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Foreword

When Hila told me she was working on a book about GenAI-powered software development, I 

smiled. Of course, she was. We’ve collaborated on papers where AI meets cybersecurity, so I’ve 

seen her thinking firsthand—rigorous, curious, never satisfied with surface-level insights. If 

anyone was going to map the future of coding with AI, it was Hila.

This book is not just another tour of ChatGPT or Copilot. It’s a builder’s manual for the age of 

AI-augmented engineering. It’s part workflow, part playbook, and part philosophical reflection 

on what it means to code when the machine is your collaborator. It goes from prompt engineering 

to system design, from small refactors to architectural guidance, from GitHub Copilot to OpenAI 

APIs, without losing the plot or pandering to hype. What I appreciate most is how grounded it 

is. Hila and Peter don’t romanticize GenAI, and they don’t fear it either. They approach it as en-

gineers: curious, skeptical, and practical. How do you evaluate GenAI output? How do you keep 

it reliable? When should you override it, or better yet, teach it? These aren’t abstract questions. 

They’re daily challenges, and this book meets them with clarity and grit. For those of us who live at 

the intersection of AI, code, and security, this book feels like home. It speaks to the real problems 

developers face when integrating these tools into production environments, where correctness 

matters, hallucinations can be dangerous, and productivity means more than autocomplete. If 

you’re looking for a book that teaches you how to code faster, sure, you’ll get that. But if you’re 

looking for a book that teaches you how to think more clearly about coding in a world where 

machines also write code, then this is your book.

Congratulations, Hila and Peter. You’ve created something timely, honest, and actually useful.

Mike Erlihson, PhD

Head of AI, Stealth Cyber Startup
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Preface

Supercharged Coding with GenAI aims to train software developers to achieve increased productivity 

throughout the software development life cycle (SDLC). It covers not only the programming 

aspect but also how to write tests, documentation, and other aspects required for putting software 

into production using GenAI methods. The book introduces the five S’s framework, a standardized 

approach for consistently producing high-quality output that many GenAI users face.

It guides you on how and when to use the three most common GenAI software tools that currently 

dominate the marketplace: ChatGPT, OpenAI API, and GitHub Copilot. Each of these tools offers 

a different interface for generating code, each with different strengths and weaknesses. Learn-

ing how to effectively use these tools is an empowering skill set in the quickly evolving field of 

software engineering.

This book is a hands-on approach, with many labs introduced throughout the different chapters, 

since GenAI coding tools require practice. The labs provide the necessary practice to challenge the 

knowledge and explore the key skills introduced. The book also dives deeper into the concepts 

behind how to use instructions, making sure that you not only learn how to do something but 

also understand why the GenAI is producing particular outputs.

The book is structured into three parts:

•	 Part 1, Foundations for Coding with GenAI, provides a quick start tutorial for the three dif-

ferent GenAI tools you can use for code completion and surrounding tasks. We will start 

with OpenAI API framework to harness the large language models (LLMs) as a software 

developer. We built a program for code completion so we can better understand the de-

sign of GenAI tools. Next, we will get started with GitHub Copilot and ChatGPT using 

three different interaction modes: chat, completion, and analysis. By then, we will also 

understand the design differences among the different interaction modes. Finally, we will 

introduce the five S’s framework, a structured approach to crafting precise prompts that 

lead to predictable and more desirable outputs.
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•	 Part 2, Basics to Advanced LLM Prompting for GenAI Coding, takes the next step toward be-

coming supercharged coders. We will dive deeper into the foundations of LLMs. The goal 

is to gain a better understanding of why these models work so much better than the many 

tools that came before them. We will then start developing the mindset of a supercharged 

coder by learning which tasks are native to the models, which require advanced prompting 

techniques, and which tasks are better handled without the assistance of GenAI altogeth-

er. We will also learn about applying advanced prompting techniques to coding-related 

tasks, how to evaluate the goodness of our output with evaluation techniques, and how 

to fine-tune a model to specialize it for a specific task.

•	 Part 3, From Code to Production with GenAI, is dedicated to the advanced SDLC approach, 

where we will be able to use our newly obtained skillset and mindset to work with GenAI 

tools. We will talk about logging, monitoring, debugging, unit testing, and documenting 

our code efficiently and quickly with GenAI tools. We will also apply prompt engineering 

techniques to both space and memory optimizations. We will close this chapter with talks 

about design, architecture, and the future.

Who this book is for
If you are a Python developer curious about GenAI and are looking to elevate your software 

engineering productivity, this book will transform your approach to software. We include many 

structured examples of varying problem complexity that will demonstrate the use of advanced 

prompting techniques, suitable for early intermediate through advanced developers.

To get the most out of this book, you should have at least one year of hands-on Python develop-

ment experience and be somewhat familiar with the SDLC.

What this book covers
Chapter 1, From Automation to Full Software Development Life Cycle: The Current Opportunity for 

GenAI, describes the recent convergence of software development tools and the AI transforma-

tion with LLMs. It makes a case that now is the best time to improve skills in GenAI to produce 

quality code faster.

Chapter 2, Your Quickstart Guide to OpenAI API, introduces everything you need to know to begin 

using OpenAI. By the end of the chapter, you will be able to start using it to write code.
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Chapter 3, A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook, provides setup 

instructions for GitHub Copilot, the pair programming GenAI tool. It then shows how to inte-

grate GitHub Copilot with the two most popular IDEs. With this background, you will be able 

to prompt with GenAI.

Chapter 4, Best Practices for Prompting with ChatGPT, dives into prompting, which is a core skill for 

GenAI coding. This chapter introduces the five S’s framework for consistent outputs.

Chapter 5, Best Practices for Prompting with OpenAI API and GitHub Copilot, completes Part 1 of the 

book by extending the prompting methods to functions, classes, and methods. The methods are 

applied to not just writing code but also fixing bugs and providing documentation.

Chapter 6, Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work, sheds light on 

how LLMs work under the hood since such an understanding can help understand the strengths 

and limitations. The chapter begins with a statistical example as a motivation and continues 

through general LLMs. The chapter concludes with the extension to code-specific LLMs that are 

at the heart of GitHub Copilot.

Chapter 7, Reading and Understanding Code Bases with GenAI, showcases the effectiveness of the 

different GenAI tools in working with full code bases. The chapter shows how GenAI can explain 

how code works and help debug issues using the code and support documentation.

Chapter 8, An Introduction to Prompt Engineering, applies this recent field to code development and 

introduces few-shot learning. Prompt engineering methods are applied through OpenAI API and 

GitHub Copilot for code refactoring to support a consistent coding style.

Chapter 9, Advanced Prompt Engineering for Coding-Related Tasks, extends the few-shot approaches 

from Chapter 8 into reasoning models. Iterative prompting, chain-of-thought prompting, and 

chaining can effectively deliver highly predictable code that implements key functionality, in-

cluding code and comments.

Chapter 10, Refactoring Code with GenAI, revisits and extends the chain-of-thought prompting 

technique to improve code. The chapter covers examples of refactoring code for improved quality 

and performance.

Chapter 11, Fine-Tuning Models with OpenAI, compares and contrasts the few-shot learning ap-

proach with fine-tuning, a standard approach for customizing LLMs. The chapter uses the OpenAI 

Playground to compare the effectiveness and costs of the two approaches.
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Chapter 12, Documenting Code with GenAI, begins Part 3, which focuses on SDLC components 

beyond coding. The chapter is a how-to guide for effectively writing docstrings, the standard 

documentation for Python. It also provides solutions to the problem of out-of-date comments 

within the code.

Chapter 13, Writing and Maintaining Unit Tests, demonstrates multiple methods for leveraging 

GenAI to accelerate the creation of tests. The chapter also covers the test-driven development 

(TDD) process of writing test cases first and automatically generating the functional code to 

pass the tests.

Chapter 14, GenAI for Runtime and Memory Management, delves into performance optimization, 

which is rarely discussed in GenAI code literature. Its examples show how to assess performance 

trade-offs and, using a combination of prompting with chaining prompts, how to estimate run-

time capacities and optimize code to run at scale.

Chapter 15, Going Live with GenAI: Logging, Monitoring, and Errors, provides guidance on the use 

of GenAI for key late-stage components for putting code into production. The chapter brings 

together past concepts such as enforcing style, few-shot learning, and fine-tuning as applied to 

monitoring and logging methods.

Chapter 16, Architecture, Design, and the Future, discusses the rise of GenAI, software economics, 

and the changing landscape of software engineering. It provides a perspective on the future of 

software engineering from vibe coding to long-term expectations, including risks and governance.

To get the most out of this book
Following along will be easier if you bear the following in mind:

•	 Examples: Begin with the hands-on examples provided in each chapter to make sure that 

you can effectively use all the tools, rather than focus on just one

•	 Labs: Use the labs to test your knowledge of how you approach the challenges, and use 

the questions at the end of each chapter to make sure you grasp the fundamentals

•	 GenAI approach: Experiment with the different techniques from each chapter on your own 

code and examples to see how GenAI can change your approach to software engineering

•	 Think beyond: Reflect on how the practical knowledge of the introduced GenAI tools re-

lates to the fundamentals of how LLMs work, and how they can enhance multiple aspects 

of your organization’s software development practices
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Here is a list of things you need to have:

Software/hardware covered in the book System requirements 

Python 3.11 or higher Windows, macOS, or Linux.

LLM chat and embedding models Windows, macOS, or Linux.

You can decide to leverage your LLM of choice. 

Throughout the book, we will be using a variety 

of GPT models from ChatGPT, OpenAI API, and 

GitHub Copilot.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Supercharged-Coding-with-Gen-AI. We also have other code bundles from our rich catalog of 

books and videos available at https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://packt.link/gbp/9781836645290.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file 

extensions, pathnames, dummy URLs, user input, and X handles. For example, “The edits window 

supports the slash commands such as /fix, /explain, and /test, as well as tailored instructions 

to modify your code.”

A block of code is set as follows:

def get_geometric_mean_of_two_numbers(

    a: float,

    b: float,

) -> float:

    return pow(a * b, 1 / 2)

num1: float = 5.0

num2: float = 20.0

print(get_geometric_mean_of_two_numbers(num1, num2))

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing
https://packt.link/gbp/9781836645290
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Any command-line input or output is written as follows:

(.venv) $ pip install openai

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, 

in menus or dialog boxes. For example: “In this chapter, we will introduce the practice of prompt 

engineering, a field of study that started in 2020, which offers advanced techniques for refining 

prompts to achieve more reliable, predictable, and desirable outcomes in large language model 

(LLM)-based applications.”

Disclaimer on AI usage
The authors acknowledge the use of cutting-edge AI, such as ChatGPT, OpenAI API, and GitHub 

Copilot, with the sole aim of enhancing the language and clarity within the book, thereby ensuring 

a smooth reading experience for readers. It is important to note that the content itself has been 

crafted by the authors and edited by a professional publishing team.

Get in touch
Feedback from our readers is always welcome!

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you could report this to us. 

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
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If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

Join our Discord and Reddit spaces
You’re not the only one navigating fragmented tools, constant updates, and unclear best prac-

tices. Join a growing community of professionals exchanging insights that don’t make it into 

documentation.

Stay informed with updates, discussions, and 

behind-the-scenes insights from our authors.

Join our Discord space at https://packt.

link/z8ivB or scan the QR code below:

Connect with peers, share ideas, and discuss 

real-world GenAI challenges. Follow us on 

Reddit at https://packt.link/0rExL or 

scan the QR code below:

Share your thoughts
Once you’ve read Supercharged Coding with GenAI, we’d love to hear your thoughts! Please click 

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com/
http://authors.packtpub.com/
https://packt.link/z8ivB
https://packt.link/z8ivB
https://packt.link/0rExL
https://packt.link/r/1836645295
https://packt.link/r/1836645295
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Your Book Comes with Exclusive Perks – Here’s How 
to Unlock Them

Enhanced reading experience with our Next-gen Reader:

 Multi-device progress sync: Learn from any device with seamless progress sync.

 Highlighting and notetaking: Turn your reading into lasting knowledge.

 Bookmarking: Revisit your most important learnings anytime.

 Dark mode: Focus with minimal eye strain by switching to dark or sepia mode.

Learn smarter using our AI assistant (Beta):

 Summarize it: Summarize key sections or an entire chapter.

 �AI code explainers: In the next-gen Packt Reader, click the Explain button above each 

code block for AI-powered code explanations.

Unlock this book’s exclusive 
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name. 

Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you 

start.

http://packtpub.com/unlock
http://packtpub.com/unlock


Preface xxxi

Learn anytime, anywhere:

 �Access your content offline with DRM-free PDF and ePub versions—compatible 

with your favorite e-readers.

Unlock Your Book’s Exclusive Benefits
Your copy of this book comes with the following exclusive benefits: 

 Next-gen Packt Reader

 AI assistant (beta)

 DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few min-

utes and needs to be done only once. 

How to unlock these benefits in three easy steps
Step 1
Keep your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical 

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note: The AI assistant is part of next-gen Packt Reader and is still in beta.

Note: Did you buy this book directly from Packt? You don’t need an invoice. After 

completing Step 2, you can jump straight to your exclusive content.

https://www.packtpub.com/unlock-benefits/help


Prefacexxxii

Step 2
Scan this QR code or go to packtpub.com/unlock.

On the page that opens (which will look similar to Figure 0.1 if you’re on desktop), search for this 

book by name. Make sure you select the correct edition. 

Figure 0.1: Packt unlock landing page on desktop

http://packtpub.com/unlock


Preface xxxiii

Step 3
Sign in to your Packt account or create a new one for free. Once you’re logged in, upload your 

invoice. It can be in PDF, PNG, or JPG format and must be no larger than 10 MB. Follow the rest 

of the instructions on the screen to complete the process. 

Need help?
If you get stuck and need help, visit https://www.packtpub.com/unlock-

benefits/help for a detailed FAQ on how to find your invoices and more. 

The following QR code will take you to the help page directly:

Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
mailto:customercare@packt.com




Part 1
Foundations for  

Coding with GenAI
In Part 1 of this book, we introduce the fundamentals of GenAI for coding and get you started with 

both OpenAI API and GitHub Copilot. The part begins with a discussion of how GenAI for coding 

has recently emerged from the intersection of a long evolution in software development tools and 

the recent large language models (LLMs) from the AI space. This recent fusion of technologies 

has completely changed the programming landscape. Now is the perfect time to begin the jour-

ney since applying them across software engineering tasks requires both training and practice. 

The remainder of Part 1 provides hands-on guidance to start using OpenAI API and GitHub Copilot. 

After setting up these tools, the part introduces best practices for prompting. 

This part contains the following chapters:

•	 Chapter 1, From Automation to Full Software Development Life Cycle: The Current Opportunity 

for GenAI

•	 Chapter 2, Your Quickstart Guide to OpenAI API

•	 Chapter 3, A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook

•	 Chapter 4, Best Practices for Prompting with ChatGPT

•	 Chapter 5, Best Practices for Prompting with OpenAI API and GitHub Copilot





1
From Automation to Full 
Software Development Life 
Cycle: The Current Opportunity 
for GenAI

If you are reading this book, you have probably heard some of the excitement, hype, concerns, and 

reality of Generative Artificial Intelligence (GenAI) for coding. You may have checked out some 

tutorials online and perhaps even explored using this technology for your own coding.

Learning to apply GenAI to software coding takes both practice and time. While there are many 

online demonstrations of the capabilities, there has not been a systematic approach for achieving 

functional, quality code with any consistency. There also aren’t many resources that guide devel-

opers to use GenAI beyond simple code completion or perhaps testing. GenAI can be particularly 

useful in expediting tasks such as standardizing coding style to improve readability, debugging, 

optimizing performance, and the many other tasks performed by software engineers.

 In this chapter, we will explore the following topics:

•	 Changing the software engineering field

•	 Introducing the rise of large language models

•	 Exploring the software development lifecycle

•	 Embracing a GenAI toolkit
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•	 Is GenAI worth learning for software engineering?

•	 What you will get from this book

Changing the software engineering field
Computer programming and software engineering, in general, contribute not only to the tech 

industry, but to many different sectors of the economy, including commerce, finance, health, 

transportation, and energy. Software drives the creation of many new products. It increases the 

productivity of companies through the automation and optimization of processes and enables 

cost reductions.

As software continues to deliver economic value, new paradigms and tools for software developers 

have increased the ability to write quality software at a faster pace. Over the last couple of years, 

GenAI has become one of these tools.

In software engineering, GenAI has suddenly advanced to reach an inflection point and is fun-

damentally changing the field. This recent technology allows everyone from novices to expert 

software developers to supercharge their productivity not only in coding but, more generally, the 

full software development lifecycle (SDLC).

Advanced technologies, including artificial intelligence, seem to be in the news every day lately. 

Despite this, many software engineers seem somewhat surprised that AI has progressed to the 

point that it can support their field and specific software development work. The current state 

of software engineering tools has resulted from the convergence of two separate trends. First, 

software development tools are not new but have progressed continuously over many decades. 

Second, GenAI technology has crossed over from the rapid emergence of large language models 

(LLMs), which trace back to neural networks and the origins of artificial intelligence.

The evolution of tools for software development
The application of GenAI to software engineering is quite a recent development. Although AI has 

been discussed for many years as a promising set of tools for enhancing code development, the 

emergence of GenAI has ushered in a new era of capabilities.

Software development has experienced many new tools over the past decades that have trans-

formed the field. It is easy to argue that software development is constantly evolving, with new 

tools that have streamlined the processes and enhanced productivity. This section provides an 

overview of some major technology revolutions that have aided software developers.
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In the 1970s and 1980s, the Maestro I was developed as the first integrated development envi-

ronment (IDE), although it would hardly be recognized as such by today’s standards. Its succes-

sors, such as Borland’s Turbo Pascal and Visual Studio, provided an easy integration of coding, file 

management, debugging, compilation, and execution. Today’s IDEs for Python, such as Visual 

Studio Code, PyCharm, and Spyder, facilitate global changes to variables, code highlighting, syntax 

checkers, and access to multiple tools.

Version control systems were a critical step in software engineering, enabling many developers 

to work on a single project. With a single code base, different versions of code can be tracked and 

managed. IBM’s IEBUPDTE in the 1960s was a forerunner of the technology, followed by the Re-

vision Control System in 1982 and the Concurrent Versions System (CVS) in 1986. It wasn’t until 2005 

that the now ubiquitous Git was developed, which enabled a distributed version control system.

Build tools and continuous integration and continuous deployment (CI/CD) systems speed the 

delivery process of software. Build tools such as Jenkins and Maven transform source code into 

executable code. CI/CD tools are often triggered by the build, but continue further to automate 

the testing, execute linters or other code tools, and often deploy the updated version to users. 

The full deployment pipeline frees the developers from the many manual steps and enables both 

a rapid and consistent way of providing users with the latest functionality.

Significant research has been poured into software testing. Apart from many specialized tools 

for different forms of testing, testing frameworks are now a standard part of virtually all software 

development suites. IDEs already speed up the process of creating skeleton tests from existing code 

by using method signatures and standard test naming conventions. The unittest frameworks 

run all the tests and report failures, significantly speeding up the process.

Code analysis and refactoring tools identify issues with code and can improve the overall quality. 

SonarQube is an example of a code analysis tool that performs static code analysis. It identifies 

potential problems with code, often referred to as code smell, but can also check for a range of 

potential issues, such as deviations in code style and poor security handling.

Some more advanced tools have been able to not only recognize coding problems but also fix 

them. For example, ReSharper actually refactors the code to improve its quality. Such tools save 

developers time and achieve this result through a combination of pattern matching and AI.
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With continual changes in coding sources and packages, software development always seems to 

require new packages, platforms, or even languages. As a result, software developers require access 

to the latest manuals or other documentation. Some refer to searching for code examples in Stack 

Overflow or Reddit. Innovations in this space included Kite, AI-powered software that provided 

automated code completion and instant code documentation. Kite proved to reduce keyboard 

clicks and improved code development speed, gaining a user base of an estimated 500,000 pro-

grammers. Unfortunately, the company ceased to exist in 2021 and donated its multi-language 

code tools to the open source community.

Next, we will introduce the turning point in AI research that has driven significant adoption across 

a variety of domains, including software engineering.

Introducing the rise of LLMs
Over the past few short years, LLMs have emerged as the dominant AI resource for writing, re-

search, and inference. They are currently transforming the tech industry, and their applications 

have a far-reaching impact across all fields. This section provides a brief overview of their un-

precedented ascent.

Artificial Intelligence was formally started in 1956 at a famous Dartmouth College workshop of 

computer science experts. They coined the term artificial intelligence (AI) and set ambitious 

goals ranging from automated reasoning to natural language processing (NLP). Although the 

participants expected a rapid progression to these goals, the compute and technology limitations 

thwarted their success. A publication in 1969 denounced the key technology and allegedly started 

the first well-documented AI winter, an extended period of no funding or research.

In the 1980s, expert systems emerged as a workable solution where rules could be crafted by 

technologists to reproduce human-like reasoning over limited domains for a specific problem. 

Despite some early successes with the approach, it proved difficult to craft and manage the or-

dering for sets of rules. This hindered its adoption and eventually led to the second AI winter.

Machine learning (ML), a sub-field of AI, emerged as the only viable solution. Unlike the 

hand-crafted rules of expert systems, ML systems could learn to make predictions or decisions 

directly from data. Research has led to dozens of techniques within the sub-field, but neural 

networks have become the dominant approach over the past dozen years. Mildly inspired by 

biological neurons, neural networks have proven to be a powerful system for learning and mod-

eling data. Researchers have shown that neural networks can generalize well and approximate 
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any function. Deep learning, any neural network with multiple layers of neurons, overcomes 

the limitations of more traditional machine learning techniques. Specifically, it can continue to 

learn when provided with ever larger training sets.

NLP is the application of machine learning to human language data. It applies to any texts, such 

as articles, blogs, emails, or books. The field draws from computer science, AI, and linguistics. 

Earlier methods drew extensively from statistical methods and later traditional ML techniques. 

In recent years, deep learning methods have revolutionized the NLP field by introducing lan-

guage models (LMs), which predict and generate text based on existing language data. LLMs 

are expanded versions of LMs, trained on massive datasets and billions of parameters, which are 

internal weights tuned to reflect the patterns in the training data. We will discuss LLMs exten-

sively in later chapters of the book.

Over the past several years, deep learning models have been trained on ever-increasing volumes 

of text and, with new techniques, can understand how words within each sentence are related to 

each other. This class of LLMs includes OpenAI’s GPT, Meta’s Llama, Google’s Gemini, Anthrop-

ic’s Claude, and newer models continue to be developed. These LLMs were initially designed to 

accurately predict the next word of a phrase. At scale and with recent technologies, they have 

enabled natural language generation (NLG) solutions that can write full texts to enable report 

writing, question-answering, chatbots, and much more.

LLMs are typically trained on large sets of available online text sources, but the same models can 

also be trained on software code. These LLMs use publicly available code in Python, Java, and 

other programming languages that are mostly available from GitHub repositories. The result is 

that the LLMs can predict the next block of code, can generate comments, write tests, and even 

refactor code. These are all parts of the overall SDLC that we will describe in the next section.

Exploring the software development lifecycle
To deliver quality software, most software teams progress through a series of stages known as 

the software development lifecycle (SDLC). As shown in Figure 1.1, these steps are designed to 

be an efficient approach that minimizes the risk of failure. The process usually begins with the 

recognition of an unmet business need, and cycles through many stages to meet the need with a 

software system. Projects progress from analyzing the existing state to gathering requirements, 

designing the system, implementing and testing the code, delivering the solution, and often 

maintaining the software.
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While most people associate software development with coding, actual programming makes up 

only 25-35% of the overall effort, depending on the type of software and its requirements. The 

remaining steps are needed to gather requirements, test and document the code, deploy the 

software, and support its continued functionality, as shown in Figure 1.1.

Figure 1.1: The SDLC – the continual process of developing or improving software systems 
from requirements through maintenance

The SDLC process begins with gathering requirements, followed by planning, feasibility, and risk 

analysis. A successful analysis leads to the creation of a high-level system design, and only after this 

step does an engineer continue on to software coding. The form will be formally tested before it is 

deployed, resulting in a live or production system. As the environment or business needs change, 

support and maintenance are always needed, and that can trigger the next development cycle.
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There are an increasing number of books and videos that describe the use of GenAI for coding, but 

the technology can supercharge the entire process, not just the actual coding implementation. 

This book will explore several of these aspects, including testing, documenting, and monitoring 

software. These are critical for the success of software projects.

Next, we will see how we can embrace a comprehensive GenAI toolkit in our technological stack 

as software developers.

Embracing a GenAI toolkit
This book focuses on three separate tools for software development: ChatGPT, OpenAI API, and 

GitHub Copilot. In 2024, these three tools had roughly a $35 million combined market size for 

software engineering applications. The market is expected to grow 25% per year throughout the 

rest of the decade, according to a Research and Markets report. The following chapters of the book 

will provide instructions on how to subscribe to these services and how to get started. These tools 

provide distinct kinds of functionality, and knowing when to use which tool is part of the learning 

curve. Later chapters will highlight the features and use cases for each of the tools.

ChatGPT
OpenAI has been a leader in LLMs since 2015. Led by CEO Sam Altman, the company has produced 

multiple versions of its Generative Pretrained Transformer (GPT) LLM. While these were well 

received, the release of ChatGPT in December 2022 transformed the perspectives of AI worldwide.

ChatGPT is an AI-driven chatbot, an application that is designed for text conversations using 

natural language. Its release spurred widespread use, reaching 100 million users the following 

month. It continues to be one of the most visited websites across the world.

 Important note

While the SDLC is an industry-standard approach, individual organizations often 

introduce variations to tailor it for their software development processes. For in-

stance, some organizations may choose to implement tests before writing the code, 

a practice known as test-driven development (TDD). Others may create a prototype 

system or introduce a proof of concept (POC) before conducting a feasibility analysis, 

a step that has become easier to perform with the help of LLMs.



From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAI10

While natural language conversations with ChatGPT often succeed in eliciting answers to ques-

tions, prompt engineering has proven a more robust technique. It is the art of crafting an instruc-

tion to produce a more desirable output. The prompt typically consists of context, instructions, a 

history of the dialog, and sometimes examples of desired output. This book will provide structured 

formats that guide the reader to effectively perform prompt engineering for producing code, 

comments, tests, and other outputs.

OpenAI API
ChatGPT is among the most popular tools for interacting with LLMs. However, in many cases, 

prompt engineering lacks the simple structures found in software, such as loops and conditions. 

OpenAI provides a developer platform for coding directly against the same OpenAI LLM used by 

ChatGPT. Through its Application Programming Interface (API), OpenAI enables developers to 

combine software and prompt engineering. The API also provides specific added functionality 

that is useful for solving software engineering problems.

GitHub Copilot
While GitHub is one of the most popular platforms for sharing code using Git distributed version 

control, the company released GitHub Copilot in 2021. Originally powered by OpenAI’s LLM, it 

provides intelligent code completion using GenAI’s programming capability. The functionality 

has been integrated into many IDEs, including Visual Studio Code and PyCharm—two of the 

most popular IDEs for Python.

Unlike the other OpenAI models, Copilot functions as a pair programmer. This concept comes 

from the Extreme Programming (XP) agile methodology, where two developers work together to 

write code with a single keyboard. Although not yet a fully functioning pair programmer, Copilot 

can quickly find and display references for code syntax and even provide annotated examples 

or full code as requested by the user. It interprets the intention from the function and variable 

names used. Together with the surrounding code as context, it can predict and suggest the next 

block of code. 

Next, we will review recent studies that assess the use of GenAI for software development.
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Improving software development with GenAI
A number of studies have assessed whether GenAI provides increased productivity in coding tasks. 

McKinsey reported increases ranging from minimal to 50%, depending on the complexity of the 

task. For code documentation and generation, the gains were much higher than for difficult tasks. 

They found it was particularly good for routine tasks and repetitive work, as well as initial dives 

into new code projects. Refactoring code to make changes and tackling new challenges were also 

improved through GenAI technology. Perhaps as important, their study showed that users of GenAI 

for software felt happier, were able to focus more on meaningful work, and achieved flow much 

more frequently. The study details can be found at https://www.mckinsey.com/capabilities/

mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai.

A similar study by Exadel reported that half of the developers in their study used GitHub Copilot at 

least 50% of the time. Two-thirds of these developers completed tasks more quickly, saving 10-30% 

of their development time. Copilot made them more productive and fulfilled. See https://exadel.

com/news/measuring-generative-ai-software-development/ for more details on the study.

Research by Colombatto and Rivadulla (https://aws.amazon.com/blogs/apn/transforming-

the-software-development-lifecycle-sdlc-with-generative-ai/) found benefits of applying 

GenAI across the full SDLC. Examining data from AWS and IBM, they found that the benefits 

begin in the analysis phase with requirements engineering. Even in this early phase of the SDLC, 

the researchers observed up to a 60% reduction in time from using GenAI. They found a 30% 

reduction in development time and a 25% reduction in time for generating unit tests and test 

plans. Even though less time was spent, the code quality improved by 25%, which contributes to 

fewer bugs and lower software maintenance costs.

A study conducted by BlueOptima from 2022 to 2024 used code repositories to analyze produc-

tivity, quality, and cost across 77,338 developers. In contrast with the other studies that reported 

significant savings, the findings were much more modest. They found only a 3.99% increase in 

productivity for those with access to GenAI and a 5.12% decrease for those without. Quality still 

improved slightly, which is important since it proves that the productivity gains do not compro-

mise quality, but the gains were not as significant. However, the study used access to these tools 

as an input variable without characterizing the training, familiarity, or integration of GenAI into 

their workflows. In addition, productivity is likely to increase as the predictive accuracy and 

overall performance of GenAI tools continue to rapidly improve. The details of the study can be 

found through this link: https://www.blueoptima.com/resource/llm-paper-1/.

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://exadel.com/news/measuring-generative-ai-software-development/
https://exadel.com/news/measuring-generative-ai-software-development/
https://aws.amazon.com/blogs/apn/transforming-the-software-development-lifecycle-sdlc-with-generative-ai/
https://aws.amazon.com/blogs/apn/transforming-the-software-development-lifecycle-sdlc-with-generative-ai/
https://www.blueoptima.com/resource/llm-paper-1/
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Next, we will discuss our perspective on the benefits and downsides of using GenAI in software 

development.

Is GenAI worth learning for software engineering?
We have been using code completion tools for over a decade, but current GenAI tools are different. 

We have used the full range of tools, such as keyboard shortcuts, Stack Overflow searches for help, 

code API search tools, and all the latest refactoring tools and templates available in the IDE. All 

these strategies have helped us be more efficient in our work, but there has always been a lot of 

mundane, repetitive work that has limited our coding speed and enjoyment.

The benefits of coding with GenAI
GenAI tools have transformed our output. Within three months of using an earlier version of 

GitHub Copilot, we were writing code 15% faster. Now, after two years, the combination of GitHub 

Copilot, ChatGPT, and OpenAI API has supercharged our coding output more than anything else 

that we have used. We complete twice as much work as we did previously with multiple tools. The 

improvements in productivity were a combination of advances in the tools themselves as well as 

familiarity with how to use them, both of which are covered throughout this book.

Beyond the productivity in merely writing code, GenAI contributes to other aspects of software 

development. GenAI can help refactor code automatically, which helps make it more readable and 

hence maintainable. As shown in later chapters, code can also be improved by selecting better 

algorithms that execute faster. GenAI can also help write documentation of code and automate 

the creation of tests. With GitHub Copilot, the pair programming approach to efficient coding 

includes providing help, which is useful for senior developers, but invaluable to developers learn-

ing a new language or framework.

The downsides of coding with GenAI
The technology behind GenAI for software development is still quite new. Early studies from 

2022 showed that GitHub Copilot’s accuracy in producing correct code was below 50%. While 

advances and new versions of the underlying models continue to be released every few months, 

they are certainly not perfect.

In fact, GenAI has produced some of the worst fatal development mistakes we have ever seen. 

To put that in perspective, we have seen a data scientist pushing their entire environment file 

to the corporate repository, which exposed secret tokens that had to be replaced. One software 

developer crashed a microservice after renaming a file pandas. One data engineer spent two 
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weeks learning Cython to handle a Python DataFrame memory issue instead of just switching 

to Dask or PySpark. GenAI may not only supercharge your strengths, but may also supercharge 

your weaknesses. After all, it is still a developing technology, but continues to improve arguably 

faster than anyone expected.

AI coding has made the headlines, but it may not be clear why it would fail. The underlying coding 

models are trained on available GitHub repository data and other code that is publicly available 

in various languages. For problems that are widely documented, such as the Fibonacci sequence 

calculation or the many code snippets used to pass LeetCode interviewing questions, the answers 

are nearly perfect. For this reason, YouTube is full of videos showing how GitHub Copilot can 

program a React web page in 3 minutes.

GenAI has far more difficulty solving more obscure coding tasks where there is far less training 

data. Even if the most famous LeetCode’s Two Sum Problem were changed slightly to include Python 

Threads, for example, the solution would be unpredictable.

A well-documented problem with LLMs for generating text is that they tend to hallucinate or 

fabricate information when the answers are not apparent. Significant research is ongoing to 

counter this poorly understood problem. However, hallucinations and other LLM issues do occur 

when GenAI is applied to software engineering.

Some developers worry that GenAI coding tools will turn them into less capable developers. They 

fear that relying on automatic code completion, suggestions, and examples will cause them to 

lose their programming edge or familiarity with the functions.

Recent research by Michael Gerlick (https://doi.org/10.3390/soc15010006) suggests that AI 

tools might decrease our critical thinking capability through a process known as cognitive off-

loading. However, similar arguments have been made about automated spelling checkers that 

produce better documents but perhaps reinforce our spelling crimes. It is true that it may take 

a bit longer to remember the exact syntax of adding tick marks to a matplotlib plot when the 

internet is down. However, if you can double your output with fewer keystrokes, you can focus 

on the more important problems that GenAI has yet to solve.

Takeaways
Recent blogs describe a new trend called vibe coding, where developers and even non-developers 

design and build full applications extensively using GenAI over a weekend that would probably 

take months. It is remarkable that the technology has advanced to the point where rapid proto-

typing is effective. However, prototypes are not production code. 

https://doi.org/10.3390/soc15010006
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In many tutorials where GenAI fails, the common wisdom is You should verify the output you get, yet 

none offers a pragmatic way or even a guided mindset of how to effectively evaluate the outputs 

and improve the code.

It is considered good practice to apply unit and other testing approaches for all code. However, 

using GenAI is neither about blindly trusting nor fact-checking everything. GenAI failures do not 

mean we have to go overboard with fact-checking any piece of code it produces. Similarly, evi-

dence of GenAI success does not imply you should push every memory optimization suggestion 

into production.

Leveraging GenAI is about developing a new set of skills to formalize the inputs and outputs 

obtained from LLMs. This will enable you to truly supercharge your coding tasks throughout 

the SDLC. It enables you to own the code whether you wrote it from scratch yourself or utilized 

LLMs. When you can assess the quality and risk of the output these tools generate, you will be 

able to transform your approach to software engineering.

Summary
This chapter highlighted that GenAI for coding emerged from the combination of software tool 

advancements with LLMs. This nascent technology applies not only to coding but can enhance 

many aspects of the SDLC. The combination of ChatGPT, OpenAI API, and GitHub Copilot pro-

vides a complementary set of tools that have been shown to not only improve productivity and 

enhance code quality but can even bring happiness to programmers.

Although the technology is new and still evolving, GenAI is already changing the software engi-

neering field. This book was developed to provide a structured approach to effectively leverage 

the tools and achieve the best results across many aspects of the SDLC.

In the next chapter, we will introduce a quick-start guide to OpenAI API and use the chat service 

for coding tasks. We will build our own code completion program that takes a function’s signature 

as input and returns its implementation as output.
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Further reading
To learn more about the topics that were covered in this chapter, take a look at the following 

resources:

•	 VS Code Plugin: https://github.com/kiteco/vscode-plugin

•	 Begum Karaci Deniz, Chandra Gnanasambandam, Martin Harrysson, Alharith 

Hussin, Shivam Srivastava. Unleashing developer productivity with Generative AI:  
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/

unleashing-developer-productivity-with-generative-ai.

•	 Alexey Girzhadovich. Scientifically Measuring the True Impact of Generative AI Software  

Development: https://exadel.com/news/measuring-generative-ai-software-

development/.

•	 Diego Colombatto and Jose Manual Pose Rivadulla. Transforming the software development 

lifecycle (SDLC) with Generative AII: https://aws.amazon.com/blogs/apn/transforming-
the-software-development-lifecycle-sdlc-with-generative-ai/

•	 Research and Markets Report: Generative Artificial Intelligence (AI) in Coding 

Market - Forecasts from 2024 to 2029: https://www.researchandmarkets.com/
reports/6014321/generative-artificial-intelligence-ai-in?utm_source=GNE&utm_
medium=PressRelease&utm_code=8xz7cm&utm_campaign=2014387+-+Generative+Arti
ficial+Intelligence+(AI)+in+Coding+Market+Research+2024-2029%2c+Profiles+o
f+Codecademy%2c+CodiumAI%2c+Google%2c+IBM%2c+Microsoft%2c+NVIDIA%2c+OpenAI
%2c+and+Tabnine&utm_exec=chdomspi

•	 Michael Gerlick. AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical 

Thinking: https://doi.org/10.3390/soc15010006
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2
Your Quickstart Guide to 
OpenAI API

Generative artificial intelligence (GenAI) platforms such as OpenAI are transforming entire 

industries by empowering everyday users to generate custom answers to questions, reports, and 

images. You do not have to be an AI expert to leverage OpenAI to supercharge your software de-

velopment. This chapter focuses on setting up OpenAI and using its application programming 

interface (API) calls to generate quality code.

OpenAI offers numerous services such as chat, image generation, and text-to-speech. These are 

available through a RESTful HTTP request, which is a standard way for applications to commu-

nicate over the web, or through a programmatic interface of the openai Python package.

In our first quickstart guide of the book, we will walk through three interactive labs and three 

sets of requests, working with the OpenAI Chat service. We will dive into the different models 

available through OpenAI API, and how to impact the AI-generated output.

We will obtain our project API keys, analyze the services’ limits, and learn how to compute each 

request’s costs. The costs are computed from the number of tokens or subword fragments of the 

model’s input and output.

We will wrap up this chapter by creating a basic code completion program that can generate a 

Python code implementation based on a function signature.
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In this chapter, we will explore the following topics:

•	 Introducing OpenAI API

•	 Obtaining your project API keys from OpenAI

•	 Sending your first OpenAI API request using the openai Python package

•	 Learning how request costs are calculated

•	 Understanding rate limits and usage restrictions for free and paid OpenAI accounts

•	 Analyzing request parameters

•	 Using OpenAI API to generate code

Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 Your personal OpenAI account credentials

•	 Access to the book’s GitHub repository, which is available at https://github.com/

PacktPublishing/Supercharged-Coding-with-Gen-AI

•	 A virtual environment set up in your integrated development environment (IDE), either 

VS Code or PyCharm

If you require additional assistance in setting up your OpenAI account or a virtual environment 

in your IDE, refer to the Appendix for detailed instructions.

Introducing OpenAI API
The OpenAI platform offers a variety of natural language processing (NLP) services, powering 

many AI applications. At its core, the platform leverages large language models (LLMs) that are 

trained on a massive amount of data, with a complex architecture and billions of learnable param-

eters to produce AI-generated responses. Developers can interact with the platform through its 

API with text-based requests that are often called prompts. The prompts are processed, enriched, 

and transformed before being passed into the LLM model. The model’s output is further refined 

and delivered as a response to the API request.

The Chat service by OpenAI is designed for conversational interactions with the LLM where the 

conversation uses three types of prompt roles – user, system, and assistant:

•	 User prompts represent an end user of the system such as a ChatGPT user, and resemble 

prompts we feed into ChatGPT, such as Tell me about the Fibonacci sequence.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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•	 Assistant prompts represent the model output through the conversation and resemble 

answers we will get back from ChatGPT, such as The Fibonacci sequence is a series 
of numbers where each number is the sum of the two preceding ones.

•	 System prompts define the guidelines of the assistant behavior through the conversation, 

such as You are a helpful programming instructor.

Like many other GenAI tools in the industry, the OpenAI API calls are primarily a paid service. It 

does offer some limited free usage such as three requests per minute to a restricted selection of 

models, excluding GPT-4o. With just $5 in OpenAI credits, you can fully engage with the examples 

and labs presented in this book. We will instruct you how to do this right after our initial Lab 2.1.

OpenAI API through a RESTful HTTP request
The OpenAI API services are accessed via RESTful HTTP requests, a communication protocol 

based on the principles of Representational State Transfer (REST) architecture, and using the 

HyperText Transfer Protocol (HTTP). RESTful HTTP provides a standardized way to send and 

retrieve data from servers over the internet. A request to OpenAI API includes four key components:

•	 Endpoint: The URL specifying the service you are accessing, such as https://api.openai.

com/v1/chat/completions for the Chat service

•	 HTTP method: The action to perform, such as POST for OpenAI Chat service requests, 

which sends data to the server

•	 Headers: Metadata about the request, including your API token, to authenticate and 

provide context for the request

•	 Body: The data payload containing details such as the LLM to use and the input prompts

Here is an example of a request to the OpenAI API Chat service using the requests package in 

Python. It demonstrates how to make a POST request to the service, including a header with your 

API key for authentication and a body containing the data payload, such as the model and a prompt:

import requests

import json

api_key = "your-key-here"

headers = { 

    "Authorization": f"Bearer {api_key}", 

    "Content-Type": "application/json"

}

payload = { 

    "model": "your model's name here", 

https://api.openai.com/v1/chat/completions
https://api.openai.com/v1/chat/completions
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    "messages": "your message here"}

response = requests.post("https://api.openai.com/v1/chat/completions", 

    headers=headers, 

    data=json.dumps(payload))

chat_response = response.json()["choices"][0]["message"]["content"]

Note that this code sample can also be found at the book’s repository path, ch2/code_samples/

openai_request.py.

