mini model as appears in
Figure 15.2:

Chapter 15 365

@ fizzbuzz_printerpy [¢] ® e Y [00) o B o &) + x
ch15 > application > @ fizzbuzz_printerpy > & print_fizzbuzz i
1 import logging ;; g hilahersz
2 #selection log the function arguments
3 logger = logging.getlLogger(__name_) = gelection
4 —
5
6 def print_fizzbuzz(limit: int) —> None: & GitHub Copilot
7 logger.debug("print_fizzbuzz called with limit: %s", |ZMEl
limit) # Log function argument > Used 1 reference
8 for 1 in range(1, limit + 1):
Step-by-step:
9 ifi%3=—0andi%5=—0: el
10 print("FizzBuzz")
11 elif i % 3 == @:
12 print ("Fizz") Waorking Set (1 file) ==
13 elif i % 5 == 0: @ fizzbuzz_printer.py chi5/application
14 print("Buzz") + Add Files..
15 else:
16 print(i)

Edit files in your workspace

Accept Discard | 1o0f1 T E [V o3-mini (Preview) v

Figure 15.2: Log suggestion for FizzBuzz

In PyCharm, we can leverage the inline chat after selecting the function’s code, and prompt the

following to yield similar results:

Log the function arguments

While the generated log statement correctly logs the function’s argument, it also introduces two
lines of unnecessary code clutter within the function, which should remain focused on printing
the FizzBuzz sequence. Later in the chapter, we will explore how to maintain cleaner code with

prompt engineering techniques.

Handling unexpected input

When our program receives unexpected inputs at runtime, such as incorrect argument types (for
example, float instead of int) or values that are beyond a manageable range for our program,
we want to control the program’s behavior by raising errors rather than failing or producing

unpredictable results.

For instance, in the print_fizzbuzz function, the 1imit argument is expected to be a positive
integer so that we can print numbers, fizz, or buzz from O up to that value. An additional con-
straint might be that the input should be less than 500 to ensure the output fits on the screen. To

enforce both requirements with error handling, we can leverage Copilot.

366 Going Live with GenAl: Logging, Monitoring, and Errors

When using Copilot in VS Code’s edit window, we can select the print_fizzbuzz code and use

the following prompt:

#tselection validate limit type, and that it is in the range [0,500]
In PyCharm, we can use the inline chat by selecting the print_fizzbuzz function and entering
the following prompt:

validate 1limit type, and that it is in the range [0,500]

For reference, here is the result obtained using Copilot for VS Code with the 03 mini model:

@ fizzbuzz_printerpy [¢] @ vt @M H 2 < + x

ch15 > application > @ fizzbuzz_printer.py > € print_fizzbuzz
1 import logging ‘ hilahersz X

2
3 logger = logging.getlLogger(__name_) | #selection validate imit type, and that it's in the
4 range [0,500]
5 = Selection
6 def print_fizzbuzz(limit: int) -> None:
7 if not isinstance(limit, int)} or not (@ == limit <= F2NE]
Validate limit type and range & GitHub Copilot
8 raise ValueError("limit must be an integer in the
> Used 1 reference
range [@,500]1")
9 logger.debug("print_fizzbuzz called with limit: %s", Working Set (1 file) [Discard |
Limit): 7 Log function argument @ fizzbuzz_printer.py chi15/application
10 for i in range(1, limit + 1): =
11 if i% 3 ==90and 1 %5 == 0: —+ Add Files...
1 print("FizzBuzz")
12 elif i'%t? := 9:, Edit files in your workspace
rint("Fizz"
15 Qurins — o b o i revion)
16 print("Buzz")

Figure 15.3: VS Code output correctly handles inputs but creates code clutter

This recommendation verifies both the argument’s type and its range limits, as requested. How-
ever, like the logging prompt, it introduces an additional responsibility of validating inputs to
the function. Later in this chapter, we will explore how prompt engineering can help generate

higher-quality code.

Monitoring

Another key aspect of going live is tracking the usage of different functions. By recording metrics,

we can collect valuable statistics on performance, call frequency, and execution rates.

A simple starting point is to track the number of function calls in our program. To do this with
print_fizzbuzz, we can define a global counter variable, FIZZBUZZ_COUNTER = ©, and instruct
Copilot to increment it before or after each successful execution. For example, when working

with Copilotin VS Code’s edits window, we can select the print_fizzbuzz implementation and

Chapter 15 367

use the following prompt:

#tselection increment FIZZBUZZ_COUNTER after a successful execution.

Similarly, in PyCharm, we can select the code and use the inline chat to prompt the following:

Increment FIZZBUZZ_COUNTER after a successful execution.

Figure 15.4 illustrates a suggested completion for this prompt when using Copilot in VS Code

with the 03 mini model:

@ fizzbuzz_printerpy [¢] @ B~ @ - EF = = + X
ch15 > application > %@ fizzbuzz_printerpy > ..)
8 def print_fizzbuzz{limit: int) -> None: g ° WO e
range [@8,500]1") - #selection increment FIZZBUZZ_COUNTER after a
11 logger.debug("print_fizzbuzz called with limit: %s", successful execution.
limit) # Log function argument = Selection
12 for i in range(1, limit + 1):
13 if i%3==0and 1% 5 == 0:
14 print("FizzBuzz") £ GitHub Copilot
15 elif i % 3 == @:
16 print("Fizz") > Used 1reference
17 elif i % 5 == 0:
18 print("Buzz") | o Working Set (1 file) m
bt L LU % fizzbuzz_printer.py chi5/application
20 print(i)
21 global FIZZBUZZ_COUNTER # Declare global variable + Add Files...
22 FIZZBUZZ_COUNTER += 1 # Increment counter after a r
successful execution Edit files in your workspace

Accept Discard ‘ 1001 M L g o 03-mini (Preview) v

Figure 15.4: VS Code adds a record usage counter

At this point, our print_fizzbuzz function integrates multiple monitoring components: logging,
handling invalid inputs, and counting calls. While these fulfill our monitoring needs, they lead
to a lengthy and less readable function. This violates clean coding principles, particularly the

single responsibility principle, which emphasizes that functions should focus on a single task.

Code created by GenAl using simple prompts tends to generate code and add it within existing
methods which can lead to cluttered implementations. To maintain clean and structured code,
we can leverage CoT prompting. This approach enables us to handle monitoring at a higher ab-

straction level, as we will explore next.

368 Going Live with GenAl: Logging, Monitoring, and Errors

Leveraging GenAl for higher-level coding patterns

To balance clean code principles, such as the single responsibility principle, with the need for
going-live requirements, a Pythonic approach is to use higher-level coding patterns such as dec-
orators. Rather than embedding logging statements within a function, we delegate this respon-

sibility to a decorator pattern:

def log function_args(func: callable):

@log function_args

def print_fizzbuzz(limit: int) -> None:

Here, log_function_args is responsible for logging function calls, allowing print_fizzbuzz to
focus on handling the FizzBuzz sequence. This approach ensures cleaner, more modular code

while enabling logging for multiple functions.

GenAl applications may not suggest this pattern unless we actively steer them toward clean coding
practices. As introduced in Chapter 9, CoT prompting helps LLMs reason through complex tasks.
We can direct the model toward better design choices by using CoT prompting and explicitly
writing a decorator call, such as @log_function_args, prior to implementing the actual decorator

function. This will result in cleaner and more maintainable implementations.

Using decorators to separate responsibilities

A decorator is a structural design pattern that enables stacking tasks before and after a function
call without altering the function’s code. It is a specialized use case of a closure, where a function

retains access to its associated arguments. A typical decorator implementation looks like this:

def sample_decorator(func: callable) -> callable:
def wrapper(*args, **kwargs):
print("Function is wrapped")

return func(*args, **kwargs)

return wrapper

A common usage involves applying the @ annotation, as shown here:

@sample_decorator
def foo(*num):

return len(nums)

Chapter 15 369

Here, the sample_decorator decorator accepts a function object and returns a wrapper function
that takes the same arguments as the original function but prints Function is wrapped before

execution.

LLMs can certainly include decorators in their generated code as their training data contains
many common decorator implementations. For well-known use cases such as timers, loggers,
argument validation, and retry mechanisms, the models can generate decent implementations

based on the decorator’s signature when prompted to.

Next, we will explore how to apply inverse CoT prompting to generate the desired implementation.

Inverse CoT for decorator implementation

In Chapter 9, we explored how defining a function that calls low-level implementations provides
strong guidance for GitHub Copilot. With inverse CoT, we take a similar approach by referencing
functions that have not yet been defined. We use the term inverse because we want the decorators
to appear earlier in the file than the function that uses them. To achieve this, we place the cursor

higher in the file, allowing Copilot to generate code above an existing implementation.

As areview, here is an example of CoT prompting used in Chapter 9 to implement a variation of a

geometric mean calculator, where Copilot successfully generated the missing low-level functions:

& get_geometric_mean.py

from typing import Union
import cmath

def get_geometric_mean(xargs: float) -> Union[float, complex]: new =

product = get_product(*args)
nth_root = len(args)

is_positive = is_product_positive(product)

is_nth_root_odd = is_odd(nth_root)
is_mean_real = is_geometric_mean_real(is_nth_root_odd, is_positive)
mean = get_mean(product, nth_root, is_mean_real)

return mean
Figure 15.5: CoT-driven implementation of a higher-level function with GitHub Copilot

In this approach, the function is broken into named functions that are intentionally called undefined.
Copilotunderstands thatitsrole s to generate these necessary implementations. Such an approach

enables Copilot to implement the missing functions, producing structured and predictable code.

370

Going Live with GenAl: Logging, Monitoring, and Errors

We can apply the same technique when implementing going-live functionality, by defining a dec-

orator structure and allowing Copilot to generate the implementation. By merely adding calls to

the required decorators, we guide Copilot to generate their corresponding implementations. For

instance, in our FizzBuzz use case, we can layer three monitoring functionalities onto our function:

1

2
3.
4
5

Validate the input: Define a decorator with parameters to enforce input bounds, that is,
@validate_args_types_and_limits(e, 500).

Increment a global counter:

@increment_counter.

Log function calls:

@log function_args.

For reference, here is how stacking these decorators would appear before Copilot generates their

implementations:

% fizzbuzz_printer.py

import logging

logger = logging.getLogger(__name__)

FIZZBUZZ_COUNTER = 0

@log_function_args new *
@increment_counter

@validate_args_types_and_limits(e, 500)
def print_fizzbuzz(limit: int) -> None:

Figure 15.6: Inverse CoT approach

Here, as usual with the CoT technique, the IDE will correctly mark the decorators as undefined

with the red underlines. After calling the decorators, we move the cursor to line 7 before the call

to the first decorator, press Enter three times to create space for their implementations, then

return to line 8 and type the following:

def 1

Chapter 15 371

This prompt is sufficient for Copilot to infer thatit should generate the first decorator, interpreting 1
asareference to log_function_args. Moving the cursor up and pressing Enter three timesis all that
isinvolved in inverse CoT, butitis very effective. As shown in Figure 15.7, this cue enables Copilot to

enerate a complete implementation of a logging mechanism, including the function’s arguments.
g p p gging) g gu

import logging
logger = logging.getLogger(__name__)

FIZZBUZZ_COUNTER = O

8 def_log_function_args(func): new
def wrapper(*args, s%xxkwargs):
logger.info(f"Function {func.__name__} called with args: {args}, kwargs: {kwargs}")
return func(*args, *xkwargs)

return wrapper

@log fungtion args new

@validate args types.and.limits(e, 560)
def print_fizzbuzz(limit: int) -> None:

for i in range(l, limit + 1):
Figure 15.7: Copilot’s decorator implementation

The suggested implementation of log_function_args correctly logs the function name and

arguments as an info-level log statement.

After the initial def 1 prompt, pressing the Enter key twice is enough for Copilot to generate the

next decorator, increment_counter, as shown in Figure 15.8:

372 Going Live with GenAl: Logging, Monitoring, and Errors

& fizzbuzz_printer.py

TICEOUCECOONTER = w

def log_function_args(func): 1 usage new *
def wrapper(*args, **kwargs): new *
logger.info(f"Function {func.__name__} called with args: {args}, kwargs: {kwargs}")
return func(xargs, **kwargs)

return wrapper

16 bef increment_counter(func):

(@log_function_args new *

@validate_args_types_and_limits(@, 508)

=’y P P AR AR AP

def print_fizzbuzz(limit: int) -> None:
for 1 in range(1, 1limit + 1):

Figure 15.8: Enter key as a cue for Copilot to implement the next decorator

The Enter key serves as a sufficient cue for the next implementation. This highlights how Copi-
lot can supercharge our workflow. For your reference, here is the suggested implementation of

increment_counter by Copilot:

def increment_counter(func):
def wrapper(*args, **kwargs):
global FIZZBUZZ_COUNTER
FIZZBUZZ_COUNTER += 1
logger.info(f"Function {func.__name__} called {FIZZBUZZ_COUNTER}
times")

return func(*args, **kwargs)

return wrapper

This decorator correctly increments the previously initialized global variable, FIZZBUZZ_COUNTER,
before the function call. If we prefer to increment it after execution, we could have used a different

decorator’s call, such as @increment_counter_after call.

Chapter 15 373

Finally, Copilot’s suggested implementation for argument validation efficiently manages both
type-checking and value constraints using a parameterized decorator. This type of decorator
introduces an additional closure layer, allowing us to specify arguments, such as the minimum

and maximum limits, in this case.

Bycalling@validate_args_types_and_limits(@, 500),we provideaclear cuefor Copilottorecognize

the need for a parameterized decorator with the given constraints. Here s the suggested implementation:

def validate_args_types_and_limits(min_limit: int, max_limit: int):
def decorator(func):
def wrapper(limit: int):
if not isinstance(limit, int):
raise TypeError(f"Argument 'limit' must be of type int,
got {type(limit)}")
if 1limit < min_limit or 1limit > max_limit:
raise ValueError(f"Argument 'limit' must be between {min_
limit} and {max_limit}, got {limit}")

return func(limit)
return wrapper

return decorator

Here, the parameterized decorator, validate_args_types_and_limits, ensures that the argument

falls within the specified inclusive range before executing the function.

For reference, here is an example of calling print_fizzbuzz(-15), which should raise a value

error due to the negative input:

File "supercharge/chl5/application/fizzbuzz_printer.py", line 32, in
wrapper

ValueError: Argument 'limit' must be between © and 500, got -15

validate_args_types_and_limits raised an error due to a bad input, preventing the function
from being called with a negative limit. Similarly, if we had called print_fizbuzz(3.14), we would

have received a TypeError error, indicating thatit handles integers but not floating-point values.

374 Going Live with GenAl: Logging, Monitoring, and Errors

To see how our log_function_args and increment_counter decorators operate, we will add a
basic logging configuration at the beginning of the file, capturing INFO-level and higher logs, in
afile named fizzbuzz.log:

logging.basicConfig(level=1logging.INFO,

filename="fizzbuzz.log")

This ensures that the log messages are stored in fizzbuzz.log. In most software systems, print
statements should not be used and should be replaced by logging that can direct output to the

console or afile.

Next, we add two function calls with valid inputs:
print_fizzbuzz(5)
print_fizzbuzz(50)
For reference, the fizzbuzz_printer.py output is shown in Figure 15.9:

64 print_fizzbuzz(5)
print_fizzbuzz(50)

Run fizzbuzz_printer
&
47
Fizz
o 49
- Buzz
=
= Process finished with exit code 0

Figure 15.9: Console output for the two function calls

This produces a clean output, containing the FizzBuzz results. Meanwhile, the fizzbuzz.loglog

file records log messages in the specified format, as illustrated in Figure 15.10:

Chapter 15 375

= fizzbuzz.log = fizzbuzz_printer.py

INFO:__main__:Function wrapper called with args: (5,), kwargs: {}
INFO:__main__:FizzBuzz function called 1 times.
INFO:__main__:Function wrapper called with args: (50,), kwargs: {}

IF0:__main__:FizzBuzz function called 2 times.

Figure 15.10: fizzbuzz.log output containing logs and counter messages

This implementation follows clean code principles, separating core functionality from monitor-
ing while leveraging inverse CoT prompting in Copilot to generate neat and maintainable code.
However, decorators can be styled in various ways. Later in the chapter, we will explore how

few-shot learning can help refine their structure for even better results.

Next, we will apply the inverse CoT technique when prompting ChatGPT and OpenAl API.

Applying inverse CoT with ChatGPT and OpenAl

GitHub Copilot is the preferred tool for integrating going-live functionality, as it provides the
fastest code completion experience. However, we will also demonstrate how to apply the same
CoT prompting technique with ChatGPT and OpenAl API. To do this effectively, we will structure

our prompts using the five S’s best practices for prompt precision introduced earlier in this book.

Using ChatGPT to monitor decorators

Similar to our approach with GitHub Copilot, we can leverage ChatGPT to generate the required
decorators for monitoring. Since we submit the full code rather than moving the cursor up in
the file, this approach aligns with a standard CoT technique. The following is an example of a
structured prompt that provides context about the incomplete Python implementation, focusing

on a single task, with specific and short instructions, followed by a lead-in cue:

CONTEXT: You are provided with a partial Python script in {{{ FIZZBUZZ_
PRINTER }}}, where some of the code is missing.

TASK: Implement the decorators with the missing implementation in the
code.

FIZZBUZZ_ PRINTER: {{{
import logging
logger = logging.getlLogger(__name__)

376 Going Live with GenAl: Logging, Monitoring, and Errors

FIZZBUZZ_COUNTER = ©

@log_function_args
@increment_counter

@validate_args_types_and_limits(@, 500)

def print_fizzbuzz(limit: int) -> None: ... full code implementation
omitted for brevity ... }}}
CODE:

When used in ChatGPT with the 03-mini high model (available to Plus subscribers as of April
2025), this prompt generated a complete script including the full implementation of the missing

decorators, as follows:

def log_function_args(func: callable) -> callable:
def wrapper(*args, **kwargs):
logger.info(
f"Calling function '{func.__name__}' with args: {args} and
kwargs: {kwargs}"
return func(*args, **kwargs)

return wrapper

def increment_counter(func: callable) -> callable:
def wrapper(*args, **kwargs):
global FIZZBUZZ_COUNTER
FIZZBUZZ_COUNTER += 1
logger.info(f"FIZZBUZZ_COUNTER incremented to {FIZZBUZZ_COUNTER}")
return func(*args, **kwargs)

return wrapper

def validate_args_types_and_limits(min_limit: int, max_limit: int):

def decorator(func: callable) -> callable:
def wrapper(*args, **kwargs):
Use inspect to bind the arguments to the function's
signature
sig = inspect.signature(func)
bound_args = sig.bind(*args, **kwargs)

bound_args.apply_defaults()

Expecting the argument to be named 'limit’

Chapter 15 377

if 'limit' not in bound_args.arguments:

raise ValueError("Missing required argument 'limit'.")
limit = bound_args.arguments['limit']
if not isinstance(limit, int):

raise TypeError("Argument 'limit' must be an integer.")
if not (min_limit <= limit <= max_limit):

raise ValueError(f"Argument 'limit' must be between {min_

limit} and {max_limit}.")

return func(*args, **kwargs)

return wrapper

return decorator

This implementation retains the same functionality as the decorators generated by Copilot but
differs in style. It includes docstrings and the addition of the @functools.wraps(func) decora-
tor, which helps preserve the original function’s attributes. Later in the chapter, we will explore

how to guide ChatGPT toward a more desirable implementation style using few-shot learning.

Using OpenAl API to monitor decorators

The approach for using OpenAl API closely mirrors the ChatGPT prompt structure. We construct
a system prompt that provides context and a single task, as was done for ChatGPT. Additionally,

we use a user prompt that includes the existing script along with a cue for code completion.

The system prompt should look as follows:

SURROUND = "You are provided with a partial Python script in {{{ FIZZBUZZ_
PRINTER }}}, where some of the code is missing."

SINGLE_TASK = "Implement the decorators with the missing implementation in
the code."

These prompt pieces serve the same role as the context and task definitions in the ChatGPT
prompt. The user prompt should incorporate the incomplete implementation, for example, by

reading the code from a file, as shown here:

def get_user_prompt(script_path: str) -> str:
with open(script_path, 'r') as file:

incomplete_code = file.read()

return £"""

378 Going Live with GenAl: Logging, Monitoring, and Errors

FIZZBUZZ PRINTER: {{{{{{ {incomplete code} }}}}}}

CODE :

By providing the incomplete script alongside the CODE: cue, we can guide OpenAl API toward
generating the missing decorator implementations. Calling OpenAl API with these prompts should
yield a decorator implementation like the outputs from ChatGPT and GitHub Copilot. The full

script is available for your reference at ch15/inverse_cot_openai.py.

Now that we have seen how to use GenAl tools to implement monitoring decorators, the next
step is refining their style to better fit our needs. This can be achieved using few-shot learning to
guide Copilot and ChatGPT with structured examples or by fine-tuning a model through OpenAl
API GUL We will explore both approaches in the next section.

Utilizing few-shot learning and fine-tuning as style
guides

While the decorators generated by GenAl applications provide the desired functionality, we can

further refine their style using few-shot learning techniques, as introduced in Chapter 8.

For instance, we might want to include the @functools.wraps decorator to preserve the original
function’s attributes and enforce a specific logging style with the extra parameters. Both objec-
tives can be achieved by supplying few-shot examples to Copilot and ChatGPT or adding desired
prompt outputs to our fine-tuning file to be used by OpenAI API.

Few-shot decorator style for GitHub Copilot

As introduced in Chapter 8, enforcing a specific style with GitHub Copilot requires a few exam-
ples, which can be provided as a style guide script. This few-shot example achieves the desired

implementation.

To achieve this, we can create a style_guide_decorator.py file, which should be treated like

another non-project file and is typically placed outside the src folder in a project repository.

This style guide should include all the elements we want Copilot to follow, such as log message
formatting, type hints, and spacing. These examples guide Copilot and reduce the need for chained

prompts or additional edits.

Chapter 15 379

When creating a style guide for decorators, we suggest including a time_it decorator to log a
function’s runtime. The implementation should demonstrate the use of @functools.wraps to
retain the decorated function’s attributes, type hints for arguments and variables, and a hanging

indent logging style with extra parameters:

import logging
import time
from functools import wraps

from typing import Any

logger: logging.Logger = logging.getlLogger(__name__)

def time_it(func: callable) -> callable:
@wraps (func)
def wrapper(*args, **kwargs):
start_time: float = time.time()
res: Any = func(*args, **kwargs)
end_time: float = time.time()
logger.info(
"Function called.",
extra={
"function": func.__name__,
"args": args,
"kwargs": kwargs,
"error": "",
"timing": f"{end_time - start_time} sec"})

return res

return wrapper

In this case, the logger message combines static text with the extra parameter, resulting in a
structured log message thatis better suited for large-scale logging. For instance, to quickly iden-
tify all timing messages where execution exceeded five seconds, we could filter logs based on the

timing parameter with a condition such as timing > 5.

380 Going Live with GenAl: Logging, Monitoring, and Errors

To incorporate the style guide into the session, we open decorators_style_guide.py, then cut
and paste the entire content of the file in place. This trick ensures that Copilot recognizes the

code in the file as part of the active session and incorporates its style when making suggestions.

Next, we return to print_fizzbuzz.py and repeat the inverse CoT process. This time, Copilot’s
suggestions should align with the style guide defined in style_guide_decorator.py. As shown
in Figure 15.11, Copilotincludes the @functools.wraps decorator in its suggested implementation,
while the logging indentation and extra parameters maintain the same formatting as specified

in the style guide:

def log_function_args(func: callable) -> callable: new *
def wrapper(xargs, *xkwargs):
message: str = "Function called."
logger.info(message,

extra={"function": func.__name__,

"args": args,

"kwargs": kwargs,

meppopt: HH

Htimingu: Il”}_)
return func(*args, *xkwargs)

return wrapper

log_function_args 2 usages new *

Gingrement_counter

@validate_args_types_and_limits(@, 500)
def print_fizzbuzz(limit: int) -> None:

Figure 15.11: Decorator implementation using the style guide in GitHub Copilot

This implementation demonstrates that Copilot follows our preferred logging style, using a static

log message and extra parameters to support a more structured logging format.

Next, we will explore how to apply the style guide when prompting with ChatGPT. We will then

show how to incorporate it into a fine-tuning approach when working with OpenAI API.

Few-shot learning in ChatGPT

When using ChatGPT, we can apply a few-shot approach to deploying decorators, like that we
explored in Chapter 8. For this task, we recommend the 03-mini high model since it is better at

complex coding tasks.

Chapter 15 381

We first enhance the prompt’s surrounding context by including a reference example:

CONTEXT: You are provided with a partial Python script enclosed with
{{{FIZZBUZZ_PRINTER}}} where some of the code is missing, and examples of
a good implementation enclosed with {{{ EXAMPLES }}}.