In this example, the payload is submitted in JSON format. If the request is successfully accepted 

and the server responds, the OpenAI API Chat service’s output can be retrieved from response.

json()["choices"][0]["message"]["content"].

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick 

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.
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For Python developers, a more efficient approach to accessing the OpenAI Chat service is available. 

Rather than dealing with the complexities of crafting and sending RESTful HTTP requests, such 

as constructing the correct endpoint URL, setting authentication tokens in headers, formatting 

payloads in JSON, and handling potential response errors, we can leverage the dedicated openai 

package.

OpenAI API Python package installation
The openai Python package simplifies the process by abstracting complexities such as URL paths, 

retries, error handling, and authentication. This allows us to interact directly with Python objects, 

instead of manually constructing RESTful HTTP requests.

To install the openai package, run the following command in your terminal within your virtual 

environment:

(.venv) $ pip install openai

To verify that the openai package is installed correctly on your virtual environment, run the 

following command, which specifies the information of the package:

(.venv) $ pip show openai

Your console will output information about the package version, author, and support email.

With the openai package installed, we can simplify our interactions with the OpenAI platform 

using a programmatic framework. Instead of making direct RESTful HTTP requests, we will uti-

lize Python classes. This results in fewer boilerplates, such as handling authentication and error 

management, and a more maintainable code.

Important note

If you are already working with the book repository, you do not need to install the 

openai package separately. It is already specified in the requirements.txt file and 

should be installed in your virtual environment. If you require additional assistance 

in setting up your virtual environments, refer to the Appendix for detailed instructions.
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Obtaining your project API keys from OpenAI
All requests to OpenAI API require an authentication token, and we must obtain one prior to 

submitting any request.

Navigate to https://platform.openai.com and log in with the same credentials as you use for 

ChatGPT at https://chat.openai.com/.

Once logged in, click on Dashboard in the upper-right menu, then select API keys from the left 

menu.

Recently, OpenAI replaced personal API keys with the option to create a project API key. This new 

key serves two purposes. First, it allows personal use, as required for the work throughout this 

book. Second, it supports service API keys intended for non-human identities such as microser-

vices running in production.

Figure 2.1: Project API keys dashboard

To generate your first API key, click on Create new secret key under your account icon at the 

upper left. Choose an API key that is owned by You, as we will use this key rather than assign it 

to a service account. You can assign a name for future reference, and it should be associated with 

a project (named default project if you have not changed the project name yet).

https://platform.openai.com
https://chat.openai.com/
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Figure 2.2: Creating a new secret key for personal use

Once you click on Create secret key, the platform will generate a new secret key for you.

Return to your IDE, either VS Code or PyCharm, and export it as an environment variable from 

your terminal by running the following:

$ export OPENAI_API_KEY="your-key-here"

Alternatively, for a reproducible environment, you can use the .env file template provided with 

this book’s repository:

Figure 2.3: The .env file template, placed at the root of the repository
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If you choose to work with .env for your environment variables management, you should verify 

that your running configurations are set to work with this file. Refer to the Appendix if you need 

additional assistance.

Next, we will learn how to submit our first request to OpenAI API using the openai Python pack-

age, following a template that will be utilized throughout this book.

Lab 2.1 – sending your first OpenAI API request 
using the openai Python package
With the installed Python package and the API Keys, we are all set to execute our first OpenAI 

API request. Note that you do not need OpenAI platform credits to complete this lab, and we 

will instruct you how to load credits to your account later in this chapter. If you have previously 

loaded credits to the OpenAI platform, this example should cost no more than a fraction of a 

cent to execute.

In this lab, we will start with a simple template for executing OpenAI API requests to the Chat 

service and printing the response output. We will have three steps:

1.	 Create an openai.OpenAI class instance.

2.	 Submit a request to the Chat service with a single user prompt and a model selection such 

as GPT-4o-mini or GPT-3.5-turbo.

3.	 Print the response output.

These steps are in place in our starter code, and we will walk you through completing it, running 

it, and analyzing the results we get:

import openai

from openai import OpenAI

if __name__ == "__main__": 

    client: OpenAI = OpenAI()

    completion: openai.ChatCompletion = ( 

        client.chat.completions.create( 

            model="", # Your model's name here 

            messages=[] # Your messages here 

        )) 

    print("your print here")

In this lab walk-through, we will build on this starter code to complete the model and messages ar-

guments, enabling us to receive an AI-generated response to our request from the OpenAI platform.
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Lab 2.1 guided walk-through
Open Lab 2.1 in the book’s repository located at ch2/labs/lab21.py. First, we will instantiate a new 

instance of the openai.OpenAI class:

client: OpenAI = OpenAI()

We do not specify any authentication parameters directly in the code. The OpenAI client automat-

ically retrieves the API key from the OPENAI_API_KEY environment variable. While it is possible 

to pass the API key using the api_key argument during instantiation, we strongly advise against 

hardcoding credentials in scripts for security reasons.

The next step is to send a request using the OpenAI client. We will initiate a call to the Chat ser-

vice by accessing chat.completion, where we will define the necessary RESTful HTTP request 

parameters. This includes at least two parts: the model and messages keyword arguments. The 

model argument represents the name of the LLM you are querying, and the messages argument 

represents the input prompts sent to the model:

completion = client.chat.completions.create( 

    model="", # Your model's name here 

    messages=[] # Your messages here

)

If you have loaded credits onto your OpenAI platform account, enter the model value between 

the double quotes:

gpt-4o-mini

Otherwise, use the following model instead:

gpt-3.5-turbo

Next, add a single user prompt to the messages argument:

messages = [{"role": "user", "content": "What is the FizzBuzz problem?"}]

The last step is to print the response output of the Chat service. On the last line, replace the print 

statement with the following:

print(completion.choices[0].message.content)
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At this point, your Lab 2.1 code should look as follows:

import openai

from openai import OpenAI

if __name__ == "__main__": 

    client: OpenAI = OpenAI() 

    completion: openai.ChatCompletion = client.chat.completions.create( 

        model="gpt-4o-mini", 

        messages=[{"role": "user", "content": "What is the FizzBuzz 
problem?"}] 

    )

    print(completion.choices[0].message.content)

Lab 2.1 is now ready to run and will print the Chat completion in response to the following user 

prompt: What is the FizzBuzz problem?.

Lab 2.1 analysis
Run the script and check the output in the terminal if you are using VS Code, or the run console 

if you are using PyCharm. The output of the program should be the Chat service’s response to 

the user prompt What is the FizzBuzz problem?, a problem we will revisit in later chapters.

Depending on the model you chose to work with (either GPT-3.5-turbo or the more advanced GPT-

4o-mini), you might get quite a different output from the Chat service. For your reference, here 

is a response from the GPT-3.5-turbo model, which includes a context and problem description:

FizzBuzz is a common programming problem often used in job interviews 
to test a candidate's ability to write simple code. The problem is as 
follows:

Write a program that prints the numbers from 1 to 100. But for multiples 
of three, print "Fizz" instead of the number, and for the multiples of 
five, print "Buzz For numbers which are multiples of both three and five, 
print "FizzBuzz"

Note

When working on your lab code, you can always find the full lab solutions in the 

ch2/solutions folder.
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Here is a response from the GPT-4o-mini model, which, in addition to the context and descrip-

tion, included a detailed explanation of the coding task stages, an example output, and the task’s 

challenges:

The FizzBuzz problem is a classic programming task often used in 
coding interviews and educational settings to test a developer's basic 
understanding of control structures, loops, and conditional statements. 
The problem is simple:

1. Write a program that prints the numbers from 1 to a specified number, 
typically 100.

2. For multiples of three, print "Fizz" instead of the number.

3. For multiples of five, print "Buzz" instead of the number.

4. For numbers that are multiples of both three and five, print 
"FizzBuzz."

The output would look something like this:

```

1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz, 
...

```

This task helps demonstrate an understanding of loops and conditionals, 
often revealing both logical reasoning and code clarity.

In Chapter 6, we will explore the underlying differences between GPT-4o and GPT-3.5 in greater 

detail.

Next, we will explore how to anticipate the costs associated with each API call and understand 

how tokens, as fragments of words, are used to calculate the request charges.

Important note

As discussed in Chapter 1, applications built on top of LLMs rarely output determinis-

tic results, and responses for similar prompts may differ due to prompt construction, 

user customization, and randomness. Moving forward in this book, we will discuss 

further how to control all three to achieve the desired outputs from the model.
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Learning how request costs are calculated
Since OpenAI API is primarily a paid service, it is essential to understand and anticipate the costs 

associated with each request.

Before proceeding with the lab exercises, it is strongly recommended that you add credits to 

your OpenAI platform account. An initial charge of $5 in credits should be more than enough 

to complete all the labs in this book. Loading credits will also upgrade your account from Free 

tier usage (with no prior credits) to a Tier 1 account, significantly increasing your rate and usage 

limits, as we will discuss later in this chapter.

To load credits, open the OpenAI Billing Overview page at https://platform.openai.com/

settings/organization/billing/overview and add a payment method with a minimum charge 

of $5.

Figure 2.4: Remaining credit balance

You can also check your remaining balance at any time by visiting the same link.

Understanding tokens
The OpenAI platform calculates request costs based on tokens, which are small segments of text 

(often subwords, words, or characters) averaging about 0.75 words or 4 characters each. Text is 

divided into tokens by elements such as punctuation, root words, and word endings. We will 

discuss tokens in detail in Chapter 6.

https://platform.openai.com/settings/organization/billing/overview
https://platform.openai.com/settings/organization/billing/overview
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Each API request consists of both input and output tokens, and OpenAI charges for both. For 

example, in Lab 2.1, the message {"role": "user", "content": "What is the FizzBuzz 

problem?"} contains 15 tokens. You can access the exact count from the prompt_token attribute 

as in the following code:

>> completion.usage.prompt_tokens

>> 15

Alternatively, we can estimate our total input token consumption using tools such as the Ope-

nAI Tokenizer, available at https://platform.openai.com/tokenizer. The Tokenizer also col-

or-codes the different tokens in the text, identifying words such as role and user as a single token, 

punctuation marks such as commas and question marks as a single token each, and FizzBuzz as 

three tokens.

Figure 2.5: OpenAI Tokenizer simulation

Output tokens are also billed. For example, in Lab 2.1, the output response from the GPT-4o-

mini model contains 292 tokens. You can access the completion_tokens attribute by calling the 

following:

>> completion.usage.completion_tokens

>> 292

This brings the total billable tokens to 307. You can access the total_tokens attributes by calling 

the following:

>> completion.usage.total_tokens

>> 307

https://platform.openai.com/tokenizer
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How billing is computed
OpenAI charges for both input and output tokens, with costs varying by model. Newer, more 

advanced models typically have higher costs, while optimized versions, such as models with 

the -mini or -turbo postfix, are more affordable. You can find the full pricing details at https://

openai.com/api/pricing/.

As of January 2025, input tokens for the GPT-4o model are priced at $2.50 per million tokens (or 

$1 for every 400,000 input tokens), while output tokens are priced at $10 per million tokens (or 

$1 for every 100,000 output tokens).

In Lab 2.1, we used the more affordable GPT-4o-mini model. Input tokens for this model cost $0.15 

per million tokens (or $1 for every 6.6 million input tokens), and output tokens are priced at $0.60 

per million tokens (or $1 for every 1.6 million output tokens). These costs are approximately 1/16 

of the GPT-4o model’s pricing.

Figure 2.6: Costs of GPT-4o input and output tokens

For example, we can calculate the cost of running Lab 2.1, which uses 15 input tokens and 292 

output tokens. Based on the pricing for the GPT-4o-mini model, the cost is as follows:

>> (15 * 0.15 + 292 * 0.6) / 1000000

>> 0.00018

This is approximately 1/55 of a cent.

https://openai.com/api/pricing/
https://openai.com/api/pricing/
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If we run Lab 2.1 with the larger GPT-4o model instead, the cost would be as follows:

>> (15 * 2.5 + 292 * 10) / 1000000

>> 0.002

This amounts to 1/5 of a cent.

Keep these cost differences in mind when designing your own applications, especially when de-

ciding between using more advanced models and their smaller, more affordable versions. Model 

prices have historically declined as newer models are introduced, so it is a good idea to periodically 

review the Pricing page at https://openai.com/api/pricing/.

With a clear understanding of cost calculations, we can now move on to discussing the limitations 

and restrictions associated with different tiers of OpenAI accounts.

Understanding rate limits and usage restrictions for 
free and paid OpenAI accounts
OpenAI usage is limited by three factors: requests per minute (RPM), requests per day (RPD), 

and tokens per minute (TPM). The limits of each vary based on both the model and the type 

of account you have. For Free tier accounts with no credits added, the limit is three RPM, and 

only certain models are available, excluding GPT-4o. Token limits tend to be more restrictive 

for advanced models such as GPT-4o to all account tiers, whereas older or mini models, such as 

GPT-4o-mini, have more relaxed limits.

For reference, here are the rate limits for Free tier accounts as of January 2025:

Figure 2.7: Rate limits example for Free tier accounts

https://openai.com/api/pricing/
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And here are the rate limits for Tier 1 accounts as of January 2025:

Figure 2.8: Rate limits example for Tier 1 accounts

We encourage you to learn about your account’s API limits by navigating to the Settings sec-

tion in the upper-left corner of your organization: https://platform.openai.com/settings/

organization/limits.

With Tier 1’s increased RPM and TPM limits in place, we’re now ready to move forward to the 

next lab, where we will explore additional parameters for OpenAI API.

Lab 2.2 – analyzing request parameters
In Lab 2.2, we will expand on our basic OpenAI API request to the Chat service by adding addi-

tional parameters to customize the model’s response. This time, we will ask the Chat service to 

explain the Two Sum problem, a topic we will explore further in later chapters.

We will use a similar starter code from Lab 2.1, which includes setting up an OpenAI client and 

print statements:

client: OpenAI = OpenAI()

completion: openai.ChatCompletion = ( 

    client.chat.completions.create())

print("Completion Tokens: ")

print("Output: ")

https://platform.openai.com/settings/organization/limits
https://platform.openai.com/settings/organization/limits
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In this lab’s guided walk-through, we will add the following payload parameters:

n: Specifies the number of response variations

temperature: Controls the level of randomness in the model’s output ranging from 0 to 2

max_tokens: Limits the number of tokens in each response

Applications such as code completion services often offer users multiple suggestions from a lan-

guage model, so we may want to retrieve more than one response. Additionally, in some cases, 

such as generating a creative prompt (for example, Give me a marketing slogan for a book 

about GenAI for coding), we might prefer a higher degree of randomness in the output that 

can be obtained by setting the temperature parameter closer to its maximum value of 2.

The max_tokens parameter limits the number of tokens in the response, though it does not guar-

antee the output will be fully complete within that limit. When using max_tokens, OpenAI charges 

for the specified token limit rather than the actual number of tokens used, so it is best to set it 

close to the expected length of the response.

Lab 2.2 guided walk-through
This walk-through consists of two steps: updating the payload with additional parameters and 

adding a print statement to display the extra responses.

Open Lab 2.2 in the book repository at ch2/labs/lab22.py and ensure that you have either set the 

OPENAI_API_KEY environment variable or configured your run settings to point to the .env file.

As the first step, update the arguments for the .create method on line 7 as follows:

1.	 Set the model to gpt-4o-mini:

model = "gpt-4o-mini"

If you have not added credits to your OpenAI platform account yet, your access may be 

limited to certain models, excluding gpt-4o-mini. In that case, use the gpt-3.5-turbo 

model instead.

2.	 Set a low temperature argument to reduce the randomness of the output:

temperature=0.2

3.	 Set the max_tokens argument to restrict the model’s output to a maximum of 100 tokens:

max_tokens=100
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4.	 Set the n argument to instruct the model to return a single response for the request:

n=1

5.	 Add a system prompt to the messages argument to give the agent the tone of a tech com-

pany hiring manager:

{"role": "system", "content": "You are a hiring manager at a tech 
company."}

6.	 Add an additional user prompt to the messages argument asking about the Two Sum 

problem:

{"role": "user", "content": "What is the Two Sum problem?"}

7.	 For the second step, update the print statements to display the output token count and 

the model output.

8.	 Modify the first print statement to indicate the output count:

print("Completion Tokens: ", completion.usage.completion_tokens)

9.	 To display the output response, update the second print statement as follows:

print("Output: ", completion.choices[0].message.content)

If you followed all the steps correctly, your code should look like this:

import openai

from openai import OpenAI

if __name__ == "__main__": 

    client: OpenAI = OpenAI() 

    completion: openai.ChatCompletion = ( 

        client.chat.completions.create( 

            model="gpt-4o-mini",

            temperature=0.2,

            max_tokens=100,

            n=1,

            messages=[{"role": "system", "content": "You are a hiring 
manager at a tech company."},

            {"role": "user", "content": "What is the Two Sum problem?"}],

        ))



Chapter 2 35

    print("Completion Tokens: ", completion.usage.completion_tokens)

    print("Output: ", completion.choices[0].message.content)

Lab 2.2 is now ready to run and will print the output token count along with the response to the 

user prompt What is the Two Sum problem?

Lab 2.2 analysis
Run the script and check the output. If you are using VS Code, look in the terminal, and if you 

are using PyCharm, check the run console. Ensure that the output token count does not exceed 

100 and that the Chat service begins explaining the Two Sum problem, a topic we will revisit in 

future chapters.

Keep in mind that setting a max_tokens limit does not guarantee a complete explanation and 

may truncate responses.

The following is a sample output, limited to 100 tokens, obtained from running the lab. The 

completion was truncated at 100 tokens, equivalent to 84 words:

"The Two Sum problem is a classic algorithmic problem often encountered in 
coding interviews and competitive programming. The problem can be stated 
as follows:

Given an array of integers `nums` and an integer `target`, you need to 
determine if there are two distinct indices `i` and `j` in the array such 
that the sum of the elements at these indices equals the target value. In 
other words, you need to find two numbers in the array that add up to the 
specified target.

### Problem Statement"

Although this output is truncated, it may still provide sufficient information to understand the 

Two Sum problem.

Answer:

>> (28 * 0.15 + 100 * 0.6) / 1000000>>  0.000064

This is approximately 1/150 of a cent.

Note

Question: Can you compute the cost of the lab22.py request?
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Multiple service responses with Lab 2.2
Reflecting on Lab 2.2, we can now better understand the impact that payload request parameters 

have on the initial output from the Chat service.

In that lab, we set the n parameter to 1, which is also the default value. However, in some GenAI 

applications, it may be beneficial to generate more than one response. For example, in tools such 

as GitHub Copilot or other code completion services, displaying multiple suggestions can enhance 

user experience. In such cases, increasing the number of responses with the n argument allows 

the model to provide multiple outputs. Keep in mind that the billing will include all generated 

outputs along with the input tokens.

In Lab 2.2, modify the n argument to request three different responses, and increase the temperature 

parameter to encourage more randomness and variety in the output:

n=3

temperature = 2

Now, update the print statements to include the additional outputs from the Chat service:

print("Output 1: ", completion.choices[0].message.content)

print("Output 2: ", completion.choices[1].message.content)

print("Output 3: ", completion.choices[2].message.content)

Run the lab again to view the three different responses from the Chat service explaining the Two 

Sum problem. Feel free to experiment with the parameters further to see how they affect the output.

Next, we will explore how to utilize OpenAI API for coding-related tasks, such as generating a 

Python code implementation based on a function’s signature.

Lab 2.3 – using OpenAI API to generate code
Now that we have learned how to execute OpenAI API calls and configure various parameters, 

we can use them to create our own basic code completion program. Previously, developers could 

select models such as code-davinci-002, which were specifically trained for code completion. 

These models have since been deprecated and now chat services can effectively handle code 

completion tasks.
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Routing chat capabilities to code completion
In this lab, we will create a code completion program by following five steps:

1.	 Define the input to function signatures only.

2.	 Add system prompts to guide the model in generating the complete code.

3.	 Wrap the function signature with a specific instruction for the model to complete the code.

4.	 Get the Chat service response for our request.

5.	 Extract only the code from the model’s output to present to the end user.

These steps demonstrate that applications built on top of LLM models require a tailored approach 

such as using wrapping designs and specific prompts to align the model’s output with the busi-

ness problem at hand. We will cover that in depth later in the book.

Our starter code consists of all five steps, which we will complete in the guided walk-through:

import openai

from openai import OpenAI

USER_PROMPT = """

user prompt here

"""

SYSTEM_PROMPT = "system prompt here"

def get_code_with_instructions(code: str) -> str: 

    """ 

    Add a comment to the code for specific code completion instruction 

    :param code: Python code as string 

    :return: The code with additional instruction - "Complete this code" 

     """ 

    return code + "your wrapping instructions here"

if __name__ == "__main__": 

    client: OpenAI = OpenAI() 

    completion: openai.ChatCompletion = (

        client.chat.completions.create()) 
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    for i in range(2): 

        output = completion.choices[i].message.content 

        print(f"Output {i + 1}:") 

        try: 

            suggested_code = output.split("```")[1] 

            print(suggested_code) 

        except IndexError: 

            print(output)

In this lab walk-through, we will learn how to complete the system prompt, wrapping instruc-

tions for the get_code_with_instructions function, and payload arguments for client.chat.

completions.create. Combined with a function signature as the user prompt, these elements 

will channel OpenAI’s Chat service capabilities toward a targeted code completion program.

Lab 2.3 guided walk-through
Open Lab 2.3 in the book repository at ch2/labs/lab23.py and ensure that you have either set the 

OPENAI_API_KEY environment variable or configured your run settings to point to the .env file.

First, set the user prompt to be a function signature for printing the Fibonacci sequence:

USER_PROMPT="""

def print_fibonacci_sequence(n: int) -> None:

"""

Next, include a system prompt to set guidelines for the assistant to act as an AI pair programmer:

SYSTEM_PROMPT = "You will be provided with a Python function signature. 
Your task is to implement the function. Return code only. "

We will also wrap the function signature to include a specific instruction for code completion. 

Update the get_code_with_instructions function to wrap the given code with an extended 

comment that instructs the model to complete the function signature:

return code + "\n# Complete this code"
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Next, configure the payload arguments by specifying the appropriate model, the desired number 

of responses, and the level of randomness:

1.	 Set the model to gpt-4o-mini:

model = "gpt-4o-mini"

If you have not loaded credits to your OpenAI platform account yet, your access may be 

limited to certain models, excluding gpt-4o-mini. In that case, use the gpt-3.5-turbo 

model instead.

2.	 Set a medium temperature argument to increase the randomness of the outputs:

temperature=1

3.	 Set the n argument to instruct the model to return two different coding suggestions:

n=2

4.	 Finally, set up the request arguments to include the wrapped function signature as the 

user prompt, along with a system prompt:

model = "gpt-4o-mini"

temperature=1

n=2

messages = [

    {"role": "system",

     "content": SYSTEM_PROMPT},

    {"role": "user",

     "content": get_code_with_instructions(USER_PROMPT)}

]

If you followed all the steps correctly, your lab’s code should be implemented as follows:

import openai

from openai import OpenAI

USER_PROMPT = """

def print_fibonacci_sequence(n: int) -> None:

"""

SYSTEM_PROMPT = "You will be provided with a Python function signature. 
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Your task is to implement the function. Return code only."

def get_code_with_instructions(code: str) -> str:

    """

    Add a comment to the code for specific code completion instruction

    :param code: Python code as string

    :return: The code with additional instruction - "Complete this code"

    """

    return code + "\n# Complete this code"

if __name__ == "__main__":

    client: OpenAI = OpenAI()

    completion: openai.ChatCompletion = (

        client.chat.completions.create(

            model="gpt-4o-mini",

            temperature=1,

            n=2,

            messages=[

                {"role": "system", "content": SYSTEM_PROMPT},

                {"role": "user", "content": get_code_with_
instructions(USER_PROMPT)}

            ],

        )

    )

    ...

Lab 2.3 is now ready to run and will print two coding suggestions for the Fibonacci sequence.

Lab 2.3 analysis
In this lab, we wrapped the user prompt and added a supporting system prompt to explicitly 

define the task for the Chat service: to complete a function that prints the Fibonacci sequence 

based solely on its signature. The following is a sample output generated when running this lab 

with two outputs. The first response provides a shorter solution without type checking, printing 

the Fibonacci numbers one by one. The second response includes input validation, creates the 

sequence up to the n limit, and then prints the entire sequence:

Output 1:

def print_fibonacci_sequence(n: int) -> None:
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    a, b = 0, 1

    for _ in range(n):

        print(a, end=' ')

        a, b = b, a + b

    print()   # for a new line after the sequence

Output 2:

def print_fibonacci_sequence(n: int) -> None:

    if n <= 0:

        print("Please enter a positive integer.")

        return

  

    sequence = []

    a, b = 0, 1

    count = 0

  

    while count < n:

        sequence.append(a)

        a, b = b, a + b

        count += 1

  

    print(sequence)

To further explore code completion, try adding additional system prompts such as add a 

docstring or add type hints and observe the results. You can also increase the number of re-

turned outputs or modify the instructions in the wrapped user prompt to see how these changes 

affect the generated code.

Important note

In this lab, the system prompt includes specific instructions for the desired output: 

Return code only. In later chapters, we will explore how to craft more effective 

instructions to guide the model toward the desired output structure using best 

practices and prompt engineering techniques.
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Summary
In the first quickstart guide, we used the openai Python package to build three different programs 

based on AI-generated output. We experimented with various models, including GPT-4o and 

GPT-3.5, explored different request parameters, and combined user prompts with system prompts.

We also loaded credits to the OpenAI platform, which increased our rate limits and allowed us to 

use a broader range of models. We learned how request costs are calculated based on the number 

of input and output tokens.

Finally, we developed a basic code completion program that wrapped a function signature, guiding 

the model to generate the rest of the function’s implementation.

With these foundations in place, we can progress to the next chapter, Quickstart Guide to GitHub 

Copilot, and better understand how Copilot generates coding suggestions and how to tailor them 

to fit our unique preferences when necessary.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: What is the difference between a system prompt and a user prompt in a Chat service 

request?

Answer: User prompts are the inputs provided by the end user, such as the questions or com-

mands given to ChatGPT. They represent the direct interaction with the AI-generated content, 

such as the following:

Explain the Two Sum problem

Here is another example:

def print_fibonacci_sequence(n): # complete this code

System prompts, however, define the guidelines and tone for the Chat interaction. They instruct 

the assistant on how to behave during the conversation with the end user, as in this example:

You are a technical interviewer for a software engineering internship
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Here is another example:

You will be provided with a Python function signature. Your task is to 
implement the function. Return code only.

Question 2: What are tokens, and how do they impact the cost of an OpenAI API request?

Answer: Tokens are small segments of text, typically averaging around 0.75 words or 4 characters 

each when the text is split into tokens based on elements such as punctuation, root words, and 

word endings. The cost of an OpenAI API request is calculated based on the number of input tokens, 

output tokens, and the max_tokens argument, with different models having varying token costs.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following 

resources:

•	 OpenAI Platform home page: https://platform.openai.com

•	 OpenAI API official documentation: https://platform.openai.com/docs/overview

•	 OpenAI Pricing: https://openai.com/api/pricing/

•	 OpenAI Rate Limits (General): https://platform.openai.com/docs/guides/rate-

limits

•	 OpenAI available models: https://platform.openai.com/docs/models/model-

endpoint-compatibility

•	 OpenAI individual rate limits: https://platform.openai.com/settings/organization/

limits

•	 The FizzBuzz wiki page: https://en.wikipedia.org/wiki/Fizz_buzz

•	 The Two Sum Leet Code page: https://leetcode.com/problems/two-sum/description/

https://platform.openai.com
https://platform.openai.com/docs/overview
https://openai.com/api/pricing/
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/models/model-endpoint-compatibility
https://platform.openai.com/docs/models/model-endpoint-compatibility
https://platform.openai.com/settings/organization/limits
https://platform.openai.com/settings/organization/limits
https://en.wikipedia.org/wiki/Fizz_buzz
https://leetcode.com/problems/two-sum/description/
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3
A Guide to GitHub Copilot  
with PyCharm, VS Code, and 
Jupyter Notebook

GitHub Copilot, an AI pair programmer, is enabling developers to supercharge their coding abil-

ities and write code more efficiently. The application uses an underlying large language model 

(LLM) designed specifically for code completion tasks, code analysis, and chat for coding-related 

tasks.

Since we built our own code completion program capable of completing a Python function based 

on its signature alone in Chapter 2, we can better understand the role of LLMs in Copilot’s imple-

mentation, as well as what other preprocessing and postprocessing work is required.

This chapter is dedicated to working with GitHub Copilot in our integrated development en-

vironment (IDE). First, we will set up a GitHub Copilot account and determine who is eligible 

for a free account. Then, we will connect our account to our IDE (either VS Code or PyCharm) 

and explore the three interaction modes of the tool: chat, completion, and analysis. We will also 

work with Copilot in a Jupyter Notebook using VS Code. PyCharm cannot run Jupyter notebooks 

yet with Copilot.

Through three interactive labs, we will implement a geometric mean calculator using all three 

GitHub Copilot interaction modes: chat, completion, and analysis. Additionally, we will exper-

iment with keyboard shortcuts for core Copilot functionality to help streamline our workflow 

and boost productivity.
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In this chapter, we will cover the following key topics:

•	 Introducing GitHub Copilot – our AI pair programmer

•	 Understanding GitHub Copilot’s free account limits, costs, and policies

•	 Setting up Copilot in PyCharm and VS Code

•	 Using Copilot chat

•	 Introducing completion and keyboard shortcuts for geometric mean calculations

•	 Analyzing code with Copilot

•	 Working with Copilot in VS Code’s Jupyter Notebook for code analysis

Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub account

•	 Access to IDE – either VS Code or PyCharm

•	 Access to the book’s repository, which is available at https://github.com/

PacktPublishing/Supercharged-Coding-with-Gen-AI

•	 Virtual environment set up in your preferred IDE, VS Code or PyCharm

If you require additional assistance in setting up your OpenAI account or a virtual environment 

in your IDE, refer to the Appendix for detailed instructions.

Introducing GitHub Copilot – our AI pair 
programmer
GitHub Copilot is an AI-powered tool that uses LLMs trained on vast and diverse datasets contain-

ing a significant amount of open source code from public repositories across various programming 

languages, including Python. By combining the model’s extensive knowledge with your code’s 

context, GitHub Copilot provides tailored coding suggestions, as well as chat and code analysis 

features, to assist in your development process.

Code completion design overview
To provide meaningful code completions, Copilot processes the input and output of the LLM, like 

the code completion program developed in Lab 2.3. For the input, Copilot structures a prompt 

based on the lines surrounding the cursor, function signatures, and additional context, such as 

recent edits, Git details, file names and open files. The LLM’s output is further processed, including 

validation to ensure it compiles successfully.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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We can visualize Copilot’s code completion process as a flowchart, as shown in Figure 3.1.

Figure 3.1: An overview of GitHub Copilot’s suggestion process

In addition to code completion, GitHub Copilot offers two other modes of interaction: chat (avail-

able inline or through the chat window) and code analysis. Both modes are based on the under-

lying code and comments but differ in their final output and the postprocessing steps involved. 

We will discuss these extensively later in this chapter.

Important note

Some developers may think that GitHub Copilot sends the entire Git repository code 

they are working on to the LLM. This is very unlikely given two reasons: the cost of 

input tokens and the relevance of the entire code to the specific code completion task. 

It is far more likely that only relevant code is preprocessed by Copilot first. Then, only 

the necessary information including coding style preferences or relevant classes, code, 

and variables, is added to the prompt in addition to the cursor’s surrounding context.
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Understanding GitHub Copilot’s free account limits, 
costs, and policies
To enable GitHub Copilot in your IDE, you first need to subscribe to the service through GitHub’s 

platform. Like many other GenAI services, GitHub Copilot is primarily a paid service, though 

some exceptions allow free access.

Who is eligible for a free account?
There are three ways to qualify for GitHub Copilot at no cost:

•	 Free account available to anyone, which includes up to 2,000 code completions and 50 

chat requests per month.

•	 Free pro account for students and educators with a valid university email

•	 Free pro account for maintainers of popular open source repositories

If you are a student or educator with a university email and the required documentation, you can 

apply for GitHub’s Student Pack at https://education.github.com/pack.

If you are a leading maintainer of a popular open source repository, you may have free access to 

Copilot. GitHub determines eligibility based on internal criteria, without requiring an application 

process. If eligible, upon clicking your profile icon and selecting Your Copilot, you will be directed 

to a page titled GitHub Copilot Individual instead of a payment page, as detailed later in this chapter.

Some organizations and enterprises cover the cost of GitHub Copilot access for their users. If 

you belong to such an organization or enterprise, you will find a request access button next to 

the organization’s name at https://github.com/settings/copilot. In these cases, you will 

not be charged for using Copilot, as the organization or enterprise will handle the licensing fees 

on your behalf.

Compared to individual accounts, GitHub Copilot for business and enterprises offers additional 

features, such as pull request summaries, a knowledge base, and the ability to fine-tune a custom 

LLM for enterprise versions. These options come at a higher cost than individual memberships.

https://education.github.com/pack
https://github.com/settings/copilot
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Pricing
For individual users, the service is priced at $10 per month or $100 annually. For Copilot business, 

the rate is $19 per user per month, while the enterprise version increases to $39 per user per month.

Code completion policies
All GitHub Copilot users are governed by specific policies that define the scope of code suggestions, 

privacy, and access points, including your IDE and github.com.

A notable policy is suggestions matching public code. Since the GitHub Copilot model is primarily 

trained on open source and publicly available code repositories, some of its suggestions may 

be subject to copyright protection. To mitigate potential issues, GitHub provides users with an 

option to exclude coding suggestions that replicate such code.

Figure 3.2: Privacy and ownership options in Copilot

github.com
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Here, suggestions that match public code are allowed. We also recommend enabling additional 

underlying models such as Anthropic Claude and Google Gemini alongside to support further 

experimentation.

For business or enterprise accounts, the policies are pre-determined by the administrator of the 

organization or enterprise. Individual account users, however, can set their own policies during 

account setup or through the Copilot settings page: https://github.com/settings/copilot.

Activating your GitHub Copilot account
To participate in the labs and hands-on exercises in this book, you will need either a free, pro, 

business, or enterprise GitHub Copilot account. If you wish to set up an individual account, go 

to https://www.github.com, click on your profile icon, and select Your Copilot.

Figure 3.3: Copilot access in the GitHub account

 Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.

https://github.com/settings/copilot
https://www.github.com
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If you are a leading maintainer of a popular open source repository and qualify for free access to 

Copilot, you will be directed to a page titled GitHub Copilot Individual page. Otherwise, you will 

be directed to the payment page, where you can select a free trial option or a paid plan.

Select the plan that suits you, adjust settings to align with your individual or company policies 

(e.g., enable or disable public code matches), and enter your payment details.

Once completed, you will have access to Copilot services at https://github.com/settings/

copilot as shown in Figure 3.4:

Figure 3.4: GitHub Copilot settings header

This page shows your access level, provides links to resources for setting up Copilot in your IDE, 

and outlines Copilot’s privacy and ownership policies.

With our account now activated, we are ready to proceed and connect Copilot to our IDE.

Setting up Copilot in PyCharm and VS Code
GitHub Copilot is available via a PyCharm plugin or a VS Code extension. The core features of 

GitHub Copilot in both IDEs are similar, offering the three interaction modes we will cover in 

this book: chat, completion, and analysis.

However, Copilot is more tightly integrated with VS Code, meaning new features, such as Jupy-

ter Notebook support or switching to newer LLMs, are often released in VS Code before they are 

available in the PyCharm extension.

Since your GitHub Copilot subscription can be used across multiple IDEs, we encourage PyCharm 

users to try VS Code to explore Jupyter Notebook support. However, the labs in this book are 

tailored for both PyCharm and VS Code.

https://github.com/settings/copilot 
https://github.com/settings/copilot 
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GitHub Copilot plugin for PyCharm
To install the GitHub Copilot plugin in PyCharm, go to PyCharm | Settings | Plugins, then search 

GitHub Copilot in the marketplace. After installation, you will be prompted to restart your IDE.

 

Figure 3.5: GitHub Copilot Plugin in PyCharm

When your IDE restarts, you will be prompted to log in to your GitHub account.

To check whether the service is available, look for the Copilot icon at the bottom of the IDE. Hov-

ering over it should display Ready.

Figure 3.6: GitHub Copilot plugin icon health check in PyCharm

This confirms that the plugin is set up correctly, allowing us to start using Copilot.
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GitHub Copilot extension for VS Code
To install the Copilot extension, navigate to Code | Extensions, search GitHub Copilot, and in-

stall it. When you do this, the GitHub Copilot Chat extension will also be automatically installed.

Figure 3.7: GitHub Copilot and Copilot Chat extension in VS Code

After the installation, the GitHub Copilot extension window will open, prompting you to authen-

ticate or sign up for a GitHub Copilot account.

To check whether the extension is working properly after authentication, click on the GitHub 

Copilot icon in the bottom-right corner to open GitHub Copilot Menu.

Figure 3.8: GitHub Copilot icon in the bottom right window

A drop-down list will appear, and if you are logged into your GitHub account with a stable internet 

connection, the status should display Ready.
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Figure 3.9: Verifying GitHub Copilot extension status in VS Code

This confirms that the extension is set up correctly, allowing us to start using Copilot.

The three interaction modes – chat, completion, and 
analysis
Originally designed to provide tailored code completion suggestions, GitHub Copilot now offers 

three key interaction modes powered by LLMs: chat, completion, and analysis:

1.	 Chat is accessible via a chat window resembling the ChatGPT interface or through an 

inline compact view. We will use this mode when we want contextual assistance with 

coding-related questions.

2.	 Completion is available automatically in our files. As we type, Copilot will suggest code 

completions based on the code we write. We will use this mode when implementing 

new code.

3.	 Analysis includes features such as explain, fix, and tests, which are available through the 

chat window, the inline chat, and the edits window in VS Code. We will use this mode 

when interacting with existing code.

In the next three labs, we will experiment with each of these interaction modes.

Using Copilot chat
The chat feature complements GitHub Copilot’s code completion capabilities. The chat window 

can assist with questions related to your code, external topics, terminal commands, and even 

the VS Code IDE itself.

In VS Code, you can open the Copilot chat window using Ctrl + Alt + I (or cmd + control + I on Mac). 

Alternatively, click on the Copilot icon next to the top search bar of the screen.
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Figure 3.10: GitHub Copilot chat window in VS Code

In PyCharm, you can open the Copilot chat window using Ctrl + Shift + C or by selecting the 

GitHub Copilot Chat tab in the left-hand menu.

Figure 3.11: GitHub Copilot chat window in PyCharm
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Let us look at an example. Open a new chat window and enter this prompt:

What can you do?

Copilot will respond with examples of use cases across the three interaction modes, such as 

refactoring existing code (analysis), generating unit tests (completion), providing version con-

trol assistance (chat), and more. In addition to the response itself, GitHub Copilot chat will also 

display the pre-processed context in addition to the prompt itself, and the steps taken to prepare 

the input for the LLMs such as the following:

•	 Collecting recent files

•	 Retrieving Git information

•	 Analyzing problems and errors

This aligns with the GitHub Copilot process flow we discussed earlier in this chapter.

Here is an example of the prompt, What can you do?, output in PyCharm:

I can assist you with various programming tasks, such as:

- Writing and debugging code

- Explaining code snippets and concepts

- Providing code examples and templates

- Assisting with version control (e.g., Git)

- Helping with configuration and setup of development environments

- Offering best practices and optimization tips

If you have a specific question or need help with a particular piece of 
code, feel free to ask!

Here is an example of the prompt, What can you do?, output in VS Code:

I can assist with various programming tasks, including:

* Answering general programming questions

* Explaining how the code in your active editor works

* Reviewing the selected code in your active editor

* Generating unit tests for the selected code

* Proposing fixes for problems in the selected code

* Scaffolding code for a new file or project in your workspace

* Creating a new Jupyter Notebook

* Finding relevant code to your query
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* Proposing fixes for test failures

* Answering questions about VS Code

* Generating query parameters for workspace search

Running commands

* Explaining terminal outputs

* Providing step-by-step guidance for terminal tasks

How can I assist you today?

The PyCharm plugin and the VS Code extension may produce different outputs for the same 

prompt. This occurs because the GitHub Copilot application handles files in PyCharm and VS Code 

slightly differently, offers distinct features in each, and incorporates an element of randomness. 

Keep in mind that, like any GenAI output, suggestions may not always be accurate or complete, 

as we will observe later in this chapter.

Next, we will explore how the chat window can enhance code completion tasks within our IDE, 

even when further exploration of a topic is needed (such as an explanation of the geometric mean).