TASK: Implement the decorators with the missing implementation in the code
while following the style guide.

For the few-shot example, we will label the input and output code snippets, with INCOMPLETE_CODE
used for the input, indicating the missing time_it decorator, and COMPLETE_CODE for the fully

implemented script. This distinction clearly highlights the intended transformation:

INCOMPLETE_CODE: {{{
import logging

logger: logging.Logger = logging.getLogger(__name_)

@time_it
def my_func(a: int, b: int) -> int:
return a + b

39

With this incomplete code snippet, we expect the model to generate a fully implemented decorator
that follows a specific style. To guide the model, we will provide a fully implemented version of

the desired code, as shown here:

COMPLETE_CODE: {{{

import logging

import time

from functools import wraps

from typing import Any

logger: logging.Logger = logging.getLogger(__name__)

def time_it(func: callable) -> callable:

@wraps (func)
...omitted for brevity but using "extra" parameter...

382 Going Live with GenAl: Logging, Monitoring, and Errors

@time_it
def my_func(a: int, b: int) -> int:
return a + b

39

Providing this example of the desired output helps guide ChatGPT toward generating the expected
implementation. The following is the structure of the prompt, with previously introduced parts

omitted for brevity:

CONTEXT: You are provided with a partial Python script enclosed with
{{{FIZZBUZZ_PRINTER}}} where some of the code is missing, and examples of
a good implementation enclosed with {{{ EXAMPLES }}}

TASK: Implement the decorators with the missing implementation in the code
while following the style guide.

EXAMPLES:

INCOMPLETE_CODE: {{{...omitted for brevity...}}}
COMPLETE_CODE: {{{...omitted for brevity...}}}
FIZZBUZZ_PRINTER: {{{...omitted for brevity...}}}

CODE:

The full promptis available in the book’s repository at ch15/decorators_few_shot_chatgpt.txt.
For reference, the results generated using this prompt closely resemble Copilot’s code completion,

as shown in Figure 15.12:

ChatGPT 03-mini-high &, Share g

def log_function_args(func: Callable) —> Callable: @ Copy

@wraps (func)
def wrapper(xargs: Any, *xxkwargs: Any) —> Any:
logger.info(
"Function called.",
extra={
"function": func.__name__,
"args": args,
"kwargs": kwargs,
Yerrort: "
}
)
return func(xargs, skkwargs)
return wrapper

Figure 15.12: Few-shot learning using ChatGPT

Chapter 15 383

In ChatGPT’s implementation, we can see that the model followed the style guide from our exam-
ple, incorporating the extra parameter alongside the staticlog message and using the @functools.
wraps decorator to preserve the function’s attributes. However, this is a relatively lengthy prompt
to achieve a code completion that GitHub Copilot can generate much faster. Therefore, we rec-

ommend using Copilot whenever possible for a more efficient workflow.

Leveraging fine-tuning for OpenAl API

With OpenAl, we can either apply the few-shot technique, as in the ChatGPT input-output exam-
ples, or train a fine-tuned model by adding a few training samples in JSONL format, as introduced
in Chapter 11. This approach would take even longer than ChatGPT to achieve what GitHub Co-
pilot can generate almost instantly. Fine-tuning would be more practical for large-scale projects,
such as scanning an entire repository to implement logging, monitoring, and error handling for

all files automatically, at scale.

As we saw in Chapter 11, fine-tuning generally requires more examples than few-shot learning
because of the differences in how models handle prompts versus how they update weights during
fine-tuning. However, considering our starter fine-tuning file, fine_tuning. jsonl, from Chapter
11, which has already established the preferred logging style, indentation, and spacing, a single

decorator may be sufficient to achieve the desired implementation.

For example, here is a time_it decorator added to ch13/fine_tuning.jsonl, structured with a
system and user prompt as used in ChatGPT, along with a desirable assistant response assigned

a weight of 1:

{"messages": [{"role": "system", "content": "You are provided with a
partial Python script enclosed with {{{ INCOMPLETE_CODE }}} where some of
the code is missing. Your task is to implement the decorators with the
missing implementation"}, {"role": "user", "content": "INCOMPLETE_CODE:
{{{import logging\nimport time\n\nlogger: logging.Logger = logging.
getLogger(__name_)\n\n@time_it\ndef my func(a: int, b: int) -> int:\n
return a + b\n}}}\n COMPLETE_CODE:"}, {"role": "assistant", "content":
"...omitted for brevity...", "weight": 1}]}

384 Going Live with GenAl: Logging, Monitoring, and Errors

We can then upload the fine-tuning file by going to platform.openai. com, selecting Dashboard
| Fine-tune, and uploading the JSONL file, as shown in Figure 15.13:

Create a fine-tuned model

Method
Specify the method to be used for fine-tuning.

<>

Supervised
Base Model

gpt-40-mini-2024-07-18

<>

Training data

Add a jsonl file to use for training. By providing the file, you confirm that
you have the rights to use the data.

Upload new @) Select existing Browse files 7
file-1QUtEHmMjrCZ872xHuGahFq

Validation data

Add a jsonl file to use for validation metrics.

Upload new Select existing @ None
Suffix
Add a custom suffix that will be appended to the cutput model name.
(decorator-style)
Seed

Learn about fine-tuning 7 Cancel

Figure 15.13: Upload the fine-tuned JSONL file

After the upload is complete, the fine-tuned model will be trained, which takes around 15 minutes.

When done, a Succeeded icon will appear, as shown in Figure 15.14:

platform.openai.com

Chapter 15

385

MODEL

ft:gpt-40-mini-2024-07-18:pazpaz-the-coder:decorator-style:AydMPYCg

© @ @ 0 © @ O

Status

Job ID

Training Method
Suffix

Base model
Output model

Created at

@ Succeeded

T -

ftjob-zDa73ZywRRDInwOHngNeAfUy

Supervised

decorator-style

gpt-do-mini-2024-07-18

ft:gpt-4o0-mini-2024-07-18:pazpaz-the-coder:decorator-style: AydMPYCg

Feb 8, 2025, 1:24 PM

Figure 15.14: Successful fine-tuning job indicates the model has finished training

To compare the benefits of fine-tuning against the base GPT-40 mini model, we can use the

Playground page. This allows us to compare the fine-tuned model’s output against the baseline

results, highlighting improvements. It is always recommended to validate these enhancements

on key prompts once the fine-tuning process is complete.

We will select gpt-40-mini-2024-07-18 as the base model on the left and choose the fine-tuned

model from the drop-down menu on the right, as shown in Figure 15.15:

Chat

gpt-40-mini-2024-07-18 <

[Q [select a model.

<

gpt-do-audio-preview
Multi-modal model capable of

proce

ng and responding with

audio and text

gpt-4o-mini-audio-preview-
20241217

gpt-4o-mini-audio-preview

gpt-40-mini-2024-07-18

gpt-do-audio-preview-2024-12-

gpt-4o-audio-preview-2024-10-
o1

gpt-40-2024-11-20

gpt-40-2024-08-06

Q Unsync

<* Generate

& Clear O History

i

X ft:gpt-40-mini-2024-07-18; tyle:AydMPYCg © w2 oXx

-the-coder

A System message “

Figure 15.15: Base model and fine-tuned model comparison

386 Going Live with GenAl: Logging, Monitoring, and Errors

This comparison allows us to assess the performance of both models. Next, we add the system
instructions on both sides of the screen, mirroring the surrounding context and single-task ap-
proach used in ChatGPT:

You are provided with a partial Python script in {{{FIZZBUZZ_PRINTER}}},
where some of the code is missing. Your task is to implement the
decorators with the missing implementation in the code.

The user message follows a format like our ChatGPT prompt:

FIZZBUZZ_PRINTER: {{{ ...omitted for brevity... }}}
CODE:

At this stage, our prompt is ready to run, producing more precise results when using the fine-
tuned model. Compared to gpt-40-mini-2024-07-18, the fine-tuned model returns only the

code with our preferred logging style, and including the @functools.wraps decorator, as shown

in Figure 15.16:
Chat & Clear O History
gpt-40-mini-2024-07-18 & -2 X :gp ini :pazp :AydMPYCg & .- X

m FIZZBUZZ_PRINTER: {{{

CODE: import logging\n\nlogging.basicConfig(level=logging.INFOAn
filename=\"fizzbuzz log\'\nlogger =
logging.getLogger(__name__Z\n\nFIZZBUZZ_COUNTER =

Assistant 0\n\n\n@log_function_args\n@increment_counter\n@validate_args_types_and_limits(0,

To complete your FizzBuzz printer implementation with the missing decorators, we can 500)\ndef print_fizzbuzz(limit: int) -> None:n for i in range(, limit +):An ifi % 3 == 0 and i

define three decorators: log_function_args, increment_counter’, and %5 == 0:\n print(\"FizzBuzz\"\\n elif i % 3 == 0:\n print(\'Fiz2\"\\n elif i % 5 == 0:\n

‘alidate_args_types_and_limits’. Below is the implementation of these decorators print(\VBuz2\"M\n elsean print()\n

alongside the existing code you've provided. m
CODE:

“python

import logging
Assistant

logger = logging.getLogger(__name__) import logging
from functools import wraps

FIZzBUZZ COUNTER = 0 logger = logging.getLogger(__name__)

def log_function_args(func): FIZZBUZZ_COUNTER = 0

def wrapper(*args, “*kwargs):
logger.info(f'Function ‘ffunc.__name__} called with arguments: {args} and keyword
arguments: {kwargs}") deflog_function_args(func):
return func(*args, **kwargs) @wraps(func)
return wrapper def wrapper(*args, “*kwargs):
v logger.info("Function called, v
defincrement_counter(fu" 711 Soune 1 220¢ wo12t (9 Request extra={ (3 5,490ms 1222t 323t (7 Request 1D

Figure 15.16: Comparison of the fine-tuned model and the base model

In this figure, we can see that the assistant’s response begins directly with the code, reflecting
the influence of the fine-tuned examples. Additionally, the preferred logging style is consistently
applied, aligning with the provided sample.

Chapter 15 387

While fine-tuning helps maintain the desired structure and style, it requires significantly more
effort than using Copilot for going-live tasks related to code completion. For this reason, we rec-
ommend Copilot as your primary tool for such tasks. Fine-tuning may be a viable option if you're
building a custom GenAl application for internal use and have dozens of training examples, such
as scanning an entire repository for suggestions or developing a GenAI-powered solution to serve
other customers. However, Copilot with few-shot learning tends to be a more efficient method

of achieving results without having to invest time in finding many use cases.

Summary

In this chapter, we explored how going-live tasks, such as adding logs, monitoring usage, and
handling bad input, can introduce unnecessary complexity to functions. GenAl does notinherently
suggest using decorators to separate these objectives from the core functionality of the program,

which can lead to lower-quality code.

The most effective way to leverage GenAl for these tasks is through CoT prompting with GitHub
Copilot. This approach involves first implementing the core function and then specifying addi-

tional requirements for decorators to handle logging, metric recording, or argument validation.

To ensure that the decorator implementation follows our desired style, we can use few-shot
learning with Copilot and ChatGPT or fine-tune a model for OpenAI API. This allows us to achieve

more desirable results, minimizing the requirements for chained edits to the code.

In the final chapter of the book, we will summarize the key takeaways from the 15 chapters and

explore how to enhance our coding efforts with GenAl tools.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following
questions:

Question 1: Do LLMs guarantee higher coding standards?

Answer: No, not necessarily. Simply asking GenAl applications to add monitoring responsibilities
can lead to undesirable suggestions, such as merging monitoring tasks with core functionality

instead of properly separating responsibilities.

388 Going Live with GenAl: Logging, Monitoring, and Errors

Question 2: What is the inverse CoT for Copilot?

Answer: It involves defining higher-level coding structures, such as decorators, first and then

moving the cursor up to let Copilot complete the implementation details.

Question 3: How can we guide GenAl applications to follow a style guide that aligns with our

internal standards?

Answer: We can use a style guide file for Copilot, provide a few examples when prompting ChatGPT,
and apply fine-tuning when working with OpenAI APIL.

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following

resources:

Real Python on decorators: https://realpython.com/primer-on-python-decorators/

e Python’s logging documentation: https://docs.python.org/3/howto/logging.html
e Metrics of code, Wikipedia: http://en.wikipedia.org/wiki/Software_metric

e Exception handling, Wikipedia: https://en.wikipedia.org/wiki/Exception_handling_
(programming)

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before

Yyou start.

https://realpython.com/primer-on-python-decorators/
https://realpython.com/primer-on-python-decorators/

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html

http://en.wikipedia.org/wiki/Software_metric
https://en.wikipedia.org/wiki/Software_metric

https://en.wikipedia.org/wiki/Exception_handling_(programming)
https://en.wikipedia.org/wiki/Exception_handling_(programming)
http://packtpub.com/unlock
http://packtpub.com/unlock

16

Architecture, Design,
and the Future

It seems that every discussion about the future of artificial intelligence (AI) bears considering
the famous quote of Niels Bohr: “Prediction is very difficult, especially if it’s about the future.” When
it comes to Al, though, we already have ideas about what the future will bring. That is, we have
read various science fiction books by Asimov and other authors. We have watched The Terminator
and other futuristic movies and TV shows. Even cartoons across different generations embody
different versions of the future, whether it’s The Jetsons, Futurama, or various anime. We have

conceptions of what the future looks like; the uncertainty rests on how long it will take to get there.

With the increasing investments in Al and their exponential growth, the fields of Al and GenAl
continue to evolve and bring new capabilities faster than most practitioners expect, let alone
can keep up with. The landscape of software engineering is changing as a result of the new capa-
bilities brought about by Al and GenAl for coding. Before we can look forward and estimate the
timeframes for advancements in the future, it is useful to look back and understand the major
technological advances that have accelerated the transformation over the past 10 years. This

chapter briefly reviews these major advances as a conceptual framework for what happens next.

This book enables readers to embrace these changes and gain the skills to effectively use them
for not just coding but a range of software engineering skills. As we all continue to learn, it is
useful to understand the impact of these advances on the industry. These include the impact on

software engineers and their companies, as well as what the future might bring.

390 Architecture, Design, and the Future

In this chapter, we explore the following topics:

e Therapid rise of GenAl

e The economics of faster software development
e The shifting landscape of software developers
e Will GenAl change programming languages?

e The future of GenAl in software engineering

The rapid rise of GenAl

It was only in late 2012 that Thomas Davenport and DJ Patil declared that data science is the
“sexiest job of the 21st century” in their Harvard Business Review article (https://hbr.org/2012/10/
data-scientist-the-sexiest-job-of-the-21st-century).Justover adecadelater, the pace of

transformation in the industry has been nothing short of remarkable.

In the same period of the last decade, neural networks were finally making their third resurgence
after a couple of Al winters. Although neural network research started back in the 1950s, it faced
difficulties in reaching its extremely hyped expectations, which resulted in periods of minimal
funding and research known as the “Al winters.” By 2012, new neural network architectures had
emerged. AlexNet, a type of convolutional neural network (CNN), drew widespread attention
from the computer vision community after winning the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) in 2012 by a wide margin. This changed the course of computer vision
as allimage understanding work quickly shifted to CNNs. The ensuing research over the next few
years led to the ability of CNNs to extract information from images as accurately as humans by

2016, according to the ILSVRC competition, although human accuracy levels are still disputed.

While computer vision work was advancing through the CNN architecture, the transformer ar-
chitecture was introduced through a 2017 paper from Google. This Attention Is All You Need paper
(https://arxiv.org/abs/1706.03762) describes an attention mechanism and the transformer
architecture. In the years since, this architecture has had a massive impact on neural networks
and the field of AL Although it has improved solutions for many diverse problems within Al, its
primary beneficiary has been the subfield of natural language processing (NLP). The work of
this paper led to the adoption of large language models (LLMs).

LLMs have had a profound impact on the public perception of Al, though the early generations
of this technology were far less impressive. GPT-1 and GPT-2 were released by OpenAl in 2018
and 2019 and served as a step forward in LLMs. These models are essentially prediction models

trained on large volumes of text to predict the next word. The transformer architecture learned the

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://arxiv.org/abs/1706.03762

Chapter 16 391

relationship between the words in a sentence to predict the next word. Empirical research found
that the LLMs performed significantly well with ever larger models trained on ever more data.
GPT-3 wasreleased in 2020 with 175 billion parameters as compared to the 1.5 billion parameters
of GPT-2. GPT-4, released in March 2023, scaled up to an estimated 1.76 trillion parameters, a
10-fold increase over GPT-3.

InstructGPT and ChatGPT were developed as new tools that utilize underlying GPT LLMs. In-
structGPT was designed to generate text for specific tasks that follow user instructions. These
tasks could be emails, summaries, or even code. InstructGPT included Al predictions based on
training data as well as a reinforcement learning technique based on human feedback to adjust
the next word predictions based on a human feedback mechanism. In contrast, the release of
OpenAl’s ChatGPT in November 2022 was based on GPT-3.5 and was arguably the first time an
average user could interact with an LLM without having to program. It focused on conversations
with users and general dialogue but also included the reinforcement learning method. These two

tools developed many of the LLM methods that led to the prompting techniques field.

The LLM and ChatGPT methods focus on accurately predicting the next words across languages.
The same models have opened other research avenues by training on other types of data. Instead
of training on text, researchers in biology have found that the same results can be applied to
genomes and protein sequence predictions. Chemists are using the technology to create new
drugs and chemical substances with specialized properties. This book, of course, is based on the

same idea of applying the same prediction techniques to code by training on public code bases.

Afewyears ago, Al was rarely discussed in the media. Today, the financial news seems to focus on
the recent technology advances and their implications for the markets and the larger economy.

The next section discusses some of the economic issues that GenAl coding may offer.

Economics of faster software development

Software development is one of the key enablers of technology and the digital economy. Software
impacts many aspects of modern society, from governments to businesses. Most industries rely
on software. Software is closely tied to the productivity of workers across the globe, making it a

key economic measure.

392 Architecture, Design, and the Future

The field of software economics researches and estimates the value provided by software against
the costs associated with its development. Software platforms and tools are designed to provide
incremental business/economic value to the organizations using them. The key decisions of buying
commercial off-the-shelf (COTS) software, licensing software, customizing third-party software,

or building it in-house are based on the estimated incremental value proposition.

With GenAl, software engineers can write quality code substantially faster. With the techniques
described in this book, the efficiency in writing code should improve and the quality of the pro-
duced code should remain quite high. The ability to automate the testing and documentation
further reduces the costs of software development. In financial terms, the use of GenAl by the
same workforce would resultin an increased supply of software. The current costs for the GenAl
coding empowerment remain $25/month or under, which is arguably a bargain. The reduced
cost will increase the demand for software, creating greater automation and adding value for
businesses. There are always more problems to solve, and the lower development cost barrier
will alter the economics of software engineering. To reap these benefits, software engineers need

to begin using this technology, which is discussed in the next section.

Will GenAl be adopted by software engineers?

The improved efficiency, speed, and capability that GenAl brings for software engineersis atleast
aparadigm shift but may be a revolution in the way that software is being developed. As discussed
in this book, the current capabilities of GenAl include many of the tasks that software engineers
engage in daily. These include writing code and tests, generating documentation, refactoring,
and optimizing code. GenAl aids with the cognitively complex tasks of code debugging down to

the less mindful tasks of conforming to code style.

Gartner predicts that 50% of software engineers will use AlI-powered coding tools by 2027, which
is up from the 5% in 2023 when GenAl was at the peak of the hype cycle (https://www.gartner.
com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-
and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-i-
n-two-to-five-years). Over the last two years, GenAl tools have rapidly shifted from marginally
useful due to their many errors to widespread tools that software engineers and corporations find
valuable. In this brief period, KPMG claims that GenAl has become a software engineer’s most
valuable coding partner (https://kpmg.com/us/en/articles/2023/generative-artificial-
intelligence.html). Over the next few years, these tools will continue to evolve and produce

ever higher quality code, test instances, docstrings, and documentation.

https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://kpmg.com/us/en/articles/2023/generative-artificial-intelligence.html
https://kpmg.com/us/en/articles/2023/generative-artificial-intelligence.html

Chapter 16 393

Given the improved accuracy and overall efficiency that GenAl coding provides, the effect may
notbe uniform across all ranks of developers. The next section examines how the tools may affect

different classes of programmers.

Shifting landscape of software developers

At the current market pricing, GenAl tools are generally available to all developers. It is interest-
ing to speculate how the software engineer landscape may change due to this recent technology.
Some have suggested that GenAl tools will level the playing field since any developer will be able
to program with increased efficiency in any language. They argue that junior developers may take
over more roles and increase the volume of code delivered, and more senior developers will be

pushed out of organizations. Others argue the opposite.

The rise of GenAl tools has also lowered the barrier for software development. Programming in
eachlanguage has a steep learning curve since itincludes syntax, algorithms, libraries, integrated
development environments (IDEs), compiler messages, and more. Printing the “hello world”
message in any language is usually the first accomplishment. If coding a new language is like
reading the front page of a foreign language newspaper, GenAl for coding is a tutor that shows
the meaning of all words and explains the grammar upon request. For coding alone, a junior

developer may quickly become productive in straightforward coding.

Tools such as ChatGPT and GitHub Copilot will empower developers to quickly learn and become
productive in new programming languages. There are always new languages and frameworks
that all software engineers must continually learn and apply to projects. The implication is that
developers can more quickly get up to speed with new languages and frameworks and become
productive in far less time. This has implications for not only new languages but also older lan-
guages such as COBOL, FORTRAN, and others that are still running in legacy systems, described

later in this section.

Our perception is that the landscape will shift toward senior developers, and more junior develop-
ers may be displaced by the GenAl tools. If we consider a typical software engineering or computer
science undergraduate curriculum, the primary technical courses include calculus, programming,
data structures, algorithms, and maybe software engineering. The more advanced courses will
include networking, compilers, operating systems, big data, Al, programming language theory,

optimizations, cloud computing, and much more.

394 Architecture, Design, and the Future

Junior developers tend to focus more on writing code, tests, and documentation, while the more
senior developers focus on the complex interplay between the system requirements, stakeholders,
architecture, design, and other aspects that tend to require more experience. The GenAl efficiencies

clearly overlap the skillsets of the junior developers, but not the senior developers.

GenAl as related to the Software Engineering Body of
Knowledge

Another viewpoint is that GenAl performs very well within a limited scope of coding within
software engineering. The IEEE Computer Society produces a Software Engineering Body of
Knowledge (SWEBOK). The current version, developed in 2024, captures the collective skills,
methodologies, knowledge, and so on for the software engineering profession. It has been curated
by experts with the goal of reaching a consensus on the core body of knowledge. Table 16.1 lists
the 18 knowledge areas (KAs) found in the SWEBOK guide, available athttps: //www.computer.

org/education/bodies-of-knowledge/software-engineering:

Software requirements Software architecture Software design

Software construction

Software testing

Software engineering operations

Software maintenance

Software configuration

management

Software engineering management

Software engineering

process

Software engineering

models and methods

Software quality

Software security

Software engineering

professional practice

Software engineering economics

Computing foundations

Mathematical foundations

Engineering foundations

Table 16.1: Software Engineering Body of Knowledge (SWEBOK) 2024 V4

Compared to the SWEBOK, GenAl enhances a few processes but only a fraction of the overall
skillset currently. Specifically, it directly enhances software construction and software testing.

Indirectly, it helps support software maintenance and software quality KAs.

https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering

Chapter 16 395

Democratization of software engineers

The GenAl tools will help a wider audience than many people expect. We have discussed how
junior software engineers and those getting up to speed in a new language can receive help with
their programming. Senior developers can leverage their architectural, design, and other software
systems experience. There is a wide class of former developers who have software experience

but have shifted into other roles in computational biology, finance, business, or management.

Former programmers who have left the field to take on different responsibilities may return to
coding in the near future with the GenAl tools. If they have been out of programming for several
years, they would need to learn new languages, cloud computing, new IDEs, and so on. Nor-
mally, they would be unlikely to invest considerable time learning this multitude of new skills.
However, with GenAl, they are now empowered to write niche applications within their specific
roles that use their expertise. The implications are that part of software engineering may shift
somewhat from being a domain-independent technical skill to an extra skill of domain experts.
Thatis, rather than hiring expert software engineers who have traditionally applied their techni-
cal skills to write code for banking, healthcare, or other industries, these industries may turn to
experienced practitioners in their field who can also program. We started to experience some of
this with robotic process automation (RPA), where the subject matter experts learned the tools
and drove specific workflows. In the last couple of years, we have seen similar domain experts
learning prompt engineering to leverage LLMs in their workflow pipelines. We see a similar shift
in the democratization of Al, where subject matter experts may be replaced by subject matter

experts with Al experience.