Lab 3.1 – calculating geometric mean with chat 
completion
In Lab 3.1, we will explore the geometric mean through the chat interaction mode. The geometric 

mean is a way of averaging numbers that are multiplicative in nature, such as financial portfolio 

growth rates, population growth rates, or drug concentrations that vary exponentially over time. 

Unlike the arithmetic mean, which calculates the sum of a sequence of numbers divided by its 

length, the geometric mean is the n-th root of the product of the numbers:

Arithematic Mean = 1𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖𝑖𝑖 

Geometric Mean = (∏ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖𝑖𝑖 )1𝑛𝑛



For example, the geometric mean of 5 and 20 is 10, because of the following:(20.5)12 =  (100)12 =  √100 = 10
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Similarly, the geometric mean of 5, 20, and 10 is also 10, because of the following:(20 ∙ 5 ∙ 10)13 = (1000)13 = √10003 = 10

In this lab, we will use the chat window along with code completion. First, we will obtain an ex-

planation of the geometric mean using the chat window. Next, we will utilize Copilot to complete 

an implementation based on a function signature, including the name, parameters, type hints, 

and return values. Finally, we will print the function’s output by defining sample call parameters.

Lab 3.1 guided walk-through
Open Lab 3.1 in the book’s repository at ch3/labs/lab31.py and ensure that you have a stable internet 

connection, and that GitHub Copilot is ready.

The starter code consists of three parts:

# Part 1: Open the chat window and ask to explain the geometric mean.

# Part 2: Implement the geometric mean function for two floating-point 
numbers.

# Part 3: Call

Part 1 is for practice only, Part 2 requires specifying the function signature for code completion, 

and Part 3 involves adding sample parameters and printing their response.

For Part 1, delete the comment, open the Copilot chat window and enter the following prompt:

Explain the geometric mean.

This prompt will provide an explanation of the geometric mean. Note that the explanation may 

be truncated due to the max_tokens limit of Copilot, which we have no control over, or contain 

raw mathematical formatting, such as LaTeX code instead of compiled equations. Despite this, 

it should still provide enough information for us to understand the topic.

For Part 2, delete the comment and type the function signature to calculate the geometric mean 

of two floating-point numbers:

def get_geometric_mean_of_two_numbers( 

    a: float, 

    b: float,

) -> float:
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This function signature, with its name, parameters, type hints, and return type, is considered a 

complete prompt to Copilot that should yield a desirable implementation.

In Part 3, delete the comment and add a sample call that tests the implementation. Enter the 

following prompt:

num1: float = 5.0

num2: float = 20.0

print

The print statement acts as the cue for Copilot, which will likely suggest a call to the get_

geometric_mean function using num1 and num2 as arguments.

If you followed all the steps correctly, your code should look like this:

def get_geometric_mean_of_two_numbers( 

        a: float, 

        b: float,

) -> float: 

    return pow(a * b, 1 / 2)

num1: float = 5.0

num2: float = 20.0

print(get_geometric_mean_of_two_numbers(num1, num2))

Lab 3.1 is now ready to run and will print the geometric mean of 5 and 20, which is as follows:

10.0

Lab 3.1 analysis
In this lab, we used Copilot chat to learn about the geometric mean. We also leveraged code 

completion based on either a function signature as a starter code or a print call as a cue.

For your reference, here is the Copilot chat response to the prompt, Explain the geometric mean. 

We generated it using the VS Code chat window with the GPT-4o model. The response includes 

raw LaTeX code and is truncated before the full output:

>> The geometric mean is a measure of central tendency that is 
particularly useful for sets of numbers whose values are meant to be 
multiplied together or are exponential in nature. It is defined as the nth 
root of the product of n numbers.

Formula
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For a set of ( n ) positive numbers ( x_1, x_2, \ldots, x_n ), the 
geometric mean ( G ) is given by:

[ G = \left( \prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} ]

Steps to Calculate

Multiply all the numbers together to get the product.

Take the nth root of the product, where ( n ) is the total number of 
values.

Example

Consider the numbers 2, 8, and 4:

Multiply the numbers: ( 2 \times 8 \times 4 = 64 )

Since there are 3 numbers, take the cube root: ( \sqrt[3]{64} =

Choosing the underlying models to power the chat is available in the bottom-right corner of the 

chat window.

Figure 3.12: Model selection for the Copilot chat window

We found this response lacking due to the truncation of the example, as Copilot imposes a max_

tokens limit on model outputs, and the formatting of mathematics as raw LaTeX code. However, 

for topics we are already familiar with, the chat window saves considerable time and eliminates 

the need to use external tools, such as Google or ChatGPT.

Next, we will further explore GitHub Copilot’s code completion capabilities using a variety of 

keyboard shortcuts to make our experience even smoother.
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Lab 3.2 – introducing completion and keyboard 
shortcuts for geometric mean calculations
Keyboard shortcuts are vital for enhancing a programmer’s efficiency, especially when working 

with Copilot, which provides a wide range of options to accept or reject suggestions partially or 

fully. This lab will focus on implementing the geometric mean using code completion, incorpo-

rating keyboard shortcuts to do the following:

•	 Reject a suggestion

•	 Regenerate a rejected suggestion

•	 Accept a full suggestion or parts of it

•	 Switch between different code options.

In this lab, we will implement the geometric mean for a sequence of floating-point numbers using 

a function signature and an instructive prompt to validate the input arguments. We will explore 

various implementation suggestions, selectively accepting or rejecting parts of them.

Lab 3.2 guided walk-through
Open Lab 3.2 in the book repository at ch3/labs/lab32.py and ensure that you have a stable internet 

connection, and that GitHub Copilot is ready.

There is no starter code for this lab. Our task is to begin by typing an instructive function signature 

to calculate the geometric mean of a sequence of floating-point numbers.

Add the following code to the file. If you type it rather than copy and paste it, Copilot may offer 

early completion suggestions. Ignore these until you complete the prompt:

def get_geometric_mean(*nums):

Important note

This lab includes standard keyboard shortcuts for working with Copilot. If any of 

these are missing or you would prefer different shortcuts, you can customize them 

by editing your keymap. In PyCharm, navigate to Settings | Keymap, and in VS Code, 

go to Settings | Keyboard Shortcuts. For further assistance with keyboard shortcuts, 

refer to the Appendix.



A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook62

At this point, you should already see completion suggestions by Copilot. Use the following in-

structions for both PyCharm and VS Code to explore these suggestions:

Figure 3.13: Copilot code completion example in VS Code

To experiment with Copilot’s keyboard shortcuts, follow these steps. If any of the keyboard short-

cuts are different or missing in your interface, make sure to find the alternate shortcuts:

1.	 Accept the entire code completion by pressing Tab.

2.	 Then, undo it by Ctrl + Z / cmd + Z.

3.	 In PyCharm, accept a single line from the suggestion by pressing Ctrl + Alt + the right 

arrow (cmd + control + right if you are a Mac user).

4.	 In VS Code, there is no default keyboard shortcut for this. Instead, hover over the suggested 

text, click on the ellipsis (...), and select Accept Line.

5.	 Then, undo it by pressing Ctrl + Z / cmd + Z.

6.	 Accept a single word from the suggestion by pressing Ctrl + the right arrow (cmd + the 

right arrow if you are a Mac user).

7.	 Then, undo it by pressing Ctrl + Z / cmd + Z.

8.	 Hide the suggestion by pressing Esc.

9.	 Retrigger the Copilot suggestion by pressing Alt + \ (option + \ if you are a Mac user).

10.	 Toggle to the next suggestion by pressing Alt + ]  (option + ] if you are a Mac user). Go back 

to previous suggestions by pressing Alt + [ (option + [ if you are a Mac user).

11.	 In PyCharm, access the code completion pane by right-clicking on Copilot’s suggestions 

and selecting Copilot: Open Completion.

12.	 In VS Code, access it by pressing Ctrl + Enter.
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Next, we encourage you to modify the prompt by adjusting the function name, arguments, type 

hints, or return type. Keep practicing with the keyboard shortcuts and observe how the comple-

tions evolve with each change.

Lab 3.2 analysis
In this lab, we practiced keyboard shortcuts in PyCharm and VS Code to streamline pairing with 

Copilot, making it easier to accept, reject, or switch between completion suggestions smoothly.

For your reference, a sample completion for the get_geometric_mean implementation in Py-

Charm is shown in Figure 3.14.

Figure 3.14: Copilot inline menu in PyCharm

When right-clicking on the completion and selecting Copilot: Open Completion, the completion 

pane displays various suggestions provided by Copilot.



A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook64

Figure 3.15: Copilot code completion pane in PyCharm

We can then choose to accept any of these suggested solutions.

Similarly, VS Code will also display a variety of different completion suggestions.

 

Figure 3.16: VS Code Copilot code completion pane



Chapter 3 65

Here too, we can then choose to accept any of these suggested solutions.

Next, we will explore Copilot’s code analysis options, demonstrating how they complement code 

completion when working with existing code.

Analyzing code with Copilot
The recently introduced code analysis features in both PyCharm and VS Code complement GitHub 

Copilot’s code completion capabilities. It can be accessed via the Copilot menu or the inline chat 

window using commands such as /fix   /explain and /test

To use these features, right-click on your code, select Copilot, and you will see the available op-

tions. This menu is accessible in both PyCharm and VS Code.

Here is how the menu appears in PyCharm:

Figure 3.17: Copilot code analysis in PyCharm

Important Note

In later chapters, we will explore best practices for prompt precision and prompt 

engineering techniques. These will help us better structure a function’s content by 

covering aspects like input validation, formatting with type hints, and handling side 

effects such as monitoring and logging.
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Here is how the menu appears in VS Code:

Figure 3.18: Copilot code analysis in VS Code

For quicker access, you can use Copilot inline chat commands. In VS Code, press Ctrl + I (cmd + 

I for Mac).

Figure 3.19: Copilot editor inline chat in VS Code

In PyCharm, press Ctrl + Shift + I (cmd + shift + I for older Mac versions of PyCharm).

Figure 3.20: Copilot inline chat in PyCharm

In the inline chat window, type your code analysis command, such as /fix or /explain.
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Analyzing code with Copilot editor window in VS Code
GitHub Copilot has recently introduced a dedicated editor window to enhance editing tasks and 

streamline working across multiple files simultaneously. To access the window, open the chat 

window and select Edit, as shown in Figure 3.21:

Figure 3.21: Accessing Copilot’s edits window

In this editor window, you can add files you want to work on or target specific sections using the 

annotation #selection, as shown in Figure 3.22:

Figure 3.22: Working with #selection in Copilot edits window



A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook68

The edits window supports the slash commands such as /fix, /explain, and /test, as well as 

tailored instructions to modify your code. For instance, to add input validation for float inputs 

to the following function:

def get_geometric_mean_for_three_numbers(a, b, c):

We can type the prompt:

#selection add input validation for float inputs.

Copilot will generate suggestions to include input validation for float types, as shown in Figure 3.23:

Figure 3.23: Adding input validation with the edits window

With this prompt, Copilot presents suggestions in a version control format within the working 

set file, allowing us to approve or revert each change individually. We can also click Accept to 

apply all changes at once.

In the next chapters, we will explore best practices for crafting precise prompts to achieve more 

desirable results with Copilot, including its edits window. Later in the book, we will delve deeper 

into using the edits window for prompt engineering techniques and refactoring code.

Now that we have explored how to analyze and edit code with Copilot, we can practice addressing 

and fixing a faulty implementation of the geometric mean, using both VS Code and PyCharm.
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Lab 3.3 – working with Copilot in VS Code’s Jupyter 
Notebook for Code Analysis
The following lab focuses on code analysis. We will use the /fix command to fix an incorrect 

implementation of the geometric mean for three floating-point numbers. We will then use the 

/explain command to get a brief explanation of an implementation for the geometric mean of 

a sequence of numbers.

The lab is available in two formats: a Jupyter Notebook or a Python script. If you are using VS Code, 

choose the Jupyter Notebook version to explore Copilot’s features for notebooks. Since Jupyter 

Notebook support is not yet available in PyCharm, a Python script version is also provided. In 

Lab 3.3 guided walk-through, we will cover both formats and use Copilot’s code analysis features 

to fix and understand code more efficiently.

Lab 3.3 guided walk-through
Open Lab 3.3 from the book repository: If you are using VS Code, go to ch3/labs/lab33.ipynb, and if 

you are using PyCharm, go to ch3/labs/lab33.py. Make sure you have a stable internet connection, 

and that GitHub Copilot is ready.

Our starter code includes two functions that we will apply code analysis to. The first function, 

get_geometric_mean_for_three_numbers, incorrectly implements the geometric mean for three 

floating-point numbers, as it takes the square root of their product instead of the cube root.

The second function, get_geometric_mean, calculates the geometric mean for a sequence of 

numbers of any length. It first validates that there is at least one item in the sequence. Then, it 

computes the product of all the numbers using a reduce operation. It also checks that the root 

results in a real number, which occurs if either the product is positive, or the required root is odd. 

Finally, after validation, it returns the n-th root of the product for a sequence of length n:

from functools import reduce

def get_geometric_mean_for_three_numbers(a, b, c): 

    return (a*b*c)**(1/2)

def get_geometric_mean(*nums: float) -> float: 

    """

    Get the geometric mean of a sequence of numbers 

    """ 
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    if not len(nums): 

        raise ValueError("Cannot calculate the geometric mean of an empty 
sequence") 

    product = reduce(lambda a, b: a * b, nums) 

    if product < 0 and len(nums) % 2 == 0: 

        raise ValueError("Cannot calculate the geometric mean") 

    return pow(product, 1 / len(nums))

The calculation in get_geometric_mean_for_three_numbers is incorrect, as it takes the square 

root of the product of the numbers instead of the cube root.

To fix this code, choose the fix option or type /fix in the inline chat.

Copilot should suggest replacing the incorrect square root with the cube root:

return (a*b*c)**(1/3)

For your reference, here is a sample output in VS Code with the proposed fix (note that this fix 

could be implemented in your code using the Accept button):

Figure 3.24: Copilot fix suggestion in VS Code
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In PyCharm, here is a sample output with the proposed fix. To accept it, click the Preview button 

and then Accept.

Figure 3.25: Copilot fix suggestion in PyCharm

In the top-left corner, the preview icon is the first on the left. Click it to open the preview mode:

Figure 3.26: The Preview button for accepting Copilot changes in PyCharm

The preview window displays the original code on the left and the proposed fix on the right, with 

an Accept button to confirm the changes.
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Figure 3.27: Accepting Copilot fix suggestions in PyCharm

Accept this proposed implementation.

Next, move your cursor to the get_geometric_mean function and examine how Copilot explains 

its four parts: validating the input length, computing the product, verifying that the geometric 

mean is real, and returning the n-th root of the product.

Right-click on the code, select Copilot | explain, or use the keyboard shortcuts to open the inline 

chat and type /explain. Copilot should cover all four steps of the function.

Lab 3.3 analysis
In this lab, we used the code analysis mode to efficiently review existing code. Since a sizable 

portion of our work as software developers involves maintaining code rather than generating 

new code, these extended capabilities are invaluable for enhancing our productivity.
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For reference, here is the code explanation we obtained in VS Code, covering the four steps of 

the function:

The provided code defines a function get_geometric_mean that calculates 
the geometric mean of a sequence of numbers. The function accepts a 
variable number of floating-point arguments (*nums) and returns a 
floating-point result.

The function begins by checking if the sequence of numbers is empty using 
if not len(nums). If the sequence is empty, it raises a ValueError with 
the message "Cannot calculate the geometric mean of an empty sequence". 
This ensures that the function does not proceed with an invalid input.

Next, the function calculates the product of all the numbers in the 
sequence using the reduce function combined with a lambda function (lambda 
a, b: a * b). The reduce function applies the lambda function cumulatively 
to the items of the sequence, effectively multiplying all the numbers 
together.

After calculating the product, the function checks if the product is 
negative and if the number of elements in the sequence is even (if product 
< 0 and len(nums) % 2 == 0). If both conditions are true, it raises a 
ValueError with the message "Cannot calculate the geometric mean". This 
check is necessary because the geometric mean of a set of numbers that 
includes an even number of negative values is not defined in the real 
number system.

Finally, the function returns the geometric mean by taking the nth 
root of the product, where n is the number of elements in the sequence 
(pow(product, 1 / len(nums))). The pow function is used to compute the 
nth root, which is equivalent to raising the product to the power of the 
reciprocal of the number of elements.

Overall, the function is designed to handle various edge cases and ensure 
that the geometric mean is calculated correctly for valid inputs.
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Overall, Copilot explains all four steps of the function well and addresses its input. However, the 

interpretation of the real geometric mean output is missing from Copilot’s explanation, as shown 

in the highlighted part of the output:

After calculating the product, the function checks if the product is 
negative and if the number of elements in the sequence is even...

Rather than being a limitation of the tool, this suggests that our implementation could be im-

proved. We will explore this further in Chapter 4.

Summary
In this chapter, we took our first steps with the GitHub Copilot by setting up subscriptions and 

enabling Copilot in our IDE. Through three labs, we explored its three interaction modes: chat, 

completion, and analysis.

After implementing a basic code completion program in Chapter 2, we were able to better under-

stand how GitHub Copilot is designed. Copilot enhances the code to be completed with contextual 

information, such as recent edits, coding preferences, and Git logs. This information is processed 

into user and system prompts, which are then fed to an LLM. The model’s output is further pro-

cessed before being presented to the user.

Throughout the three labs, we utilized the three interaction modes to implement and refine several 

calculators of the geometric mean. We saw how a function signatures can be used as a prompt to 

Copilot. We also experimented with various completion options using keyboard shortcuts. While 

mastering these techniques requires some practice, they can significantly boost productivity 

when working with Copilot.

In the next chapter, we will discuss the three pillars of good model output: model mastery, eval-

uation metrics, and precise prompts. We will also learn about the best practices in making our 

prompt precise with the five S’s: having a structured prompt, providing surrounding context, 

focusing on a single task, and having specific and short instructions.
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Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions.

Question 1: Is Copilot a paid service?

Answer: Copilot is primarily a paid service, with a few exceptions including free limited access. 

Students, educators, and maintainers of leading open-source repositories are also eligible for a 

free subscription.

Question 2: What are the three interaction modes for GitHub Copilot?

Answer: Copilot’s original task of code completion is complemented by two additional features: 

chat, which is available inline or through the chat window, and code analysis, which is accessible 

via the Copilot right-click menu, using slash commands, such as /fix and /explain, or in the 

edits window within VS Code.

Further reading
To learn more about the topics that were covered in this chapter, look at the following resources:

•	 GitHub Copilot documentation: https://docs.github.com/en/copilot/quickstart

•	 Copilot subscription plans: https://docs.github.com/en/copilot/about-github-

copilot/subscription-plans-for-github-copilot

•	 Copilot setup in your IDE: https://docs.github.com/en/copilot/setting-up-github-

copilot/setting-up-github-copilot-for-yourself

•	 Copilot best practices: https://docs.github.com/en/copilot/using-github-copilot/
best-practices-for-using-github-copilot

Unlock this book’s exclusive 
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before 

you start.

https://docs.github.com/en/copilot/quickstart
https://docs.github.com/en/copilot/about-github-copilot/subscription-plans-for-github-copilot
https://docs.github.com/en/copilot/about-github-copilot/subscription-plans-for-github-copilot
https://docs.github.com/en/copilot/setting-up-github-copilot/setting-up-github-copilot-for-yourself
https://docs.github.com/en/copilot/setting-up-github-copilot/setting-up-github-copilot-for-yourself
https://docs.github.com/en/copilot/using-github-copilot/best-practices-for-using-github-copilot
https://docs.github.com/en/copilot/using-github-copilot/best-practices-for-using-github-copilot
http://packtpub.com/unlock
http://packtpub.com/unlock




4
Best Practices for Prompting 
with ChatGPT

GenAI applications excel in certain aspects of coding and often achieve high scores in coding 

assignment tests. Ongoing improvements to these models continue to push the boundaries, as 

they begin to master a wide range of coding-related tasks and supercharge the way we develop 

and refine code.

To achieve good results from GenAI applications, we will focus on three pillars: model mastery of 

the specific task at hand, evaluation metrics to critically assess the output, and crafting precise 

prompts to clearly achieve the desired outcome.

This chapter focuses on best practices for crafting prompts in coding-related tasks, guided by the 

five S’s: structured prompt, including surrounding context, focusing on a single task, providing 

specific instructions, and keeping the prompt as short as possible. Later in the book, we will delve 

into advanced prompt engineering techniques, methods to construct manual and automatic 

evaluation metrics, and strategies for improving the model’s mastery of specific tasks.

Through two interactive labs, we will explore how following best practices for crafting prompts 

for coding-related tasks leads to reusable prompt structures. We will apply these principles to 

refine a prompt for translating Graphical User Interface (GUI) actions into Command-Line In-

terface (CLI) commands. We will also review a sample prompt published by OpenAI and analyze 

it through the lens of the five S’s for crafting prompts. This analysis will help us understand how 

these examples yield desirable outcomes and highlight potential improvements, which we will 

explore further in later chapters of the book.
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In this chapter, we will cover the following topics:

•	 Can we trust GenAI for coding tasks?

•	 Best practices for crafting prompts for coding tasks

•	 Crafting prompts for ChatGPT

•	 Prompt samples by OpenAI

Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 OpenAI account with access to ChatGPT

•	 Access to the book’s repository available at https://github.com/PacktPublishing/

Supercharged-Coding-with-Gen-AI

If you need help creating an OpenAI account, refer to the Appendix for detailed guidance.

Can we trust GenAI for coding tasks?
Large language models (LLMs) are continuously improving their capabilities in mathematics 

and coding, achieving impressive results in both areas. For instance, internal research by OpenAI 

showed that the GPT-o1 model scored correctly on 11 out of 15 questions in the American Invi-

tational Mathematics Examination (AIME). This performance not only exceeds the threshold 

required to qualify for the USA Mathematical Olympiad (USAMO) or the USA Junior Mathe-

matical Olympiad (USAJMO) but also places the model in the top percentile of participants. Sim-

ilarly, when evaluated on coding problems from the Codeforces competition website, the internal 

research showed that the model performed at the 89th percentile, highlighting its proficiency in 

tackling challenging coding tasks.

Yet, the web is filled with screenshots, videos, and examples of highly undesirable outputs from 

certain prompts. Not long ago, the author encountered a pull request (PR) containing a file named 

new.env that exposed seven secret keys. A post-mortem meeting dedicated to that issue revealed 

that the data scientist who committed the file had used the following prompt:

How can I commit my files to GitHub from the PyCharm terminal?

The output included the following instruction:

git add . 

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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The data scientist, who typically utilized PyCharm’s Git tool window and was used to choosing 

the files to commit manually, failed to notice that the file named new.env with the secret keys 

had been included in the commit. This incident highlights that following GenAI-generated in-

structions can sometimes lead to risky outcomes.

This example does not imply that we should distrust all GenAI output or validate every detail. 

The fault did not occur because of the model’s hindsight about exposing secret keys through a 

.env file. Instead, it stemmed from a poorly crafted prompt combined with the model’s bias to-

ward suggesting CLI commands such as git add ., which frequently appear in online manuals.

We argue that crafting a better prompt, such as the following, would lead to a more desirable 

model output:

CONTEXT: You will be provided with PyCharm GUI steps enclosed with {{{ 
STEPS }}} to execute a process enclosed with {{{ PROCESS }}}.

TASK: Convert the steps to CLI commands.

PROCESS: {{{ Commit and push files to a remote git branch }}}

STEPS: {{{

1. Review changed files

2. Stage the desired files

3. Add a commit message

4. Commit the files

5. Validate branch name

6. Push the changes to the remote branch

}}}

CLI COMMANDS:

This prompt, which follows the best practices for crafting effective prompts, is structured, provides 

surrounding context for the problem, focuses on a single task, is specific, and is short enough. In 

this chapter, we will explore how to create such prompts and understand why following these 

practices leads to better GenAI outputs.

The three pillars of good outputs
To achieve good results from GenAI applications, we will focus on the three pillars: model mastery, 

evaluation metrics, and crafting precise prompts.

Model mastery refers to an LLM’s ability to handle a specific task described in a prompt. For 

instance, GPT models are extensively trained in Python code and problems such as those found 

on LeetCode, a platform for coding interview preparation. However, when the task deviates from 
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mainstream topics, such as integrating Python threading to parallelize code execution across 

cores and virtual cores, there is significantly less training material available online, leading to 

outputs that may not match the quality of those for well-covered topics. Keep in mind that for 

such topics, LLM outputs may be suboptimal. However, we can enhance model mastery using 

techniques such as fine-tuning to achieve more desirable outputs. This will be covered in greater 

detail later in the book.

Evaluation metrics refer to the manual and automatic methods we use to assess the quality of 

GenAI outputs. Effective prompting always involves evaluating the GenAI output, as it is not 

guaranteed that good results will be achieved on the first attempt. Manual evaluations involve 

tasks we can personally verify, such as the following:

•	 Reading code in a language we recognize, such as Python

•	 Asking for CLI commands we can identify as incorrect

•	 Evaluating visual outputs such as plots to see whether they align with our expectations

•	 Verifying straightforward outputs, such as ensuring a requested CSS color matches light 

pink

Automatic evaluations rely on computational checks, such as:

•	 Compiling suggested code to ensure it runs without errors.

•	 Running unit tests to validate functional correctness.

•	 Using frameworks such as OpenAI Evals to systematically assess outputs.

These evaluations help detect faulty outputs and guide iterative improvements toward better 

suggestions.

OpenAI Evals in brief

Evals is a system designed to assess the performance of LLM applications by using 

a collection of prompts and expected outputs. These can include prompts and out-

puts provided by the system itself or custom examples that we create. Accessible 

via both Python package installers and a CLI, it compares the application’s outputs 

against the expected results and assigns a performance score to the full set. In later 

chapters, we will delve into strategies for improving evaluation metrics and explore 

how to effectively leverage the OpenAI Evals system for evaluating GenAI outputs.
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Precise prompts refer to how closely the instructions given to the model align with the actual 

task we want it to perform. When prompts are ambiguous, the model is likely to fill in gaps with 

assumptions based on its training data, which may not always align with the task at hand.

For example, the prompt How can I commit my files to GitHub from the PyCharm terminal? 

is less precise than a prompt providing specific steps performed in the PyCharm GUI and a request 

to convert these steps to CLI commands.

Next, we will explore best practices for designing prompts for coding tasks and learn how to refine 

these prompts into precise inputs that produce high-quality outputs.

Best practices for crafting prompts for coding tasks
When working with GenAI applications for coding-related tasks, the best practices for crafting 

precise prompts can be summarized by the five S’s:

•	 Structured prompts with a clear separation between the instructions and provided data

•	 Surrounding information that provides context for the problem, such as the code language 

for the provided code and whether it compiles

•	 Single-task focus to ensure each prompt addresses only one objective

•	 Specific instructions detailing how the coding task should be performed, rather than 

using generic requests

•	 Short and minimal prompts that avoid fluff, redundant, or overly verbose instructions

Let us dive into each of these practices.

Structured
Just as well-written, functional Python code separates logic from data, a good prompt should 

also distinguish instructions from provided data. When including elements such as steps, code 

snippets, or code drafts, ensure they are separated from the main instructions and aliased ap-

propriately for clarity and reusability.

Replace unstructured prompts that mix supporting data with instructions, such as the following:

Convert the COBOL code

IDENTIFICATION DIVISION.

PROGRAM-ID.

...

to Python.
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Use a structured approach that separates the instructions from the data:

CONTEXT: You will be provided with a COBOL code enclosed with {{{ COBOL 
CODE }}}.

TASK: Your task is to convert it to Python, with the following guidelines:

...

COBOL CODE: {{{

}}}

Python Code:

This structured prompt is simple to reuse with other COBOL snippets.

Surrounding information
When specifying the surrounding context, include information about the data relevant to the prob-

lem. Here are three examples of three different prompt pieces that could be used for different tasks:

•	 You are provided with Python code / a function / a function signature.

•	 You are provided with a Python function that contains a bug.

•	 You are provided with GUI steps.

These instructions are general and avoid specific details, making them reusable:

•	 The first and second examples do not specify any function

•	 The third example does not describe specific GUI steps

As a result, these prompt pieces are reusable across various tasks.

Single task per prompt
Always aim for a single task in your prompts. This approach not only improves your ability to 

evaluate the model’s output by focusing on a single task but also increases the likelihood that 

the model has encountered similar tasks during its training, enhancing its mastery of the topic.

For example, in refactoring tasks, refrain from combining multiple objectives, as follows:

Explain the following function and fix compilation bugs.

While LLMs are well trained on both individual tasks, combining them into a single prompt may 

be less common, reducing the model’s mastery of the topic. Instead, focus on either explaining 

the function or fixing its compilation bugs.
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Specific instructions
As software developers, it is tempting to use keywords such as optimize, improve, refactor, or scale. 

However, these are broad and ambiguous, often leaving room for interpretation by the model.

To achieve better results, use specific instructions, such as the following:

•	 Use list comprehensions instead of for loops.

•	 Use np.array to vectorize for loop computations.

•	 Convert hard-coded integers to global constants.

•	 Cache function results using lru_cache.

Specific instructions eliminate ambiguity, ensuring the model understands exactly what changes 

or actions are expected, and increase the likelihood of producing the desired outcome.

Short prompts
Focus on including only relevant information, leaving fluff out, and avoiding ambiguity in your 

language. Note that this does not mean that you should avoid valuable and relevant information. 

With the GPT-o1 model supporting over 65,000 tokens (about 164 pages), it can handle longer 

prompts if its content is minimal and relevant.

For example, avoid phrases such as the following:

I think that the following function has a bug [...]

Prefer instructions such as the following:

find the compilation error in [...]

Additionally, avoid vague phrases such as the following:

It looks like this for loop could be converted to a list comprehension.

Prefer instead the following instruction:

Convert the for loop to a list comprehension.

Keeping your prompts minimal and relevant and avoiding fluff and ambiguity allows the model 

to focus on the specific instructions at hand.

Next, we will see how to adapt these best practices to crafting prompts for ChatGPT.
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Crafting prompts for ChatGPT
When crafting prompts for ChatGPT, we can apply the structured approach suggested earlier:

CONTEXT: ...

TASK: ...

SUPPORTING_DATA: {{{

}}}

COMPLETION:

Replace SUPPORTING_DATA with terms such as CODE, STEPS, OLD_CODE, or any other appropriate 

label for the provided data. Replace COMPLETION with terms such as SOLUTION, CLI COMMANDS, 

NEW_CODE, or another label that matches the desired model output.

When working with the GPT-4o model with the integrated canvas editor, apply the following 

structure:

CONTEXT: ...

TASK: ...

SUPPORTING_DATA: {{{ }}}

To access it, start a new GPT-4o chat and type the following to launch the canvas editor:

Open Python editor

Then, add your supporting code to the Python editor as you would in any IDE, as shown in Figure 

4.1:

Figure 4.1: GPT-4o with canvas editor for Python
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ChatGPT will edit your code based on your request and provide additional output in the chat 

window, as shown in Figure 4.2:

Figure 4.2: Sample edited code from canvas editor

Later in this chapter, we will use the canvas editor in ChatGPT to fix errors in a function.

In the upcoming lab, we will follow these practices to refine a ChatGPT prompt for converting 

PyCharm GUI steps into Git CLI commands. We will also evaluate how these improvements 

improve the model output.

Lab 4.1 – converting PyCharm GUI steps to CLI
When transitioning from GUI steps to working directly with the CLI for Git operations, we can 

use ChatGPT to construct the steps required for committing and pushing staged files to a remote 

repository. A critical part of this process involves manually reviewing the staged files to ensure 

that only the desired ones are committed to our remote branch.

By applying the best practices for prompt precision, we will refine the following initial prompt 

into a prompt that produces a more reliable output:

How can I commit my files to GitHub from the PyCharm terminal?

For reference, using this initial prompt alone may result in a response such as the one shown in 

the following figure when entering it into the GitHub Copilot chat window:
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Figure 4.3: Copilot chat suggestion

 Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.



Chapter 4 87

In our guided walk-through, we will apply the following best practices to craft a more effective 

prompt:

•	 Structured format: Separate the logic of the task from the actual steps to be converted 

and the desired GUI process

•	 Surrounding context: Provide the context of the data and structure

•	 Single-task focus: Narrow the task to converting GUI steps into CLI commands

•	 Specific instructions: Clearly indicate all steps previously executed from the GUI, avoid-

ing a generic request

•	 Short prompt: Eliminate redundant details such as PyCharm terminal

We will then feed this refined prompt to ChatGPT and observe how applying these best practices 

enhances the trustworthiness and reliability of the model’s output.

Lab 4.1 guided walk-through
Navigate to https://chatgpt.com/ and start a new chat with the GPT-o1-mini model. This model 

has high proficiency in science, technology, engineering, and mathematics (STEM) tasks, par-

ticularly coding and mathematics. As of November 2024, it achieves the highest performance 

among available GPT models on the Codeforces coding exam.

Figure 4.4: ChatGPT model menu

https://chatgpt.com/
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Our starter information consists of the following:

•	 Scenario: A data scientist aims to work with the terminal instead of the PyCharm GUI to 

push changes into a desired branch

•	 Initial prompt:

How can I commit my files to GitHub from the PyCharm

terminal?

We will now address each of the five S’s best practices for coding-related prompts following these 

four guidelines:

•	 Structure the prompt

•	 Add surrounding context

•	 Focus on a specific task

•	 Include specific instructions

Throughout the steps, we will follow the fifth best practice of keeping prompts short, ensuring 

they remain minimal and free of unnecessary details and fluff.

Step 1 – structure the prompt

A well-structured prompt separates the instructions from the data, ensuring clarity and allowing 

for simple adjustments. In this case, the instructions outline the task, while the data contains the 

specific steps required to push the files to the remote branch. For ChatGPT, one strategy is to alias 

the data by enclosing it within delimiters such as {{{ DATA }}} for easy reference:

Instructions with reference to data enclosed with {{{ DATA }}}

...

DATA: {{{

...

}}}

Solution:
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Step 2 – add surrounding context

A precise prompt should include information about the surrounding context of the problem and 

the provided data. When converting GUI commands into terminal commands, a clear and relevant 

surrounding context might look like this:

CONTEXT: You will be provided with PyCharm GUI steps enclosed with {{{ 
STEPS }}} to execute a process enclosed with {{{ PROCESS }}}.

By avoiding references to specific processes, such as committing and pushing files to a remote Git 

branch, this context remains flexible and can be reused for similar tasks in the future.

Add this context at the beginning of your ChatGPT prompt to establish the context of the task.

Step 3 – single task

Our single task in this lab is to translate GUI steps into CLI commands. A clear phrasing of this 

task could be as follows:

TASK: Convert the steps to CLI commands.

This prompt piece specifies that the GUI step needs to be converted into corresponding CLI com-

mands.

Add this prompt piece directly below the surrounding context information. Then, complete the 

structured prompt with the following line at the end:

CLI COMMANDS:

This signals to the model that the output should be the list of CLI commands to execute.

Important note

We recommend using {{{ DATA }}} as an alias because the {{{ }}} delimiter is 

rare in both code and other types of data. However, choosing alternative separators is 

also acceptable if they do not commonly appear in your code. For example, enclosers 

such as """ """ are used in Python for multi-line strings and could cause confusion 

for the model if used as delimiters.
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Step 4 – specific instructions

In this lab, we aim to provide detailed and accurate instructions reflecting what is typically done 

when pushing changed files to a remote branch. In PyCharm, the first step of reviewing changed 

files can be performed by navigating to the Git tool window icon in the left menu:

Figure 4.5: Git tool window

It is good practice to manually review your staged files in the working directory, ensuring that 

files such as new.env, which should be ignored by Git, are not included in the commit.

After adding a commit message and clicking on Commit and Push, PyCharm pops up the push 

window, indicating that the selected files are about to be pushed to the remote branch.
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Figure 4.6: Pushing a commit to a remote branch from PyCharm

In this figure, we can see that a single file, the solution to Lab 4.1, is being pushed to a new remote 

branch called ch4-labs.

Describing these steps may look like this:

STEPS: {{{

1. Review changed files

2. Stage the desired files

3. Add a commit message

4. Commit the files

5. Validate branch name

6. Push the changes to the remote branch

}}}



Best Practices for Prompting with ChatGPT92

Include these steps in the prompt, placing them directly beneath the TASK line.

If you have followed all the steps correctly, your final prompt should look like this:

CONTEXT: You will be provided with PyCharm GUI steps enclosed with {{{ 
STEPS }}} to execute a process enclosed with {{{ PROCESS }}}.

TASK: Convert the steps to CLI commands.

PROCESS: {{{ Commit and push files to a remote Git branch }}}

STEPS: {{{

1. Review changed files

2. Stage the desired files

3. Add a commit message

4. Commit the files

5. Validate branch name

6. Push the changes to the remote branch

}}}

CLI COMMANDS:

Your prompt is now ready to use in ChatGPT. Execute it and refer to the lab analysis for a sample 

output generated by the model.

Lab 4.1 analysis
In this lab, we crafted a precise prompt by applying the five S’s best practices. When we ran the 

prompt in ChatGPT using the GPT-o1-mini model, the output provided a set of CLI commands 

for committing and pushing the desired files to a remote branch. The generated commands were 

as follows:
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Figure 4.7: ChatGPT’s response to the Lab 4.1 prompt

This output is more desirable than the initial prompt because it directly references each of the six 

steps we would perform using the GUI, providing explanations for each corresponding command. 

Additionally, the output aligns with the prompt’s specificity, offering only the CLI commands 

with minimal surrounding explanation.

Important note

Refining prompts using the five S’s best practices may seem like a lot of work initially. 

However, over time, seasoned prompters develop their own reusable prompt tem-

plates, making the process more efficient. Well-structured prompts are reproducible 

across different tasks and adapting them with varied data can often be done at scale. 

In the next chapters, we will reuse prompts crafted with these best practices for a 

variety of tasks.
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Having introduced and implemented the best practices for crafting precise prompts, we can 

now observe how applying the five S’s can further enhance outputs, even from prompts already 

considered strong. Next, we will delve into OpenAI’s examples of good prompts, analyze them 

through the lens of the five S’s, and refine a prompt further to achieve a more desirable output.

Prompt samples by OpenAI
OpenAI occasionally updates a collection of sample prompts tailored to various tasks, including 

coding, content generation, translations, and grammar corrections. These prompts display the 

core capabilities where the underlying models exhibit strong mastery. They have been carefully 

crafted and have demonstrated consistent success across these use cases.

You can explore the full list of prompts and filter the samples by category at https://platform.

openai.com/docs/examples.

Figure 4.8: OpenAI sample prompts

When clicking on a prompt sample from this page, we can observe the prompt itself, divided into 

a system prompt and a user prompt, a sample response, and a code snippet demonstrating how 

to implement the prompt using OpenAI API.

https://platform.openai.com/docs/examples
https://platform.openai.com/docs/examples
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Figure 4.9: Improve code efficiency prompt example

In this example, the system prompt contains general instructions describing the task to be per-

formed, while the user prompt includes the import statement and a function that could benefit 

from efficiency improvements.

Next, we will critically analyze a sample prompt to assess how well it aligns with the five S’s.

Lab 4.2 – code debugging
In this lab, we will examine a Python bug fixer use case through the lens of our best practices.

Navigate to https://platform.openai.com/docs/examples and search for Python bug fixer. This 

should yield the following prompt example to instruct the model to find a bug in a Python pro-

gram that quizzes a user on multiplication problems:

https://platform.openai.com/docs/examples
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Figure 4.10: Sample prompt for Python bug fixer

This prompt, like the code efficiency improvement prompt example by OpenAI, separates the 

system and user prompts while providing a sample response. Scrolling further down the window 

reveals the code necessary to implement this prompt with OpenAI API.

In the guided walk-through, we will identify the errors in the provided code, so we can better 

evaluate the output of the model. In the analysis, we will analyze the usage of the five S’s and see 

how we can improve the prompt even further.
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Lab 4.2 guided walk-through
Before we can analyze the output of the model, here are the errors in the user-provided functions:

•	 Compilation errors:

•	 Typo in import statement: import Random should be corrected to import random.

•	 Type error: The question variable cannot concatenate integers a and b with strings 

directly. This needs to be resolved by converting integers to strings.

•	 Missing colon: The if statement is missing a : character at the end, leading to 

SyntaxError.

•	 Invalid assignment: The answer = a*b statement attempts to assign a value 

within the if condition. Modern Python compilers will raise SyntaxError as this 

is an invalid syntax.

•	 Invalid print statement: The string Well done! is not enclosed with quotes and 

therefore is an invalid syntax.

•	 Logical errors:

•	 The a and b variables are generated once before the loop and remain constant 

through all 10 iterations. This is not desirable.

•	 The output from the user is a string, while the comparison is made against integers. 

As a result, answer of type str can never be equal to a * b, which is of type int.

•	 Reproducibility issue:

•	 The code with random numbers is not reproducible across runs due to the absence 

of a random seed set. Without this, the output will vary unpredictably between 

executions.

Considering the output published on the OpenAI website, here is a summary of identified and 

fixed code errors and issues:

Error type Problem Error Found Fixed

Compilation Invalid case import Random Yes Yes

Compilation Concatenate int and str a + " x " + b Yes Yes

Compilation Missing colon in if 

statement 

if statement

    ...