Legacy software and flexible teams

With the explainability and guidance of GenAl technology, software development will certainly
change corporate and industry approaches to software, especially legacy systems. Many compa-
nies and industries rely on legacy software systems developed decades ago and continue to run.
The systems may be decades old and written in a language that only one or two people in the
company have ever learned. The software systems pose a significant risk to organizations. They
may run on legacy hardware, but they are still part of existing workflows. Efforts to understand,

let alone rewrite, such systems have been cost-prohibitive.

GenAl systems can now be trained on the code bases and both provide support for understanding
the code and perhaps enable them to be quickly rewritten. Using similar technology to human
language translation, the code can use GenAl techniques to efficiently rewrite the full code base,

adhere to the more recent documentation and testing strategies, and eliminate the risk. In terms

396 Architecture, Design, and the Future

of staffing, this would reduce the need to keep developers with specialized language ability or

experience with these legacy systems.

As the barriers with legacy systems decrease, software engineers may become empowered to work
on a wider set of projects. While subject matter knowledge in the industry domain is critical, the

coding implementation has become more accessible through GenAl.

With GenAl, coders can more quickly get up to speed with new code bases and become productive,
but this hasimplications. The speed provided by GenAl increases the flexibility of developer teams.
Developers can shift more quickly between projects and gear up for new projects. With agile project
development practices and changing requirements, this is certainly a positive outcome. However,
this flexibility would also presumably lead to increased outsourcing of code development since
offshore teams could also quickly ramp up to tackle projects in a similar fashion. This is not a
new trend, and many teams still rely on senior developers, designers, and business analysts who

interact with customers.

This section focused on the people involved in software engineering and the impact of GenAl
on the field. The next section discusses the potential opportunities for computer languages to

change based on GenAl capabilities.

Will GenAl change programming languages?

The traditional art and science of writing software involves creating a set of instructions that
a computer can follow. This communication currently occurs through a specific programming
language. The instructions usually include combinations of data structures that store and manip-
ulate data. The instructions may include algorithms that efficiently sort, manipulate, or transform
data to add business value. Most programming languages can perform these operations, but their
true power is only achieved when using added libraries or packages that enable user interfaces,

networking, database interaction, and much more.

Our GenAl coding tools today focus on writing and modifying our code. That is, ChatGPT, OpenAl
API, and GitHub Copilot serve as programming assistants that guess the specific programming
language code lines from the method signature. While this speeds up our programming at the
method level, it requires that the developer have knowledge of how the problem breaks down
into multiple methods and the transmission of information between the methods as dictated

by their signature.

Chapter 16 397

We can draw parallels between writing a document using an LLM and writing code using GenAl.
ChatGPT and other LLMs are remarkable at rephrasing text for technical audiences, doctors, or
children. This is equivalent to refactoring code. To write a letter from scratch, it’s not a single
command but a series of prompts that map out the instructions and sequence. Similarly, one does
not write the entire code file but must break it down into a series of commands that can each be
developed into code. Throughout this book, we have provided many examples thatillustrate that
GenAlIwill usually write reasonable functional code. However, by breaking functions into smaller

units, the GenAl will produce higher-quality and more readable code that is easier to maintain.

The next stage of GenAl software development is possibly a more natural language way of com-
municating with computers. While computer languages emphasize the precision of commands,
they require an unnatural and more formal structure for communicating ideas. This requires a
learning curve and arguably slows down development. Natural language could speed up the

translation into computer-readable form and enable greater accessibility to software.

The rise of natural languages for computer instructions will likely require some time and face
some hurdles that can be overcome with pseudocode. Three of the formal steps of computer lan-
guages are sequences, iterations, and selection (conditions). The interaction of these elements is
the formal control flow of computer programs. Natural language can handle the sequences and
conditional flows reasonably well, but the notion of iteration loops is arguably not commonly part
of languages. Pseudocode represents a somewhat arbitrary syntax but captures the three formal
steps well. General pseudocode that can be interpreted by LLMs to produce formal programming

languages may further empower a wider set of developers.

The future of GenAl in software engineering

This section first discusses vibe coding and then breaks down the future of software engineering
into two different horizons. The shorter term considers the next few years, and the longer term

considers what the field might look like in five or more years.

Vibe coding

Vibe coding is a recent trend where the developer describes what they want to do in natural lan-
guage and leaves the technical coding aspects up to the LLM. Using LLMs to write code is certainly
atheme of this book, and vibe coding essentially takes this to an extreme. Essentially, vibe coding
provides a form of rapid prototyping that is a valuable part of the overall software engineering
process, particularly in defining requirements. We believe the software community will come to

recognize its value as such. However, for larger projects, code quality is important since most of

398 Architecture, Design, and the Future

the costs associated with software are in its maintenance, such as adding new features. Many
unhappy memes describe the difficulty of “vibe debugging” the relatively poor-quality code
produced by vibe coding. we expect a future that lands somewhere between where we are now

and vibe coding. We will describe the shorter- and longer-term expectations next.

Shorter term

Over the last year, the GenAl market has blossomed, and many developers are now working with
this technology. Itis available as a VSCode extension, Jetbrains products including PyCharm plugin,
and other integrated development environments (IDEs) so it’s readily available. In addition, new
IDEs with built-in GenAl capabilities have entered the market, including Cursor, Windsurf, and
Replit. Other tools, such as AWS CodeWhisperer and Tabnine, offer code suggestions for multiple
languages. All of these are offered at a low price, compared to the potential savings of developer
time. In the short term, all of these will increase their accuracy and lead to the creation of better

software in less time.

Longer term

After many have adopted the GenAl coding approaches and can use them effectively, the technol-
ogy push will focus on trying to move from formal requirements and specifications to code. As
one of the first steps in the software development life cycle, requirements gathering is a formal
process to understand the intended goals, the user interfaces, non-functional requirements, and
so on. In many organizations, there are more formal diagrams, such as Unified Markup Language
(UML), that describe the design. Others include sample user interface designs from Balsamiq

and Figma. Efforts are underway to automatically convert these diagrams directly into code.

GenAl has not solved many of the other aspects of software development processes. The planning,
designing, higher-level integration, DevOps, deployment, orchestration, and other aspects of
software have had minimal impact from GenAl. We are excited about the long-term prospects, but

do not have an opinion on when GenAl techniques will make meaningful strides in these areas.

Will Al replace software engineering?

The need for software engineering will continue for two reasons. First, we know that GenAl is
much more effective at writing parts rather than full end-to-end content. For prose text, we don’t
expect GenAl to draft full reports, but we can break it down into sections and paragraphs and
use prompt engineering. It’s no surprise that some of the main use cases are web searches and
summarization, which have weak parallels in software engineering and improving text, which

is essentially refactoring. With software engineering, knowledge of software structure and sup-

Chapter 16 399

porting architectures is needed to break code into modules, files, and succinct methods. The need
for human skills for these tasks will likely continue for several years, even though individual
methods may be fully crafted using GenAl. Humans will shift to roles in architecture, design, and

integration, and will still ultimately be responsible for validating the code.

The second reason is that GenAl is most effective when working with widely available code
bases but often fails without such expansive sets of examples. Most software engineers need to
learn a new language every 3—5 years on average. Certainly, some of this is due to switching jobs.
However, new languages, frameworks, and new versions of both continue to emerge—none of
which begin with sufficiently large code bases for training GenAI models. Domain-specific lan-
guages are another good example of limited training data. In addition, the newest technologies
in databases, cybersecurity, quantum computing, and so on need software engineers since their

respective code bases are still being written.

Risk and governance

Humans are currently ultimately responsible for the code that is produced, but the use of GenAl
raises a number of challenges. In heavily regulated industries such as transportation, banking,
and healthcare, the use of Al will undergo significant scrutiny. The ability to provide explainability
and understanding of which programmers, agents, or Al created different sections of code will
likely become standard. The risks, legal responsibilities, and ethical considerations will need to
address responsibilities and safeguards for software. The ethical, moral, and legal issues around
self-driving cars today provide a good example of some of the considerations. MIT’s trolley prob-
lem (https://en.wikipedia.org/wiki/Trolley_problem) and the Moral Machine (https://

en.wikipedia.org/wiki/Moral_Machine) provide further examples of the challenges.

Another challenge is the copyright issue of software. For regular texts, News Corp, the Financial
Times, the Associated Press, and other media companies have negotiated agreements to license
their text to OpenAl. Microsoft and Google have also negotiated with content providers to scale
their training sets without violating copyright laws. For software code, the laws are less clear
since it’s a relatively new problem that has not yet been resolved. It is certainly possible that the
GenAl could duplicate copyrighted code. Since the accuracy of the GenAl depends in part on the

size of the training set, more code licensing may be required to improve performance.

The education in programming languages and the evaluation of skills must also adapt. Schools and
universities have taught programming skills for decades. Just as spelling and grammar checkers
are standard practice for writing reports, GenAl is likely to eventually not just be accepted but be

arequired part of software development. Universities have tended to focus more on the language

https://en.wikipedia.org/wiki/Trolley_problem
https://en.wikipedia.org/wiki/Moral_Machine
https://en.wikipedia.org/wiki/Moral_Machine

400 Architecture, Design, and the Future

nuances and syntax rather than the set of available tools, such as compilers, debuggers, and linters.
However, ignoring GenAl will be difficult since it will be used extensively. Job interviewers have
often used LeetCode forms of technical questions to weed out candidates, even though many of
the questions are more academic than common industry practices. With GenAl, such low-level
coding skills have become even less relevant, and we expect these forms of interview questions

to evolve as well.

Summary

Al and GenAl capabilities have advanced rapidly over the past several years through a number
of major technology innovations. With GenAI’s boost in software engineering productivity at a
low price point, it will increase the volume of code written and lower the overall costs. This will
change the software engineer landscape, perhaps to favor more senior developers with more ex-
perience in architecture, design, and SWEBOK. It may also enable specialists with deep domain
experience to develop more code. Legacy systems may be rewritten with GenAl support, which

will free companies to use software developers across projects in a more agile manner.

There is a strong movement toward adopting GenAl for coding, and it has already been integrat-
ed into many IDEs. In the longer term, we will see how it surpasses the coding tasks and enters
more aspects of software engineering. GenAl still requires the communication of commands to
computers, and natural language may eventually supplement or replace programming languages,
but pseudocode may be the next frontier. The world will still need software engineers for the
foreseeable future. There are still many issues to manage, from risk to compliance, but GenAl has

arrived and is already supercharging software engineering.

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following

resources:

¢ Thomas Davenport and D] Patil. Harvard Business Review. https://hbr.org/2012/10/
data-scientist-the-sexiest-job-of-the-21st-century

e Alwinters:https://www.historyofdatascience.com/ai-winter-the-highs-and-lows-
of-artificial-intelligence/

e Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. I'nageNet Classification with Deep Convo-
lutional Neural Networks. NeurIPS 2012. https://proceedings.neurips.cc/paper_files/
paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper. pdf

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://www.historyofdatascience.com/ai-winter-the-highs-and-lows-of-artificial-intelligence/
https://www.historyofdatascience.com/ai-winter-the-highs-and-lows-of-artificial-intelligence/
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Chapter 16 401

ImageNet Large Scale Visual Recognition Challenge. https://arxiv.org/pdf/1409.08575
Attention Is All You Need. https://en.wikipedia.org/wiki/Attention_Is_All You_Need

Gartner hype cycle for Al practices. https://www.gartner.com/en/newsroom/press-
releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-
engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-
to-five-years

The startling power generative Al is bringing to software development. https://kpmg.com/us/
en/articles/2023/generative-artificial-intelligence.html

H. Washizaki, eds., Guide to the Software Engineering Body of Knowledge (SWEBOK Guide),
Version 4.0, IEEE Computer Society, 2024. https://www.computer.org/education/
bodies-of-knowledge/software-engineering

Moral Machine. https://en.wikipedia.org/wiki/Moral_Machine

Trolley problem. https://en.wikipedia.org/wiki/Trolley_problem

Subscribe for a free eBook

New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAl systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.1link/TRO5B or scan the QR code below.