No Yes
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Error type Problem Error Found Fixed

Compilation Assignment in if 

statement

if answer = a * b Yes Yes

Compilation Missing quotes for str print(Well done!) Yes Yes

Logic Random numbers 

generated once

a, b outside the for loop No No

Logic str compared to int answer = a * b Yes Yes

Reproduce No seed set Missing random.seed(...), 

or equivalent initialization

No No

Table 4.1: OpenAI API’s performance in detecting and fixing errors

The proposed solution also introduced a new issue related to casting the input to an integer; there 

is no proper error handling if an input such as hello cannot be cast.

The following is the full model response, as published on the OpenAI website:

There are several bugs in the provided code:

1. The import statement is incorrect. Python is case-sensitive, so 
"Random" should be "random".

2. Variables `a` and `b` are defined outside the loop, so they will not 
change for each iteration. They should be inside the loop if you want to 
generate different questions.

3. In the question string, `a` and `b` are integers, so you need to 
convert them to strings using the `str()` function to concatenate them.

4. In the if statement, you are using a single equals sign `=` which is 
an assignment operator. You should use the double equals sign `==` for 
comparison.

5. The print statement "Well done!" is not enclosed in quotes. In Python, 
strings must be enclosed in quotes.

6. The input from the user is a string, so you need to convert it to an 
integer using the `int()` function before comparing it with the product of 
`a` and `b`.

Here is the corrected code:
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```python

import random

for i in range(10):

    a = random.randint(1,12)

    b = random.randint(1,12)

    question = "What is "+ str(a) +" x "+ str(b) +"? "

    answer = int(input(question))

    if answer == a*b:

        print ("Well done!")

    else:

        print("No.")

```

Next, we will analyze the prompt through the lens of the five S’s, evaluate the quality of the out-

put based on the errors identified, fixed, and introduced, and propose improvements to achieve 

a better outcome.

Lab 4.2 analysis
The prompt introduced in this example mostly aligns with the five S’s guidelines:

•	 Good structure: The instructions are clearly separated from the code, making the prompt 

reusable and adaptable for other tasks.

•	 Sufficient surrounding context: The prompt provides context by mentioning Python 

code as the supporting data.

•	 No single task: The prompt combines two related tasks, identifying and fixing errors in 

the code. While these tasks are interconnected, focusing solely on fixing the errors could 

improve the model’s response and responsibility.

•	 Specific: The task specifies that the model should identify and fix the errors in the code. 

However, the instructions could be improved by explicitly stating the types of errors to 

address, such as compilation, logical scoping, reproducibility, or error handling.

•	 Short: The prompt is concise and avoids unnecessary or irrelevant details.

Overall, following most of the guidelines resulted in a decent output. Since we have strong eval-

uation capabilities and are aware of all the errors the model should address, we can continue 

iterating to resolve all remaining issues in the code.
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Alternatively, we could better align the best practices with the following prompt:

CONTEXT: You will be provided with Python code in the Python editor with 
explanation enclosed with

{{{ CODE_EXPLANATION }}} that may contain errors enclosed with {{{ ERRORS 
}}}.

TASK: Fix the errors in the code.

CODE_EXPLANATION: {{{

Run 10 random multiplication quizzes and provide feedback about each to 
the user

}}}

ERRORS: {{{

1. Compilation

2. Reproducibility of random number generation

3. Logical scoping of variable assignments

4. Error handling for input casting

}}}

Using this prompt with GPT-4o with canvas resulted in an output that addressed all the required 

fixes.

Figure 4.11: Better output
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All compilation, logic, reproducibility, and error handling are addressed in the fixes.

Even better prompts
In the next chapters, we will explore advanced prompt engineering techniques such as iterative 

prompting for creating a feedback loop with LLMs and chain-of-thought prompting for guiding 

model reasoning. These techniques will enable us to refine prompts that yield decent results for 

manual use and scale them effectively for broader applications.

Summary
In this chapter, we explored how to achieve high-quality GenAI outputs by focusing on the three 

pillars: model mastery for handling a specific topic, evaluation metrics, and precise prompts. We 

examined how imprecise prompts can lead to risky outcomes, such as CLI commands exposing 

secret keys, and demonstrated how following best practices can produce far better and more 

reliable model outputs.

We also learned about the five S’s of prompt precision best practices for coding-related tasks: 

keeping a structured prompt, providing surrounding context, maintaining a single task per prompt 

to best leverage model mastery and evaluation capabilities, ensuring that prompts are specific 

rather than general and vague, and keeping the input as short as possible by removing irrelevant 

information and fluff.

With two interactive labs, we explored how to implement those best practices in ChatGPT. With an 

OpenAI example of a good prompt to a bug fix, we saw that even good prompts can be improved 

to achieve more desirable results.

In the next chapter, we will explore how to apply the five S’s using OpenAI API and GitHub Copilot. 

In later chapters, we will delve into advanced prompt engineering techniques to further refine 

prompts and meet specific engineering needs in the Software Development Life Cycle (SDLC).

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: What are the three factors that determine the quality of output of an LLM?

Answer: Model mastery, evaluation capabilities, and prompt precision. Model mastery means 

how much the LLM trained on this specific task, evaluation capabilities means how much we can 

assess the desirability of the outcome, and prompt precision means to what extent the prompt is 

crafted to tell the model what exactly we need.
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Question 2: What are the best practices for a coding-related task prompt?

Answer: The best practices are the five S’s, structuring the prompt to accommodate supporting 

data such as code and steps, including surrounding context on the task, focusing on a single task 

per prompt, and keeping specific and short instructions.

Question 3: Which parts of a prompt can be reproducible?

Answer: When following the best practices of precise prompts, we can reuse the surrounding con-

text and the single task. These can be leveraged to many prompts and reused with a change of the 

details, such as the function attached, steps to be converted to CLI commands, or improvements 

required to a given function. This is highly efficient for large-scope refactoring tasks, repetitive 

tasks, and many more examples we will see in the book.

Further reading
To learn more about the topics that were covered in this chapter, look at the following resources:

•	 OpenAI on GPT-o1 performances: https://openai.com/index/openai-o1-mini-

advancing-cost-efficient-reasoning/

•	 American Invitational Mathematics Examination: https://en.wikipedia.org/wiki/

American_Invitational_Mathematics_Examination

•	 Codeforces: https://codeforces.com/

•	 Prompt best practices in OpenAI: https://help.openai.com/en/articles/6654000-

best-practices-for-prompt-engineering-with-the-openai-api

•	 Prompt examples in OpenAI: https://platform.openai.com/docs/examples

Subscribe for a free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled 

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs 

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help 

you stay focused and informed.

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://en.wikipedia.org/wiki/American_Invitational_Mathematics_Examination
https://en.wikipedia.org/wiki/American_Invitational_Mathematics_Examination
https://codeforces.com/
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://platform.openai.com/docs/examples
https://packt.link/TRO5B
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Best Practices for Prompting 
with OpenAI API and GitHub 
Copilot

In the concluding chapter of Part 1, we will explore how to apply best practices for crafting prompts 

tailored to OpenAI API and GitHub Copilot. These practices are encapsulated in the five S’s: 

structuring the prompt, providing surrounding context, focusing on a single task, including 

specific instructions, and keeping prompts short and fluff-free. While the core principles remain 

consistent, their application varies slightly across different GenAI tools.

We will delve into working with Python objects such as functions, classes, and methods for cod-

ing-related tasks. We will leverage the built-in inspect package to extract key details about 

objects, such as their source code, docstrings, and filenames. We will also learn how to integrate 

this information into the system and user prompts offered by OpenAI API, combining context, 

task focus, and concise, structured instructions.

Additionally, we will examine how GitHub Copilot inherently provides structure, context, and 

single-task focus while generating short, specific prompts for us. We will learn techniques to ex-

tend Copilot’s capabilities by incorporating additional structure and precision, ensuring minimal 

fluff and redundant comments.
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Through two interactive labs, we will implement these practices using a real-world example: a 

Singleton design pattern to enforce single-instance creation per class. Using OpenAI API, we will 

craft a docstring for the Singleton __call__ method, which controls the instantiation process of 

a new class instance. Then, with Copilot, we will generate a unit test to validate the functionality 

and fix a faulty implementation.

In this chapter, we will cover the following topics:

•	 Extracting properties from Python objects for OpenAI API

•	 Crafting precise prompts for OpenAI API

•	 Generating docstrings with OpenAI API

•	 Crafting precise prompts for GitHub Copilot

•	 Fixing faulty implementation with GitHub Copilot

Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub Copilot account

•	 Integrated development environment (IDE) – either VS Code or PyCharm

•	 OpenAI account with access to OpenAI API

•	 Access to the book’s repository, which is available at https://github.com/

PacktPublishing/Supercharged-Coding-with-Gen-AI

•	 Virtual environment set up in VS Code or PyCharm

•	 OpenAI API token

For assistance setting up a GitHub Copilot account, refer to Chapter 2. For instructions on setting 

up OpenAI API access and token generation, see Chapter 3. If you need help creating an OpenAI 

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Extracting properties from Python objects for 
OpenAI API
When using OpenAI for coding tasks, we often include details about Python objects such as 

variables, functions, and classes in our prompts. This helps with various tasks such as debugging, 

generating docstrings, creating unit test suites, or improving code. The information provided may 

include the object name, arguments, return type, filename, docstring, and source code.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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Throughout this book, we frequently use the built-in inspect package to extract relevant details 

from Python objects. Additionally, we leverage some special attributes, identified by a double 

underscore (dunder), such as obj.__attribute__, which store metadata about the object or 

class. Here are some more examples:

•	 obj.__name__ retrieves the name of the object

•	 obj.__class__.__name__ retrieves the class name of an instance or function or the meta-

class name of a class

•	 obj.__doc__ retrieves the docstring of the object

To extract the source code and filename of an object, we typically use Python’s built-in inspect 

library:

•	 inspect.getsource(obj) retrieves the source code of the object

•	 inspect.getfile(obj) retrieves the file name of the object

For example, we can use inspect.getsource(obj) to retrieve the source code for the faulty 

implementation of the multiplication_quiz function discussed in Lab 4.2 in Chapter 4. This 

function is intended to execute 10 different multiplication quizzes, as outlined in its docstring, 

but contains implementation bugs that we need to address:

def multiplication_quiz() -> None:

    """

    This function generates a multiplication quiz of ten different random 
multiplication questions between 1 and 12.

    The user is prompted to answer each question. If the user answers 
correctly, the function prints "Well done!".

    If the user answers incorrectly, the function prints "No.".

    """

    a = random.randint(1, 12)

    b = random.randint(1, 12)

    score = 0

    for _ in range(10):

        question = "What is " + a + " x " + b + "? "

        answer = input(question)

        if answer == a * b:

            print("Well done!")

            score += 1
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        else:

            print("No.")

    print(f"Your score is {score} out of 10.")

The code for the function can be extracted using the getsource function:

inspect.getsource(multiplication_quiz)

The returned value will be a string containing the function’s code as text, as shown here:

'def multiplication_quiz() -> None:\n    """\n    This function generates 
a multiplication quiz of ten different random multiplication questions 
between 1 and 12. ... the rest of the code is omitted for brevity ...'

This format is easily interpreted by GenAI applications and large language models (LLMs), and 

we will use it to include Python objects and code blocks in our prompts, enclosed within {{{ }}}.

Next, we will explore how these objects are integrated into OpenAI prompts using the five S’s 

best practices for crafting precise and effective prompts.

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick 

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.
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Crafting precise prompts for OpenAI API
Applying best practices for building a precise prompt with OpenAI API enables us to automate 

and scale the prompting process while ensuring quality outputs from the underlying LLMs.

We will revisit the five S’s best practices, beginning with structuring OpenAI API prompts. We 

will craft system prompts that incorporate the surrounding context and focus on a single task, 

enabling the development of reproducible and adaptable templates. Additionally, we will explore 

how incorporating specific and short instructions helps transform diverse inputs into concise 

user prompts.

Structured prompts
To structure prompts for OpenAI API, we use system prompts and user prompts to separate the 

surrounding context and single task objective from specific details such as steps, source code, 

and data. System prompts define the context and task, allowing for reuse across varying details 

such as different source codes. In later chapters of the book, we will also explore how to integrate 

assistant prompts to achieve even more refined results from our prompts.

In Python, this prompt structure usually includes a variable called SURROUND to provide the sur-

rounding context and a variable called SINGLE_TASK to specify the task for the model. It may be 

structured as follows:

SURROUND = " Your surrounding context here "

SINGLE_TASK = " Your task here "

def get_user_prompt(*args, **kwargs) -> str:

    return """"

    # your code here

    COMPLETION:

    """

system_prompt = f"{SURROUND} {SINGLE_TASK}"

user_prompt = get_user_prompt(...)

messages = [
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    {"role": "system", "content": "system_prompt"

    {"role": "user", "content": user_prompt},

]

In this structure, the messages parameter combines both system_prompt and user_prompt to 

form a precise prompt for OpenAI API. system_prompt integrates SURROUND and SINGLE_TASK, 

while the get_user_prompt function provides details such as steps, source code, and object in-

formation, concluding with a lead-in cue such as COMPLETION to align with SINGLE_TASK, as we 

will discuss in depth throughout this chapter.

Now that we have examined the structure that combines both system prompts and user prompts, 

let us dive deeper into each, starting with system prompts.

System prompts with the surrounding context and single task
In OpenAI API, system prompts are used to define the surrounding context and specify a single 

task. These prompts are designed to be reproducible, accommodating varying supporting data.

For instance, a system prompt might state that the model is provided with a code snippet and 

tasked with identifying the programming language:

SURROUND = "You will be provided with a code snippet enclosed with {{{ 
CODE }}}."

SINGLE_TASK = "Your task is to identify the programming language of the 
provided code snippet."

system_prompt = f"{SURROUND} {SINGLE_TASK}"

The SURROUND context specifies that the provided data is a code snippet in an unidentified lan-

guage, while SINGLE_TASK clarifies that the expected output should identify the programming 

language of the code.

In another scenario, the task might involve generating documentation for a Python function 

where the programming language (Python) and object type (function) are already known. In such 

cases, this information should be included in the surrounding context to help the model focus on 

generating the docstring rather than determining the language or object type:

SURROUND = "You will be provided with a Python function enclosed with {{{ 
FUNCTION }}}."

SINGLE_TASK = "Your task is to generate a Google Style docstring for it."

system_prompt = f"{SURROUND} {SINGLE_TASK}"
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In this case, SURROUND provides context about the Python function, enabling the model to con-

centrate on the task of generating docstrings, as specified in SINGLE_TASK.

User prompts with specific instructions
To create an effective user prompt for OpenAI API call, we typically define a get_user_prompt 

function that encapsulates the necessary task details along with a lead-in cue to align with the 

system prompt.

For example, if the task is to identify the programming language from the source code, the func-

tion implementation might look like this:

def get_user_prompt(code_source: str) -> str: 

    return f""" 

    CODE: {{{{{{ {code_source} }}}}}} 

    PROGRAMMING LANGUAGE: 

    """

In the preceding implementation, {{ in f-strings are used to represent a literal {. As a result, {{{{{{ 

is required to represent {{{. Also, the source code is retrieved as a string, requiring no further 

conversion.

In a different scenario involving Python objects, such as extracting the docstring for a class method, 

the source code can be directly obtained from the object. The implementation of get_user_prompt 

in this case might look like this:

def get_user_prompt(func: callable) -> str: 

    return f""" 

    FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}} 

    DOCSTRING: 

    """

In this implementation, the inspect.getsource function is used to extract the source code from 

the function.

Next, we will combine system prompts and user prompts to observe how they work together to 

produce high-quality outputs.
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Lab 5.1 – Generating docstrings with OpenAI API
In this lab, we will utilize OpenAI API to generate a docstring for the __call__ method in a 

Singleton design pattern, as outlined in the following steps. The __call__ method defines the 

instantiation process, which involves creating or managing a new instance of the class.

Singleton design pattern
As Python developers, we often use design patterns to define and control the behavior of Python 

objects, such as functions and classes. One such pattern is the Singleton pattern, which ensures 

that only one instance of a class is created and used throughout the program’s execution.

Regular classes create a new instance from scratch with each instantiation, using either pro-

vided arguments or default parameters. For example, consider the following program with an 

Environment class that defaults to the name Production:

class Environment:

    def __init__(self, name: str = "Production"):

        self.name = name

env1 = Environment("Development")

env2 = Environment()

print("env1 name: ", env1.name)

print("env2 name: ", env2.name)

In this case, env1 and env2 are two separate instances of the Environment class. For instance, the 

name attribute of env1 is set to Development, while the name of env2 is set to Production based 

on the provided default argument.

The output of this program is as follows:

env1 name:  Development

env2 name:  Production

The Singleton design pattern ensures that only one instance of a class is created and maintained 

throughout the program’s runtime. It is typically implemented using a metaclass, which acts as 

a class of classes, defining how other classes are structured and behave.
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A typical Singleton implementation maintains a registry dictionary of instantiated classes. For 

each class defined with metaclass=Singleton, whenever a new instance is requested, the Single-

ton checks its registry for an existing instance of that class. If an instance is found, it is returned; 

otherwise, a new instance is created and added to the registry. Here is an example of such an 

implementation:

class Singleton(type):

    _instances = {}

    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            cls._instances[cls] = super(Singleton, cls).__call__(*args, 
**kwargs)

        return cls._instances[cls]

In this implementation, the __call__ method is invoked whenever a class of the Singleton type, 

referred to as cls (a common name for a class argument), attempts to instantiate a new instance. 

If an instance of the class already exists, it is stored in the _instances attribute with the class’s 

hash as the key, and the existing instance is returned. Otherwise, a new instance of cls is created 

as usual and added to the _instances registry for future use.

To use classes of the Singleton type, such as Environment, we specify that the metaclass for the 

class is Singleton, as shown here:

class Environment(metaclass=Singleton):

    def __init__(self, name: str = "Production"):

        self.name = name

Assigning the Singleton metaclass ensures that all instances of the class refer to the same object. 

When two instances are created, one with the Development name and the other without any 

parameters, both Environment instances will share the name Development:

env1 = Environment("Development")

env2 = Environment()

print("env1 name: ", env1.name)

print("env2 name: ", env2.name)
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In this case, env1 and env2 are the same instance and env2.name is also expected to be Development. 

The program output confirms this, as shown here:

env1 name:  Development

env2 name:  Development

Next, we will see how to leverage OpenAI API to generate a docstring for the Singleton __call__ 

method.

Generating a docstring
A docstring is a special string literal in Python that provides a clear description of an object’s 

purpose, behavior, arguments, and return values, typically for functions or classes, and would 

be followed by the code implementation. For instance, here is a Google-style docstring for a 

function that calculates the nth Fibonacci number:

def fibonacci(n):

    """

    Calculate the n-th Fibonacci number.

    The Fibonacci sequence is a series of numbers where each number is the 
sum

    of the two preceding ones, starting from 0 and 1. This implementation 
uses

    an iterative approach for better performance with large values of n.

    Args:

        n (int): The position in the Fibonacci sequence (0-indexed).

    Returns:

        int: The n-th Fibonacci number.

    Raises:

        ValueError: If n is a negative integer.

    Examples:

        >>> fibonacci(0)

        0

        >>> fibonacci(1)

        1

        >>> fibonacci(5)
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        5

    """

    ...

We will explore how to effectively create and utilize high-quality docstrings for Python objects 

in greater detail in Chapter 18.

In this lab, we will focus on crafting a simple Google-style docstring for the __call__ method 

of the Singleton class, incorporating information about the source code of the Python object.

Lab 5.1 guided walk-through
Open Lab 5.1 in the book repository at ch5/labs/lab51.py and ensure that you have either set the 

OPENAI_API_KEY environment variable or configured your run settings to point to the .env file.

The starter code includes the implementation of the Singleton metaclass, along with placehold-

ers for the SURROUND and SINGLE_TASK strings, the get_user_prompt function, and the messages 

parameter for OpenAI API:

import inspect

from openai import OpenAI

from openai.types.chat import ChatCompletion

SURROUND = ""

SINGLE_TASK = ""

class Singleton(type):

    _instances = {}

    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            cls._instances[cls] = super(Singleton, cls).__call__(*args, 
**kwargs)

        return cls._instances[cls]

def get_user_prompt(func: callable) -> str:

    ...
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if __name__ == "__main__":

    client: OpenAI = OpenAI()

    completion: ChatCompletion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[],

    )

    print("Docstring:", completion.choices[0].message.content)

In the guided walk-through, we will complete the SURROUND and SINGLE_TASK strings, the get_

user_prompt function, and the messages parameter.

First, we will define the surrounding context and single task for the reusable system prompt. 

Update the SURROUND and SINGLE_TASK strings as follows:

SURROUND = "You will be provided with a Python function enclosed with {{{ 
Function }}}."

SINGLE_TASK = "Your task is to generate Google Style docstring for it."

These strings inform the model that the provided source code is a Python function and specify 

that the generated docstring should follow Google-style conventions.

Next, we will integrate specific and short instructions into the user prompt. Implement the get_

user_prompt function to encapsulate the source code of a provided function, along with a lead-in 

cue to generate a Google-style docstring:

def get_user_prompt(func: callable) -> str:

    return f"""

    FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}

    GOOGLE STYLE DOCSTRING:

    """

Finally, complete the messages argument for OpenAI API call by including the system prompt with 

the SURROUND and SINGLE_TASK strings, along with the output of get_user_prompt encapsulating 

the __call__ method of the Singleton class:

messages=[

    {"role": "system", "content": f"{SURROUND} {SINGLE_TASK}"},

    {"role": "user", "content": get_user_prompt(Singleton.__call__)},

],
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If you have completed all the steps correctly, your lab code should appear as follows:

import inspect

from openai import OpenAI

from openai.types.chat import ChatCompletion

SURROUND = "You will be provide with a Python function enclosed with {{{ 
Function }}}."

SINGLE_TASK = "Your task is to generate Google Style docstring for it"

class Singleton(type):

    _instances = {}

    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            cls._instances[cls] = super(Singleton, cls).__call__(*args, 
**kwargs)

        return cls._instances[cls]

def get_user_prompt(func: callable) -> str:

    return f"""

Function: {{{{{{ {inspect.getsource(func)} }}}}}}

GOOGLE STYLE DOCSTRING:

"""

if __name__ == "__main__":

    client: OpenAI = OpenAI()

    completion: ChatCompletion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[

            {"role": "system", "content": f"{SURROUND} {SINGLE_TASK}"},

            {"role": "user", "content": get_user_prompt(Singleton.__
call__)},

        ],

    )

    print("Docstring:", completion.choices[0].message.content)
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Your lab is now ready to execute and generate a Google-style docstring. Stay tuned for the lab 

analysis, where we will review a sample output from the run.

Lab 5.1 analysis
In this lab, we demonstrated how applying the five S’s best practices for precise prompts can 

yield good results with just a few lines of code. Using OpenAI API, we successfully generated a 

Google-style docstring for the __call__ method of the Singleton class.

For reference, here is a sample output from the lab, which produced a Google-style docstring that 

clearly explains the method’s general purpose, its arguments, and its return value, ensuring that 

the same single instance of the class is returned for every instantiation:

Docstring: ```python

def __call__(cls, *args, **kwargs):

    """Overrides the default behavior of instance creation to ensure that 
only one instance of

    the class is created (Singleton Pattern).

    This method checks if the class has already been instantiated. If not, 
it creates a new instance

    and stores it in the class's `_instances` dictionary. Subsequent calls 
will return the existing

    instance.

    Args:

        cls: The class that is being instantiated.

        *args: Variable length argument list for the class constructor.

        **kwargs: Arbitrary keyword arguments for the class constructor.

    Returns:

        The single instance of the class.

    """

```

This docstring accurately describes the _instances attribute of the Singleton metaclass, which 

stores the single instances of the class, as well as the arguments of the __call__ method and its 

return value.
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Having explored how to craft prompts for OpenAI API using the five S’s, including system and 

user prompts that integrate information about Python objects for coding tasks, identifying the 

programming language of a code snippet, and generating a Google-style docstring, we will now 

turn to implementing the five S’s best practices for prompt precision when crafting prompts for 

GitHub Copilot.

Crafting precise prompts for GitHub Copilot
When working with GitHub Copilot’s three interaction modes, code completion, chat, and code 

analysis, many best practices are already built in. Copilot structures the prompt automatically, 

providing surrounding context for these modes, each with a clearly defined single task, whether 

it is completing code, engaging in a chat, or analyzing code. The prompts are also designed to 

be specific and short.

However, we can use the five S’s more precisely and achieve even better results. In this section, 

we will use the Singleton design pattern as an example to explore how Copilot supports code 

completion, code analysis, and chat.

With an understanding of this pattern and its applications, let us examine how the five S’s are 

implemented and can be extended within Copilot’s three interaction modes.

Structuring with a lead-in cue
Copilot automatically structures prompts for its three interaction modes while considering sur-

rounding context such as the filename, open files, code before and after the cursor, and Git history 

to generate a prompt on your behalf.

To improve Copilot’s structured prompts, you can provide lead-in cues such as def func_name, 

the start of a variable declaration, env1 =, or the beginning of a return statement for an f-string, 

such as return """. These lead-ins, like the closing cues used in ChatGPT and OpenAI prompts, 

help clarify the starting point for Copilot’s generation and ensure it proceeds as intended.

For example, consider a prompt such as the following:

class Singleton

This is more effective than a comment such as the following:

# Implement a Singleton meta-class that ensures only one instance of a 
class is created.
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The first option provides a clear lead-in cue indicating the class to be implemented, while the 

latter is likely to result in another comment instead of initiating the actual implementation.

For reference, here is a sample completion generated by Copilot, which includes an additional 

comment on the next line:

Figure 5.1: Comment completion with a code comment instead of an implementation

Copilot interprets the request as an opportunity to elaborate further on the Singleton implemen-

tation as a comment rather than starting the actual implementation.

Here is a sample completion based on the lead-in cue, class Singleton:

Figure 5.2: Lead-in code for Copilot to implement the Singleton metaclass

In this case, Copilot correctly inferred that it should generate the metaclass implementation even 

before the Singleton class name was fully specified.

Surrounding with imports and hashtags
GitHub Copilot already supplies the underlying LLM with extensive context across its three in-

teraction modes. This includes information such as the filename, analysis of open files for coding 

preferences and customization, import statements, code before and after the cursor, the program-

ming language being used, and preferred styling guidelines.
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When writing new code, we can enhance the surrounding context by explicitly including cues 

about the import statements we plan to use. For instance, if we plan to use the built-in @dataclass 

decorator, which simplifies data-focused classes by automatically generating boilerplate code 

such as the __init__ method, adding an import statement such as from dataclasses import 

dataclass helps Copilot understand the decorators we want to work with:

Figure 5.3: Import cues for dataclass decorators

In this example, Copilot autocompletes the @ cue with the appropriate @dataclass decorator. See 

the Further reading section for additional resources on data classes.

When using Copilot in VS Code, you can enhance the surrounding context in the chat by refer-

encing elements such as @workspace or @terminal. These annotations, while beginning with @, 

do not refer to decorators but rather specify the environment the chat should consider.

Additionally, specific files or code selections can be referenced using the hashtag, #.
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For example, to request an explanation of the __call__ method in the Singleton metaclass, you 

can select the method, type #selection in the chat, and then use the /explain command, as 

shown in Figure 5.4.

 Figure 5.4: Using #selection /explain in VS Code/Copilot Chat

This gives the chat context about the specific code snippet you want explained. For reference, 

here is the explanation we received for the selected code:

This code defines a Singleton metaclass in Python. A Singleton is a design 
pattern that ensures a class has only one instance and provides a global 
point of access to it.

Here's a breakdown of the code:

1. Class Definition: class Singleton(type):

This defines a metaclass named Singleton. In Python, a metaclass is a 
class of a class that defines how a class behaves. A class that uses this 

 Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.
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metaclass will follow the Singleton pattern.

2. Class Attribute: _instances = {}

This dictionary will store the single instances of the classes that use 
this metaclass.

3. __call__ Method: def __call__(cls, *args, **kwargs):

This method is overridden to control the instantiation of the class.

cls refers to the class being instantiated.

*args and **kwargs are used to pass any arguments to the class 
constructor.

4. Instance Check: if cls not in cls._instances:

This checks if an instance of the class already exists in the _instances 
dictionary.

5. Instance Creation: cls._instances[cls] = super(Singleton, cls).__call__
(*args, **kwargs)

If the class is not in _instances, it creates a new instance using super() 
and stores it in the _instances dictionary.

6. Return Instance: return cls._instances[cls]

This returns the instance of the class, ensuring that only one instance 
exists.

In summary, this metaclass ensures that any class using it will only have 
one instance, implementing the Singleton pattern.

Copilot identified the purpose of the Singleton metaclass and provided a clear explanation of 

its key components.

Further narrowing the single task
While Copilot is already tailored to the three interaction modes, each aligned with a specific task, 

there are cases where the task scope can be further refined.

For example, extracting hardcoded strings with arguments or global variables requires providing 

more specific guidance instead of relying solely on the straightforward /fix command. Without 

additional context, the /fix command might generate broader suggestions.

 Note

As of January 2025, adding additional surrounding context to Copilot Chat is not 

yet supported in PyCharm.
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For reference, here is an example of a /fix suggestion that unnecessarily proposes adding a 

__post_init__ method to the Environment class (see Figure 5.5).

Figure 5.5: Copilot offers irrelevant fix

Always aim to include single-task instructions, even when using / commands. For instance, if the 

goal is to extract hardcoded values, you can specify that the desired fix, extract the hard-coded 

default values to global constants, alongside the /fix command. Narrowing down the 

single task in this way helps Copilot better understand your intent and produces more accurate 

recommendations:

Figure 5.6: Single task narrowed to extracting hardcoded values

In this example, Copilot effectively understands the task and successfully extracts the hardcoded 

values, proposing to extract DEFAULT_ENV_NAME and DEFAULT_ENV_VERSION:
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Figure 5.7: Successful extraction of hardcoded values

In the green highlighted text in Figure 5.7, we can see that Copilot suggested extracting the hard-

coded default values into global constants named DEFAULT_ENV_NAME and DEFAULT_ENV_VERSION.

This demonstrates how applying the single task principle and narrowing it further, even when 

using backslash commands such as \fix, helps us achieve more effective results when working 

with Copilot.

Specific instructions with type hints, docstrings, descriptive 
names, and unit tests
Copilot already preprocesses your files and surrounding context to include specific instructions, 

ensuring tailored code completions, analyses, and chat responses.

To follow the specificity practice more precisely in our prompts, we can incorporate type hints, 

docstrings, descriptive names, and unit tests into our code. These practices not only improve 

the quality and readability of the code but also help Copilot generate better implementations.

For instance, if our code involves handling environment versioning as integers, adding clear 

type hints and a meaningful name enables Copilot to better suggest appropriate default values:

Figure 5.8: Using type hints to specify desired completions
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In Lab 5.2, we will explore how adding a failing unit test can assist Copilot in identifying and 

addressing issues in our code.

Short prompts without comment fluff
When working with Copilot, the goal is to supercharge our work without cluttering the code 

base we work on. To follow the short principle, we should avoid adding comment fluff, which 

we define as comments we would not include if not using Copilot and would likely remove after 

code generation, as they add no value to the implementation.

A better approach is to use meaningful names, type hints, docstrings, and unit tests when gen-

erating code, along with a lead-in cue to hint to Copilot that it should start its implementation.

For example, to instruct Copilot for code completion, it is better to provide a meaningful class 

signature that aligns with the intended implementation:

class TestSingleton(TestCase):

That is better than adding unnecessary comments such as the following:

# Implement a test case to verify the singleton behavior of the 
Environment class

Similarly, prefer a docstring instead of comments:

def recursive_fibonacci(n):

    """

    Calculate the n-th Fibonacci number using a recursive approach.

    Args:

        n (int): The position in the Fibonacci sequence (0-indexed).

    Returns:

        int: The n-th Fibonacci number.

    Raises:

        ValueError: If n is a negative integer.

    Examples:

        >>> recursive_fibonacci(0)

        0
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        >>> recursive_fibonacci(1)

        1

        >>> recursive_fibonacci(5)

        5

    """

That is better than using comments such as the following:

# implement the recursive_fibonacci function here

# The function should calculate the n-th fibonacci number using a 
recursive approach

# The function should raise a ValueError if n is a negative integer

# the argument is n and the return type is an integer

# Examples:

# recursive_fibonacci(0) => 0

# recursive_fibonacci(1) => 1

# recursive_fibonacci(5) => 5

The former approach is not only more predictable for Copilot but also helps avoid clutter in the 

code base if the comment is kept after the class generation, or confusion about the code’s origin 

if the comment is removed.

Also, prefer variable names with type hints instead of inline comments:

product: float =

Use the preceding code instead of the following:

# initialize a product variable to 1

Here, too, the former approach is more predictable to Copilot and avoids clutter in the code base.

Next, we will explore how to implement the five S’s best practices with Copilot and apply them 

in the upcoming lab to fix a faulty implementation of a Singleton metaclass.

Lab 5.2 – Fixing faulty implementation with GitHub 
Copilot
In this lab, we will address a faulty Singleton implementation by adding a unit test to verify its 

Singleton behavior, then use Copilot to analyze the error and suggest a fix. This lab is inspired 

by a bug fix the author encountered earlier in her career, where an Environment class, intended 

to function as a Singleton, failed to preserve attribute changes across instances.
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The initial faulty implementation of the Singleton metaclass was as follows:

class Singleton(type):

    _instances = {}

    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            cls._instances[cls.__name__] = super(Singleton, cls).__call__
(*args, **kwargs)

        return cls._instances[cls.__name__]

This implementation is close to the correct implementation of a Singleton __call__ function:

class Singleton(type):

    _instances = {}

    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            cls._instances[cls] = super(Singleton, cls).__call__(*args, 
**kwargs)

        return cls._instances[cls]

However, the faulty implementation searches for an instantiated class instance using the cls 

hash key but stores it under the cls.__name__ key. This inconsistency causes a bug that prevents 

the Singleton from maintaining its intended behavior.

In this lab, we will address this logical error by first using Copilot to implement a unit test that 

evaluates the behavior of the metaclass and then asking Copilot to fix the bug.

Lab 5.2 guided walk-through
Open Lab 5.2 in the book repository at ch5/labs/lab52.py and ensure that you have a stable 

internet connection and that GitHub Copilot is ready.

The starter code includes the faulty Singleton implementation along with an import statement 

for the TestCase class and the main runner from Python’s unittest package:

from dataclasses import dataclass

from unittest import TestCase, main

class Singleton(type):

    _instances = {}
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    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            cls._instances[cls.__name__] = super(Singleton, cls).__call__
(*args, **kwargs)

        return cls._instances[cls.__name__]

@dataclass

class Environment(metaclass=Singleton):

    name: str = 'Production'

    version: int = 1

if __name__ == "__main__":

    main()

In the next steps, we will create a unit test to debug the faulty behavior of the Singleton metaclass, 

analyze why it fails, and correct the implementation accordingly.

To test a metaclass’s behavior, we might want to include a class implementation that utilizes the 

Singleton and compare different instances of it, as follows:

def test_something(self):

    @dataclass

    Class A(metaclass=Singleton):

        a: int = 0

self.assertEqual(A(2), A())

To ensure Copilot follows this guideline, we will provide a lead-in cue to start the test case im-

plementation by beginning with the class name. Type the following lead-in:

class TestSingleton

As you type, Copilot should recognize that you are attempting to test the Singleton metaclass. 

It may suggest a complete test case, but to tailor it more specifically to our requirements, accept 

only the first line, which should be as follows:

class TestSingleton(TestCase):
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Continue by adding a descriptive name for the test case:

def test_singleton_should_return_same_instance(self):

Using descriptive names for unit tests is good practice, as it clearly conveys the purpose of the 

test and serves as a documentation tool.

At this point, Copilot may suggest an implementation involving the Environment class. However, 

the preferred approach is to test a designated class that uses the Singleton metaclass, as our goal 

is to validate the metaclass itself rather than the Environment class. Begin the implementation 

with the following:

@dataclass

class A(

At this point, Copilot should detect that we are testing an implementation of the metaclass. By 

combining the test name and the lead-in cue, it may suggest a unit test such as the following:

@dataclass

class A(metaclass=Singleton):

    a: int = 0

self.assertEqual(A(2), A())

This unit test verifies that an instance of A initialized with a non-default value of 2 should be 

equal to a new instantiation of the class without additional parameters, ensuring the Singleton 

behavior is maintained.

We will delve deeper into writing unit tests with GenAI applications in Chapter 16. For now, accept 

the suggested test case if it resembles the preceding one or tests similar functionality.

If you have completed all the steps correctly, your test class should look like this:

class TestSingleton(TestCase):

    def test_singleton_should_return_same_instance(self):

        @dataclass

        class A(metaclass=Singleton):

            a: int = 0

        self.assertEqual(A(2), A())
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Please note that this test will fail because the Singleton implementation has not yet been cor-

rected.

Next, execute the lab using the following shell command:

python -m unittest ch5/labs/lab52.py

This should result in a failing unit test:

Figure 5.9: Failing unit test for Singleton behavior

Failure is expected because the __call__ method of the Singleton is not properly implemented. 

When a new instance of A is created, its attribute, a,  is set to the default value of 0 instead of 

retaining the value from the previous instantiation of a=2.

If you are using VS Code, you can get an explanation of the terminal error by typing the following 

in the Chat window:

@terminal /explain the failing unit test
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This prompt specifies that the context is the terminal, instructing Copilot to explain the test 

failure as shown in the terminal trace. Here is an example explanation generated by Copilot Chat 

using the GPT-4o model:

Figure 5.10: VS Code explanation for the failing unit test

Note that the objects in the explanation are clickable for added convenience. Clicking on objects 

such as A will direct you to their location in the code:

Figure 5.11: Clicking on A would highlight the objects in the file
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The explanation correctly identifies that the incorrect implementation of the Singleton metaclass 

results in two different instances of the A class, causing the test to fail.

If you are using PyCharm, copy the failing traceback and paste it into the chat as follows, follow-

ing the five S’s:

CONTEXT: You will be provided with a failing Python unit test traceback 
enclosed with {{{ TRACEBACK }}}.

TASK: Explain why the unit test is failing.

TRACEBACK: {{{

python -m unittest ch5/labs/lab52_singleton.py

F

======================================================================

FAIL: test_singleton_behavior_should_return_same_instance (ch5.labs.
lab52_singleton.TestSingleton.test_singleton_behavior_should_return_same_
instance)

----------------------------------------------------------------------

Traceback (most recent call last): 

    File "supercharge/ch5/labs/lab52.py", line 26, in test_singleton_
behavior_should_return_same_instance 

    self.assertEqual(A(2), A())

AssertionError: TestS[13 chars]_singleton_behavior_should_return_same_
instance.<locals>.A(a=2) != TestS[13 chars]_singleton_behavior_should_
return_same_instance.<locals>.A(a=0)

----------------------------------------------------------------------

Ran 1 test in 0.001s

FAILED (failures=1)

}}}

EXPLANATION:

This structured prompt, which includes surrounding context, a specific task to explain the failing 

unit test, the traceback with an enclosed alias, and a lead-in explanation cue, will help us under-

stand why our test is failing.
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For reference, here is a sample output from Copilot Chat in PyCharm that correctly identifies the 

cause of the failing test, specifically, the error in the singleton __call__ method implementation:

Figure 5.12: Copilot Chat explanation for the failing unit test

Although this chat does not contain clickable elements, it accurately identifies the problem in 

the __call__ method that is not implemented correctly.

Now that we have identified the issue with the Singleton metaclass, we can adjust the __call__ 

method to properly maintain the single class instance design pattern.
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To fix the issue, navigate to the __call__ method, highlight it, and prompt Copilot to fix the cls 

instantiation, as follows:

/fix cls instantiation

This prompt will suggest the correct fix for the cls._instances registry. For your reference, here is 

a sample output we received when using the Copilot extension in VS Code with the GPT-4o model:

Figure 5.13: Suggested fix for the cls instantiation

Copilot provided the correct implementation of the Singleton metaclass using cls._

instances[cls] instead of cls._instances[cls.__name__].

Accept this solution. At this point, your code should appear as follows:

from dataclasses import dataclass

from unittest import TestCase, main

class Singleton(type):

    _instances = {}

    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            cls._instances[cls] = super(Singleton, cls).__call__(*args, 
**kwargs)

        return cls._instances[cls]
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Rerun the lab using the following shell command:

python -m unittest ch5/labs/lab52.py 

The unit test should pass, confirming that the singleton is correctly implemented:

Figure 5.14: Test ran with no errors

The unit test verifies that a new instantiation of the A class retrieves the previously created instance 

with the argument of a=2, and the main() runner completes without errors.

Lab 5.2 analysis
In this lab, we debugged the Singleton implementation by creating a unit test that failed. Based 

on the failure explanation, we used Copilot to fix the error. To accomplish this, we applied the 

five S’s best practices across five different prompts. Let us examine how each prompt emphasizes 

different practices of the five S’s, helping us achieve more desirable results.

Prompt 1 – following the structured prompt principle with a lead-
in cue
To create a test for the Singleton metaclass, we began with a code lead-in cue for Copilot:

class TestSingleton

We also followed the short best practice, by avoiding unnecessary comments. This was enough 

for Copilot to suggest the name class TestSingleton(TestCase) for the test class.