O

https://arxiv.org/pdf/1409.0575
https://en.wikipedia.org/wiki/Attention_Is_All_You_Need
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://kpmg.com/us/en/articles/2023/generative-artificial-intelligence.html
https://kpmg.com/us/en/articles/2023/generative-artificial-intelligence.html
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://en.wikipedia.org/wiki/Moral_Machine
https://en.wikipedia.org/wiki/Trolley_problem
https://packt.link/TRO5B

Appendix

Set up an OpenAl Account

Here are the steps to create an OpenAl account:

1. Navigateto https://openai.com/. At the top left of the page, click on either ChatGPT or

API Platform to start the account creation process, as shown in Figure I:

« > C 25 openai.com 577 [y & ‘

OpenAl O Q Log in
ChatGPT
API Platform
Sora

ntroducing GPT- 1

fastest, most useful model yet, with b

Safety

For Business : ? 5
i ert-level intelligence in everyone’

Learn more

For Developers

ChatGPT

Sora

Stories o =
Figure 1: Access to ChatGPT and API Platform from OpenAl APl

2. Each of theselinks will take you to an account creation page, where you can sign up using
popular platforms such as Google, Microsoft, or Apple, or register with an email address,

as shown in Figure 2:

https://openai.com/

404 Appendix

< C 2 auth.openai.com/log-in & W 2 & d

OpenAl Platform

Welcome back

/lEmaMaddress \
{)
A /

Don't have an account? Sign up

OR

G Continue with Google

B Continue with Microsoft Account

.’ Continue with Apple

Figure 2: OpenAl platform sign-up page

3. To register with an email address, click on Sign up.

Important Note

\G/‘ As of August 2025, you will need to create two separate accounts: one for ChatGPT
and one for the OpenAl platform to access the API.

In the next section, we will go through the setup of a virtual environment.

Creating a virtual environment

A virtual environment in Python is an isolated setup that ensures the reproducibility of depen-

dencies, which are external libraries our project depends on.

For example, consider the following code:

import pandas as pd

df = pd.read_csv('df.csv')
df.to_markdown()

405

Here, we depend on Pandas, a third-party and open-source library available at: https://github.
com/pandas-dev/pandas. Pandas provides the read_csv function, which returns a DataFrame.
Since version 1.0.0, which can only run on Python 3.6.1 or higher, the DataFrame class also
includes the to_markdown method. If we use earlier versions of Python or Pandas, this code may

notrun.

Generally, developers specify their required dependencies in a file named requirements.txt.
In this book’s repository, you will find a specification of the external libraries that we use in

requirements.txt, as shown in Figure 3:

= requirements.txt

pandas
numpy
openai
matplotlib
jupyter
memory-profiler
line_profiler
flask
pytest

10 |

Figure 3: Requirements.txt file for this book

In later chapters of the book, where we dive deeper into the software development lifecycle
(SDLC) functions, the requirement files for these projects will include specific versions, as shown

in Figure 4:

= requirements.txt

pandas==2.2.3
frask==3.1.0

W

Figure 4: requirements.txt with versioning from Chapter 10

https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas

406 Appendix

Justlike in this figure, our production projects also include specific versioning. For the dependency
versioning resolution, we leverage dependency and environment management tools such as pipenv
that proposes dependency management for specific versioning resolution. Other developers may
use Conda, poetry, or other tools. In this book, however, we will use Python’s built-in venv tool

for our environment setup.

Prompting virtual environment

In this book, we leveraged GenAl for every step of the SDLC, and installing a virtual environment
isno exception. This taskis a good candidate for using the agent mode within the GitHub Copilot

chat window, with a prompt that follows the Five S’s discussed in detail in Chapter 4.
A prompt to install our dependencies should include the following components:

1. Python version: Which version of Python should be used to run this project, in our case,
itis Python 3.11.

2. Environment tool: Either venv or its alternatives.
3. Requirements file: The default is requirements.txt placed in the root of the project.

4. Environmentname: A common practice is to name the environment . venv. We can also

customize it to suit the project name with a prefix of a period, such as . supercharged.

5. Environment location: The library code is typically installed at the project root.

Considering these, here is an example of a prompt we can use with GitHub Copilot, either in
PyCharm or VS Code:

CONTEXT: You are provided with:

1. Python version enclosed with {{{ VERSION }}}

2. Requirements file path enclosed with {{{ PATH }}}
3. Environment tool enclosed with {{{ TOOL }}}

4. Environment name enclosed with {{{ ENV NAME }}}

5

Location for the environment enclosed with {{{ Location }}}

TASK: Set up a virtual environment using the Python version, requirements
file path, using the provided name and location for this project.

VERSION: {{{ Python 3.11 }}
PATH: {{{ requirements.txt }}}
TOOL: {{{ venv }}}

407

ENV NAME: {{{ .supercharged }}}
LOCATION: {{{ project root }}}

For reference, the output of the setup using agent mode with GitHub Copilot and the underlying
Claude Sonnet 4.0 specifies the steps for setting up an environment, activating it, and installing
its dependencies. Figure 5 demonstrates creating the environment with our desired name and

activating it:

v python3.11 -m venv .supercharged

Great! The virtual environment has been created
successfully. Now let me activate it and install the
packages from the requirements.txt file:

Run command in terminal

source .supercharged/bin/activate && pip
install —-upgrade pip

Activating the virtual environment and upgrading pip
to the latest version

Continue Cancel

Figure 5: Activating the virtual environment

Figure 6 illustrates the installation of dependencies as specified in requirements.txt:

source .supercharged/bin/activate && pip
install --upgrade pip

Perfect! Now let me install all the packages from the
requirements.txt file:

Run command in terminal

source .supercharged/bin/activate && pip
install -r requirements.txt

Installing all packages from requirements.txt into the
.supercharged virtual environment

Continue Cancel

Figure 6: Installation of the dependencies

408 Appendix

Once installation is complete, Copilot may propose some tests, such as validating the correct

versioning of the packages, concluding with a success message as shown in Figure 7:

CHAT 9 C + D I X

Virtual Environment Setup Complete! &

| have successfully set up the virtual environment for your
project with the following specifications:

Setup Summary:

e Environment Name: B3 .supercharged

« Location: Project root (B .supercharged)
« Python Version: Python 3.11.2

* Tool Used: venv

Installed Packages:

All packages from requirements.txt have been
successfully installed:

« pandas (2.3.1)

e numpy (2.3.2)

* openai (1.99.6)

« matplotlib (3.10.5)

e jupyter (1.1.1) - Full Jupyter suite including
JupyterLab

 memorv-profiler (0.61.0)

Figure 7: Successful installation message

After the setup is complete, we can see that a . supercharged folder is added to the repository,

as shown in Figure 8:

EXPLORER requirements.txt X
> OPEN EDITORS requirements.txt
v SUPERCHARGED-C...[} B2 U & 1 pandas
> .idea & Dumpy
h d 3 openai
v .supercharge 4 matplotlib
> bin 5 jupyter
> etc 6 memory-profiler
> include 7 line_profiler
: - 8 flask
> lib/python3.11/site-pack... | 1ias
9 pytest
> share

fany
[S)

Figure 8: Added files to the repository

409

For reference, here are the typical three shell commands we can use to manually install the virtual

environment:

python3.11 -m venv .supercharged

source .supercharged/bin/activate

pip install -r requirements.txt

Next, we will see how to instruct git to ignore the dependencies files.

Adding virtual environment to .gitignore

Since requirements.txt is sufficient for replicating the dependencies on any machine, there
is no need to include the actual environment code in the repository. For that reason, it is best
practice to ignore the installed dependencies. We can do this by adding the path of the installed

requirements to the . gitignore file. We can chain another prompt in agent mode:

Add the environment path to .gitignore file.

This prompt successfully adds the path of the virtual environment to .gitignore, as shown in

Figure 9.
¢ _gitignore [¢] X ¥} @ - CHAT) + 9 {5’5 s T 5%
€ _gitignore
1 # Virtual environments Add the environment path to .gitignore file.
2 venv/ ..
3 .supercharged/ © gitignore:1-24
4 4
5 # Python | can see that the ¢ .gitignore file already has a good
6 __pycache__/ structure with virtual environments section, but it's
7 *.py[cod] missing the specific B .supercharged directory that we
8 *$py.class created. Let me add it to the virtual environments section:
9 *.50
10 .Python — & _gitignore +1-0

Figure 9: Adding the path to the .gitignore file

If you named your environment differently, Copilot would likely add the correct name to the file.
If you used . supercharged or .venv, no changes are required because these names are already

in our files.

Important Note

V4 Now that you are a supercharged coder, we encourage you to help your colleagues
\E/‘ use these prompts when setting up a new virtual environment. These can be adapt-

ed for different environment tools, environment names, and projects, reducing the

chances of errors when working with Agent mode

410 Appendix

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following
resources:

e Venv,virtual environment built-in: https://docs.python.org/3/library/venv.html

e Pipenv, dependency and environment management tools: https://pipenv.pypa.io/
en/latest/

e Poetry,dependency and environment management tools: https://python-poetry.org/
docs/dependency-specification/

e Conda, dependency and environment management tools: https://anaconda.org/
anaconda/conda

https://docs.python.org/3/library/venv.html
https://pipenv.pypa.io/en/latest/
https://pipenv.pypa.io/en/latest/
https://python-poetry.org/docs/dependency-specification/
https://python-poetry.org/docs/dependency-specification/
https://anaconda.org/anaconda/conda
https://anaconda.org/anaconda/conda

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at packtpub. com and as a print book customer,

you are entitled to a discount on the eBook copy. Getin touch with us at customercare@packtpub.

com for more details.

Atwww.packtpub. com, you can also read a collection of free technical articles, sign up for arange

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:
Building
Agentic Al Systems

Create intelligent, autonomous Al agents that
canreason, plan, and adapt

Chief Technology Officer, Minset.ai
mber of the National Academy of \
L

Anjanava Biswas | Wrick Talukdar

Forewords by

Building Agentic Al Systems
Anjanava Biswas, Wrick Talukdar
ISBN: 978-1-80323-875-3

e Master the core principles of GenAl and agentic systems

e Understand how Al agents operate, reason, and adapt in dynamic environments

e Enable Al agents to analyze their own actions and improvise

e Implement systems where Al agents can leverage external tools and plan complex tasks
e Apply methods to enhance transparency, accountability, and reliability in Al

e Explore real-world implementations of Al agents across industries

https://packt.link/1803238755

414 Other Books You May Enjoy

EXPERT INSIGHT /" Incolor

Generative Al
with LangChain

Build production-ready LLM applications and advanced
agents using Python, LangChain, and LangGraph

1-year code support

Ben Auffarth | Leonid Kuligin

Generative Al with LangChain - Second Edition
Ben Auffarth, Leonid Kuligin
ISBN: 978-1-83702-201-4

e Design and implement multi-agent systems using LangGraph

e Implement testing strategies that identify issues before deployment

e Deploy observability and monitoring solutions for production environments
e Build agentic RAG systems with re-ranking capabilities

e Architect scalable, production-ready Al agents using LangGraph and MCP

e Work with the latest LLMs and providers like Google Gemini, Anthropic, Mistral,
DeepSeek, and OpenAI’s 03-mini

e Design secure, compliant Al systems aligned with modern ethical practices

https://packt.link/1837022011

Other Books You May Enjoy 415

Packt is searching for authors like you

If you'’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you,
to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you’ve finished Supercharged Coding with GenAl, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page

for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1836645295

416 Other Books You May Enjoy

Join our Discord and Reddit spaces

You're not the only one navigating fragmented tools, constant updates, and unclear best prac-

tices. Join a growing community of professionals exchanging insights that don’t make it into

documentation.
Stay informed with updates, discussions, and Connect with peers, share ideas, and discuss
behind-the-scenes insights from our authors. real-world GenAlI challenges. Follow us on

Reddit at https://packt.link/@rExL or

scan the QR code below:

O

Join our Discord space at https://packt.
link/z81ivB or scan the QR code below:

O

https://packt.link/z8ivB
https://packt.link/z8ivB
https://packt.link/0rExL

Symbols

__call__method 110

A

Al pair programmer 45
Al winter 6

American Invitational Mathematics
Examination (AIME) 78

application programming interface
(API) 10,17

artificial intelligence (Al) 6,389
assistant prompts 19, 107

Big-O notation 262,337

C

calculate_distance function 250

calls

call parameters, customizing with ChatGPT
and OpenAl 182,183

code debugging, with GitHub
Copilot 177-179

creating, with example parameters 175, 176

central processing unit (CPU) 336

Index

chained prompts, code optimization 351
runtime optimization 352-354
space optimization 354-357

chaining 209

chain-of-thought (CoT) 209, 241, 361
refactoring 250, 251
refactoring, with ChatGPT 254, 255
refactoring, with GitHub Copilot 251-253
refactoring, with OpenAl API 254, 255