Prompt 2– providing specific and short prompt principles
To generate a unit test that utilizes the singleton as a metaclass, we used a descriptive test name, 

test_singleton_should_return_same_instance, along with a lead-in @dataclass decorator 

and class implementation:

@dataclass

class A(metaclass=Singleton):
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This was sufficient for Copilot to understand that the test should validate the correct instantia-

tion of the Singleton:

class TestSingleton(TestCase):

    def test_singleton_should_return_same_instance(self):

        @dataclass

        class A(metaclass=Singleton):

            a: int = 0

        self.assertEqual(A(2), A())

This test case compares two instances of the A class: one created with the default parameter and 

another with a specified parameter. If the Singleton is implemented correctly, the two instances 

should be equal.

Prompt 3 – adding surrounding context and focusing on a single 
task with VS Code
After running the failing unit test, we enhanced the prompt with the additional surrounding 

context and a single task by using the following:

@terminal /explain the failing unit test

This provided detailed information about the incorrect implementation of the __call__ method.

Prompt 4 – applying the five S’s with PyCharm chat
When using PyCharm chat, we applied the same prompt techniques that work with ChatGPT. 

We used a structured prompt with the surrounding context, focusing on a single task, and created 

a specific and short prompt that led to an explanation of the traceback for the failing unit test.

Prompt 5 – narrowing down the single task to fix a method 
implementation
Once Copilot identified that the issue was with the __call__ method’s cls instantiation, we 

provided the following /fix command with a narrowed-down single task:

/fix cls instantiation

This allowed Copilot to focus on the correct fix required from this method.
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In summary, the five S’s for crafting precise prompts are essential when interacting with any of 

GitHub Copilot’s three interaction modes. They help refine the structure by incorporating lead-in 

cues, adding surrounding context to both chats and input statements, and narrowing the focus 

to the specific task. This approach makes instructions more precise while avoiding unnecessary 

comments and keeping prompts short and minimal.

In the upcoming chapters, we will explore advanced prompt engineering techniques to further 

enhance our ability to achieve even better results from the GenAI applications.

Summary
In this chapter, we explored how to apply the five S’s best practices for crafting precise prompts 

using both OpenAI API and GitHub Copilot. With OpenAI API, we learned how to extract valuable 

information from Python objects, including attributes such as source code, docstrings, filenames, 

object types, and more. When working with Copilot, we examined which aspects of the five S’s 

are already implemented and identified how we can use those more precisely to improve outputs 

from the GenAI application.

Through two interactive labs, we utilized the Singleton design pattern, commonly employed by 

Python developers to enforce a single class instance with a designated metaclass. Using OpenAI 

API, we generated documentation for the __call__ method of the Singleton. With GitHub Copilot, 

we constructed a unit test that failed due to an undesirable behavior caused by faulty implemen-

tation, analyzed the test failure, and assisted Copilot in fixing the implementation.

With this, we conclude Part 1 of this book, in which we explored the best practices for crafting 

precise prompts in ChatGPT, OpenAI API, and GitHub Copilot.

By now, we have learned how to use OpenAI API, ChatGPT, and GitHub Copilot for a variety of use 

cases. We examined the costs associated with each tool and observed the OpenAI rate limits. We 

also explored Copilot’s architecture, built on the foundation of OpenAI API, and gained insights 

into using ChatGPT’s canvas editor effectively.

We discussed the three pillars of achieving quality outcomes from a GenAI application: model 

mastery, evaluation metrics, and precise prompts. We emphasized the role of precise prompts by 

implementing the five S’s: structured prompts, surrounding context, single-task focus, specific 

instructions, and short prompts without unnecessary fluff.
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Next, we move on to Part 2, where we will delve deeper into understanding the underlying LLMs, 

analyzing their risks and limitations, and learning how to take ownership of GenAI-generated 

code, including critically reviewing code created from colleagues’ prompts.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: How can we incorporate information from Python objects when working with  

OpenAI API?

Answer: When working with OpenAI API, we often include data about Python objects such as 

functions, methods, classes, and variables. To extract details such as source code, docstrings, 

filenames, and object types, we can use special attributes (dunder) methods, or the built-in 

inspect package.

Question 2: Which of the five S’s for precise prompts are implemented in OpenAI API system 

prompts?

Answer: OpenAI API system prompts incorporate surrounding context and single-task specifi-

cations, separated by a space. These prompts are reusable across different user prompts that are 

typically handled by a function such as get_user_prompt.

Question 3: How can we extend the structured prompt practice with GitHub Copilot?

Answer: GitHub Copilot handles much of the structuring automatically. Adding a lead-in cue, 

such as a function name (def func_name), variable type hint (product: float =), or a class name 

(class ClassName), serves as an effective cue for Copilot to begin the desired implementation.

Question 4: Are code comments such as # implement the following function effective when 

working with Copilot?

Answer: Such comments are considered fluff and do not enhance the code’s readability or Copi-

lot’s output. Always prefer using lead-in cues instead of trivial comments.
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Further reading
To learn more about the topics that were covered in this chapter, look at the following resources:

•	 Singleton design pattern, by Geeks for Geeks: https://www.geeksforgeeks.org/

singleton-method-python-design-patterns/

•	 Metaclasses, by Real Python: https://realpython.com/python-metaclasses/

•	 Python dataclass documentation: https://docs.python.org/3/library/dataclasses.

html

•	 The 3S’s best practices for GitHub Copilot for VS Code: https://techcommunity.
microsoft.com/blog/azuredevcommunityblog/single-short-specific---prompting-

github-copilot-for-visual-studio/4117226

Unlock this book’s exclusive 
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before 

you start.
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Part 2
Basics to Advanced  
LLM Prompting for  

GenAI Coding
In Part 2 of this book, we explore how LLMs can be applied to consistently generate quality code. 

It begins with a high-level guide on how LLMs work and then applies them to different tasks. By 

the end of this part, you will understand which tools (ChatGPT, OpenAI API, and GitHub Copilot) 

can be best applied for a given task.

This part expands into prompt engineering, including advanced topics such as few-shot learning, 

Chain-of-Thought reasoning, iterative prompting, and chaining to better understand and refactor 

code. It concludes with an exploration of fine-tuning methods.

This part contains the following chapters:

•	 Chapter 6, Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work

•	 Chapter 7, Reading and Understanding Code Bases with GenAI

•	 Chapter 8, An Introduction to Prompt Engineering

•	 Chapter 9, Advanced Prompt Engineering for Coding-Related Tasks

•	 Chapter 10, Refactoring Code with GenAI

•	 Chapter 11, Fine-Tuning Models with OpenAI





6
Behind the Scenes: How 
ChatGPT, GitHub Copilot, and 
Other LLMs Work

While most of the chapters in this book provide hands-on guides to using GenAI models for coding, 

it is also useful to understand how they work under the hood. ChatGPT, OpenAI API, and GitHub 

Copilot are based around large language models (LLMs) that have been responsible for the sud-

den rise of GenAI not only in the technology space but across industries. By understanding how 

LLMs work, you will understand when they can be most effective, know their limitations, and 

appreciate their role in prompting. This will maximize your overall success with GenAI.

This chapter will introduce the following concepts:

•	 Statistical approach to finding similar letters

•	 Small and large language models for words

•	 Improving LLM output performance

•	 What are the limitations of LLMs?

•	 ChatGPT

•	 GitHub Copilot
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Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub Copilot account

•	 IDE – either VS Code or PyCharm

•	 OpenAI account with access to OpenAI API

•	 Access to the book’s repository, available at https://github.com/PacktPublishing/

Supercharged-Coding-with-Gen-AI

•	 Virtual environment set up in VS Code or PyCharm

•	 OpenAI API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting 

up OpenAI API access and token generation, see Chapter 2. If you need help creating an OpenAI 

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Statistical approach to LLMs
Many users of ChatGPT and other LLMs often have an incorrect impression of how LLMs work. 

They ask questions such as What fraction of the internet do they understand?. To introduce the un-

derlying concepts, this section focuses on a simpler problem using just statistics. This will allow us 

to provide a foundation for discussing how models work before we shift into AI and deep learning. 

The question we will address is whether we can use probabilities to predict the next letter given a 

set of preceding letters. If we can, then we should be able to create true English from data without 

any understanding of linguistic orthography, phonology, morphology, or even general language.

For this sample problem, we will use a medium-sized dataset called the Reuters-21578 dataset. 

It is available at the UCI Machine Learning Repository (https://archive.ics.uci.edu/) and 

consists of 21,578 different news wire articles, which are just text stories across different topics. 

While the main use of this dataset is to train and assess text classification algorithms, we are using 

this as a large corpus of text that has over 15 million letters. The rest of this section describes the 

process of using this corpus to predict the next letter using a statistical approach. A curious reader 

can experiment further with the provided code available in the GitHub repository for Chapter 6.

Our first analysis step is to look at the frequencies of individual letters. Although the dataset 

has not only letters but also numbers, punctuation, and other symbols, we will focus on just 

the letters and the spaces between words. We will also ignore the case and convert everything 

to lowercase. The frequencies of the individual letters are shown in Figure 6.1. The frequency of 

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://archive.ics.uci.edu/
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words typically follows Zipf’s law, but not for letters. However, we do see the expected tapering 

of frequencies when sorted by letter, although the distribution is not as smooth due to the limited 

size of the dataset.

Figure 6.1: Letter frequencies for the Reuters-21578 dataset

With the frequencies or probabilities of the individual letters from Figure 6.1, we can produce words 

by sampling from this distribution. We can sample proportional to the frequency of the letters 

in the dataset and try to craft English words. We can do this by generating a random number 

with a uniform distribution between 0 and 100%. If it’s < 12%, it would be an e. If it’s in the 12 to 

(12+9)% range, then it would be t. If it’s in the 19 to (19+8.5)% range, it would be a, and so on. The 

results of this approach are shown in Figure 6.2. Each row represents a different example to show 

some variation. As you can see, we have not replicated anything that looks vaguely like English:

 Figure 6.2: Creating “words” from using just the individual word frequencies

Using the individual frequencies of words doesn’t use any context, and so it produces words that 

do not resemble English. Context in this case refers to the order of the letters that come before it. 

For instance, in the first line, no English words start with wwu or tte or dn. Similarly, the letter q 

is usually followed by u in English.
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To augment this with the context of preceding letters, we can use conditional probabilities. In 

statistical terms, p(x|y) is read as the probability of x given y, and it means the probability of x 

occurring given that y occurs. Mathematically, the formal definition is as follows:𝑝𝑝(𝑥𝑥|𝑦𝑦) = 𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥)𝑝𝑝(𝑥𝑥) 

If we think of playing cards, the probability of the queen of diamonds is 1/52, but the probability 

of the queen of diamonds given it is a queen is 1/4. The probability of a queen of diamonds given 

it is a diamond is 1/13.

In our context, we are going to use these conditional probabilities to compute the probability of 

the next letter. So, given the current letter is a q, the next letter is usually a u. In fact, we can build 

a table of all the possibilities written as percentages for each combination of letters. Figure 6.3 

shows the first letter as the column, and the conditional probability of the next letter as a row. 

For instance, p(u|q) is 90.3%.

Figure 6.3: Percentage of conditional probabilities for next letters (rows) given letters (columns)
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The sampling is more complicated in the conditional probability case, so let’s use an example. 

To create text, we might assume that our last letter is a q. To choose the next letter, we randomly 

sample from the possibilities across all rows of the q column. We then generate a random value 

from 0 to 100% representing a random probability drawn from a uniform distribution for the 

next letter. We then consider which bucket the random number fell in. The letter a is 0.7%, b 

through h are all 0.0%. The letter I has a 1.1% chance. The letter t has a 7.6% chance, and the 

letter u has the largest probability of 90.3%. While it appears that these numbers do not sum 

to 100%, this is due to round-off errors only. If we select based on these probabilities, the most 

likely letter is u. We repeat the process with the u column, where the most likely letters are t, r, n, 

and s, and the least likely letters are q and u. You are likely wondering which words have these 

strange letters, but remember that there may be acronyms, email addresses, and foreign names 

included in the articles.

Now that we can generate words for conditional probabilities, does this approach work? Figure 

6.4 shows the results. The word lengths are much closer, and there are a couple of real words, such 

as it, as, and mag, but otherwise, they do not look like English words:

Figure 6.4: Conditional probabilities for p(next_letter | current letter)

We can extend the model so that instead of just looking at a letter given its preceding single letter, 

we can consider a wider context. Specifically, we can consider the next letter given the preceding 

j letters using the probability p(next_letter | preceding j letters). This makes the table much larger 

since the number of columns would increase from 26 to combinations of 2 letters, 3 letters, or 

more. For the next letter, based on all combinations of the 2 previous letters, the table would be 

26 by 262 = 676. For the next letter based on the previous 3 letters, the table would be 26 by 263 = 

17,576. However, with a longer context, we would expect better results. We will not show these 

larger tables of percentages or probabilities, but show the results instead.
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The result for the preceding two letters is shown here:

Figure 6.5: Conditional probabilities for p(next_letter | preceding 2 letters)

For the preceding three letters, the result is as follows:

Figure 6.6: Conditional probabilities for p(next_letter | preceding 3 letters)

For the preceding four letters, this is the result:

Figure 6.7: Conditional probabilities for p(next_letter | preceding 4 letters)

For the preceding five letters, the result is as follows:

Figure 6.8: Conditional probabilities for p(next_letter | preceding 5 letters)
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Finally, the result for the preceding six letters is the following:

Figure 6.9: Conditional probabilities for p(next_letter | preceding 6 letters)

As we can see, the results improve substantially as we increase the context window. In fact, most 

of the output has real English words once we use the four preceding letters. With six preceding 

letters, the sentence flow starts to make some sense, which may be surprising since we are only 

looking at single letters.

It is important to understand what the model is learning. Although the statistics appear to be 

producing English words and even some meaningful sentences in Figure 6.9, it does not under-

stand the concept of an English word or sentence structure. Furthermore, the model is not storing 

knowledge or facts of the English language or words. It is only storing the probabilities of the next 

letter from the preceding context. Our model focuses only on letters at this point, and the next 

section describes the extension to word-level models. If we had training data that was a thousand 

or a million times larger, it would be merely doing a better job of estimating the same frequencies.

Extending the model to words
Our English model, which builds language from letters, is quite limited. To produce meaningful 

language, we would need a much longer context of preceding words to understand the relation-

ships between words spaced throughout a sentence. Furthermore, we don’t think of language in 

terms of letters—we think in terms of words. With our 26 letters in English and a space, each of 

the preceding j positions can only have 27 possibilities, which means our model is relatively small.
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Based on the preceding information, we would need billions of times more data for similar ac-

curacy using the statistical model.

As a model becomes more complex, it requires more training data. We can think of a model as 

a general function where we try to approximate a y value from different x values. This approxi-

mation process determines the best function parameters from a set of training data (x, y) pairs 

representing the input, x, and the output, y. In the case of a linear model, the model must learn 

the best slope and y-intercept to represent the data. The training data is collected and designed 

to be representative of future data so that when the model fits well, it can be useful to predict 

future y values.

Of course, most models are not simple linear models or functions. There may be multivariate 

inputs with billions of parameters and large output dimensionality. Learning from such large 

datasets requires significantly larger training data. Consider fitting a linear or a higher-order 

linear model to a set of data points, as shown in Figure 6.10:

Figure 6.10: The number of training data points increases as the model becomes more complex

 Note

If we consider all combinations of the preceding 3 letters, there are 27 x 27 x 27, or 

about 20,000 possibilities of letters. With 15 million letters in the dataset and 20,000 

combinations, we have a 750:1 ratio of training to combinations, which provides 

excellent training. The average person knows 42,000 words, so if we use all combi-

nations of the preceding 3 words, it would be 42,000 x 42,000 x 42,000 ~ 7.4E13, or 

74 trillion 3-word combinations possible, which is about 10x more than any PC hard 

disk can handle today. However, if we have 15 million letters and the average word 

plus a space character is 6 letters, then there would be 2.5 million words. The ratio 

of training to combinations drops to a 2.5 million:74 trillion ratio, or 1 in 30 million.
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We can fit a line with just two points, perhaps, but the seventh-order model on the right needs 

far more data points to accurately fit. AI models often require data for trillions of parameters, 

which introduces a problem where the model may suffer from insufficient training data available. 

The accuracy of the model depends on the number of parameters in the model and the size of its 

training dataset.

To summarize, the example with letters showed that a statistical model could approximate English 

language words with a moderate training dataset since the number of combinations is reasonably 

small. However, we need to store the probabilities of each letter given all preceding letter contexts, 

which can be quite large. For even the context of just three preceding words, the frequencies are 

prohibitive to store. In addition to the storage challenge, we would need vast quantities of data to 

fill a word frequency table to achieve modest prediction accuracy, which is not readily available. 

The next section uses AI rather than statistics to overcome these challenges for words.

Small and large language models for words
The statistical model clearly worked well for a medium-sized dataset with a small model based 

on letters. Since grammar and meaning function at the word level, we need to be able to accu-

rately predict the next word rather than the next letter. Since the number of possible next words 

is far larger than the number of next letters, the model will need to be many orders of magnitude 

larger. If we think about code or even text, there are no datasets that are billions of times larger. 

AI methods, and specifically LLMs, provide solutions that enable predictions more efficiently 

than just probabilities. We describe two methods in this section: word2vec and the Transformer 

deep learning model.

Word2vec
The word2vec model is arguably a small language model that uses a simple neural network. In-

spired by biology, neural networks are a particular type of machine learning algorithm that learn 

from data. Although there are a variety of neural network models, this type learns a mathematical 

function. Each output neuron is a nonlinear function of the weighted sum of the input values. In 

the training step, the weights are adjusted so that the input values will predict the output values.

As an example, a neural network could learn to predict whether today is a good day to play tennis 

based on the inputs of temperature, wind, precipitation, and humidity. The training data would use 

past decisions to play tennis (output=1) or not play (output=0), and the corresponding weather 

conditions. With only this data, a neural network could learn to classify future good days for tennis 

based on the weather. The learned weights for wind and precipitation might be large negative 

values since high wind speeds and precipitation make tennis unplayable.
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Developed by Google in 2013, the word2vec algorithm (https://en.wikipedia.org/wiki/

Word2vec) trained a model to predict the target word from the context of two words before and 

after that word. They also developed the opposite problem of predicting the surrounding context 

from a single word. Essentially, this is equivalent to the next word prediction using the presence 

of adjacent words rather than only preceding words. Backed with an efficient training algorithm, 

the results proved reasonably predictive. Of greater importance, the word2vec weights formed an 

embedding of the word or numeric vector representation that quantified the semantic and syntax func-

tion of words. In other words, the word2vec model learns to associate every trained word with a 

numeric vector of numbers. These vectors can be compared, which is useful for comparing the 

similarity of word meanings.

Deep learning
Deep learning is a subset of neural networks that involves learning functions of functions, essen-

tially. That is, the outputs of one layer form the inputs to a second layer, creating a deep stack of 

functions. The Universal Approximation Theorem proved that neural networks could learn to 

approximate any mathematical function, given a two-layer network under certain conditions. 

Research has found that creating deep neural networks with tens, hundreds, or thousands of 

layers is an efficient way of achieving accurate results. In each layer, the model adjusts its weights 

based on the training data to learn functions with the results passed as input to subsequent layers.

In 2017, a new deep learning architecture called the Transformer was published in a famous paper 

called Attention is All You Need from Google, the link to which can be found in the Further reading 

section. Rather than relying on the context of adjacent words, the Transformer architecture ef-

ficiently learns the relationship between all words in a sentence. The training process learns the 

relationship between words using a masking process, through which it hides each word separately 

and learns to predict it from all the other words in each sentence.

A deep learning network describes an architecture in machine learning with a specific number of 

inputs, outputs, layers, nodes per layer, inter-node connections, and weights throughout. Like 

the previously described linear model, the architecture describes the solution and is trained to 

solve a specific problem. LLMs are the result of training a deep learning network on large volumes 

of text. They learn to correctly predict the next word much better than statistical and word2vec 

models. Similar to the statistical next-letter prediction models, they can iteratively predict the next 

word to generate sentences, paragraphs, and full texts. Researchers have found that by training 

on ever larger volumes of text (or code), the accuracy continues to improve, so many LLMs have 

been developed that use increasingly larger network sizes and more training data.

https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec
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LLMs by themselves offer significant capabilities in next-word prediction, but they are continuing 

to expand into new areas of intelligence. Many of the breakthroughs are now coming from various 

techniques that improve the performance of their respective LLMs. The next section describes 

some steps that users can take with an LLM to improve the outputs of LLMs.

Improving LLM output performance
If the LLM does not answer questions well, there are four general courses of action: improving 

prompt engineering, adding more data through the context window, providing examples (few-

shot learning), fine-tuning, and retrieval-augmented generation (RAG). These will be discussed 

in this section.

Prompt engineering
The discipline of prompt engineering has recently emerged as a human interface to the LLM. Us-

ers or programs can send commands to, ask questions of, and apply research reasoning through 

the LLM. The discipline involves applying specific wording to maximize the chance of correct 

outputs without producing erroneous or biased outputs, including hallucinations. The process 

of writing prompts is often an iterative process where it may require multiple rounds to achieve 

the desired output. Most of the prompts discussed in this book focus on a single task with specific 

and clear wording, which is considered good practice. The five S’s framework outlined in this book 

provides a useful general-purpose structured approach to writing the prompts. We’ll cover more 

on prompt engineering techniques in later chapters.

Adding context
As discussed in this chapter, LLMs are not databases that store data, nor are they an oracle of 

all knowledge (yet). They can perform a limited number of tasks and answer a finite number 

of questions without further enhancements. To enable question-answering, interactive chats, 

or other tasks such as code generation, the user can send the LLM both the question as well as 

additional information within a context window.

 Note

The context window is somewhat analogous to a human’s short-term memory in 

that it has a limited size and may forget older information. However, the context 

window is generally large enough to include documents, earlier inputs, and returned 

outputs. A document can be provided as context, and the prompt engineer can ask 

questions of the document.
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Depending on the size of the context window, all or part of earlier outputs from the system and 

past inputs are automatically included in the next prompts associated with that user, so an entire 

dialog or thought process is included in every interaction with the LLM. A short context window 

might only allow a few papers to be uploaded and summarized together, while a longer context 

window could enable a book to be uploaded with multiple interactive sessions kept as context. 

This approach has several advantages over an LLM system, which will be discussed next as ways 

of improving results.

Providing examples
The context window allows for documents and other data to be included along with the prompt 

or question, but it also allows for examples. A prompt may ask the LLM to return a particular 

nugget of information in a specific format. In many cases, this will be successful, and this is called 

zero-shot learning. That is, there are no examples of how the LLM should form a response—it 

just uses its baseline approach. However, the prompts can include one example of an input and an 

output as part of the prompt. This is called one-shot learning. If multiple examples are provided, 

this is called few-shot learning. While many examples can be used depending on the context 

window length, there is a law of diminishing returns. However, it is an effective approach to 

instruct the LLM to tailor its outputs to meet a specific need. We will discuss few-shot learning 

in depth in Chapter 8.

Fine-tuning
Training an LLM from scratch may cost $100 million to learn the trillions of weights that are 

trained on prose, poetry, drama, literature, and science. Due to the prohibitive cost, it will not 

be trained often. In fact, it is typically two years out of date, which means it does not have any 

recent events or information. It also likely doesn’t have personal or corporate documents includ-

ed in its training. One solution discussed is to provide these in a context window. As discussed 

in Chapter 2, for pay-for-service LLMs such as OpenAI, every transaction has two costs: a cost 

to send information to the LLM and a cost for the output produced, both based on the length 

of the information. As the amount of input information and the number of calls with the same 

information increase, it may become a costly solution.

Fine-tuning offers an alternative to repeatedly sending a large context to the LLM. It essentially 

adds a limited supplemental dataset to the LLM training in the form of documents or examples. 

The training fine-tunes the weights of the neural network by making minor adjustments that are 



Chapter 6 153

sufficient to produce improved outputs. Fine-tuning provides a cost-efficient way of improving 

outputs without repeatedly sending large contexts of data to the LLM. We will dive deeper into 

fine-tuning in Chapter 11.

Retrieval-augmented generation
RAG solves two major problems with the LLMs. First, OpenAI and ChatGPT are not databases 

of information, so they cannot retrieve information like a web search. Second, their training 

data is typically two years old and does not include personal or corporate documents. The RAG 

architecture integrates the LLM with external information from a web search, database, or set 

of documents. RAG uses the LLM to interpret the input from a user and then retrieves blocks of 

text from various sources that it finds to be closely related to the input. The LLM then processes 

the combination of the input and retrieved data to form an answer or response using the stan-

dard LLM processing. Essentially, RAG fills the context window with candidate answers relevant 

to the question based on a search and then instructs the LLM to perform its usual summary or 

question-answering on that context window. This enables a full system with an LLM to perform 

web searches on current information or focus on specific documents when generating output.

Each of the approaches described in this section is widely used to improve LLM results. While 

research continues to advance LLM capabilities, it is important to understand their limitations, 

which are discussed in the next section.

What are the limitations of LLMs?
With both the statistical approach for the letters and the LLM approach for words, there is no 

formal knowledge that many expect, given its ability to answer many questions. There is no 

extensive knowledge base of topics, common sense, or anything except the word patterns it has 

learned. What is surprising to researchers is the fact that the learned patterns and their relation-

ships somehow enable LLMs to perform new tasks for which they have never been trained. For 

instance, LLMs have even shown some capability in some foreign languages that are not part 

of their training set, through a process called zero-shot cross-linguistic transfer. Even if the 

output has been trained, one may get slightly different results each time from a prompt due to 

the randomness in the system. Much of the research in the prompt engineering area focuses on 

how to receive consistent and correct outputs from LLMs by crafting the prompts with specific 

phrases, commands, and context.
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The deep learning approach will almost always produce syntactically correct and plausible-looking 

output, but some of the output may be prone to hallucinations. There have been some famous 

cases where the output was completely incorrect, technically wrong, and sometimes just made 

up. A professor was accused of assault on a school trip that never happened. Many students 

have been caught using ChatGPT since none of their references existed. Even a US government 

health report was caught citing facts of a made-up reference. These incidents can be found in the 

Further reading section. Hallucinations often occur when there is insufficient training to support 

a particular output. The statistical methods do not have such an issue since they only sample 

from the previously seen patterns.

It is currently nearly impossible to know in which areas exactly the LLM has expertise, and in 

which areas they have limited training. A few years ago, the training of LLMs was generally re-

leased as part of its research publication. In the past couple of years, much of the LLM training has 

become more secretive, so we do not know exactly which sources were used and cannot exactly 

predict their domains of capability. However, OpenAI has been trained extensively on both texts 

and code in multiple languages. OpenAI’s philosophy is to provide safe and beneficial general 

AI across many domains. ChatGPT is a specialization using an OpenAI LLM and is discussed in 

the next section.

ChatGPT
Launched by OpenAI in November 2022, ChatGPT was developed on the GPT-3.5 model. It be-

came a focal point of the AI growth since it worked through a conversational interface, unlike the 

programming interface of other LLMs. The dialog-driven interface requires it to track the history 

of the conversation, even across sessions. ChatGPT is a specialization of the LLM with improved 

conversational capability.

One of the key technology improvements was the use of reinforcement learning from human 

feedback (RLHF), which improved the dialog capability through training and feedback to give 

better responses. As discussed earlier, fine-tuning can improve the LLM’s performance for specific 

tasks. RLHF goes one step further and incorporates feedback from users to adjust the weights. As 

a result, it delivers results that incorporate human preferences and even reasoning capabilities 

in terms of responses and answers to questions.
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ChatGPT continues to be a leader in the growth of AI, in part due to its easy web interface that 

makes it widely accessible with minimal training. It has led to greater research in natural lan-

guage processing (NLP) and multiple use cases. Although it can write code, its capabilities are 

limited as compared to GitHub Copilot, which extends the GPT model for generative coding, as 

described in the next section.

GitHub Copilot
GitHub Copilot was officially announced as a collaboration between GitHub, Microsoft, and 

OpenAI, specifically for writing code, in 2021, and opened for technical review. At the time, it 

started with the GPT-3 instance from OpenAI, and the three companies collaboratively trained it 

to focus on code development, resulting in the OpenAI Codex. After GPT-4 was released, GitHub 

Copilot adopted it and released GitHub Copilot X. Its optimization focuses on code completion, 

fixing bugs, code comments, and tests based on billions of lines of code training beyond the GPT 

models. The combination of the underlying GPT model with the code-training focus enables the 

two-way natural language and computer language code writing and explanation.

GitHub Copilot uses a combination of technologies to provide its coding experience. When writing 

code from a single file, it sends at least part of the current file through the internet to the Copilot 

server. It will also use the prompt and other open files that are open within their respective VS 

Code or PyCharm IDE for context. It uses this context to search for similar code using the RAG 

approach, and then sequentially generates code one token at a time. The amount of code sent to 

the Copilot server is based on the context length and certainly costs.

If part of your open code and possibly data is being sent to Copilot, it is natural to be concerned 

about security. The information is encrypted when sent to and from Copilot. The exchange context 

resides in memory but is deleted without being stored or used for training. The GitHub Copilot 

Trust Center page, available at https://copilot.github.trust.page/, provides more infor-

mation about their data security, privacy, and related issues. It includes suggestions, feedback, 

prompts, and user engagement data. None of the code exchanged while using GitHub Copilot is 

used for training their system.

https://copilot.github.trust.page/
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Summary
Statistical and AI approaches can learn patterns from sequential data such as text or code, which 

can efficiently predict the next symbol. Due to the range of possible words, deep learning methods 

scale well to efficiently predict the next words much better than statistical techniques and have 

become the standard. Even so, they require vast training sets of text and code and an expensive 

computational process to be effective.

While LLMs are highly effective, they are not perfect and are limited by their training set of data 

and perhaps the time it was trained. The output can be limited for various domains and time pe-

riods, which can result in hallucinations. While research continues in these areas, some solutions 

to improve results include effective prompt engineering, providing contextual information such 

as documents or examples, fine-tuning, and the RAG approach.

OpenAI and ChatGPT are trained on general data and code, and are quite effective at generating 

code. GitHub Copilot is built upon OpenAI and, with significant additional training on code, is 

more efficient at generating code, tests, comments, and more.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: How is the deep learning approach for words similar to and different from the sta-

tistical approach described for letters in this chapter?

Answer: Both the deep learning approaches and statistical approaches generate new text or code 

using a combination of their trained model and randomness. Even though they are both trained 

on data, they rely on randomness to select from the probable next words, which means their 

outputs can be different each time. In both cases, if they are trained with insufficient data, they 

may not produce satisfactory results. Neither has a conceptual understanding of the inputs or 

outputs, so both are relying on patterns of inputs to predict patterns of outputs.

The deep learning approach is orders of magnitude more efficient in predicting the range of 

possible next words or code using complex, less interpretable models. While both could easily 

predict the next letters with a large training set, the conditional probabilities would not be able 

to scale to predict next words as the deep learning approach can.
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Question 2: How is GitHub Copilot different from OpenAI in terms of code development?

Answer: OpenAI was optimized for general knowledge, and GitHub Copilot was optimized for 

code generation. GitHub Copilot took the human language capabilities of GPT-4 from OpenAI 

and further trained it on billions of lines of code, comments, and documentation. In this way, it 

serves as a pair programmer with the ability to generate code from text, explain code as text, write 

tests from code, and write comments from code.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following 

resources:

•	 Zipf’s law: https://en.wikipedia.org/wiki/Zipf’s_law

•	 Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey (16 January 2013). Efficient Estima-

tion of Word Representations in Vector Space: https://en.wikipedia.org/wiki/Word2vec

•	 Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, 

Aidan N; Kaiser, Łukasz; Polosukhin, Illia (December 2017). Attention is All You Need. In I. 

Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett 

(ed.). 31st Conference on Neural Information Processing Systems (NIPS). Advances in 

Neural Information Processing Systems. Vol. 30. Curran Associates, Inc.: https://arxiv.

org/abs/1706.03762

•	 Pranav Dixit. US law professor claims ChatGPT falsely accused him of sexual assault, says ‘cited 

article was never written’. Business Today: https://www.businesstoday.in/technology/
news/story/openai-chatgpt-falsely-accuses-us-law-professor-of-sexual-

harassment-376630-2023-04-08

•	 Loreben Tuquero. RFK Jr.’s health report shows how AI slips fake studies into research: https://

www.poynter.org/fact-checking/2025/rfk-jr-fake-citations-medical-journals/

•	 GitHub Copilot Trust Center page: https://copilot.github.trust.page/

https://en.wikipedia.org/wiki/Zipf’s_law
https://en.wikipedia.org/wiki/Word2vec 
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.businesstoday.in/technology/news/story/openai-chatgpt-falsely-accuses-us-law-professor-of-sexual-harassment-376630-2023-04-08
https://www.businesstoday.in/technology/news/story/openai-chatgpt-falsely-accuses-us-law-professor-of-sexual-harassment-376630-2023-04-08
https://www.businesstoday.in/technology/news/story/openai-chatgpt-falsely-accuses-us-law-professor-of-sexual-harassment-376630-2023-04-08
https://www.poynter.org/fact-checking/2025/rfk-jr-fake-citations-medical-journals/ 
https://www.poynter.org/fact-checking/2025/rfk-jr-fake-citations-medical-journals/ 
https://copilot.github.trust.page/
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Subscribe for a free eBook
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and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help 

you stay focused and informed. 
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7
Reading and Understanding 
Code Bases with GenAI

Writing code is rarely an isolated task. We will typically have to incorporate our Python snippets 

into a larger code base that includes project files, often structured under a /src folder, along with 

dependencies listed in a requirements.txt file and other non-project files, such as a Dockerfile 

that defines container specifications.

In this chapter, we will work with a code base that computes the Manhattan distance between 

two matrices represented as pandas DataFrames. With the help of ChatGPT, GitHub Copilot, and 

OpenAI API, we will explore how various GenAI tools can support us in efficiently understanding 

both non-project files and the main business logic. We will also examine how generating calls 

with sample parameters can improve our understanding of more complex code.

Here are the key topics covered in this chapter:

•	 Reading and understanding the code base structure

•	 Using LLMs to explain code

•	 Interpreting non-project files

•	 Creating calls with example parameters
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Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub Copilot account

•	 IDE – either VS Code or PyCharm

•	 OpenAI account with access to OpenAI API

•	 Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

•	 Virtual environment set up in VS Code or PyCharm

•	 OpenAI API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting 

up OpenAI API access and token generation, see Chapter 2. If you need help creating an OpenAI 

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Reading and understanding the code base structure
So far in the book, we have mostly explored code snippets that are limited to a single Python file. 

In this chapter, we will shift our focus and see how GenAI tools can support us in reading and 

understanding a broader code base.

Getting to know a code base usually involves reading through a variety of files. For instance, when 

a developer encounters a new project, they might do the following:

Explore entry points such as main.py or app.py

Identify the main project files, often found in a /src directory

Look for container and dependency management files such as Dockerfile and requirements.txt

Experiment with specific parts of the code

In this book’s repository, we provide a small code base example located under ch7/. Here is a 

directory tree view of its contents:

ch7/

├── app.py

├── src/

│   └── manhattan.py

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI


Chapter 7 161

├── Dockerfile

├── README.md

├── requirements.txt

In this tree view, the core business logic that we will explore next is located in src/manhattan.

py. In addition, we have the following:

app.py, which serves as the entry point and handles basic Hypertext Transfer Protocol (HTTP) 

POST requests, routing them to the business logic. As introduced in Chapter 2, HTTP POST is a 

standard method for sending data to a server.

Dockerfile, a text file that outlines the steps and dependencies needed to build a container image 

for running the application. We will return to this later in the chapter. 

requirements.txt, which lists the application’s dependencies, such as pandas and Flask, as in-

troduced in Chapter 2.

README.md, a markdown file commonly used to provide documentation about a code base. In our 

case, it includes examples of how to use the application.

Next, we will introduce the Manhattan distance, which serves as the core business logic of our 

application.

Introducing the Manhattan distance
In this chapter, our code focuses on calculating the Manhattan distance between two points. 

This distance is defined as the sum of the absolute differences along each dimension. In two-di-

mensional space, we can relate this to classic computer games such as Pacman, where movement 

is restricted to vertical or horizontal directions, with no diagonal steps allowed. For example, 

consider Pacman and a ghost positioned in locations (1,1) and (3,2), respectively, in Figure 7.1.

Figure 7.1: Pacman and ghost positions
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In this figure, the characters can move either horizontally or vertically. The Manhattan distance 

between them is two units along the x axis and one unit along the y axis, which totals 3:

Manhattan Distance  =  |3 − 1|  +  |2 − 1| = 3

A simple Python implementation for calculating this distance might look like this:

def get_manhattan_distance(

        x1: Tuple[int, int],

        x2: Tuple[int, int],

) -> int:

    x_dist: int = abs(x1[0] - x2[0])

    y_dist: int = abs(x1[1] - x2[1])

    dist: int = x_dist + y_dist

    return dist

In this implementation, we use two-dimensional vectors represented as Tuple[int, int] to 

represent a position on a board. However, the Manhattan distance can be generalized to higher 

dimensions computed between matrices of floats, as we will see next.

Manhattan distance for matrices
The Manhattan distance, also referred to as the L1 norm, extends naturally to higher-dimensional 

data. It is widely used in image analysis when comparing two images and in machine learning 

research when evaluating prediction errors.

To compute the Manhattan distance between matrices, we can use pandas DataFrame objects. 

pandas is a standard library for data manipulation and should be listed in the book’s requirements.

txt file and already installed in your virtual environment.

Here is an example of a DataFrame with two rows, A and B, and three columns labeled a, b, and c:

import pandas as pd

df1: pd.DataFrame = pd.DataFrame(

    data={

        "A": [1, 2, 3],

        "B": [4, 5, 6],

    },

    index=["a", "b", "c"],

)
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We can implement the Manhattan distance using the pandas methods .abs() for absolute values 

and .sum() for summing along axes:

def get_manhattan_distance(

        df1: pd.DataFrame,

        df2: pd.DataFrame,

) -> np.float64:

    element_wise_dist: pd.DataFrame = (df1 - df2).abs()

    dist: float = element_wise_dist.sum().sum().astype(float)

    return dist

The distance calculation uses .sum() twice: first to sum across rows, and then again to sum the 

resulting column totals. We convert the result to a float to standardize the output, since summing 

over integer values may return a NumPy int64 data type.

Let’s take these two DataFrames:

A = [[1 3]

[2 4]]

B = [[5 7]

[6 8]]

Calling get_manhattan_distance on these will return the following:

|5-1| + |6-2| + |7-3| + |8-4| = 16

Now that we have a clear understanding of the core business logic and supporting code around 

the distance computation, we can explore how GitHub Copilot, ChatGPT, and OpenAI API can 

help us navigate and familiarize ourselves with the code base.

Using LLMs to explain code
In Chapter 3, we noted that GitHub Copilot does not include the entire code base in the prompt. 

This is due to context window limitations, potential cost, and the fact that much of the content 

may not be relevant to the specific task.

However, this does not prevent GenAI from helping us understand the code bases we are working 

with. Rather than relying blindly on Large Language Models (LLMs) to identify key components, 

we will explore how to request explanations for both simple elements and more complex scenarios.
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Using the /explain command with GitHub Copilot
GitHub Copilot includes several slash commands, among them the /explain command, which is 

available in both the inline chat and the chat window. Unlike code completion tasks, the output 

of this prompt is explanatory text covering arguments, data transformations, and return values.

The command can be used alone or with extra instructions. For example, in PyCharm, we can ask 

Copilot to explain the get_manhattan_distance function by placing the cursor anywhere within 

the function signature, opening the inline chat window, typing /explain, and hitting Enter, as 

shown in Figure 7.2:

Figure 7.2: Using GitHub Copilot /explain for methods

Another available option is to select the contents of the function, open a chat window, and type 

/explain. Note that in VS Code, you will need to choose @workspace /explain by either typing 

it directly or selecting the /explain @workspace option in the drop-down menu after typing /

explain, as shown in Figure 7.3:

Figure 7.3: Choosing @workspace /explain in VS Code chat

For either IDE, Copilot is likely to yield a general explanation about the purpose of the function, 

the data transformation, and the returned value, as shown in Figure 7.4.
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Figure 7.4: Sample /explain output in VS Code

If we wanted a broader analysis of the arguments and their type, for example, we could use this 

prompt:

/explain argument types

This should yield an extended explanation about the arguments, as shown in Figure 7.5.

Figure 7.5: Extended /explain argument types with GitHub Copilot
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Here, we see a detailed explanation of the arguments df1 and df2, including a note that df2 is 

expected to have the same shape as df1 for the function to work properly. This expectation is not 

mentioned in the plain /explain prompt, but when we ask about a specific aspect of the code, 

we get a more in-depth explanation.

Next, we will see how we can replicate this outcome through direct prompting with ChatGPT 

and OpenAI API.

Using ChatGPT to explain code
While Copilot includes a built-in slash command for code explanations, we can apply the five 

S’s framework introduced in Chapter 4 to achieve similar results with ChatGPT, even when us-

ing older or more cost-effective models such as GPT-4o. Unlike GitHub Copilot, which follows 

predefined instructions about what to explain based on the Python object, ChatGPT allows us 

to tailor the explanation to our specific needs.

For instance, the following prompt focuses on describing the function’s purpose, its arguments 

and types, the data flow, expected output, and possible edge cases:

CONTEXT: you are provided with:

1. A Python function enclosed with {{{ FUNCTION }}}

2. Explanation points enclosed with {{ HEADERS }}}.

TASK: Explain the function using the explanation points.