ChatGPT 9, 154, 155
chaining 228-231
for testing 318-320
used, for explaining code 166-168
used, for performance refactoring 258, 259

used, for refactoring chain-of-thought
(CoT) 254, 255

used, for searching outdated
docstrings 304-307
ChatGPT baseline 213,215

ChatGPT maximal capacity
analyzing 343
determining, within memory
constraints 349-351

determining, within runtime
constraints 347,348

profiling runtime 344
profiling space usage 345, 346

418

Index

Claude 7
code analysis and refactoring tool 5

code base structure
reading 160, 161

code completion design
overview 46,47

code optimization
with chained prompts 351

code readability

improving 247,248
code refactoring 242

limitations, with IDE tools 248,249
code smell 5
comma-separated values (CSV) 338
commercial off-the-shelf (COTS) 392
compressed sparse column (CSC) 357
compressed sparse row (CSR) 357
computer programming 4
context window 151

examples 152
continuous integration and continuous

deployment (CI/CD) systems 5

continuous integration/continuous
development (CI/CD) pipelines 300
contrastive learning 274
convolutional neural network (CNN) 390
Copilot
chaining 236, 237
CoT reasoning with LLM
for GitHub Copilot 221-224
geometric mean with ChatGPT 225,226
geometric mean with OpenAl API 226, 227
GPT-o series 219
using 217,219

D

data-driven tests 321,322
decorators 361, 368
using 368, 369
deep learning 7,150
dependency code
debugging 183,184
distance function
implementing 244, 245
Dockerfile 159, 161
docstrings

generating, for Singleton __call__
method 112,113

generating, with OpenAl API 110
Google-style docstring 113-116

docstrings, with GenAl
writing 300
writing, for entire file 302, 304
writing, for single method 300, 301

double underscore (dunder) 105

E

Euclidean distance 243

evaluation metrics 80

expert systems 6

Extreme Programming (XP) 10, 243, 322

F

few-shot decorator style
for GitHub Copilot 378, 380
few-shot
learning 152, 189, 190, 265, 274, 361

code implementation, with OpenAl
APl 200-203

Index

419

for code refactoring 190, 192

in ChatGPT 381-383

using, as style guides 378

working with, for OpenAl APl 199
few-shot prompting, with ChatGPT

leveraging 192

output improvement, with code
refactoring 193-195

structure 192
fine-tuning 152,203
used, for OpenAl APl 383-387
using, as style guides 378
versus prompt engineering 268
FizzBuzz 363
use case 363

Frobenius norm 243

G

Gemini 7

GenAl 390, 391
adopting, by software engineers 392, 393
for coding tasks 78,79
for unit tests 312-317
programming languages 396, 397
sample data creation 329-331

GenAl for higher-level coding patterns
decorators, using 368, 369

inverse CoT for decorator
implementation 369-374

using 368
GenAl future 397
longer term 398
risk and governance 399
shorter term 398
software engineering, need for 398, 399
vibe coding 397

GenAl toolkit 9
ChatGPT 9
GitHub Copilot 10
OpenAl API 10
Generative artificial intelligence
(GenAl) 3,17
benefits, of coding 12
downsides, of coding 12,13
software development, improving 11
Generative Pretrained Transformer
(GPT) 7,9
geometric mean
analysis 59, 60
calculating, with chat completion 57
guided walk-through 58, 59

geometric mean calculations
analysis 63-65
completion and keyboard shortcuts 61
guided walk-through 61, 62

geometric mean scope 210,211

GitHub Copilot 10, 46, 155, 164, 196
account, activating 50, 51
chat feature, using 54, 56
code, analyzing 65, 66
code, analyzing with Copilot editor window
inVS Code 67,68

code completion design overview 46, 47
code completion policies 49
debugging with 177-179

dependency code, debugging 180, 181
/explain command, using with 164, 165
extension, installing for VS Code 53
faulty implementation, fixing 125

free account limits 48

imports and hashtags 118-121
interaction modes 54

lead-in cue structure 117,118

420

Index

plugin, installing for PyCharm 52
precise prompts, crafting 117
pricing 49

setting up, in PyCharm 51
setting up, in VS Code 51

short prompts, without comment
fluff 124,125

single task 121-123

style guide 196-199

unit test, evaluating 126-134
used, for profiling runtime 339
used, for profiling space usage 339

used, for refactoring chain-of-thought
(CoT) 251-253

used, for searching outdated
docstrings 304-307

with descriptive names instructions 123

with docstrings instructions 123

with type hints instructions 123

with unit tests instructions 123

working, in VS Code Jupyter Notebook
for Code Analysis 69

GitHub Copilot baseline 213

GitHub Copilot command
working with 296-300

GitHub Copilot, prompt analysis
prompt techniques, applying with
PyCharm chat 135

single task, to fix method
implementation 135,136

single task, with VS Code 135

specific and short prompt
principles 134, 135

structured prompt principle, with
lead-in cue 134

surrounding context, with VS Code 135
Google style 295

Google-style docstring 112-116
analysis 116,117

GPT-3.5 model 154

GPT-40 mini 209
used, for computing quadratic roots 271

GPT-o series 219
adoption 220

graphical processing units (GPUs) 357
graphical user interface (GUI) 269

H

Hypertext Transfer Protocol (HTTP) 19, 161

IEBUPDTE 5

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 390

implementation code 311
in-context learning 189, 190, 265
integrated development environment
(IDE) 5, 45, 104, 362, 393

interaction modes

analysis 54

chat 54

completion 54

inverse CoT for decorator
implementation 369-374
inverse CoT with ChatGPT
applying 375
decorators, monitoring 375, 377
inverse CoT with OpenAl
applying 375
decorators, monitoring 377,378

Index

421

J

JSONL file
crafting, for fine-tuning 273
file structure, fine-tuning 274, 275
strategy 275

JSONL file, strategy
code-only 276
code with no comments 277,278
contrastive code-only 276,277
contrastive no comments 278-280

K

Kite 6

L

L1 norm 243

L2 norm 243

language models (LMs) 7

large language models (LLMs) 4,18, 45,78,

106, 149, 209, 265, 335, 361, 390

ChatGPT, for explaining code 166-168
code task, specializing 268
costs 280, 281

/explain command, using with GitHub
Copilot 164, 166

fine-tuned model, using 284
fine-tuning 267, 268

fine-tuning in action 287
fine-tuning job, initiating 281-284
fine-tuning, with OpenAl GUI 280
limitations 153, 154

OpenAl API, for explaining code 168, 169
outputs, comparing 285-287

rise 6,7

used, for explaining code 163

linters 5
Llama 7

LLM output performance
context window, adding 151, 152
fine-tuning 152
improving 151
prompt engineering 151
retrieval-augmented generation 153

LLMs specialization 267
examples 267

logging 362-365
longer term 398

M

machine learning (ML) 6
Maestro | 5
magic attribute 364

Manhattan distance 159-162, 243
for matrices 162,163

memory space usage 338
efficiency tradeoffs, balancing 339
space complexity 338

Miller’s Law 295
model mastery 79
monitoring 362, 366, 367

natural language generation (NLG) 7

natural language processing
(NLP) 6,7, 18,155,390

neural networks 6
neurons 7

n-grams 313

422

Index

non-project files 169
entire file, explaining 170
explaining, with ChatGPT 172,173
explaining, with context 171,172
explaining, with OpenAl APl 174,175

NumPy/SciPy style 295

o

one-shot learning 152

OpenAl 17
billing, computing 30, 31
project APl keys, obtaining 22-24
used, for performance refactoring 258, 259
OpenAl accounts
rate limits 31
reference link 403
setting up 403, 404
usage restrictions 31
OpenAl API 10,18
body 19
endpoint 19
headers 19
history 231-235
HTTP method 19
precise prompts, crafting 107
prompt 256

routing chat capabilities, to code
completion 37-41

structured prompts 107, 108

system prompts, with surrounding context
and single task 108

through RESTful HTTP request 19
used, for explaining code 168, 169

used, for extracting Python objects
properties 104-106

used, for generating docstrings 110

used, for refactoring chain-of-thought
(CoT) 254, 255

used, for searching outdated
docstrings 304-307

user prompts, with specific instructions 109
using, to generate code 36
vectorizing 260, 261

OpenAl APl baseline 215-217

OpenAl API Playground
experimenting with 269-271
quadratic roots, computing

with GPT-40 mini 271

OpenAl API request
cost calculating 28
parameters analyzing 32-36

OpenAl GUI
used, for fine-tuning large language models

(LLMs) 280

openai Python package
installing 21
OpenAl APl request, sending 24-27

OpenAl Tokenizer
reference link 29

outdated docstrings
searching, with ChatGPT 304-307
searching, with GitHub Copilot 304-307
searching, with OpenAl API 304-307

P

pair programmer 10
parameterized decorator 373
pattern matching 5

PEP 257 295

Index

423

performance refactoring
advanced features 261
with ChatGPT 258, 259
with GenAl 256
with GitHub Copilot 256-258
with OpenAl 258,259

precise prompts 81
crafting, for GitHub Copilot 117

production system 8

profiling runtime 339-341
with GitHub Copilot 339

profiling space usage 342
with GitHub Copilot 339

program runtime 336, 337
runtime complexity, measuring 337
prompt chaining for LLM
ChatGPT, chaining with 228-231
Copilot, chaining 236, 237
OpenAl API, history 231-235
using 227
prompt engineering 10,151
for coding 188, 189
versus fine-tuning 268
prompt engineering, techniques 203, 266
additional methods 206
bug fix at scale 203,204
chain-of-thought (CoT) prompting 205, 206
iterative prompting 204, 205
template-based prompting 205
prompt implementation scope 210
prompting techniques 391
prompts 18
assistant prompts 19
system prompts 19
user prompts 18

prompt samples by OpenAl 94,95
analysis 99-101
chain-of-thought prompting 101
code debugging 95, 96
guided walk-through 97-99
iterative prompting 101

prompts for ChatGPT
analysis 92-94
crafting 84, 85
guided walk-through 87, 88
single task 89
specific instructions 90-92
structuring 88
surrounding context, adding 89

prompts for coding tasks, best practices 81
short prompts 83
single task per prompt 82
specific instructions 83
structured 81
surrounding information 82

proof of concept (POC) 9
pull request (PR) 78
PyCharm 5
used, for setting up GitHub Copilot 51
PyCharm GUI
converting, to CLI 85, 87
Python objects properties
extracting, for OpenAl APl 104-106

Python threading 80

Q

quadratic roots
calculator, implementing 272,273
computing, with GPT-40 mini 271

424

Index

R

raising errors 362
Random Access Memory (RAM) 336
Reddit 6

refactoring 241
types 245, 246

refactoring tasks
performance 246
readability 246
structure change 246

regression test package 330
reinforcement learning 391

reinforcement learning from human
feedback (RLHF) 154

Representational State Transfer (REST) 19
requests per day (RPD) 31

requests per minute (RPM) 31

ReSharper 5

RESTful HTTP request 17
reStructuredText (reST) 295
retrieval-augmented generation 153
retrieval-augmented generation (RAG) 151
Reuters-21578 dataset 142

Revision Control System 5

robotic process automation (RPA) 395

S

single responsibility principle 361,367
single-task principle 364

Singleton design pattern 104, 110, 111
small language model 149

software development 391, 392
tools, evolution 4-6

software development life
cycle (SDLC) 4-8, 235, 287, 293,
335, 362, 405

software development tools 393, 394
legacy software and flexible teams 395, 396

Software Engineering Body of Knowledge
(SWEBOK) 394

software engineers democratization 395
software documentation 294, 295
software engineering 4

Software Engineering Body of Knowledge
(SWEBOK) 394

software testing 5
SonarQube 5

Sphinx style 295

Spyder 5

Stack Overflow 6

statistical approach 142-147
structured prompts 107, 108

system prompts 19, 107
with single task 108
with surrounding context 108

T

test code 311
Test-Driven Development
(TDD) 9, 243, 311, 313, 322-325
with ChatGPT 327,329
within PyCharm 327
within VS Code 325, 326

time and space analysis 336
memory space usage 338
program runtime 336, 337

tokens 17,28, 29

tokens per minute (TPM) 31

Index

425

transformer architecture 390

Turbo Pascal 5

U

UCI Machine Learning Repository 142

unexpected input
handling 365, 366

Unified Markup Language (UML) 398
unittest frameworks 5

unit tests
with GenAl 312-317

Universal Approximation Theorem 150

USA Junior Mathematical Olympiad
(USAJMO) 78

USA Mathematical Olympiad (USAMO) 78

user prompts 18, 107
with specific instructions 109

'}

vectorized computations 256
version control systems 5
vibe coding 13, 397
virtual environment 404
adding, to .gitignore 409
creating 404, 405
prompting 406-408
Visual Studio 5
Visual Studio Code (VS Code) 5
used, for setting up GitHub Copilot 51
VS Code Jupyter Notebook for Code Analysis
analysis 72,74
GitHub Copilot, working with 69
guided walk-through 69-71