FUNCTION: {{{ ...omitted for brevity ... }}}

HEADERS: {{{

1. Function's purpose

 Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.
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2. Arguments and their types

3. Step-by-step data flow

4. Output and its types

5. Potential edge cases

}}}

EXPLANATION:

When using GPT-4o with this structure, we received an explanation that covered all bullet points 

with the headers, as partially shown in Figure 7.6:

Figure 7.6: ChatGPT returned extended explanation

For reference, here is the output generated by ChatGPT under the edge cases header, which adds 

value by uncovering situations where the function might fail or produce unexpected behavior:

5. Edge cases

Shape mismatch: If df1 and df2 do not have the same shape, the subtraction 
operation will raise a ValueError.

Non-numeric columns: If the DataFrames contain non-numeric data, the 
subtraction operation will raise a TypeError or produce NaNs that affect 
the result.

Missing values (NaNs): If either DataFrame contains NaNs, the output 
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distance may be NaN unless explicitly handled beforehand.

Empty DataFrames: If both inputs are empty DataFrames, the result will be 
0.0.

Although writing a prompt for ChatGPT might take slightly more effort compared to using the 

/explain command, it can be worthwhile when we need more targeted explanations, such as 

uncovering edge cases.

Next, we will demonstrate how to achieve this using OpenAI API, which may be more appropri-

ate for scenarios where the repository becomes larger and we want to generate explanations for 

many functions programmatically.

Using OpenAI API to explain code
Using the same prompt structure from ChatGPT, we can make a programmatic call to OpenAI, 

following the best practices introduced in Chapter 5.

We will define the same system prompt components that mirror our ChatGPT prompt:

SURROUND = """... omitted for brevity ..."""

SINGLE_TASK = "... omitted for brevity..."

HEADERS = """...omitted for brevity"""

We will add a get_user_prompt function that merges the HEADERS prompt piece with the source 

code of the function:

def get_user_prompt(func: callable) -> str:

    return f"""

    FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}

    HEADERS: {{{{{{ {POINTS} }}}}}}

    EXPLANATION:

    """

Then, we can call OpenAI API using the gpt-4o-mini model:

if __name__ == "__main__":

    client: OpenAI = OpenAI()

    system_prompt = f"{SURROUND} {SINGLE_TASK}"

    user_prompt = get_user_prompt(get_manhattan_distance)

    completion: ChatCompletion = client.chat.completions.create(
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        model="gpt-4o-mini",

        messages=[

            {"role": "system", "content": system_prompt},

            {"role": "user", "content": user_prompt},

        ],

    )

    print("Explanation:", completion.choices[0].message.content)

Just as with ChatGPT, we will receive a detailed explanation of the function, covering all points 

specified. For reference, here is a sample output from running this script:

Function's purpose: < ... omitted for brevity ... >

Arguments and their types: The function takes in two arguments:

* df1: a pandas DataFrame, which represents the first set of data.

* df2: a pandas DataFrame, which represents the second set of data. Both 
dataframes are expected to have the same shape and structure for the 
calculation to be valid.

Step-by-step data flow: < ... omitted for brevity ... >

Potential edge cases:

* If df1 and df2 have different shapes, the function may raise a value 
error due to the inability to perform element-wise operations on 
differently-sized frames.

* If either of the DataFrames is empty, the function will return a 
distance of 0.0 as there are no elements to compute differences from.

* Handling of NaN (Not a Number) values might need to be considered, 
as this could affect the calculations when present in either of the 
DataFrames.

The output here also provides an overview of the edge cases. In later chapters of the book, we will 

explore how to make use of this when designing a test suite for functions.

Next, we will explore how to extend the use of the /explain command beyond .py files using 

various GenAI tools.

Explaining non-project files
The /explain command is not limited to .py files or core business logic. For instance, in our 

Manhattan distance code base, we can use Copilot to interpret an entire non-project file or a 

specific section of it.
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Explaining an entire file
There are times when we may want a summary of a complete non-project file. For example, con-

sider the requirements.txt file in our project:

pandas==2.2.3

flask==3.1.0

To get a general explanation, we can highlight the entire content with the cursor, then open the 

inline chat or chat window and enter /explain. Figure 7.7 shows an example of this using the 

chat window in VS Code:

Figure 7.7: Chat window explanation of a full file highlighted content

In this case, Copilot accurately recognized that requirements.txt lists the dependencies needed 

for the code base to run properly. For common non-project files, we can generally expect reliable 

explanations since LLMs have encountered many similar examples during training.
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Next, we will look at how to ask for a more detailed explanation of a specific line within a non-proj-

ect file by providing the right context.

Explaining with context
While it is useful to understand a file as a whole, there are often specific lines that may be unclear 

and require a deeper explanation.

Take the Dockerfile from our Manhattan distance project as an example. Docker is a widely used 

tool among software developers for packaging applications in a consistent and reproducible way. 

A key element in this process is the Dockerfile, a plain text file typically placed at the project 

root that outlines the environment setup. This includes specifying a base image (such as a Python 

environment), listing dependencies (like the pandas library), and providing commands to build 

and run the container (such as opening a port to receive HTTP POST requests).

Below is the Dockerfile we used for our Manhattan distance application:

FROM python:3.10-slim

WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt

COPY . .

EXPOSE 5000

CMD ["python", "app.py"]
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Copilot can provide an explanation for the entire file, but there are times when we want to focus 

on a specific line. For instance, we may want to understand the meaning of EXPOSE 5000. Although 

it might seem like this command publishes port 5000 for incoming requests, it serves as docu-

mentation only. The application will still need to explicitly expose this port when launching the 

container, using a shell command such as docker run -p 5000:5000. When we highlight just this 

line and request an explanation, Copilot incorporates context from nearby lines, the filename and 

extension, and other signals to generate a relevant and accurate response, as shown in Figure 7.8:

Figure 7.8: Copilot explanation about exposed port from the Dockerfile

Copilot correctly identified that the port specification indicates the port on which the application 

is listening. For common files such as Dockerfile, the plain /explain command usually provides 

a sufficient one-line explanation.

Next, we will explore how to get similar explanations in non-project files working with ChatGPT.

Explaining non-project files with ChatGPT
When seeking an explanation for a specific line within a non-project file or the entire file itself, 

the best practice is to provide the full content of the file along with the line in question and the 

standard filename and extension. In the case of a Dockerfile, there is no extension (such as .txt 

or .py), so simply specifying Dockerfile is sufficient.
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For instance, if we want to understand the role of an exposed port in a Dockerfile, we should 

include both the entire file contents and the specific line to get a more accurate explanation, as 

demonstrated in the following prompt:

CONTEXT: you are provided with:

1. A Dockerfile enclosed with {{{ DOCKERFILE }}}

2. A line from the file enclosed with {{{ LINE }}}.

TASK: Explain the purpose of the line.

DOCKERFILE: {{{ ...omitted for brevity... }}}

LINE: {{{EXPOSE 5000}}}

EXPLANATION:

This prompt effectively identifies the function of the line in the Dockerfile, as shown in Figure 7.9:

Figure 7.9: Expose 5000 line explanation in ChatGPT

In general, when using ChatGPT to explain a line of code or a line from a non-project file, it is 

helpful to include a broader context than just the target line. For example, when explaining a 

method within a class, include the entire class definition. If a function uses a custom argument 

type, include the definition of that type as well. This leads to more precise and useful explana-

tions. Later in the chapter, we will introduce debugging strategies for complex scenarios where 

a simple textual explanation does not provide sufficient insight into the purpose of a code block.

Next, we will explore how to use a similar approach when working with OpenAI API.
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Explaining non-project files with OpenAI API
Similar to ChatGPT, we can use OpenAI API to explain specific lines from non-project files. Let us 

revisit the Dockerfile example and apply a comparable system prompt:

SURROUND = """you are provided with:

1. A Dockerfile enclosed with {{{ DOCKERFILE }}}

2. A line from the file enclosed with {{{ LINE }}}."""

SINGLE_TASK = "Your task is to explain the purpose of the line."

Unlike earlier examples where we passed a function’s source code to OpenAI API, this time we 

want to send the entire Dockerfile content. We can do this by using Python’s built-in open 

function inside the get_user_prompt function:

def get_user_prompt(path: str, line: str) -> str:

    with open(path, 'r') as file:

        dockerfile_content = file.read()

    return f"""

    DOCKERFILE: {{{{{{ {dockerfile_content} }}}}}}

    LINE: {{{{{{ {line} }}}}}}

    EXPLANATION:

    """

We can then call OpenAI API using the following code:

if __name__ == "__main__":

    client: OpenAI = OpenAI()

    system_prompt = f"{SURROUND} {SINGLE_TASK}"

    user_prompt = get_user_prompt(

'../../ch7/Dockerfile', 'EXPOSE 5000')

    completion: ChatCompletion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[

            {"role": "system", "content": system_prompt},

            {"role": "user", "content": user_prompt},
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        ],

    )

    print("Explanation:", completion.choices[0].message.content)

For reference, running this script produced the expected result, identifying the line’s purpose as 

specifying the port to be exposed. Here is an example output:

Explanation: The line `EXPOSE 5000` in the Dockerfile serves to inform 
Docker that the application running inside the container will be listening 
for incoming network connections on port 5000.

When a container is created from this Docker image, port 5000 will be 
exposed for external communications, making it possible for users or other 
applications to connect to the service provided by the application running 
in the container. However, it is important to note that this command does 
not actually publish the port; to make the port accessible from outside 
the Docker environment, the user must explicitly map it to a port on the 
host machine when running the container, typically using the `-p` option 
with the `docker run` command.

In summary, `EXPOSE 5000` is a documentation feature that indicates the 
intended service port and enhances the understandability of the Docker 
container's purpose.

To conclude, both ChatGPT and OpenAI API can deliver accurate results even when using smaller 

models such as GPT-4o, if we supply the necessary context, including the filename and extension 

if it exists, its contents, and the specific line we want explained.

GitHub Copilot is best suited for quick, informal explanations. For more control over the prompt 

and instructions, ChatGPT is a better fit. When a programmatic solution is required, OpenAI API 

becomes the preferred choice.

Next, we will explore how to harness the power of GenAI to handle more advanced cases where 

a simple explanation is not enough, and interaction with the object is required for deeper un-

derstanding.

Creating calls with example parameters
As our Python objects or non-project files become more complex, a straightforward explanation 

might not be enough to help us understand the code in front of us. This is especially true when 

the Python object is part of a class, lacks type hints in its signature, contains no docstring, and 

strays from best practices.
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Take, for instance, the private method _constructor_from_mgr in the widely used pandas 

DataFrame class. This method constructs a DataFrame from a set of data blocks and their as-

sociated axes. For your reference, here is the source code, which lacks argument type hints, a 

docstring, or any reference to tests:

def _constructor_from_mgr(self, mgr, axes) -> DataFrame:

    df = DataFrame._from_mgr(mgr, axes=axes)

    if type(self) is DataFrame:

        # This would also work `if self._constructor is DataFrame`, but

        #  this check is slightly faster, benefiting the most-common case.

        return df

    elif type(self).__name__ == "GeoDataFrame":

        # Shim until geopandas can override their _constructor_from_mgr

        #  bc they have different behavior for Managers than for 
DataFrames

        return self._constructor(mgr)

    # We assume that the subclass __init__ knows how to handle a

    #  pd.DataFrame object.

    return self._constructor(df)

One issue here is the naming of the first argument. Although it is called manager, a name typically 

associated with the _mgr property of a DataFrame, it refers to a block of data, which is essentially 

the cell content without axis labels. This misleading name, combined with the absence of type 

hints, a docstring, or proper testing, makes the code block hard to understand for both humans 

and GenAI applications.

For reference, here is the explanation output from Copilot when prompting /explain from a 

PyCharm inline chat:

The _constructor_from_mgr method is a helper function in the DataFrame 
class. It is used to create a new DataFrame instance from a given 
BlockManager (or ArrayManager) and its associated axes.

Key Points:

1. Parameters:
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mgr: The BlockManager or ArrayManager that holds the actual data for the 
DataFrame.

axes: The axes (index and columns) for the new DataFrame.

2. Return Value:

It returns a new DataFrame object constructed from the provided manager 
and axes.

Example Snippet:

def _constructor_from_mgr(self, mgr, axes) -> DataFrame:

    df = DataFrame._from_mgr(mgr, axes=axes)

Here, _from_mgr is a class method that initializes a DataFrame from the 
given manager and axes. This method ensures that the new DataFrame is 
properly aligned with the provided data structure.

This output includes all the elements we are looking for, such as arguments, the return value, 

and some level of data transformation. However, deciphering the explanation can be just as 

challenging as deciphering the code itself. We propose a better approach by debugging the code 

using the generated content.

Debugging with GitHub Copilot
Copilot is built for code generation, which makes it useful for interacting with our Python code. If 

we take the get_manhattan_distance function as an example, prompting Copilot with a partial 

call to the function can result in a completion that includes example arguments.

We can do this by writing the function call directly:

get_manhattan_distance(

Or, we can do it by assigning the result to a variable with a matching type hint for the function’s 

return value:

d: float = get_manhattan_distance(
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In both cases, Copilot is expected to generate two DataFrame arguments for the function. An 

example of this kind of completion in PyCharm is shown in Figure 7.10:

Figure 7.10: Sample call completed by GitHub Copilot

Keep in mind that if your IDE automatically inserts a closing bracket, ), after you type the opening 

one, (, you may need to press Enter to activate Copilot’s suggestion.

This generated completion can serve as an entry point for interacting with the function through 

the debugger. In PyCharm, we can initiate debug mode by right-clicking the filename and selecting 

Debug, as illustrated in Figure 7.11:

Figure 7.11: Debug mode in PyCharm

In VS Code, debugging is done by clicking the play icon in the top-right corner and selecting 

Python Debugger: Debug Python File, as shown in Figure 7.12:
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Figure 7.12: Running the Debugger in VS Code

Running the file in debug mode allows us to step through the code line by line, offering a clearer under-

standing of its internal workings. For example, when using PyCharm’s debugger, we can inspect the 

variables within the function and follow the data transformation as it happens, as seen in Figure 7.13:

Figure 7.13: Debug mode in PyCharm showing internal function arguments

This gives us visibility into the intermediate values within get_manhattan_distance.

The authors frequently rely on debugging to interact with the code they read and write. This 

hands-on approach supports faster development of intended functionality and offers deeper 

insights into complex code logic. This far exceeds reading source code, using GenAI explanations, 

or consulting docstrings.

Next, we will explore how generating sample calls can help us better understand complex code 

blocks, such as the _constructor_from_mgr method in the pandas DataFrame class.
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Debugging dependency code
Just like with the get_manhattan_distance case, we can use Copilot to help generate sample 

code for debugging the _constructor_from_mgr method. Since this is a class method, we will 

split our prompt into two parts. The first prompt generates a sample instance of the class, and 

the second invokes the method.

We will begin by asking Copilot to complete a DataFrame instance. A sample prompt may look 

like this:

coordinates_a : pd.DataFrame =

This prompt offers sufficient context for Copilot to suggest an assignment. As shown in Figure 

7.14, Copilot begins by proposing an initial completion for a pd.DataFrame.

Figure 7.14: Initial completion in PyCharm

When we accept the suggestion, Copilot typically proposes sample data that fits the DataFrame’s 

name, as illustrated in Figure 7.15:

Figure 7.15: Chained completion in PyCharm

At this point, we can either trigger additional columns by accepting chained suggestions or type 

} to flag to Copilot that we do not want any additional columns. We then move on to the method 

call with the following prompt:

coordinates_a._constructor_from_mgr(

Note that your IDE may automatically complete the closing bracket, ). In that case, press Enter 

between the brackets to let Copilot generate a completion suggestion.
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For example, in Figure 7.16, Copilot proposes using the coordinates_a._mgr and coordinates_a.

axes properties as the calling parameters.

Figure 7.16: Parameter completion

With the two proposed parameters, we can debug the method as shown in Figure 7.17 and gain a 

better understanding of its behavior.

Figure 7.17: Debugging _constructor_from_mgr using Copilot’s suggestion

To conclude, Copilot can supercharge the process of debugging sections of the code base, allowing 

us to better understand both simple and complex implementations. We rely heavily on debugging 

as a daily practice to deepen their understanding of the code they interact with.

Next, we will explore how ChatGPT and OpenAI API offer distinct characteristics that we can utilize.
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Customizing call parameters with ChatGPT and OpenAI
GitHub Copilot is generally better suited for quickly generating debugging calls to trigger Python 

objects, as it can access relevant context, such as the class code, when we are working with a 

method. For cases where we want specific characteristics of the sample parameters, prompting 

ChatGPT and OpenAI may be more suitable.

For example, to generate suitable arguments for debugging the get_manhattan_distance function, 

we might want five rows and three columns, and can use the following prompt:

CONTEXT: you are provided with:

1. A Python function enclosed with {{{ FUNCTION }}}

2. Arguments requirements enclosed with {{ REQUIREMENTS }}}.

TASK: Call the function with the data requirements

FUNCTION: {{{ ... omitted for brevity ... }}}

REQUIREMENTS: {{{

1. 5 rows

2. 3 columns

3. floats and integers in cells

}}}

CALL:

For reference, the output is shown in Figure 7.18:

Figure 7.18: Call parameters for get_manhattan_distance
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In this example, both DataFrames, df1 and df2, have the same shape of five rows and three col-

umns, which makes them appropriate arguments for the function call.

The OpenAI API call is similar, and you can find the full script at ch7/prompts/openai_debug.

py for later reference.

To conclude, we turn to ChatGPT and OpenAI API when our data requirements are beyond trivial 

for a quick completion that Copilot might otherwise handle well. Later in the book, we will explore 

how to build on these data generation methods to create a robust test suite.

Debugging dependency code
When using ChatGPT or OpenAI API to generate test code for a dependency package, it is import-

ant to provide enough context for the model to produce a desirable call. The amount of context 

required depends on how widely the library is used. For standard packages such as pandas, in-

cluding just the relevant method may be enough. For custom or private repository classes, it is 

usually best to include the entire class definition.

For example, the DataFrame class in pandas is about 12,000 lines long, which is too much to include 

in a prompt. However, because pandas is highly popular, we can provide only the _constructor_

from_mgr method and still receive a relevant response.

Below is a sample prompt used with ChatGPT to generate a call to the _constructor_from_mgr 

method:

CONTEXT: Given Pandas DataFrame 2.2.3 class, you are provided with:

1. Pandas DataFrame method to be called enclosed with {{{ FUNCTION }}}

2. Arguments requirements enclosed with {{ REQUIREMENTS }}}.

TASK: Generate a method call with sample parameters that meet the data 
requirements.

FUNCTION: {{{ ... omitted for brevity ... }}}

REQUIREMENTS: {{{

1. 5 rows

2. 3 columns

3. floats and integers in cells

}}}

CALL:
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Figure 7.19 shows an example output from GPT-4o in response to this prompt.

Figure 7.19: Sample test call to _constructor_from_mgr

Here, ChatGPT successfully generated a method call using df._mgr and df.axes, producing a 

DataFrame with the required dimensions.

Since OpenAI API follows a similar pattern, we have provided the full script in ch7/prompts/

openai_debug_pandas.py for reference.

In later chapters, we will build on this approach to supercharge the generation of robust test suites.

Putting it all together
Now that we have reviewed different approaches to shorter objects, explored tailored 

explanations for Python objects and non-project files, considered programmatic concerns, 

and looked at scenarios where a textual explanation is not sufficient, we can summarize 

everything in a pros and cons table for each of the tools:
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GenAI app Pros Cons

GitHub Copilot Provides quick responses with 

relevant context. It supports the use 

of /explain as is and allows us to add 

additional requirements.

Does not support tailored 

explanations, such as when we 

need to include edge cases for 

get_manhattan_distance.

ChatGPT Enables tailored explanations and gives 

us flexibility to add or remove context.

Requires more effort to craft 

prompts.

OpenAI API Suitable for programmatic solutions 

and automation.

Significantly more effort 

compared to GitHub Copilot and 

ChatGPT.

In our own work, we typically begin with Copilot when we need an explanation. As our require-

ments expand, we move to Copilot’s chat window, ChatGPT, or OpenAI API. When dealing with 

more complex objects, we always recommend incorporating debugging into the reading process 

to better understand the code.

Summary
In this chapter, we expanded our focus beyond .py files and explored how GenAI can help us un-

derstand entire code bases. Using GitHub Copilot, we applied the /explain command in its plain 

form as well as with more tailored instructions to grasp the role of the get_manhattan_distance 

function. We also applied this command to understand non-project files such as requirements.

txt and Dockerfile.

Next, we used ChatGPT to craft prompts that offered useful explanations about edge cases and 

argument types. We then moved on to OpenAI API to generate a script that programmatically 

provided multiple explanations with one call.

We concluded by generating sample values that are useful for interacting with our code through 

the debugger. This approach is especially helpful when dealing with more complex implemen-

tations.

In the next chapter, we will dive into prompt engineering techniques to improve the quality of our 

generated code. Through few-shot learning, also known as in-context learning, we will guide 

Copilot, ChatGPT, and OpenAI API to follow a specific style guide aligned with our production 

standards. We will also explore additional techniques to shape prompts for better outcomes.
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Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: How can we address explanations of complex Python objects?

Answer: In cases where the object is relatively simple, we can utilize the GitHub Copilot /explain 

slash command to help us better grasp the arguments, data transformation, and return values. 

For more complex objects, we can use debugging by generating calls to the object with GitHub 

Copilot, ChatGPT, and OpenAI API.

Question 2: When asking ChatGPT to explain a single line in a Dockerfile, what context should 

be added?

Answer: It is recommended to include the full contents of the Dockerfile along with the filename 

and extension, and the specific line in question. This gives ChatGPT the context needed for a 

more accurate explanation.

Further reading
To learn more about the topics that were covered in this chapter, look at the following resources:

•	 Dockerfile, Wikipedia: https://realpython.com/primer-on-python-decorators/

•	 PyCharm debugging: https://www.jetbrains.com/help/pycharm/part-1-debugging-
python-code.html#step

•	 VS Code debugging: https://code.visualstudio.com/docs/python/debugging

Unlock this book’s exclusive 
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before 

you start.

https://realpython.com/primer-on-python-decorators/
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html#step
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html#step
https://code.visualstudio.com/docs/python/debugging
http://packtpub.com/unlock
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8
An Introduction to Prompt 
Engineering

In this chapter, we will introduce the practice of prompt engineering, a field of study that started 

in 2020, which offers advanced techniques for refining prompts to achieve more reliable, predict-

able, and desirable outcomes in large language model (LLM)-based applications.

We will focus on an effective prompt engineering technique for code generation with GenAI: 

few-shot learning, also known as in-context learning. This approach, when used in the context 

of code-related tasks, guides the model toward producing outputs that align with a specific 

coding style or objective.

We will focus on how the few-shot learning technique can enhance the model’s output for more 

accurate and style-consistent code generation. While there are many different uses of few-shot 

learning in code-related tasks, the focus on style is a useful example for maintaining consisten-

cy in a repository. This includes enforcing type hints, adding docstrings, or following a specific 

logging convention. By aligning the generated code with the required style guide, we can reduce 

the need for manual customization and accept the GenAI output as-is.

In this chapter, we will cover the following topics:

•	 Utilizing prompt engineering for coding

•	 Enhancing prompts with few-shot examples

•	 Leveraging few-shot learning with ChatGPT
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•	 Working with few-shot learning for OpenAI API

•	 Crafting a style guide for GitHub Copilot

•	 Introducing more prompt engineering techniques

Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub Copilot account

•	 IDE – either VS Code or PyCharm

•	 OpenAI account with access to OpenAI API

•	 Access to the book’s repository, which includes the prompt samples and style guides fea-

tured in this chapter, available at https://github.com/PacktPublishing/Supercharged-

Coding-with-Gen-AI

•	 Virtual environment set up in VS Code or PyCharm

•	 OpenAI API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting 

up OpenAI API access and token generation, see Chapter 2. If you need help creating an OpenAI 

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Utilizing prompt engineering for coding
In Chapter 4, we explored the three pillars of achieving quality output: model mastery, evaluation 

metrics, and precise prompts. We also discussed how following the five S’s best practices for 

prompts (structured, surrounded, single-tasked, specific, and short) can significantly enhance 

the quality of model output. Using OpenAI’s example of an effective prompt, we demonstrated 

how aligning with these principles, such as focusing exclusively on error fixes and providing a 

clear list of issues to address, could improve results.

As tasks grow more complex, advanced techniques are essential to guide models toward achieving 

desired outcomes. LLMs may need additional instructions to adhere to a specific style guide, pass 

a unit test suite, or fix reproducibility issues.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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Since the advent of LLMs in 2020, prompt engineering has developed into a practice that refines 

and structures prompts to achieve better results and address more complex scenarios. There 

are now many strategies that guide the model toward more desirable outcomes, including the 

following:

•	 Structuring prompts in a way that aligns with LLM capabilities

•	 Providing additional context to clarify the problem

•	 Including specific guidelines for the desired output

•	 Guiding the model through a reasoning process

•	 Defining constraints and boundaries for the expected output

•	 Providing external feedback to iteratively refine results

In coding-related tasks, prompt engineering is valuable for a variety of applications including 

creating style guides for code refactoring, breaking down complex challenges into manageable 

steps, and generating production-standard code. We will explore in depth a range of prompt 

engineering techniques designed to supercharge various stages of the software development 

life cycle (SDLC) throughout this book.

Next, we will take an in-depth look at the few-shot learning technique, which incorporates spe-

cific guidelines for desired outputs, and examine its impact on shaping the coding style of the 

model’s suggestions. Later in the chapter, we will preview other prompt engineering techniques 

that will be explored in detail in later chapters.

Enhancing prompts with few-shot examples
Few-shot learning, also known as in-context learning, is a prompt engineering technique where 

we include a few examples of desirable outputs directly within the prompt. This method can be 

extended to incorporate examples of incorrect output or edge cases, enabling the model to differ-

entiate between what constitutes a good result and what does not. By analyzing these patterns, 

the model can infer how to structure an optimal response for the given task.

To delve deeper into the research behind this approach, refer to Language Models are Few-Shot 

Learners by Brown et al. (https://arxiv.org/abs/2005.14165v4).

https://arxiv.org/abs/2005.14165v4
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Few-shot learning research demonstrates how, with a few examples (or shots) of input-output 

pairs, a model can infer patterns from the relationships between these examples and complete 

tasks in a style consistent with the provided samples. For instance, the following prompt, taken 

from the study, illustrates the predictability and consistency of an LLM when solving arithmetic 

problems. Utilizing few-shot prompting increases the predictability of the output, as the model 

is likely to generate responses that align with the style of the provided few-shot examples as 

shown here:

Instruction: Solve the following arithmetic problems.

Examples:

Problem: What is 5 + 3?

Answer: 8

Problem: What is 12 - 4?

Answer: 8

Problem: What is 7 × 6?

Answer: 42

Problem: What is 15 ÷ 3?

Answer:

The model’s output was as follows:

5

Compared to prompts that only specify the task (Solve the following arithmetic problem), 

this example-based approach reduces ambiguity. The model aligns its output more closely to the 

expected structure, providing only the number as the answer, without additional explanation or 

formatting inconsistencies.

Few-shot prompting is a useful technique for a variety of coding-related tasks, such as code re-

factoring, code analysis, and code generation. By including specific examples in the prompt, we 

can guide the model to produce outputs that align with our desired patterns.

Few-shot learning for code refactoring
In a code refactoring scenario, we may want to transform print statements into structured logger 

messages, a common practice for maintaining production-level software. Replacing the variety 

of print statements across many files is both error-prone and tedious. However, we can use an 

LLM with a prompt with clear instructions and a few examples. For example, we can enrich a 

request to refactor the following print message:

print('Error! File not found: passwords.txt')
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We can refactor it to a log message, with a few examples:

Old: print('Process started for config.txt')

Refactored: logger.info('Processing started', extra={'stage': 'start', 
file: 'config.txt'})

Old: print('Warning! Could not load user data from user_info.csv')

Refactored: logger.warning('User data failed to load', extra={'module': 
'user_loader', 'status': 'failure', file: 'user_info.csv'})

Old: print('Error! File not found: passwords.txt')

Refactored:

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick 

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.
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The examples in this prompt highlight the distinctions between different logging levels with ex-

amples of transforming print messages into info and warning logging messages. The examples 

also demonstrate static log messages with additional information provided through the extra 

parameter.

Next, we will see how enhancing our prompt with few-shot examples improves the output we 

get from ChatGPT.

Leveraging few-shot prompting with ChatGPT
When using ChatGPT, if applying the five S’s framework from Chapter 4 does not produce the 

desired results, we can enhance our prompts with a few-shot approach. In this case, we will still 

follow the five S’s framework but incorporate indexed variables that represent a series of inputs 

and outputs for the task.

Few-shot structure
A typical approach to implement few-shot prompting in ChatGPT is by extending the five S’s 

framework to include indexed variables such as {{{ Input_i }}} and {{{ Output_i }}}. This 

implies that the context references these variables, for example:

CONTEXT: You are provided with:

1. Python snippet enclosed with {{{ OLD }}}

2. Examples enclosed with {{{ OLD_i }}} followed by a desirable output 
enclosed with {{{ REFACTORED_i }}}

We then supply the OLD_i and REFACTORED_i examples, followed by {{{ OLD }}}, as such:

OLD_1: {{{ }}}

REFACTORED_1: {{{ }}}

OLD_2: {{{ }}}

REFACTORED_2: {{{ }}}

...

OLD: {{{ }}}

Overall, a ChatGPT prompt that uses few-shot examples can be structured in this way:

CONTEXT: You are provided with:

1. ...

2. Examples enclosed with {{{ Input_i }}} followed by a desirable output 
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enclosed with {{{ Output_i }}}

TASK: ...

Input_1: {{{ ... }}}

Output_1: {{{ ... }}}

Input_2: {{{ ... }}}

Output_2: {{{ ... }}}

...

Input: {{{ }}}

CUE:

The labels for inputs and outputs should reflect their relationship and remain consistent across 

examples. For example, when solving arithmetic problems, question and answer are appropriate 

labels. When transforming print statements to log messages or performing other refactoring 

tasks, old and refactored make more sense.

Improvement in output with code refactoring
Let us examine a case where we want to refactor print statements into structured logging. This in-

volves using appropriate logging levels, enforcing static messages, and including extra parameters.

To observe the default behavior without applying a few-shot approach, we can navigate to 

https://chatgpt.com/, start a new conversation with the GPT-o3-mini-high model, and prompt 

it to refactor a print statement into a log message using the following:

CONTEXT: You are provided with a Python snippet enclosed with {{{ OLD }}}.

TASK: Refactor the snippet to a log message.

OLD: {{{ print('Error! File not found: passwords.txt') }}}

REFACTORED:

The GPT-o3-mini-high model excels at coding tasks and is likely to generate a log message with 

an error level. However, without explicit instructions on structuring the log message, it may not 

use a logger instance nor distinguish the static log message from additional details such as the 

filename, as shown in Figure 8.1:

https://chatgpt.com/
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Figure 8.1: Working with Canvas in ChatGPT

We can improve the model’s output by providing few-shot examples demonstrating how to ex-

tract key details from a print statement and use a logger instance. For example, we can refactor 

a print message to include a filename and verbosity setting:

print('Process started for config.txt with verbose=True')

We can refactor it into a structured log message:

logger.info('Processing started', extra={'verbose': True, file: 'config.
txt'})

This example highlights the extraction of essential details to improve logging clarity. Similarly, 

we can add another example with print statements containing user and file path information:

print('Warning! Could not load user U-232 data from user_info.csv')

We can refactor it into the following structured log message:

logger.warning('User data failed to load', extra={'user': 'U-232', 'file': 
'user_info.csv'})

A complete prompt with these few-shot examples might be structured as follows:

CONTEXT: You are provided with:

1. Python snippet enclosed with {{{ OLD }}}

2. Examples enclosed with {{{ OLD_i }}} followed by a desirable output 
enclosed with {{{ REFACTORED_i }}}
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TASK: Refactor the snippet to a log message.

OLD_1: {{{ print('Process started for config.txt with verbose=True') }}}

REFACTORED_1: {{{ logger.info('Processing started', extra={'verbose': 
True, file: 'config.txt'}) }}}

OLD_2: {{{ print('Warning! Could not load user U-232 data from user_info.
csv') }}}

REFACTORED_2: {{{ logger.warning('User data failed to load', 
extra={'user': 'U-232', 'file': 'user_info.csv'}) }}}

OLD: {{{ print('Error! File not found: passwords.txt') }}}

REFACTORED:

Providing these two examples as guidance for the model will capture the desired output, as 

illustrated in Figure 8.2:

Figure 8.2: Improved logging suggestion

This time, the model successfully extracted the parameters from the static log message and used 

the logger instance instead of a direct logging message, following the patterns demonstrated in the 

few-shot examples. We will revisit logging practices in greater detail in Chapter 15, so stay tuned.

Next, we will explore how adopting a Python-formatted style guide with Copilot can go beyond 

traditional linting and code formatting tools. This few-shot approach is proactive, adaptable, and 

context-aware, enabling Copilot to predict our intended implementation easily.
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Crafting a style guide for GitHub Copilot
GitHub Copilot functions as a personalized AI assistant, predicting our next coding moves. Be-

cause LLMs excel at imitating style, Copilot quickly adapts to any style preferences it observes 

during a session.

For example, suppose we have a file named ch8/code_samples/math_calculations.py with 

two functions (get_area and get_arithmetic_mean), both implemented without type hints and 

with single-line function signatures:

import numpy as np

def get_area(radius):

    return np.pi * radius ** 2

def get_arithmetic_mean(x1, x2):

    return (x1 + x2) / 2

If we then start typing a new function signature for get_euclidean_distance, Copilot is likely 

to generate an implementation in the same style, with no type hints and one-line signatures, as 

shown in Figure 8.3:

Figure 8.3: Copilot preserving our coding style

Alternatively, if our code implements type hints, hanging indents, and docstrings, Copilot will 

generate suggestions that reflect this updated style. For example, here is an alternate implemen-

tation of get_area and get_arithmetic_mean:

import numpy as np

def get_area(

        radius: float,
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        ) -> float:

        """

    Compute the area of a circle given its radius.

    """

    area: float = np.pi * radius ** 2

    return area

def get_arithmetic_mean(

        x1: float,

        x2: float,

        ) -> float:

    """

    Compute the arithmetic mean of two numbers.

    """

    arithmetic_mean: float = (x1 + x2) / 2

    return arithmetic_mean

Based on this coding preference, Figure 8.4 shows the suggested implementation of get_euclidean_

distance reflecting the new coding style:

Figure 8.4: Copilot’s adapted coding style
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As developers, we would like a more robust method for informing Copilot of our preferred style 

guidelines without having to repeat them every session. We can achieve this by using a few-shot 

learning approach: creating a dedicated style guide file, as we will see next.

Style guide file
A simple way to include our preferred style guide in Copilot is to maintain a single file outside 

the main project folder that we can copy and paste in place when we start a new Copilot session. 

Copying and pasting this file’s content makes our coding style part of the active session, although 

we hope that future versions of Copilot will introduce a more convenient method. For example, 

a sample file located at ch8/code_samples/style_guide.py, shown in Figure 8.5, includes two 

functions: get_area and get_arithmetic_mean.

Figure 8.5: Style guide

This file does not include a docstring, as adding one is considered a separate task from imple-

menting the function. We will explore this topic in more detail in later chapters.

Next, if we open a new file at ch8/code_samples/distances.py and begin typing the signature 

of get_euclidean_distance, Copilot is likely to generate an implementation that aligns with 

that formatting, as shown in Figure 8.6:
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Figure 8.6: Preserved coding style

Our coding preferences remain consistent in the new file, showing that Copilot has effectively 

captured our desired style. In later chapters, we will explore how adding more Python elements, 

such as decorators, to the style guide can further refine and expand our preferred coding approach.

Next, we will explore how to apply few-shot learning with OpenAI, using this technique to re-

factor code at scale.

Working with few-shot learning for OpenAI API
For large-scale tasks, such as generating code implementations from function signatures, we can 

use OpenAI API programmatically and apply few-shot learning to illustrate the desired outcome 

effectively. To do this, we provide indexed examples of input and output and reference these 

examples in the system prompt.

 Style guide as a next-generation code formatter

If you are used to code formatters or linters, you will notice that implementing a style 

guide may remind you of a code formatting initiative, but is more advanced. First, 

because the style guide approach is proactive rather than reactive, we get suggestions 

already formatted the way we want. Second, it offers more flexibility: we can adopt 

the show, don’t tell method by simply demonstrating our preferred style to Copilot. 

Finally, we can go beyond traditional formatters by including preferences such as 

type hints, which are not always clear using older methods.
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The system prompt should reference the indexed input and output examples as follows:

SURROUND = """You are provided with:

1. A [...] enclosed with {{{ INPUT }}}.

2. Example [...] enclosed with {{{ INPUT_i }}} followed by the 
corresponding [...] enclosed with {{{ OUTPUT_i }}}."""

SINGLE_TASK = "Your task is to [...]."

system_prompt = f"{SURROUND} {SINGLE_TASK}"

Next, we update the get_user_prompt function to include the provided examples, ensuring that 

the labels align with those in the system prompt:

def get_user_prompt(some_input: str, few_shots: list) -> str:

    prompt = ""

    for i, (input_, output_) in enumerate(few_shots):

        prompt += f""" 

    INPUT_{i + 1}:  {{{{{{ {input_} }}}}}}

    OUTPUT_{i + 1}:       {{{{{{ {output_} }}}}}}"""

       

    prompt += f"""

    INPUT:          {{{{{{ {some_input} }}}}}}

    OUTPUT:

    """

    return prompt

Similarly, we replace INPUT_i and OUTPUT_i with task-specific labels, such as FUNCTION_i and 

CODE_i for code completion tasks.

Implementing code with OpenAI API
In Chapter 2, we built a code completion program that generates a Python implementation based 

on a function signature. For example, when implementing print_fibonacci_sequence, we pro-

vided a prompt that requested only the function’s implementation, without additional explana-

tions or output samples.

A more effective approach is to include a few examples that demonstrate the desired output 

format. For instance, we can provide implementations for get_area and get_arithmetic_mean, 

both based solely on their function signatures:

INPUT_1 = """def get_area(radius: float) -> float:"""
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OUTPUT_1 = """def get_area(radius: float) -> float:

    area: float = np.pi * radius ** 2

    return area"""

INPUT_2 = """def get_arithmetic_mean(x1: float, x2: float) -> float:"""

OUTPUT_2 = """def get_arithmetic_mean(x1: float, x2: float) -> float:

    arithmetic_mean: float = (x1 + x2) / 2

    return arithmetic_mean"""

FEW_SHOTS = [ 

    (INPUT_1, OUTPUT_1), 

    (INPUT_2, OUTPUT_2),

]

With these examples, we can construct a system prompt and user prompt that encourage the 

model to generate only the function implementation without additional explanations. The system 

prompt would be structured as follows:

SURROUND = """You are provided with:

1. A Python function signature enclosed with {{{ FUNCTION }}}.

2. Example signatures enclosed with {{{ FUNCTION_i }}} followed by the 
corresponding implementation enclosed with {{{ CODE_i }}}.

"""

SINGLE_TASK = "Your task is to implement the function."

Next, we define a function to generate the user prompt, ensuring consistency with the system 

prompt’s structure:

def get_user_prompt(signature: str, few_shots: list) -> str:

    prompt = ""

    for i, (input_, output_) in enumerate(few_shots):

        prompt += f""" 

    FUNCTION_{i + 1}:  {{{{{{ {input_} }}}}}}

    CODE_{i + 1}:       {{{{{{ {output_} }}}}}}"""

    prompt += f"""

    FUNCTION:          {{{{{{ {signature} }}}}}}
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    CODE:

    """

    return prompt

For the implementation of print_fibonacci_sequence, we define the system and user prompts 

as follows:

system_prompt = f"{SURROUND} {SINGLE_TASK}"

user_prompt = get_user_prompt("def print_fibonacci_sequence(n: int) -> 
None:", FEW_SHOTS)

Finally, we call the API with the following snippet:

client: OpenAI = OpenAI()

completion: openai.ChatCompletion = ( 

    client.chat.completions.create( 

        model="gpt-4o-mini", 

        messages=[ 

            {"role": "system", "content": system_prompt}, 

            {"role": "user", "content": user_prompt}, 

        ], 

    ))

print(completion.choices[0].message.content)

By structuring the prompt this way, the model is more likely to follow the expected output format. 

Running the preceding example, which is available in ch8/code_samples/openai_fibonacci.py, 

we got the following function implementation:

def print_fibonacci_sequence(n: int) -> None: 

    a, b = 0, 1 

    for _ in range(n): 

        print(a, end=' ') 

        a, b = b, a + b 

    print() # To add a newline after printing the sequence

This implementation aligns with our provided examples and does not include surrounding ex-

planations.
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Having explored few-shot learning with ChatGPT, GitHub Copilot, and OpenAI API, we will now 

introduce additional prompt engineering techniques, which we will examine in greater detail in 

the upcoming and later chapters of the book.