W

word2vec model 149, 150

word-level models
extension 147-149

Z

zero-shot cross-linguistic transfer 153
zero-shot learning 152
Zipf’s law 142

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Your Book Comes with Exclusive Perks – Here’s How to Unlock Them

	Part 1: Foundations for Coding with GenAI
	Chapter 1:From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAI
	Changing the software engineering field
	The evolution of tools for software development

	Introducing the rise of LLMs
	Exploring the software development lifecycle
	Embracing a GenAI toolkit
	ChatGPT
	OpenAI API
	GitHub Copilot
	Improving software development with GenAI

	Is GenAI worth learning for software engineering?
	The benefits of coding with GenAI
	The downsides of coding with GenAI
	Takeaways

	Summary
	Further reading

	Chapter 2: Your Quickstart Guide to OpenAI API
	Technical requirements
	Introducing OpenAI API
	OpenAI API through a RESTful HTTP request
	OpenAI API Python package installation
	Obtaining your project API keys from OpenAI

	Lab 2.1 – sending your first OpenAI API request using the openai Python package
	Lab 2.1 guided walk-through
	Lab 2.1 analysis

	Learning how request costs are calculated
	Understanding tokens
	How billing is computed

	Understanding rate limits and usage restrictions for free and paid OpenAI accounts
	Lab 2.2 – analyzing request parameters
	Lab 2.2 guided walk-through
	Lab 2.2 analysis
	Multiple service responses with Lab 2.2

	Lab 2.3 – using OpenAI API to generate code
	Routing chat capabilities to code completion
	Lab 2.3 guided walk-through
	Lab 2.3 analysis

	Summary
	Quiz time
	Further reading
	Subscribe for a free eBook

	Chapter 3: A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook
	Technical requirements
	Introducing GitHub Copilot – our AI pair programmer
	Code completion design overview

	Understanding GitHub Copilot’s free account limits, costs, and policies
	Who is eligible for a free account?
	Pricing
	Code completion policies
	Activating your GitHub Copilot account

	Setting up Copilot in PyCharm and VS Code
	GitHub Copilot plugin for PyCharm
	GitHub Copilot extension for VS Code
	The three interaction modes – chat, completion, and analysis

	Using Copilot chat
	Lab 3.1 – calculating geometric mean with chat completion
	Lab 3.1 guided walk-through
	Lab 3.1 analysis

	Lab 3.2 – introducing completion and keyboard shortcuts for geometric mean calculations
	Lab 3.2 guided walk-through
	Lab 3.2 analysis

	Analyzing code with Copilot
	Analyzing code with Copilot editor window in VS Code

	Lab 3.3 – working with Copilot in VS Code’s Jupyter Notebook for Code Analysis
	Lab 3.3 guided walk-through
	Lab 3.3 analysis

	Summary
	Quiz time
	Further reading

	Chapter 4: Best Practices for Prompting with ChatGPT
	Technical requirements
	Can we trust GenAI for coding tasks?
	The three pillars of good outputs

	Best practices for crafting prompts for coding tasks
	Structured
	Surrounding information
	Single task per prompt
	Specific instructions
	Short prompts

	Crafting prompts for ChatGPT
	Lab 4.1 – converting PyCharm GUI steps to CLI
	Lab 4.1 guided walk-through
	Lab 4.1 analysis

	Prompt samples by OpenAI
	Lab 4.2 – code debugging
	Lab 4.2 guided walk-through
	Lab 4.2 analysis

	Summary
	Quiz time
	Further reading
	Subscribe for a free eBook

	Chapter 5: Best Practices for Prompting with OpenAI API and GitHub Copilot
	Technical requirements
	Extracting properties from Python objects for OpenAI API
	Crafting precise prompts for OpenAI API
	Structured prompts
	System prompts with the surrounding context and single task
	User prompts with specific instructions

	Lab 5.1 – Generating docstrings with OpenAI API
	Singleton design pattern
	Generating a docstring
	Lab 5.1 guided walk-through
	Lab 5.1 analysis

	Crafting precise prompts for GitHub Copilot
	Structuring with a lead-in cue
	Surrounding with imports and hashtags
	Further narrowing the single task
	Specific instructions with type hints, docstrings, descriptive names, and unit tests
	Short prompts without comment fluff

	Lab 5.2 – Fixing faulty implementation with GitHub Copilot
	Lab 5.2 guided walk-through
	Lab 5.2 analysis
	Prompt 1 – following the structured prompt principle with a lead-in cue
	Prompt 2– providing specific and short prompt principles
	Prompt 3 – adding surrounding context and focusing on a single task with VS Code
	Prompt 4 – applying the five S’s with PyCharm chat
	Prompt 5 – narrowing down the single task to fix a method implementation

	Summary
	Quiz time
	Further reading

	Part 2: Basics to Advanced LLM Prompting for GenAI Coding
	Chapter 6: Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work
	Technical requirements
	Statistical approach to LLMs
	Extending the model to words

	Small and large language models for words
	Word2vec
	Deep learning

	Improving LLM output performance
	Prompt engineering
	Adding context
	Providing examples

	Fine-tuning
	Retrieval-augmented generation

	What are the limitations of LLMs?
	ChatGPT
	GitHub Copilot
	Summary
	Quiz time
	Further reading
	Subscribe for a free eBook

	Chapter 7: Reading and Understanding Code Bases with GenAI
	Technical requirements
	Reading and understanding the code base structure
	Introducing the Manhattan distance
	Manhattan distance for matrices

	Using LLMs to explain code
	Using the /explain command with GitHub Copilot
	Using ChatGPT to explain code
	Using OpenAI API to explain code

	Explaining non-project files
	Explaining an entire file
	Explaining with context
	Explaining non-project files with ChatGPT
	Explaining non-project files with OpenAI API

	Creating calls with example parameters
	Debugging with GitHub Copilot
	Debugging dependency code

	Customizing call parameters with ChatGPT and OpenAI
	Debugging dependency code

	Putting it all together

	Summary
	Quiz time
	Further reading

	Chapter 8: An Introduction to Prompt Engineering
	Technical requirements
	Utilizing prompt engineering for coding
	Enhancing prompts with few-shot examples
	Few-shot learning for code refactoring

	Leveraging few-shot prompting with ChatGPT
	Few-shot structure
	Improvement in output with code refactoring

	Crafting a style guide for GitHub Copilot
	Style guide file

	Working with few-shot learning for OpenAI API
	Implementing code with OpenAI API

	Introducing more prompt engineering techniques
	Bug fix at scale with prompt engineering
	Iterative prompting
	Template-based prompting
	Chain-of-thought prompting
	Exploring additional methods

	Summary
	Quiz time
	Further reading
	Subscribe for a free eBook

	Chapter 9: Advanced Prompt Engineering for Coding-Related Tasks
	Technical requirements
	Extending the prompt implementation scope
	Extending the geometric mean scope
	Evaluating baseline outputs
	GitHub Copilot baseline
	ChatGPT baseline
	OpenAI API baseline

	Leveraging CoT reasoning with LLM
	CoT in the GPT-o series
	o-series adoption

	Using CoT for GitHub Copilot
	CoT for the geometric mean with ChatGPT
	CoT with OpenAI API

	Using prompt chaining for LLMs
	Chaining with ChatGPT
	Selective history with OpenAI API
	Chaining with Copilot

	Summary
	Quiz time
	Further reading

	Chapter 10: Refactoring Code with GenAI
	Technical requirements
	Introducing code refactoring
	Manhattan and Euclidean distance
	Implementing the distance function

	Types of refactoring
	Improving readability before GenAI
	Limitations of code refactoring with IDE tools

	Refactoring with chain-of-thought
	Refactoring for a better structure
	CoT for refactoring with GitHub Copilot
	Leveraging CoT for refactoring with ChatGPT and OpenAI API
	OpenAI API prompt

	Performance refactoring with GenAI
	Performance refactoring with GitHub Copilot
	Performance refactoring with ChatGPT and OpenAI
	Vectorizing with OpenAI API

	More advanced performance refactoring

	Summary
	Quiz time
	Further reading
	Subscribe for a free eBook

	Chapter 11: Fine-Tuning Models with OpenAI
	Technical requirements
	Fine-tuning LLMs toward a specialization
	LLMs specialization
	Fine-tuning an LLM
	Favoring fine-tuning over prompt engineering
	Task specializing in cleaner code

	Experimenting with the OpenAI API Playground
	Computing quadratic roots with GPT-4o mini
	Implementing the quadratic roots calculator

	Crafting a JSONL file for fine-tuning
	Fine-tuning file structure
	Strategy
	Code-only – five training examples
	Contrastive code-only – three training examples
	Code with no comments – five examples
	Contrastive no comments – two examples

	Fine-tuning a model with the OpenAI GUI
	Costs of fine-tuning a model
	Initiating a fine-tuning job
	Using the fine-tuned model

	Comparing our results
	Fine-tuning in action

	Summary
	Quiz time
	Further reading

	Part 3: From Code to Production with GenAI
	Chapter 12: Documenting Code with GenAI
	Technical requirements
	Introducing software documentation
	Working with the /explain GitHub Copilot command

	Using GenAI to write docstrings
	Docstring for a single method
	Docstrings for an entire file

	Finding outdated docstrings with GitHub Copilot, ChatGPT, and OpenAI API
	Practical insights
	Summary
	Quiz time
	Further reading
	Subscribe for a free eBook

	Chapter 13: Writing and Maintaining Unit Tests
	Technical requirements
	Unit tests with GenAI
	ChatGPT for testing

	Data-driven tests
	Test-driven development
	TDD using GitHub Copilot within VS Code
	TDD using GitHub Copilot within PyCharm
	TDD using ChatGPT

	Sample data creation with GenAI
	Practical insights
	Summary
	Quiz time
	Further reading

	Chapter 14: GenAI for Runtime and Memory Management
	Technical requirements
	Introducing time and space analysis
	The runtime of a program
	Runtime complexity refresher

	The space consumption of a program
	Space complexity
	Balancing efficiency tradeoffs

	Profiling runtime and memory consumption with GitHub Copilot
	Profiling runtime
	Profiling space usage

	Analyzing maximal capacity with ChatGPT
	Profiling runtime across multiple runs
	Profiling memory consumption across multiple runs
	Determining maximal capacity within runtime constraints
	Determining maximal capacity within memory constraints

	Optimizing code with chained prompts
	Runtime optimization
	Space optimization
	Further runtime and space optimization

	Summary
	Quiz time
	Further reading
	Subscribe for a free eBook

	Chapter 15: Going Live with GenAI: Logging, Monitoring, and Errors
	Technical requirements
	Introducing logging, monitoring, and raising errors
	The FizzBuzz use case
	Logging
	Handling unexpected input
	Monitoring

	Leveraging GenAI for higher-level coding patterns
	Using decorators to separate responsibilities
	Inverse CoT for decorator implementation

	Applying inverse CoT with ChatGPT and OpenAI
	Using ChatGPT to monitor decorators
	Using OpenAI API to monitor decorators

	Utilizing few-shot learning and fine-tuning as style guides
	Few-shot decorator style for GitHub Copilot
	Few-shot learning in ChatGPT
	Leveraging fine-tuning for OpenAI API

	Summary
	Quiz time
	Further reading

	Chapter 16: Architecture, Design, and the Future
	The rapid rise of GenAI
	Economics of faster software development
	Will GenAI be adopted by software engineers?
	Shifting landscape of software developers
	GenAI as related to the Software Engineering Body of Knowledge
	Democratization of software engineers
	Legacy software and flexible teams

	Will GenAI change programming languages?
	The future of GenAI in software engineering
	Vibe coding
	Shorter term
	Longer term
	Will AI replace software engineering?
	Risk and governance

	Summary
	Further reading
	Subscribe for a free eBook

	Appendix
	Set up an OpenAI Account
	Creating a virtual environment
	Prompting virtual environment
	Adding virtual environment to .gitignore

	Further reading

	Other Books You May Enjoy
	Index
	Blank Page