Introducing more prompt engineering techniques
Variations of few-shot prompting can include edge cases, progressively complex examples, or 

contrastive examples that highlight both correct and incorrect outcomes. These variations on 

few-shot prompting enhance a model’s ability to generalize across diverse task requirements. 

The examples in this chapter on type hinting and style formatting are just the tip of the iceberg 

of how prompt engineering can be used.

In other scenarios of the SDLC, we will see how using different prompt engineering techniques 

can become handy.

Bug fix at scale with prompt engineering
Refer to the OpenAI example of effective prompts for fixing buggy code, enhanced with the re-

finements discussed in Chapter 4:

CONTEXT: You will be provided with Python code in the Python editor with 
description enclosed with {{{ DESCRIPTION }}}

that may contain errors enclosed with {{{ ERRORS }}}.

TASK: Fix the errors in the code.

DESCRIPTION: {{{  Execute 10 multiplication quizzes for the user and 
validate the answer }}}

 Fine-tuning as a better approach to OpenAI API

When scaling projects, fine-tuning offers a more effective way to specialize a model 

for a specific task, such as generating code in a preferred style. This process involves 

training a pre-trained model such as GPT-4o-mini on a set of high-quality examples, 

allowing it to adjust its internal settings to better align with our preferences. We 

will explore this topic in greater detail in Chapter 11.
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ERRORS: {{{

1. Compilation

2. Reproducibility of random number generation

3. Logical scoping of variable assignments

4. Error handling for input casting

}}}

While this prompt successfully identified all errors in the code, we cannot guarantee that GenAI 

applications will consistently capture all errors in different code snippets.

To improve results, we can explore techniques such as iterative prompting, where the output 

is verified for compilation and refined through model reiteration if needed. Template-based 

prompting can enforce a specific format for error descriptions, ensuring consistency and clarity 

in the output. Additionally, chain-of-thought prompting helps guide the model through a logical 

reasoning process, improving its ability to understand and fix code issues. Let’s explore these in 

the next subsections.

Iterative prompting
Iterative prompting involves engaging the model repeatedly within a feedback loop that refines its 

output based on evaluations of previous responses. This feedback can be manual, such as asking 

ChatGPT to revise its response to address unidentified errors, or automated, such as compiling 

code generated by OpenAI API or running it against a suite of unit tests. The resulting feedback, 

whether a traceback error message or failed test results, can be reintroduced to the model, con-

tinuing the cycle until specific criteria are satisfied.

For instance, if the goal is to address compilation issues, an iterative mechanism could involve 

attempting to compile the output and feeding the traceback error messages back to the model 

for refinement if the code fails to compile:

for i in range(10): 

    try: 

        exec(user_code) 

        print(f"successfully compiled:\n {user_code}") 

        break 

    except SyntaxError as se: 

        user_code = get_refined_output(user_code, traceback.format_exc())
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Here, we will repeatedly prompt the model with traceback messages from the suggested code 

until it successfully compiles. Alternatively, we could evaluate the code by running it against a test 

suite or using other evaluation mechanisms, which we will explore in later chapters of the book.

Template-based prompting
Template-based prompting involves providing specific guidelines for structuring the desired 

output. For instance, when fixing code, we may want to understand the type of error being ad-

dressed, such as whether it is a compilation error, a logical issue, or something else. In such cases, 

the output could follow this structure:

This code requires fix because of { ERROR TYPE}. The fixed code is { CODE 
}.

To guide the model toward generating this output, we include hints about the template within 

the context and provide a structure like this:

CONTEXT: You will be provided with Python code enclosed with {{{ CODE }}} 
that does not compile, and an error traceback enclosed with {{{ TRACEBACK 
}}}, along with a template of the output enclosed with {{{ TEMPLATE }}}.

TASK: Fix the errors in the code using the provided template.

TEMPLATE: This code requires a fix because of { ERROR TYPE }. The fixed 
code is { CODE }. 

Here, we guide the model by providing a specific template that includes placeholders for the 

error type and the fixed code. This approach differs from few-shot prompting in how the output 

is constructed; rather than offering input-output examples, we define the structure of the output 

with variables for the model to populate. These two techniques can be used independently or in 

combination to achieve the desired results.

Chain-of-thought prompting
Chain-of-thought (CoT) prompting involves guiding the model through a step-by-step reason-

ing process toward a final answer. In coding, we apply CoT by referencing functions that are yet 

to be implemented, serving as a reasoning framework for the GenAI tool, which later fills in the 

implementation details. For instance, when validating that a code has no bugs, the process may 

involve the following steps:

1.	 Validating syntax

2.	 Checking compilation

3.	 Ensuring reproducibility across runs
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Using CoT, we can explicitly reference functions that handle each of these steps while leaving the 

actual implementation for GenAI to complete. In code, this might look like this:

def validate_no_bugs_in_source_code(sc: str) -> None: 

    validate_syntax(sc) 

    validate_compilation(sc) 

    validate_reoroducibility_across_runs(sc)

Here, validate_no_bugs_in_source_code outlines the logical steps needed to verify that the 

source code is bug-free but does not contain implementation details. GenAI tools are particularly 

effective at generating low-level implementations, and when typing the first referenced function, 

validate_syntax, Copilot can generate a suitable implementation, as illustrated in Figure 8.7:

Figure 8.7: GitHub Copilot suggested implementation of validate_syntax

CoT is one of the most effective prompt engineering techniques for coding tasks, and we will 

explore its applications further in the upcoming chapters.

Exploring additional methods
This book covers a selection of prompt engineering techniques among the many available. For a 

broader exploration of prompting strategies, Unlocking the Secrets of Prompt Engineering: Master 

the art of creative language generation to accelerate your journey from novice to pro by Packt delves 

into numerous other techniques applicable to diverse use cases.
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Summary
In this chapter, we introduced few-shot learning as a prompt engineering technique to guide 

LLMs toward more predictable and desired outcomes. We demonstrated its application in sce-

narios such as implementing a specific logging structure and following a particular coding style.

We explored how to implement few-shot prompting across different GenAI applications. In 

ChatGPT and OpenAI API, we utilized specific keyword combinations such as question and 

answer or old and refactored to structure the few-shot examples. With GitHub Copilot, we 

leveraged a style guide file to influence code completion output.

We also introduced additional prompt engineering techniques that are valuable for scaling bug 

fixes. Iterative prompting enables models to refine their output by utilizing feedback from com-

pilation checks until the code compiles successfully. Template-based prompting leads the model 

toward producing outputs with a specific structure. Furthermore, CoT prompting breaks down 

solutions into clear, step-by-step reasoning processes.

In the next chapters, we will delve deeper into the mechanics of CoT, and chaining, and see how 

to apply them with ChatGPT, OpenAI API, and GitHub Copilot.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: When should we use prompt engineering?

Answer: Prompt engineering should follow best practices to achieve desirable outcomes from 

LLMs. However, when standard guidelines are insufficient, advanced prompting techniques may 

be necessary. In this chapter, we saw how few-shot learning helped align outputs with a specific 

style guide, making results more predictable and desirable.

Question 2: Can we use plain English to describe the desired outcome instead of providing few-

shot examples in code?

Answer: While it is theoretically possible to use plain English to describe coding styles and desired 

outputs, this approach is less effective. Like mathematical equations or music notes, code acts 

as a concise and precise notation system. LLMs, trained extensively on code, interpret it more 

accurately than plain-text descriptions.
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Further reading
To learn more about the topics that were covered in this chapter, take a look at the following 

resources:

•	 PEP-8 Style Guide for Python Code: https://peps.python.org/pep-0008/

•	 Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ..., and Amodei, D. 

(2020). Language Models are Few-Shot Learners. OpenAI. Retrieved from https://arxiv.

org/abs/2005.14165v4

•	 Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., and Chadha, A. (2024). A systematic 

survey of prompt engineering in large language models: Techniques and applications. Indian In-

stitute of Technology Patna, Stanford University, and Amazon AI. Retrieved from https://
arxiv.org/abs/2402.07927v1
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Subscribe at https://packt.link/TRO5B or scan the QR code below.
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Advanced Prompt Engineering 
for Coding-Related Tasks

Some coding tasks extend beyond simple, single-task initiatives. For these more complex scenarios, 

advanced prompt engineering techniques such as chain of thought (CoT) and chaining can be 

highly effective when working with large language models (LLMs). This chapter will explore 

how to use these techniques when working with OpenAI API, ChatGPT, and GitHub Copilot on 

challenges that often require more than just the initial prompt to achieve the desired output.

We will walk through an example of implementing a geometric mean calculator for portfolio 

returns that handles negative net returns. By applying CoT prompting, we will guide the model 

with explicit reasoning steps and achieve desirable results, even with a lighter model such as 

GPT-4o mini. Then, using chaining, we will improve the initial implementation by enhancing 

its type hints and refining the docstring.

This chapter covers the following topics:

•	 Extending the prompt implementation scope

•	 Leveraging CoT reasoning for code completion

•	 Using prompt chaining with LLMs
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Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub Copilot account

•	 IDE – either VS Code or PyCharm

•	 OpenAI account with access to OpenAI API

•	 Access to the book’s repository, available at https://github.com/PacktPublishing/

Supercharged-Coding-with-Gen-AI

•	 Virtual environment set up in VS Code or PyCharm

•	 OpenAI API token

For assistance with setting up a GitHub Copilot account, refer to Chapter 3. For instructions on 

setting up OpenAI API access and token generation, see Chapter 2. If you need help creating an 

OpenAI account or setting up a virtual environment in your IDE, refer to the Appendix for detailed 

guidance.

Extending the prompt implementation scope
Until now, we have mainly worked with short functions spanning only a few lines of code, ap-

plying our best practices for prompt precision to generate effective code using GitHub Copilot, 

OpenAI, and ChatGPT.

However, in many real-world scenarios, our tasks will not fit within such a narrow scope. We 

may need to handle input casting, switch cases, or adapt implementations beyond a raw mathe-

matical formula. This chapter explores how we can extend the scope of coding tasks by applying 

advanced prompt engineering techniques.

Extending the geometric mean scope
Let us revisit the geometric mean implementation from Chapter 3. The geometric mean is a method 

of averaging numbers that have a multiplicative nature, such as financial portfolio growth rates, 

population growth rates, or drug concentrations that change exponentially over time. The geo-

metric mean is defined as the nth root of the product of the inputs, as follows:

Geometric Mean = (∏ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖𝑖𝑖 )1𝑛𝑛



For a more detailed explanation of the concept, refer to Chapter 3.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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However, when some of the inputs are negative, such as net portfolio returns, the standard for-

mula becomes insufficient. For example, consider IBM’s stock returns from 2000 to 2002, where 

two years had negative returns:

IBM_YEARLY_RETURNS: Dict[str, float] = {

    "2000": -0.2084,

    "2001": 0.4300,

    "2002": -0.3547

}

If we were to use the geometric mean formula as is, we would get an average yearly return of 32%:𝐺𝐺𝐺 𝐺 𝐺(−0.2084  ⋅ 0.4300  ⋅   − 0.3547)13 = (0.031)13 = 0.32

This result, however, is incorrect. A $1,000 investment in IBM stock in 2000 would shrink to 

approximately $730 by the end of 2002, reflecting a total decline of about 27%. Thus, we would 

expect an average annual return closer to -10%.

One way to handle negative returns is by using gross returns instead. This involves converting 

net returns to gross values, computing their product, and extracting the nth root:

from typing import Dict

import numpy as np

def get_average_return(

    net_returns: Dict[str, float],

) -> float:

    # Step 1: Calculate the yearly gross returns

    gross_returns: np.ndarray = np.array(list(net_returns.values())) + 1

    # Step 2: Calculate the geometric mean of the gross returns

    power: float = 1 / len(gross_returns)

    gross_average: float = np.prod(gross_returns) ** power

    # Step 3: Calculate the net average return

    net_average: float = gross_average - 1

    return net_average



Advanced Prompt Engineering for Coding-Related Tasks212

Applying this function to IBM’s returns produces an average return of -10%:

net_returns: [-0.2084, 0.43, -0.3547]

gross_returns: [0.7916, 1.43, 0.6453]

gross_average: 0.9006

net_average: -0.099

This implementation is more extensive than the functions we have generated so far, so it may 

require more advanced techniques to get desirable results with minimal iterations.

Next, we will compare baseline responses from GitHub Copilot, ChatGPT, and OpenAI API, ex-

amining their limitations and potential pitfalls.

Evaluating baseline outputs
In Chapter 6, we discussed how GitHub Copilot, ChatGPT, and OpenAI API each have strengths in 

different coding-related tasks. Copilot excels at code completion but can fall short when gener-

ating larger blocks of starter code. ChatGPT is better suited for producing more extensive initial 

code, though it often includes longer functions with excessive comments and computations. 

OpenAI API requires more effort to craft effective prompts but offers greater flexibility through 

programmatic automation and control over prompt history. For a refresher on these differences, 

you can revisit Chapter 6.

These differences become apparent when implementing the geometric mean for portfolio returns 

over multiple years. Each tool requires different strategies to refine and enhance the quality of 

the generated output.

GitHub Copilot baseline
To apply best practices for prompt precision with Copilot, we can start by providing the function 

signature for get_geometric_mean as follows:

def get_geometric_mean(

    net_returns: Dict[str, float],

) -> float:

    ...
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This gives Copilot a clear starting point with the function name, an argument specifying the use 

case of net returns, and an expected return type. However, this prompt alone may not be sufficient 

to guide Copilot in handling negative inputs, as demonstrated in Figure 9.1.

Figure 9.1: Copilot’s completion does not support negative net returns

This implementation would yield incorrect results for negative inputs and should not be used. 

Later in the chapter, we will see how CoT can help us get the correct implementation we are after.

ChatGPT baseline
ChatGPT, on the other hand, presents a different challenge. While newer models, such as o3, excel 

at deeper reasoning (as discussed later in this chapter) and may produce more accurate imple-

mentations, more effort is required to prompt ChatGPT effectively than with Copilot. Additionally, 

achieving a coding format that aligns with our preferences is more challenging.

To replicate the GitHub Copilot implementation, we used the following prompt:

CONTEXT: You are provided with a Python function signature enclosed with 
{{{ FUNCTION }}}.

TASK: implement the function.

FUNCTION: {{{ defget_geometric_mean(\n\t\tnet_returns: Dict[str, 
float],\n) -> float: }}}

CODE:
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Using the o3-mini-high model, we generated a functionally correct implementation. Howev-

er, the resulting code was cluttered with excessive inline comments and docstrings, making it 

time-consuming to clean up. Figure 9.2 illustrates this output in ChatGPT.

Figure 9.2: ChatGPT implementation

 Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.



Chapter 9 215

For reference, the proposed code by ChatGPT is as follows:

import math

from typing import Dict

def get_geometric_mean(net_returns: Dict[str, float]) -> float:

    """ [... omitted for brevity ...] """

    if not net_returns:

        return 0.0

    # Calculate the product of (1 + return) for each net return

    product = math.prod(1 + r for r in net_returns.values())

    n = len(net_returns)

    # Compute the nth root of the product and subtract 1 to get the 
geometric mean

    geometric_mean = product ** (1 / n) - 1

    return geometric_mean

This code is functionally correct but includes several undesired elements:

•	 Unnecessary docstring

•	 Input validation

•	 Excessive comments

•	 Inline computations

Later in the chapter, we will explore how CoT and chaining requests to the initial implementation 

can help us achieve the desired output.

OpenAI API baseline
We used the o3-mini-2025-01-31 model via OpenAI API and found that its output closely mir-

rored what ChatGPT produced. To evaluate this, we ran the script located at ch9/baseline/

baseline_openai.py, using the following system and user prompts:

SURROUND = "You are provided with a Python function signature enclosed 
with {{{ FUNCTION }}}."

SINGLE_TASK = "Your task is to implement the function."

SRC_CODE = """def get_geometric_mean(\n\tnet_returns: Dict[str, float],\n) 
-> float:"""
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def get_user_prompt(src: str) -> str:

    return f"""

   FUNCTION: {{{{{{ {src} }}}}}}

  CODE:

   """

We then called the model using the following code:

if __name__ == '__main__':

    client: OpenAI = OpenAI()

    system_prompt = f"{SURROUND} {SINGLE_TASK}"

    user_prompt = get_user_prompt(SRC_CODE)

    completion: ChatCompletion = client.chat.completions.create(

        model="o3-mini-2025-01-31",

        messages=[

            {"role": "system", "content": system_prompt},

            {"role": "user", "content": user_prompt},

        ],

    )

    output = completion.choices[0].message.content

    print(output)

The output generated by OpenAI API was very similar to the one produced by ChatGPT, as seen 

in the following sample result:

def get_geometric_mean(net_returns: Dict[str, float]) -> float:

    # Return 0.0 if there are no returns (could alternatively raise an 
exception)

    if not net_returns:

        return 0.0

    import math

    # Calculate the product of (1 + return) for each period

    product = 1.0

    n = len(net_returns)

    for r in net_returns.values():

        product *= (1 + r)
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    # Compute the geometric mean: nth root of product then subtract 1

    geom_mean = math.pow(product, 1 / n) - 1

    return geom_mean

In this implementation, the functionality is correct, but the formatting is less than ideal due to 

excessive inline comments, unnecessary input validation, and even an import statement placed 

inside the function. Later in the chapter, we will see how to refine this implementation using 

CoT and chaining to achieve desirable results even when working with lower-cost models such 

as GPT-4o mini.

In summary, as our implementation scope expands beyond simple and short functions, applying 

more advanced techniques becomes essential to achieving the desired results.

Next, we will see how we can utilize advanced prompt engineering techniques and get the imple-

mentation we want faster, and see which application (either Copilot, OpenAI API, or ChatGPT) 

is most suitable for each technique.

Leveraging CoT reasoning with LLM
In Chapter 8, we explored how guided reasoning with CoT can help LLMs produce better code 

by following a step-by-step reasoning process. This step-by-step thinking encourages models to 

tackle problems in a structured way, leading to more accurate and desirable outputs.

As a simple exercise, consider the following sequence:

17, 34, 14, 28, 8, 16

This sequence follows two rules – first, multiply the previous number by 2 to get the next one; 

then subtract 20 to get the following number:

34 = 17 x 2

14 = 34 – 20

28 = 14 x 2

8 = 28 – 20

16 = 8 x 2
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The next number should be -4, which is 16 - 20. However, prompting Copilot to predict the next 

number in the sequence is not straightforward, as shown in Figure 9.3.

Figure 9.3: Copilot fails to predict the correct next number

In this case, Copilot failed to predict the next number accurately, suggesting 4 instead of -4. This 

demonstrates that the model did not fully grasp the sequence’s logic. To improve the outcome, 

we can guide the model by prompting it to reason through the relationship between the current 

number and the previous one before making a final prediction, as shown in Figure 9.4.

Figure 9.4: Reasoning steps provided for the next number
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Figure 9.4 shows that, by adding comments in rows 4-8, Copilot predicted the next number in 

the sequence correctly and also explained its reasoning for the final number, 6. Similarly, as we 

will explore later in this chapter, incorporating reasoning steps into our coding tasks can help 

the model produce more desirable outcomes.

CoT in the GPT-o series
CoT has proven so effective across a range of domains requiring complex reasoning that it was 

built into the GPT-o series. This means the model will automatically identify the necessary steps 

to complete a task before arriving at the final answer.

For the sequence completion example we explored earlier in the chapter, we could use the GPT-o1 

model without additional guidance, as shown in Figure 9.5.

Figure 9.5: Built-in CoT in o1

From the ChatGPT output, we can see that the model recognized this as a sequence pattern 

task, with an internal process for handling reasoning in such cases. The model took 47 seconds 

to process the task, which included problem analysis, problem recognition, and estimating the 

next number, as shown in Figure 9.6.
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Figure 9.6: Thought process in ChatGPT

Here, we can see that ChatGPT is analyzing the sequence, which is one of the reasoning steps in 

CoT to get to the final answer.

o-series adoption
Models from the o series are now available through ChatGPT and OpenAI API. However, they 

come at a higher cost than their predecessors, as illustrated in Figure 9.7:

Figure 9.7: Costs of o-series models for OpenAI API calls

The o1 model, for example, is priced at $15 per million input tokens and $60 per million output 

tokens, making it six times more expensive than GPT-4o and 1,000 times more expensive than 

GPT-4o mini, as shown in Figure 9.8.
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Figure 9.8: GPT-4o pricing for OpenAI API calls

Due to this significant cost difference, o-series models are used less frequently in applications. 

When selecting the right model for yourself or your company, it is important to weigh the trade-off 

between cost and output quality. If more affordable models, such as GPT-4o, deliver satisfactory 

results and meet expectations, it may be prudent to continue using them. However, the o1 and o3 

models have been shown to give significantly better outcomes, so it might be worth using them 

first or as a fallback, even at a higher cost.

Using CoT for GitHub Copilot
The CoT approach is one of our most frequently used strategies when working with GitHub Co-

pilot. When applied effectively, it can simplify the development of entire code segments, leading 

to cleaner and more readable implementations.

This method involves structuring the reasoning process by referencing functions that have yet 

to be implemented. For example, when calculating the geometric mean for net returns, we can 

break it down into three logical steps:

1.	 Convert input to gross returns.

2.	 Compute the geometric mean of the gross returns.

3.	 Convert back to the net returns.
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Expressing these steps in code involves defining each operation as a function, as shown in the 

following code:

def get_average_return(

    net_returns: Dict[str, float],

) -> float:

    gross_returns: np.ndarray = get_gross_returns(net_returns)

    gross_average: float = get_geometric_mean(gross_returns)

    net_average: float = get_net_average(gross_average)

    return net_average

This function does not include any implementation details and only outlines the functions or 

steps to be completed. Since the functions are not yet implemented, typing their names in an 

IDE may look like an error, as shown in Figure 9.9:

Figure 9.9: Error underline in the CoT definition

This underlying error indicator is expected and resolved as Copilot generates the implementation 

for the function at hand.

This reasoning approach facilitates the generation of accurate and predictable code when work-

ing with the AI pair programmer. As each function is implemented (such as get_gross_returns, 

get_geometric_mean, etc.), Copilot learns enough context to write the correct provided param-

eters, how the return value is used, and the expected type hints.

Additionally, we can predict how Copilot will complete the code and in what order. The imple-

mentation will follow the sequence of function calls in get_average_return. Indeed, as we press 

Enter twice and start typing def, Copilot will suggest an implementation for get_gross_returns, 

as shown in Figure 9.10:
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Figure 9.10: Copilot predicts the implementation of the first called function

Once we accept the implementation and hit Enter twice again, Copilot will suggest the next 

function in the call sequence, get_geometric_mean, as shown in Figure 9.11:

Figure 9.11: Copilot predicting the next function definition
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Here, we did not need to type anything. Just a two-line break, resembling the space between 

get_average_return and get_gross_returns, was enough to trigger a fully predictable imple-

mentation in this file. This demonstrates the optimal use of Copilot, truly leveraging the power of 

an AI pair programmer. For your reference, here is the full implementation suggested by Copilot:

def get_gross_returns(

    net_returns: Dict[str, float],

) -> np.ndarray:

    gross_returns: np.ndarray = np.array(

        list(net_returns.values())

    ) + 1

    return gross_returns

def get_geometric_mean(

    gross_returns: np.ndarray,

) -> float:

    gross_average: float = np.prod(gross_returns) ** (

        1 / len(gross_returns)

    )

    return gross_average

def get_net_average(

    gross_average: float,

) -> float:

    net_average: float = gross_average - 1

    return net_average

This implementation successfully captures the intended logic, and its structuring across different 

levels of abstraction is superior to what even the most advanced o3 models produce via ChatGPT 

and OpenAI API. This serves as a strong example of how effective prompting techniques can 

outperform more powerful and costly models.

 Educating your colleagues

Next time you notice a colleague trying to use inline comments in GitHub Copilot 

such as # step 1: Compute the gross returns, suggest they try using CoT in-

stead. This approach will not only be more efficient and a better way to use Copilot, 

but it will also help the team maintain higher-quality code.
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Next, we will explore how to replicate the desired outputs with ChatGPT and OpenAI API, even 

when using more affordable models such as GPT-4o mini.

CoT for the geometric mean with ChatGPT
The same CoT approach can be applied to coding tasks, such as implementing a get_average_

return function that supports negative returns. Rather than supplying the function signature, we 

will provide a full implementation of get_average_return as we did with Copilot and prompt 

the model to complete the lower-level details. A prompt for this might look like the following:

CONTEXT: You are provided with a Python function enclosed with {{{ 
FUNCTION }}} that calls functions that should be completed.

TASK: Implement the missing functions.

FUNCTION: {{{def get_average_return(\n\t\tnet_returns: Dict[str, 
float],\n) -> float: \n\tgross_returns: np.ndarray = get_gross_
returns(net_returns) \n\tgross_average: float = get_geometric_mean(gross_
returns) \n\tnet_average: float = get_net_average(gross_average) \n\
treturn net_average }}}

CODE:

This prompt outlines the necessary reasoning steps to generate the correct code. For reference, 

here is the output produced by ChatGPT using the GPT-4o mini model with the given prompt:

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

    """ ... omitted for brevity ... """

    return np.array([1 + net_return for net_return in net_returns.
values()])

def get_geometric_mean(values: np.ndarray) -> float:

    """ ... omitted for brevity ... """

    return np.prod(values) ** (1 / len(values))

def get_net_average(gross_average: float) -> float:

    """ ... omitted for brevity ... """

    return gross_average - 1

def get_average_return(net_returns: Dict[str, float]) -> float:

    gross_returns: np.ndarray = get_gross_returns(net_returns)

    gross_average: float = get_geometric_mean(gross_returns)
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    net_average: float = get_net_average(gross_average)

    return net_average

This output is more satisfactory than the baseline, even though it was generated with GPT-4o 

model instead of the more advanced O-series. It no longer includes inline comments or input val-

idation, which significantly reduces the amount of manual editing required. Later in the chapter, 

we will see how chaining can help produce even more polished results that are ready to use as is.

Next, we will apply this approach using OpenAI API.

CoT with OpenAI API
We can leverage CoT prompting and provide a full implementation of get_average_return as 

we did with Copilot and ChatGPT. The system and user prompts may look as follows:

SURROUND = "You are provided with a Python function enclosed with {{{ 
FUNCTION }}} that calls functions that should be completed."

SINGLE_TASK = "Your task is to implement the missing functions."

def get_user_prompt(func: callable) -> str:

    return f"""

    FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}

  

    CODE:

    """

We will integrate these prompt pieces into an OpenAI API call, including the system prompt, user 

prompt, and a GPT-4o mini model, as shown here:

if __name__ == '__main__':

    client: OpenAI = OpenAI()

    system_prompt = f"{SURROUND} {SINGLE_TASK}"

    user_prompt = get_user_prompt(get_average_return)

    

    completion: ChatCompletion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[

            {"role": "system", "content": system_prompt},

            {"role": "user", "content": user_prompt},

        ],
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    )

    

    output = completion.choices[0].message.content

    print(output)

Note that the code sample can be found in this book’s repository at ch9/cot/cot_openai.py. For 

reference, here is sample output from the call:

import numpy as np

from typing import Dict

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

    """Convert net returns to gross returns."""

    return np.array([1 + r for r in net_returns.values()])

def get_geometric_mean(gross_returns: np.ndarray) -> float:

    """Calculate the geometric mean of a numpy array of gross returns."""

    return np.prod(gross_returns) ** (1 / len(gross_returns))

def get_net_average(gross_average: float) -> float:

    """Convert gross average back to net average."""

    return gross_average – 1

def get_average_return(net_returns: Dict[str, float]) -> float:

     ... omitted for brevity ...

Here, we obtained a better implementation than the baseline, maintaining the desired level of 

abstraction and avoiding input validation and inline comments.

While leveraging CoT is highly effective when using GitHub Copilot, it is not always sufficient 

to produce ready-to-use code with ChatGPT or OpenAI API. To address this, we can incorporate 

chaining through follow-up prompts, as we will demonstrate next.

Using prompt chaining for LLMs
Prompt chaining is another highly effective prompt engineering technique that helps us achieve 

better results from LLMs. It involves breaking down tasks into smaller, sequential steps that are 

more efficiently completed individually.



Advanced Prompt Engineering for Coding-Related Tasks228

For instance, when implementing get_average_return, we may want to enhance ChatGPT’s 

or OpenAI’s initial output by adding type hints and avoiding inline calculations in the return 

statement. With GitHub Copilot, we might want to construct a barebones implementation first 

and add a Google Style docstring later.

Although we could include all these elements in the initial prompt, it is often more natural and 

effective to start with an implementation that is functionally correct. From there, we can refine 

the code step by step through a series of follow-up prompts.

Chaining with ChatGPT
Applying chaining with ChatGPT is very intuitive given that the UI is already designed for a con-

versational style. The chat history helps us reference previous prompt pieces without needing 

to retype them.

For instance, say that we wanted to improve the implementation of get_average_return with 

a Google Style docstring rather than an arbitrary one, and type hints to variables in all functions. 

Including all these elements in one prompt would defy the single-task best practice and result 

in suboptimal outputs. Instead, we recommend the following approach:

•	 For chained prompts with the same context, focus only on the new task

•	 For chained prompts with a different context, such as adding test cases, use a full prompt 

following the five S’s best practices

For the task of coding get_average_return, adding type hints for variables, revising the docstring 

to be in a Google Style format, and adding a test suite can be done with the following strategy:

•	 Prompt 1: Write the full code prompt using the five S’s for the get_average_return im-

plementation with a CoT.

•	 Prompt 2: Add type hints to all variables.

•	 Prompt 3: Change the docstring to Google Style.

•	 Prompt 4: Write unit tests. In this step, we will specify the test cases we want to cover, 

creating a new context. As a result, we need to provide a complete prompt that follows 

the five S’s best practices.
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For example, prompt 2, which focuses on the single task of removing comments, is simply as 

follows:

Add type hints to all variables.

This will produce an updated implementation without the inline comments, as shown in Figure 

9.12.

Figure 9.12: Added type hints to variables

The initial implementation has been updated to include type hints for variables across the different 

functions. For instance, in the first function, get_gross_returns, the gross_returns variable is 

now correctly annotated with the np.ndarray type and returned in the following line.

In prompt 3, the focus shifts to improving the docstring. We continue with a single-task prompt:

include Google Style docstring.
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This prompt is expected to yield a better implementation, as demonstrated in Figure 9.13.

Figure 9.13: Refined docstring

The result confirms that we successfully obtained the desired docstring for the get_gross_return 

function in Google Style format. For reference, here are the docstrings generated by ChatGPT for 

the get_geometric_mean, get_net_average, and get_average_return functions:

def get_geometric_mean(gross_returns: np.ndarray) -> float:

     """Calculates the geometric mean of gross returns.

Args:

    gross_returns (np.ndarray): An array of gross returns.

Returns:

    float: The geometric mean of the gross returns.

"""

... omitted for brevity ...

def get_net_average(gross_average: float) -> float: """Converts gross 
average return to net average return.

Args:

    gross_average (float): The geometric mean of gross returns.



Chapter 9 231

Returns:

    float: The corresponding net average return.

"""

... omitted for brevity ...

def get_average_return(net_returns: Dict[str, float]) -> float: 
"""Calculates the geometric mean of net returns from a dictionary of net 
returns.

Args:

    net_returns (Dict[str, float]): A dictionary of net returns per 
period.

Returns:

    float: The geometric mean of the net returns.

"""

... omitted for brevity ...

In later chapters of the book, we will explore a more robust approach to generating docstrings, 

along with additional chained tasks such as input validation, monitoring, and unit testing.

One limitation of the ChatGPT interface is the lack of control over how prompts are constructed 

and sent to the underlying model, especially as the conversation grows longer. In the next section, 

we will see how to gain more control over the chat history by using OpenAI API.

Selective history with OpenAI API
When working with OpenAI API for chained tasks, we can take a selective approach and explicitly 

choose which parts of the conversation history to include in each prompt.

Let us consider the first three prompts from the previous ChatGPT session:

•	 Prompt 1: Leverage CoT for the get_average_return implementation

•	 Prompt 2: Add type hints

•	 Prompt 3: Refine the docstring

A straightforward way to replicate this workflow with OpenAI API is to continuously append the 

chained prompt and the corresponding output to our messages list, as shown here:

messages = [{"role": "system", "content": system_prompt}]

prompt_1 = get_user_prompt(get_average_return)
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prompt_2 = "Add type hints to all variables."

prompt_3 = "include Google Style docstring."

for prompt in [prompt_1, prompt_2, prompt_3]:

    messages.append({"role": "user", "content": prompt})

completion: ChatCompletion = client.chat.completions.create(

    model="gpt-4o-mini",

    messages=messages,

)

output: str = completion.choices[0].message.content

messages.append({"role": "assistant", "content": output})

In this naive setup, each user prompt and corresponding model response is appended to the con-

versation history. By the time we reach prompt_3, we expect the output to closely resemble what 

ChatGPT would generate. For reference, here is a sample response from the API that successfully 

produced a correct implementation, complete with Google Style docstrings and properly typed 

variables:

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

    """Convert net returns to gross returns.

    Args:

        net_returns (Dict[str, float]): A dictionary where keys are 
identifiers

       (such as tickers) and values are net return values (as decimal).

    Returns:

        np.ndarray: An array of gross returns corresponding to the net 
returns.

    """

    gross_returns: np.ndarray = np.array([1 + return_value for return_
value in net_returns.values()])

    return gross_returns

For reference, the full script can be found in ch9/chaining/naive_chaining_openai.py.
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The naive approach works reasonably well when there are fewer than 5 follow-up prompts. How-

ever, as the chain grows, so does the length of the accumulated prompt, leading to increased 

token usage. For instance, running the preceding script peaked at 1,253 tokens by prompt_3, as 

illustrated in Figure 9.14.

Figure 9.14: prompt_3 with 1,253 tokens

As more prompts are added, the total token count increases, which results in higher usage costs 

and the risk of distracting the LLM from the specific task at hand.

A more efficient alternative for longer chains is a selective history strategy, where only the relevant 

parts of the interaction are passed along. Instead of including the entire interaction history in 

each follow-up request, we can simply pass the code generated in response to the first prompt, 

along with a new system prompt tailored to the next transformation task.

To isolate just the code from the assistant’s response, we can use the following utility function:

def get_refactor_user_prompt(assistant_output: str) -> str:

    code: str = re.sub(

        r"(.*?)```python(.*?)```(.*)",

        r"\2",

        assistant_output,

        flags=re.DOTALL

    ).strip()

    

    user_prompt: str = f"""

OLD: {{{{{{ {code} }}}}}}

REFACTORED:

"""

    return user_prompt
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This extracts the relevant code and formats it into a new user prompt for the next step in the chain.

In contrast to the static system prompt used in the naive approach, we now update the system 

prompt with each task:

prompt_1: str = f"{SURROUND} {SINGLE_TASK}"

prompt_2: str = "You are provided with a Python code enclosed in {{{ 
FUNCTION }}}. Your task is to add type hints to all variables."

prompt_3: str = "You are provided with a Python code enclosed in {{{ 
FUNCTION }}}. Your task is to include Google Style docstring."

We can then use a prompts dictionary to associate each prompt with the appropriate input-gen-

eration function, linking prompt_1 to get_user_prompt for the initial implementation, and the 

subsequent prompts to get_refactor_user_prompt for the refactoring steps:

prompts: Dict[str, callable] = {

    prompt_1: get_user_prompt,

    prompt_2: get_refactor_user_prompt,

    prompt_3: get_refactor_user_prompt}

This allows us to generate the user prompt dynamically for each task using the correct function:

for prompt, func in prompts.items():

    completion: ChatCompletion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[

            {"role": "system", "content": prompt},

            {"role": "user", "content": func(next_input)},

        ],

    )

    next_input: str = completion.choices[0].message.content

Notice how each API call now contains only a system prompt and a single user message. This 

keeps the interaction focused, passing along only what is necessary rather than the full chain of 

previous prompts and outputs.

For reference, here is a sample output from prompt_3 using the selective history strategy:

def get_gross_returns(net_returns: Dict[str, float]) -> np.ndarray:

    """

    Convert net returns to gross returns.
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    Gross Return is calculated as:

    Gross Return = 1 + Net Return.

    Args:

        net_returns (Dict[str, float]): A dictionary where keys are 
identifiers (e.g., asset names) and values are the corresponding net 
returns.

    Returns:

        np.ndarray: An array of gross returns derived from the provided 
net returns.

    """

    gross_returns: np.ndarray = np.array([1 + net_return for net_return in 
net_returns.values()])

    return gross_returns

This output mirrors the quality of the naive approach, including type hints and a Google Style 

docstring. The key difference is efficiency: using selective history, we reduced the token count to 

just 296, which is less than 25% of the naive approach, as shown in Figure 9.15:

Figure 9.15: Selective history reduces input tokens by over 75%

As chained tasks become more complex, the selective history strategy helps keep prompts short 

and focused. In later chapters, we will explore additional use cases for chaining across various 

stages of the Software Development Life Cycle (SDLC).
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In summary, OpenAI API allows both automated execution of chaining and control over prompt 

history. By including only relevant information, we can reduce costs and help the model concen-

trate on the specific task at hand.

In the final subsection of this chapter, we will look at how chaining can be applied with GitHub 

Copilot, where we aim for the initial implementations to already follow the desired formatting.

Chaining with Copilot
When working with Copilot for code completion tasks, we can also leverage chaining by breaking 

down the task into smaller steps. For tasks that go beyond the barebones implementation, such 

as adding docstrings, input validations, logs, and tests, it is best to align with a chained approach. 

For the chained tasks, we can use the chat interaction mode with Copilot. In later chapters of the 

book, we will see how to leverage code completion for chained tasks as well.

For example, a chaining flow to extend get_average_return with a docstring and input valida-

tion might look as follows:

1.	 Initial task: Implement get_average_return with CoT.

2.	 Chained task 2: Add docstrings to all functions.

3.	 Chained task 3: Add input validation.

After generating the initial implementation of get_average_return, as shown earlier in the 

chapter, we can proceed to the second chained task, which focuses on adding docstrings to all 

functions in the file.

In VS Code, we can use Copilot Edits for this task by opening the chat window and selecting Edit. 

We will ensure that the working set includes the current file, ch9/chaining/get_average_return.

py, and enter the following prompt:

Add Google Style docstring to all functions.

This prompt will result in suggestions for adding type hints to the variables, as shown in Figure 9.16.
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Figure 9.16: Suggested edits to add a docstring

Here, we can see that Copilot correctly added a docstring to all functions with our preferred Google 

Style; for example, in line 26, a correct description of get_gross_return was added to the function.

In PyCharm, open GitHub Copilot Chat by clicking the Copilot icon in the bottom menu and 

selecting Open GitHub Copilot Chat or using the Ctrl + Shift + C keyboard shortcut. Enter the 

following prompt:

Add Google Style docstring to all functions.

Copilot will suggest the necessary edits, adding a docstring to all functions, as seen in Figure 9.17:

Figure 9.17: Suggested edits to add a docstring using PyCharm
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In both VS Code and PyCharm, Copilot suggests the appropriate docstring for each function. Later 

in this book, we will apply chaining along with other prompt engineering techniques to address 

SDLC tasks. For example, in Chapter 14, we will explore how to combine CoT and chaining to 

profile the runtime and space complexity of our code.

Summary
In this chapter, we explored how to achieve desirable outcomes from LLMs by effectively applying 

CoT and chaining for coding tasks with an extended scope.

With CoT prompting, we saw how introducing reasoning steps into our prompts enables the 

model to handle more nuanced challenges, such as implementing a geometric mean function that 

supports negative net returns. We used function names as intermediate reasoning steps, while 

relying on Copilot, ChatGPT, and OpenAI API to fill in the implementation details.

Through chaining, we began with an initial implementation that is functionally correct and 

iteratively improved by adding type hints and refining docstrings. When using OpenAI API, we 

introduced a selective history approach to make chaining more efficient, which still holds as the 

chain of tasks gets longer.

In the next chapter, we will delve deeper into refactoring code with GenAI applications. Later in the 

book, we will introduce advanced prompt engineering techniques at various stages of the SDLC.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: Is prompt engineering always necessary when working with GenAI?

Answer: Not always. For tasks with a smaller scope, such as implementing a short function, the 

five S’s framework is often enough to guide the model toward a good result. Prompt engineering 

becomes more important when the task grows in complexity, requiring us to either break it into 

smaller parts or guide the model with reasoning steps to help it succeed.

Question 2: How is CoT applied with GitHub Copilot?

Answer: To apply CoT with Copilot, we specify our reasoning steps in abstracted functions. This 

approach helps Copilot understand the reasoning behind the desired implementation, allowing 

it to generate the next lines of code with minimal input, often just by hitting Enter.
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Question 3: Is chat history irrelevant when using prompt chaining?

Answer: No. In chaining, we make use of the previously provided context and supporting data, 

such as code specifications and reasoning steps, and refer to them again, just as we would ref-

erence variables in our code. When additional context is needed, such as test cases to include in 

our test suite, we rebuild the full prompt.

Further reading
To learn more about the topics that were covered in this chapter, refer to the following resources:

•	 Geometric mean in financial applications, Wikipedia: https://en.wikipedia.org/wiki/

Geometric_mean#Financial

•	 OpenAI learning to reason (CoT): https://openai.com/index/learning-to-reason-
with-llms/

Unlock this book’s exclusive 
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before 

you start.

https://en.wikipedia.org/wiki/Geometric_mean#Financial
https://en.wikipedia.org/wiki/Geometric_mean#Financial
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
http://packtpub.com/unlock
http://packtpub.com/unlock
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Refactoring Code with GenAI

Software developers write in programming languages to instruct a computer to perform specific 

tasks. The source code in the programming language is translated by a compiler or interpreter 

into executable computer instructions. One might conclude that programming is only artificial 

communication with a computer, but it is much more than that.

The true, implicit goal of a computer program is to communicate with other developers. Once 

code is written, it is frequently read many times, hours, weeks, or even years later, by the same 

or other developers. The developers will read the code to understand it, debug it, and integrate 

it with other systems. The goal must be to communicate with the precision required by software, 

while maintaining clarity for future developers.

Thus, code is written once but read many times. Before GenAI code generation became common, 

Python practitioners invested significant effort into code quality and style. Today, we can use 

prompting techniques with GenAI to enhance code quality and style more efficiently.

In Chapter 7, we introduced techniques for quickly reading and debugging GenAI-generated code. 

In this chapter, we will focus on using GenAI for refactoring, which means rewriting existing 

code to improve readability, structure, or performance while preserving its original functionality.

We will examine a poorly implemented function that computes the distance between two matri-

ces. By applying the five S’s framework for prompt precision as introduced in Chapter 4, we will 

convert a nested loop into a vectorized operation. With chain-of-thought (CoT) prompting, we 

will restructure the function and delegate implementation details to GitHub Copilot, ChatGPT, 

and OpenAI API.
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 Topics covered in this chapter include the following:

•	 Introducing code refactoring

•	 Refactoring for better structure with GenAI

•	 Refactoring for performance with GenAI

Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub Copilot account

•	 IDE – either VS Code or PyCharm

•	 OpenAI account with access to OpenAI API

•	 Access to the book’s repository, available at https://github.com/PacktPublishing/

Supercharged-Coding-with-Gen-AI

•	 Virtual environment set up in VS Code or PyCharm

•	 OpenAI API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting 

up OpenAI API access and token generation, see Chapter 2. If you need help creating an OpenAI 

account or setting up a virtual environment in your IDE, refer to Appendix for detailed guidance.

Introducing code refactoring
Code is intended as communication to future software developers. Code that effectively and 

clearly communicates the purpose and mechanisms is described as clean code.

As described by Robert C. Martin (better known as Uncle Bob), clean code can be achieved through 

refactoring. Code refactoring is not merely modifying code, but a disciplined approach to contin-

uously improving code. One aspect is removing the indiscriminate code smell that qualitatively 

characterizes poorly written code (see Further reading). A second aspect is improving the code’s 

actual design, which should improve its readability and maintainability. This is critical since firms 

spend an estimated 75% of their software development costs on the evolution and maintenance 

of software (Sommerville).

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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Software developers frequently dedicate time to refactoring, which involves rewriting sections of 

existing code while keeping the original functionality and purpose intact. The goal is to improve 

readability, structure, or performance. This is particularly evident in Agile software development, 

where continuous refactoring is linked to the sustainable evolution of code. The Extreme Pro-

gramming (XP) agile methodology explicitly embraces refactoring along with ideals of collective 

ownership and the use of Test-Driven Development (TDD), as will be discussed in Chapter 13.

IDEs such as PyCharm and VS Code offer built-in tools for tasks such as extracting variables, func-

tions, and methods, renaming code elements, and formatting code. Still, they fall short when it 

comes to more complex scenarios such as extracting a function from non-consecutive lines of code.

Next, we will use an example of a function that computes two types of distances and identify 

hidden issues caused by poor implementation. Later in the chapter, we will refactor it using 

GenAI tools.

Manhattan and Euclidean distance
In Chapter 7, we introduced the Manhattan distance between two matrices, also known as the 

L1 norm, defined as the sum of absolute differences between corresponding elements. The code 

example provided used a Flask application that receives matrix data through HTTP requests. If 

you need a refresher on this topic, refer to Chapter 7.

Another way to measure the distance between matrices is the Euclidean distance, which is simply 

the straight-line distance. In two dimensions, the distance between points (x1, y1) and (x2,y2) is 

calculated as follows:

Distance = √(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2

When applied to a pair of two-dimensional matrices 𝑋 and 𝑌 of the same shape (with the same 

number of rows and columns), the distance is calculated as follows:

Distance = √ ∑∑(𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑌𝑌𝑖𝑖𝑖𝑖)2𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 

This measure is also referred to as the L2 norm or Frobenius norm. It is widely used in tasks such 

as image similarity and machine learning, where it often represents the squared error of a prediction.
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Implementing the distance function
If we want to implement a function that computes both L1 and L2 norms based on a request, one 

way to approach this is to build upon our Chapter 7 implementation of the Manhattan distance 

(L1) and extend it to include the Euclidean distance (L2) as well. A sample implementation, al-

though poorly written, is as follows:

@app.route("/distances", methods=["POST"])

def calculate_distance():

    data = request.get_json()

    dist_type = data.get("distance")

    if dist_type == "L1":

        print("Info: computing L1 distance...")

        a = data.get("df1")

        b = data.get("df2")

        dist = np.sum(np.abs(a - b))

        return jsonify({"distance": dist})

    elif dist_type == "L2":

        print("Info: computing L2 distance...")

        a = data.get("df1")

        b = data.get("df2")

        dist_2 = 0

        for i in range(len(a)):

            for j in range(len(a[i])):

                dist_2 += (a[i][j] - b[i][j]) ** 2

        dist = np.sqrt(dist_2)

        return jsonify({"distance": dist})
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Maintaining this code may be challenging. For example, reading the parameters a and b is dupli-

cated, so if we want to add validations such as checking that both matrices have the same shape, 

we need to do it twice. Such duplication of code is considered poor programming practice. If we 

plan to add unit tests, every test needs to mock the request. Adding another distance function 

would make the function even longer and harder to read.

Next, we will categorize the several types of refactoring and see how they apply to this example.

Types of refactoring
When we refactor code, our goal is to maintain its functionality while improving its quality. There 

is always a risk that the modifications will break the code or inadvertently change the functionality. 

To avoid this, unit tests should be in place before making any significant changes to ensure that 

the code still runs correctly. In addition, refactoring should be performed as a set of incremental 

changes that do not alter the behavior of the code.

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick 

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.

packtpub.com/unlock
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The term refactoring alone is not specific enough to define a single task, according to the five S’s 

framework introduced in Chapter 4. The changes we aim to make can vary from simple tasks such 

as renaming a variable to more extensive efforts such as redesigning an entire module.

To achieve clean code, there are several common refactoring approaches. First, larger and more 

complex functions should be divided into several that perform a single task. Second, duplicate 

code should be removed or abstracted by the Do not Repeat Yourself (DRY) principle. Variables 

and functions should be named for clarity. This principle also applies to arbitrary numeric con-

stants and strings, so there should not be hardcoded values (also referred to as magic numbers), 

but instead have these values assigned to a meaningful constant name.

We typically divide refactoring tasks into three categories:

•	 Readability: This includes tasks such as renaming objects, removing redundant imports 

or excessive comments, introducing constants instead of hardcoded numbers, or adding 

type hints. For example, within the implementation of calculate_distance, we might 

change the name of the variable a to df1 to indicate that it represents a matrix in the 

request. We might also want to add type hints to the request parameters.

•	 Structure change: This involves organizing code in a better way, such as extracting 

long code blocks into functions or classes. For example, within the implementation of 

calculate_distance, we might replace print statements with logger calls, improving 

how our code handles output. We might also extract the L1 and L2 calculations into 

separate functions.

•	 Performance: This means adjusting the implementation to better handle space or runtime 

constraints. For example, within the implementation of calculate_distance, instead of 

using a nested for loop to calculate L2, we might apply vectorization using the NumPy 

library to improve efficiency.

There are already good capabilities for refactoring code, particularly for readability, using the 

built-in tools of our IDEs, as we will see next.
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Improving readability before GenAI
Modern IDEs such as VS Code and PyCharm offer built-in refactoring tools that help improve code 

readability. For example, in PyCharm, we can right-click a parameter we would like to rename 

and select Refactor | Rename to update the variable and all its references within the relevant 

scope (in this case, the calculate_distance function). This option is illustrated in Figure 10.1.

Figure 10.1: PyCharm built-in refactoring tools for refactoring/renaming

This figure also highlights other refactoring options such as changing a callable signature, ex-

tracting constants or methods, and more. The authors frequently use these features when refining 

existing code.
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Similarly, VS Code allows us to right-click the parameter we want to change and select Rename 

Symbol to update the variable and all its references within the relevant scope, as shown in Figure 

10.2.

Figure 10.2: VS Code Rename Symbol

The Rename Symbol option appears fourth from the bottom in the figure and performs a similar 

renaming operation as in PyCharm.

Next, we will explore the limitations of these built-in tools. Later in the chapter, we will use GenAI 

to address those challenges.

Limitations of code refactoring with IDE tools
PyCharm and VS Code offer powerful refactoring features, but these are still limited.

For example, we may want to extract argument parsing logic for a, b, and dist_type into a sep-

arate function, such as the following:

def parse_request_parameters(r: request) -> Tuple[np.ndarray, np.ndarray, 
str]:

    a = np.array(r["df1"])

    b = np.array(r["df2"])

    dist_type = r["distance"]

    return a, b, dist_type
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This kind of structural refactoring helps reduce code duplication. However, current IDE tools are 

unable to extract these three parameters into a single function because they are not written in 

consecutive lines in the original implementation, as shown in Figure 10.3.

Figure 10.3: Limitation of extracting a code block to a function

In this figure, we cannot extract dist_type, a, and b into a separate function since the lines are 

not written in a continuous block. As functions become more complex, this approach might no 

longer be practical.

Next, we will examine how to handle structural refactoring challenges that are beyond the ca-

pabilities of IDE tools alone.

 Quick tip: Need to see a high-resolution version of this image? Open this book 

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this book. Scan 

the QR code OR go to packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.

packtpub.com/unlock
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Refactoring with chain-of-thought
In Chapter 9, we introduced chain-of-thought (CoT) as a key prompt engineering technique for 

working with GenAI to generate code. This method involves writing a high-level function as the 

prompt, while leaving the implementation details for the GenAI application to complete.

When refactoring code, we want to include the old implementation as an additional context for 

the model. This can help it better understand the intended functionality. For instance, in the case 

of the calculate_distance function, the previous implementation can clarify which parameters 

need to be extracted from the JSON request: a, b, and dist_type.

Refactoring for a better structure
When reviewing the implementation of the calculate_distance function, we can break it down 

into three main steps:

1.	 Extracting the request parameters

2.	 Deciding whether to compute L1 (Manhattan) or L2 (Euclidean) distance

3.	 Calculating the distance

A CoT prompt that reflects these steps could look like this:

@app.route("/distances", methods=["POST"])

def calculate_distance():

    a, b, dist_type = parse_request_parameters(request)

    dist_func = {"L1": get_manhattan_dist, "L2": get_euclidean_dist}.
get(dist_type)

    dist = dist_func(a, b)

    return jsonify({"distance": dist})

In this high-level implementation, we can observe the three main steps:

1.	 Call a function called parse_request_parameters that should return the values for a, b, 

and dist_type.

2.	 Map dist_function based on the value of dist_type from the request.

3.	 Compute the distance using a and b.
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Note that we have considerable flexibility in how we map dist_type to a function. This could 

involve more than an inline dictionary, such as using a function or an external dictionary. A less 

Pythonic but also acceptable approach would be to use a switch-case structure or an if-else 

block.

With this function in place, we can now explore how to implement a complete prompt for GitHub 

Copilot, ChatGPT, and OpenAI API.

CoT for refactoring with GitHub Copilot
When using GitHub Copilot, the best practice is to start our prompt with the same function signa-

ture as the function we want to refactor. This tells Copilot that we are planning to re-implement 

the function. Note that Copilot may already suggest an implementation based on the signature 

alone. However, such an implementation is only as good as asking ChatGPT to refactor a function, 

since the prompt is not specific enough. For reference, one early completion that Copilot produced 

from the signature alone is shown in Figure 10.4.

Figure 10.4: Copilot produced a weak refactoring suggestion
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In this example, the refactoring involved converting the a and b parameters to NumPy arrays. 

While this vectorization can be beneficial in some cases, it may be unnecessary in others. To 

guide Copilot toward a more suitable output, we use the CoT approach by providing the full CoT 

high-level implementation as shown earlier in the chapter. Like in Chapter 9, Copilot is expected 

to generate the implementations of the missing functions called by the high-level implementation, 

as illustrated in Figure 10.5.

Figure 10.5: CoT approach triggers an implementation of missing functions

In this case, Copilot correctly proposed starting with the parse_request_parameters function. 

Once accepted, it suggested a correct implementation for parsing a, b, and dist_function, as 

shown in Figure 10.6.

Figure 10.6: Copilot implementation for parse_request_parameters



Chapter 10 253

Here, Copilot effectively used the context from the previous version of the function. It suggested 

reading the value of a from the df1 key in the request JSON, b from df2, and dist_type from 

distance. This highlights how providing relevant context can lead to desirable results.

For reference, here are the three implementations Copilot generated:

def parse_request_parameters(request):

    data = request.get_json()

    a = np.array(data.get("df1"))

    b = np.array(data.get("df2"))

    dist_type = data.get("distance")

    return a, b, dist_type

def get_manhattan_dist(a, b):

    print("Info: computing L1 distance...")

    return np.sum(np.abs(a - b))

def get_euclidean_dist(a, b):

    print("Info: computing L2 distance...")

    dist_2 = 0

    for i in range(len(a)):

        for j in range(len(a[i])):

            dist_2 += (a[i][j] - b[i][j]) ** 2

    return np.sqrt(dist_2)

These functions mirror the original logic from calculate_distance while offering improved 

abstraction and avoiding code duplication. In a later section of the chapter, we will explore how 

to refactor for performance, including replacing nested loops with vectorized operations.

Next, we will explore how to apply the CoT approach for refactoring with ChatGPT and OpenAI 

API. This requires a bit more effort to set up effectively.
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Leveraging CoT for refactoring with ChatGPT and OpenAI 
API
Just like GitHub Copilot, we can also make use of ChatGPT and OpenAI API to refactor our code 

to have a better structure. To achieve this, we need to provide these tools with both the original 

implementation for context and the new structure we want to complete.

A structural refactoring prompt for ChatGPT can follow this general template:

CONTEXT: You are provided with

1. Python function enclosed with {{{ fUNCTION }}} with calls to missing 
implementations.

2. Old implementation enclosed with {{{ OLD }}} for reference.

TASK: implement the missing functions.

FUNCTION: {{{ ... omitted for brevity ... }}}

OLD: {{{ ... omitted for brevity ...}}}

CODE:

Note that in contrast to CoT for new code, refactoring prompts requires giving ChatGPT both the 

new structure of the function and the reference implementation enclosed in {{{ OLD }}}. This 

format is like how we prompt Copilot and produces desirable results that preserve functionality, 

even when using more cost-effective models such as GPT-4o. Figure 10.7 shows the output we 

received from GPT-4o for this prompt.
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Figure 10.7: ChatGPT suggested refactoring

Here is the implementation for the missing functions proposed by ChatGPT:

def parse_request_parameters(req):

    data = req.get_json()

    dist_type = data.get("distance")

    a = np.array(data.get("df1"))

    b = np.array(data.get("df2"))

    return a, b, dist_type

def get_manhattan_dist(a, b):

    print("Info: computing L1 distance...")

    return float(np.sum(np.abs(a - b)))

def get_euclidean_dist(a, b):

    print("Info: computing L2 distance...")

    return float(np.sqrt(np.sum((a - b) ** 2)))
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This output resembles the structure Copilot suggested, focusing on extracting the distance calcu-

lations into smaller functions and removing redundancy. One notable difference is that ChatGPT 

was more consistent and used NumPy vectorization for both distance functions, and not just the 

Manhattan distance method.

OpenAI API prompt
When we refactor code for improved structure, GitHub Copilot and ChatGPT often prove to be 

more suitable than OpenAI API. This is because using the API typically requires more manual 

effort to craft the prompt programmatically. OpenAI API becomes more practical only when we 

need to scale changes across multiple similar functions, and we find that refactoring the structure 

with CoT might not be one of these cases.

In summary, GenAI supports the restructuring of existing code by combining prior implemen-

tations with new instructions. We recommend trying this technique with code you encounter in 

your day-to-day work or even in third-party libraries.

Next, we will briefly introduce refactoring for performance using GenAI, a topic we will cover 

more extensively in Chapter 14.

Performance refactoring with GenAI
Performance refactoring refers to changes made to the code that preserve its functionality while 

improving runtime or memory efficiency. One common approach is to use vectorized compu-

tations. These can reduce the runtime by benefiting from cache, lower overhead, and parallel 

computation.

For instance, in the GitHub Copilot implementation of calculate_distance example, this would 

mean replacing a nested for loop with a vectorized computation of the Euclidean distance. We 

will explore further runtime and space complexity in Chapter 14, including when and why to 

scale system capacity and the trade-offs involved. Until then, let us demonstrate how a simple 

optimization through vectorization might be applied.

Performance refactoring with GitHub Copilot
As with the CoT approach, we will leverage the context of existing code along with our desired 

structure. This time, we will specify the library we would like to implement a code block instead 

of the original implementation.
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For example, consider the function Copilot extracted for us to compute the Euclidean distance:

def get_euclidean_dist(a, b):

    print("Info: computing L2 distance...")

    dist_2 = 0

    for i in range(len(a)):

        for j in range(len(a[i])):

            dist_2 += (a[i][j] - b[i][j]) ** 2

    return np.sqrt(dist_2)

This function computes the squared distance dist_2 and then returns its square root.

To vectorize the squared distance computation, we can use NumPy, a widely used Python library 

that supports optimized operations on arrays and matrices. In our prompt, our goal is to preserve 

the original logic:

1.	 Compute the squared distance

2.	 Compute the distance

To guide Copilot toward the desired refactoring, we can add a cue using a NumPy function call. 

The first prompt would be placed near the squared distance step:

Dist_2 = np.

This is shown in Figure 10.8:

Figure 10.8: Prompt with an np. library call as a cue

Then, for the square root step, we would add another cue:

dist = np.
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This is sufficient context for Copilot to complete the correct implementation using NumPy, as 

shown in Figure 10.9:

Figure 10.9: Copilot recognized the correct function from the cue

These inline completions can be highly effective. However, before applying performance opti-

mizations, it is important to determine whether scaling or optimizing code is necessary. We will 

explore these considerations further in Chapter 14.

Next, we will look at how to achieve the same outcome using ChatGPT and OpenAI.

Performance refactoring with ChatGPT and OpenAI
When using ChatGPT and OpenAI API for performance refactoring tasks such as vectorizing 

computations, common transformations such as adopting the NumPy package can be achieved 

by following the five S’s best practices, as introduced in Chapter 4. Like in Chapter 7, where we 

include the full file content in the prompt along with the specific line we want to explain, here, we 

also provide the complete function implementation together with the files that need refactoring.

Here is a sample prompt template that can be used in ChatGPT:

CONTEXT: You are provided with:

1. A Python function implementation enclosed with {{{ FUNCTION }}}

2. Lines to be refactored enclosed with {{{ OLD }}}

3. A library to be used in the new code enclosed with {{{ LIBRARY }}}

TASK: Return a new implementation for the old lines using the specified 
library.

FUNCTION: {{{ ... }}}

OLD: {{{     ...  }}}
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LIBRARY: {{{ ... }}}

REFACTORED CODE:

Note that in this template, we are not requiring the model to follow the same sequence of steps as 

in Copilot, such as first computing dist_2 and then applying the square root. This allows ChatGPT 

to suggest more common implementations that may take a different route. By specifying LIBRARY, 

we are explicitly guiding the GenAI tools toward an expected solution.

For reference, let us consider a vectorization prompt for the get_euclidean_distance function 

that is available in this book’s repository at ch10/prompts/performance_refactoring_chatgpt.

txt. The response we got from ChatGPT with the GPT-4o economic model is shown in Figure 10.10.

Figure 10.10: ChatGPT proposed vectorized implementation

Important note

In Chapter 14, we will learn how to replace the library constraint with constraints on 

runtime and space capacity. If we do not specify either constraints or a library, the 

model will suggest the most popular implementation, which may not align with 

our goals. As a result, the response often lacks specific instructions and does not 

follow the five S’s framework.
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The implementation shown in the figure is a common implementation for calculating Euclide-

an distance. It vectorizes the element-wise distance and then uses the linear algebra module in 

NumPy to compute the norm. This version is typically easier to read and more flexible than what 

Copilot suggested.

Next, we will look at how to achieve equivalent results using OpenAI API.

Vectorizing with OpenAI API
Creating a prompt for OpenAI API usually takes more effort than using ChatGPT to get comparable 

results. This approach is most suitable when we want to produce multiple new implementations 

at scale, such as converting many for loops to vectorized NumPy expressions.

To create a system prompt, we can adapt our ChatGPT prompt structure into two components:

SURROUND = """You are provided with:

1. A Python function implementation enclosed with {{{ FUNCTION }}}

2. Lines to be refactored enclosed with {{{ OLD }}}

3. A library to be used in the new code enclosed with {{{ LIBRARY }}}."""

SINGLE_TASK = "Your task is to return a new implementation for the old 
lines using the specified library."

LINES = """dist_2 = 0

for i in range(len(a)):

    for j in range(len(a[i])):

        dist_2 += (a[i][j] - b[i][j]) ** 2

"""

We can define a get_user_prompt function as such:

def get_user_prompt(func: callable, library: str, lines: str) -> str:

    return f"""

    FUNCTION: {{{{{{ {inspect.getsource(func)} }}}}}}

   

Note

This prompt structure can be reused when comparing implementations across mul-

tiple libraries offering similar functionality. For instance, when evaluating alter-

natives between SciPy and NumPy, this format allows us to generate and compare 

implementations quickly.
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    LINES: {{{{{{ {lines} }}}}}}

   

   LIBRARY: {{{{{{ {library} }}}}}}

   REFACTORD:

    """

We can then use both prompts when calling the service:

if __name__ == "__main__":

    client: OpenAI = OpenAI()

    system_prompt = f"{SURROUND} {SINGLE_TASK}"

    user_prompt = get_user_prompt(get_euclidean_distance, "NumPy", LINES)

    completion: ChatCompletion = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[

            {"role": "system", "content": system_prompt},

            {"role": "user", "content": user_prompt},

        ],

    )

    print("Explanation:", completion.choices[0].message.content)

For reference, the full script is available in ch10/prompts/performance_refactoring_openai.

py. The output we obtained was equivalent to the result from ChatGPT.

To conclude, GitHub Copilot is the quickest way to get performance refactoring suggestions. 

ChatGPT is more suitable when we want widely adopted implementations or to quickly assess 

different libraries’ implementations with a reusable prompt. OpenAI API is helpful in less com-

mon cases when we want to generate bulk transformations across many files or a large code base.

More advanced performance refactoring
In Part 3 of the book, Chapter 14 will address runtime and space complexity optimization. We will 

demonstrate how combining code completion tools with prompt engineering techniques such 

as chaining can help us find the right balance between space and time complexity.
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We will use GitHub Copilot, ChatGPT, and OpenAI to assess the program’s current performance, 

estimate its runtime and space complexity in terms of Big-O notation, and introduce optimized 

solutions to extend input capacity with minimal trade-off. Stay tuned for a detailed exploration 

of these topics.

Summary
In this chapter, we explored how GitHub Copilot, ChatGPT, and OpenAI API can assist in rewriting 

code while preserving its original functionality. These tools can enhance readability, improve 

structure, and boost performance.

Clean code is a shared goal among software developers, especially as projects grow and become 

complex. Most IDEs already offer strong built-in tools for refactoring, which we frequently use. 

However, when those tools reach their limits, GenAI can step in. It can support structural refac-

toring by using CoT techniques with the original implementation, or it can optimize performance 

through the five S’s framework.

Although refactoring is useful, writing clean and structured code from the start is usually simpler. 

In the next chapter, we will introduce fine-tuning with OpenAI API as an alternative to few-

shot learning. Fine-tuning enables us to adapt a pretrained model to a specific domain, such as 

generating clean and well-organized code. Unlike prompt engineering, fine-tuning separates the 

specialization process from the prompt itself, which can be beneficial for larger-scale projects.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: Why do we need GenAI for refactoring tasks if IDEs already provide built-in tools?

Answer: While built-in tools are powerful, they have limitations. For example, they can only ex-

tract code blocks to external functions when the lines are written consecutively in a single block. 

GenAI allows us to restructure Python objects more flexibly, using the CoT technique with the 

original implementation as a reference.

Question 2: How does the CoT approach differ when refactoring existing code compared to 

generating new code?
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Answer: When generating new code, we typically describe the high-level function we want GenAI 

to complete. For refactoring, we also include the original implementation in the prompt. This 

helps GenAI understand the intended functionality, such as parsing specific JSON request keys 

or assigning them to specific variable names.

Further reading
To learn more about the topics that were covered in this chapter, look at the following resources:

Clean Code: A Handbook of Agile Software Craftsmanship by Robert C. Martin (aka Uncle Bob): 

https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882

Code smell: https://en.wikipedia.org/wiki/Code_smell

Refactoring: Improving the Design of Existing Code, Second Edition: https://www.amazon.com/

Refactoring-Improving-Existing-Addison-Wesley-Signature/dp/0134757599

Design Patterns: Elements of Reusable Object-Oriented Software: https://www.amazon.com/Design-

Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

Mariane Anaya. Clean Code in Python: Develop maintainable and efficient code, Second Edition, 2021: 

https://www.packtpub.com/en-us/product/clean-code-in-python-9781800560215

Kent Beck and Cynthia Andres, Extreme Programming Explained: Embrace Change, 2004: https://

www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658

Ian Sommerville. Software Engineering, 2015: https://www.amazon.com/Software-Engineering-

10th-Ian-Sommerville/dp/0133943038

https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://en.wikipedia.org/wiki/Code_smell#cite_note-7
https://www.amazon.com/Refactoring-Improving-Existing-Addison-Wesley-Signature/dp/0134757599
https://www.amazon.com/Refactoring-Improving-Existing-Addison-Wesley-Signature/dp/0134757599
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.packtpub.com/en-us/product/clean-code-in-python-9781800560215
https://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658
https://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
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11
Fine-Tuning Models  
with OpenAI

Concluding Part 2, this chapter explores how to train large language models (LLMs) to specialize 

in completing a specific task. This is achieved by fine-tuning the model’s parameters, known as 

weights, through the OpenAI platform. This is quite like the prompt engineering strategy few-

shot learning, sometimes referred to as in-context learning, which we introduced earlier in 

the book as a technique for helping the model to specialize in a particular domain. Fine-tuning, 

however, is best suited for larger-scale projects where we want to separate the specialization 

aspect from the actual prompt.

We will delve into a use case where this specialization of the model is required to produce code 

while avoiding comments clutter. We will examine how outputs from the GPT-4o mini model may 

be programmatically correct but fail to follow our style guidelines and requirements for concise 

explanations and code comments. We will construct a fine-tuning JSONL file with high-quality 

examples that illustrate desired outcomes, initiate a fine-tuning job through the OpenAI website, 

and compare the improved results with the output of the base model.

This chapter covers the following topics:

•	 Fine-tuning LLMs toward a specialization

•	 Experimenting with the OpenAI Playground

•	 Crafting a JSONL file for fine-tuning

•	 Fine-tuning a model with the OpenAI GUI

•	 Comparing our results
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Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 An OpenAI account with access to OpenAI API

•	 Access to the book’s repository, available at https://github.com/PacktPublishing/

Supercharged-Coding-with-Gen-AI

For instructions on setting up OpenAI API access, see Chapter 2. If you need help with creating 

an OpenAI account, refer to the Appendix for detailed guidance.

Fine-tuning LLMs toward a specialization
When working on complex coding tasks with LLMs, we may need to employ prompt engineering 

techniques. In Chapter 8, we saw how including a few examples in the prompt implicitly instructs 

the model to follow the expected coding style when writing code. This show, don’t tell approach 

effectively guides the model by enriching our existing prompt, as illustrated in Figure 11.1:

Figure 11.1: Few-shot learning prompt enrichment

By using this approach, the model adapts to produce outputs that align with the examples pro-

vided, effectively specializing in the given task.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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LLMs specialization
A specialization for LLMs focuses on a specific task or a set of closely related tasks. Here are some 

examples of specializations you might want your model to develop:

•	 Generating completion code that follows a specific coding style

•	 Creating a unit test suite that covers key scenarios such as happy paths, bad inputs, edge 

cases, and error handling

•	 Assessing the quality of a function’s docstring

•	 Refactoring for loops into comprehensions

We typically identify a specialization as either a single system prompt or a set of closely related 

system prompts, each incorporating the surrounding context and a single-task focus. These 

tasks are generally non-trivial for an LLM, such as code completion to reverse a string, requiring 

additional effort in prompt crafting, such as prompt engineering or fine-tuning.

For certain tasks, few-shot learning can be particularly effective. For example, if refactoring for 

loops into comprehensions never involves more than two levels of nesting, providing a few ex-

amples in the prompt may be sufficient to achieve reliable results.

However, for deeper specializations, such as breaking longer functions into helper functions 

to improve code quality, we may need to incorporate a larger set of training examples with the 

desired output, rather than just a few. We might include examples of naming conventions and 

indentation. Some examples may show the extraction of code blocks into helper functions, and 

others may show how to eliminate unnecessary explanations that come along with the code. 

Including all these examples directly in the prompt increases the prompt’s length and, therefore, 

the cost associated with the input token length. It also makes it harder to maintain.

Fine-tuning an LLM
Fine-tuning a model is a process that aims to achieve better outputs by using a pre-trained model 

such as GPT-4o mini and training it toward a specialization using a small set of training exam-

ples that depict the intended output. The fine-tuning process adjusts the model’s parameters 

(or weights, as discussed in Chapter 6) to achieve the desired outcomes shown in the provided 

examples. This specialization process is shown in Figure 11.2:
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Figure 11.2: Leveraging fine-tuning for a better output

The specialization process uses the crafted training examples to fine-tune the LLM, resulting 

in a new LLM that is ready to be prompted without requiring further examples in the prompts.

Favoring fine-tuning over prompt engineering
Based on studies, and confirmed with our experience, fine-tuning requires more training examples 

than few-shot learning because the examples are retraining the model’s parameters, rather than 

simply being part of the prompt. In this chapter, we use 15 examples, which is slightly above the 

OpenAI API’s minimum of 10 for initiating a fine-tuning job. For more complex cases, tens or even 

hundreds of examples may be necessary, which can be time-consuming to find.

Fortunately, for most of our daily coding tasks, we will find that few-shot learning is sufficient 

where only a few examples are needed. However, for larger-scale projects, or when few-shot 

learning does not meet our needs, fine-tuning may be a better alternative. Generally, it is good 

practice to begin with the few-shot technique and turn to fine-tuning only when the results are 

not satisfactory.

Task specializing in cleaner code
In Chapter 7, we noted that LLMs often include explanations and example usage along with the 

code. The LLMs also add code comments when function implementations become longer to 

compensate for less readable code. When working with higher-quality code, we may prefer the 

model to return only the code without extra explanations. Additionally, rather than relying on 

comments in lengthy functions, we might want the model to break the logic into smaller, more 

manageable functions.
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This is a perfect use case for fine-tuning since the effort invested in creating a training file of 

examples is justified as it can be applied to an entire repository using short prompts alone. Later 

in the book, we will explore how fine-tuning supports advanced refactoring initiatives, such as 

extracting logging, monitoring, and error-handling responsibilities into separate functions.

Next, we will explore how to experiment with the OpenAI API Playground and observe that the 

GPT-4o mini model requires improvements in its output implementation. Later in the chapter, 

we will address these improvements through the fine-tuning process.

Experimenting with the OpenAI API Playground
In this section, we will use OpenAI’s graphical user interface (GUI) Playground to quickly view 

our results for a given preset, which represents a combination of a model and the selected call 

parameters. This interface is an excellent tool for rapid experimentation and for comparing models 

before implementing them programmatically in our software.

To access the Playground, ensure that your OpenAI account has credits applied to unlock tier 1, as 

explained in Chapter 2. Then, go to https://platform.openai.com/playground/chat. You can 

also reach it by navigating to the home page, https://platform.openai.com, selecting Play-

ground from the top-right menu, and then choosing the Chat option from the left menu. The 

opening screen of the Playground is shown in Figure 11.3:

Figure 11.3: Opening screen of the Playground interface for OpenAI

https://platform.openai.com/playground/chat
https://platform.openai.com
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On this page, we can craft prompts for OpenAI, as introduced in Chapter 2, and try different pre-

sets. This includes the system and user prompts, along with parameters such as temperature and 

maximum tokens. Additional parameters include the following:

•	 Top P is an alternative to the temperature, setting a minimal probability threshold that 

the model’s output must meet. In some cases, higher values can prevent hallucinations.

•	 The Store logs checkbox saves the prompt so it can be restored later.

We can also modify the response format and add functions. These topics will be discussed in 

detail in later chapters of this book.

Note that the experimentation in the Playground is free for tier 1 or higher accounts, but not all 

models are available. For instance, as of April 2025, GPT-o1 and GPT-o1-preview models are not 

available in the reasoning models for experimentation. Figure 11.4 shows the available models.

Figure 11.4: Available reasoning models in the OpenAI API Playground
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For the examples in this chapter, we will use the GPT-4o mini 2024-07-18 model, which is cheaper 

to use with the API compared to the GPT-o series models.

Computing quadratic roots with GPT-4o mini
As a benchmark for the model output, we will evaluate how GPT-4o mini handles implementing 

functions that extend beyond a few lines of code, such as computing the quadratic roots of the 

equation 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 𝑐 𝑐. To find the roots of this equation, we compute the two values that 

satisfy the quadratic formula:

𝑥𝑥1,2 =   −𝑏𝑏 𝑏 √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎2𝑎𝑎 

In our case, we want to return the roots only when they are real, which occurs when the discrim-

inant 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 is larger than or equal to 0.

To obtain a function implementation that returns the real roots only, we define the function 

signature:

def get_quadratic_roots_only_if_real (a:int, b:int, c:int) -> Tuple[float, 
float]

We will use this function signature in our prompt to the model. As usual, we will structure our 

prompt according to the five S’s framework, as introduced in Chapter 4, where the system prompt 

provides the surrounding context and specifies the single task to be completed, and the user 

prompt includes supplementary details, such as the function signature and a lead-in cue.

For the system prompt, we will add the following instruction:

You will be provided with a Python function signature enclosed with {{{ 
FUNCTION }}}. Your task is to implement it.

This instruction provides the model with sufficient context for the code completion task using 

a Python function signature.

For the user prompt, we will ask it to implement the get_quadratic_roots_only_if_real func-

tion and include the CODE lead-in cue:

FUNCTION: {{{def get_quadratic_roots_only_if_real (a:int, b:int, c:int) -> 
Tuple[float, float] }}}

CODE:
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The function’s name, get_quadratic_roots_only_if_real, signals the model to return the qua-

dratic roots only if they are real.

Implementing the quadratic roots calculator
A typical approach to computing quadratic roots and returning them if they are real involves the 

following steps:

1.	 Compute the discriminant 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎.

2.	 Verify that the discriminant is positive so that the roots are real.

3.	 Return the two roots if real.

Since this function requires more than just a few lines of code, the LLM is likely to introduce 

comments within the code and include surrounding explanations with the implementation.

For reference, Figure 11.5 shows the explanation provided by the model before the actual code 

implementation.

Figure 11.5: Base model output with supplementary explanations
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The following is the code output generated by the model:

```python

import math

from typing import Tuple

def get_quadratic_roots_only_if_real(a: int, b: int, c: int) -> 
Tuple[float, float]:

    # Calculate the discriminant

    discriminant = b * b - 4 * a * c

    # If discriminant is negative, there are no real roots

    if discriminant < 0:

        raise ValueError("The equation does not have real roots.")

    # Calculate the two solutions using the quadratic formula

    sqrt_disc = math.sqrt(discriminant)

    x1 = (-b + sqrt_disc) / (2 * a)

    x2 = (-b - sqrt_disc) / (2 * a)

    return (x1, x2)

This implementation covers all three required steps: computing the discriminant, checking for 

real roots, and returning the two solutions when appropriate. However, the solution includes 

redundant explanations and a function that is cluttered with comments. Later in the chapter, we 

will see how fine-tuning can help us achieve improved results by fine-tuning the LLM to return 

only code for code completion tasks.

Next, we will see how to prepare the training data to fine-tune the GPT-4o mini model. We will 

later compare this model with those of the default GPT-4o mini model.

Crafting a JSONL file for fine-tuning
One of the initial challenges in fine-tuning a model is gathering enough training examples. When 

fine-tuning a model through OpenAI, a minimum of 10 training examples is required. However, 

for most tasks that are beyond trivial, tens or even hundreds of examples might be necessary, 

depending on the task. According to OpenAI’s official documentation, satisfactory results are 

typically achieved with 50 training examples.
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In our case, where we want to fine-tune a model to produce outputs consisting solely of code 

without comments, 15 examples are sufficient, as we will see later in the chapter. When crafting 

our training set, we will utilize two techniques: desirable examples that are like few-shot learning 

and contrastive learning. Contrastive learning builds on the idea of in-context learning by first 

presenting an incorrect or incomplete output, followed by an additional user-assistant prompt pair 

that provides the desired output. For more details, see the Further reading section in this chapter.

Fine-tuning file structure
We will upload a JSONL file as the training data for our fine-tuning process, where each line in the 

file is a valid JSON object representing one training example. A minimal prompt should include 

a system prompt and a training example with a user prompt and an assistant prompt. Each as-

sistant prompt is attributed with a weight of 0 for undesirable output and 1 for desirable output. 

In the following desirable example, the assistant prompt has a weight of 1, and line breaks have 

been added for clarity:

{"messages": [

  {"role": "system", "content": "You will be provided with a Python 
function signature enclosed with {{{ FUNCTION }}}. Your task is to 
implement it."},

  {"role": "user", "content": "FUNCTION: {{{def get_euclidean_distance(x1, 
y1, x2, y2):}}}\n CODE: "},

  {"role": "assistant", "content": "def get_euclidean_distance(x1, y1, x2, 
y2): \n return ((x1-x2)**2 + (y1-y2)**2)**0.5", "weight": 1}

]}

This format may look familiar, as it resembles the messages parameter used in OpenAI API calls. 

However, in this case, we assign a weight to the assistant message. The preceding example is a 

training instance included in the fine_tuning.jsonl file for this chapter, located at ch11/fine_

tuning.jsonl, demonstrating the expected implementation of the get_euclidean_distance 

function.

A minimal training line template should be as follows, containing at least one user prompt and 

one assistant prompt. Here, too, line spaces are added for clarity:

{"messages": [

{"role": "user", "content": "Your Content Here"},

{"role": "assistant", "content": "Your desired output here", "weight": 
1}]}
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We could also incorporate a system prompt if it helps refine the specialization, as we will explore 

later in the chapter.

With contrastive learning examples, we will include additional user prompt and assistant prompt 

pairs. The first pair represents an undesirable output and is assigned a weight of 0, as such:

{"messages": [

{"role": "system", "content": "...omitted for brevity..."},

{"role": "user", "content": "FUNCTION: {{{def sum_of_squares(n: int) -> 
int:}}}\n CODE: "},

{"role": "assistant", "content": "Sure! here is the code:\n\n```python\
ndef sum_of_squares(n: int) -> int:\n return sum(i * i for i in range(1, n 
+ 1))\n```", "weight": 0},

{"role": "user", "content": "Include only code."},

{"role": "assistant", "content": "def sum_of_squares(n: int) -> int:\n 
return sum(i * i for i in range(1, n + 1))", "weight": 1}]}

In this example, we provide two sets of user and assistant messages. The initial assistant response 

is undesirable because it includes explanatory text alongside the code, so it is assigned a weight 

of 0. The second user prompt corrects this by explicitly instructing the assistant to provide only 

the code, and this response is given a weight of 1.

Strategy
A practical approach to constructing a fine-tuning training file is to start with the simplest cases 

of desired outputs and gradually introduce more complex examples to cover the specialization 

we want the model to develop. While the few-shot examples we saw in Chapter 8 included one 

or two cases, for fine-tuning, we will use 15 examples, allocating 7-8 examples to each of the 

following objectives:

•	 Code-only: Positive and contrastive

•	 No comments: Positive and contrastive

These examples will be sufficient to generate code without surrounding explanations and with-

out comments within the function. The complete JSONL file is available in this book’s repository 

at ch11/fine_tuning.jsonl. Next, we will present a single example from each of the preceding 

objectives.
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Code-only – five training examples
In these cases, we will include simple implementations of functions spanning 1-2 lines. Each 

example consists of a single user and assistant prompt pair, ensuring that the output consists 

solely of code. Take the following example:

{"messages": [

{"role": "system", "content": "You will be provided with a Python function 
signature enclosed with {{{ FUNCTION }}}. Your task is to implement it."}, 

{"role": "user", "content": "FUNCTION: {{{def get_arithmetic_mean(a, 
b)}}}\n CODE: "}, 

{"role": "assistant", "content": "def get_arithmetic_mean(a, b): \n return 
(a+b)/2", "weight": 1}]}

In this example, we provide a desirable implementation of get_arithmetic_mean without any 

surrounding explanations. Note that the actual JSONL line contains no extra line breaks. This is 

an example of the training pattern with just a single positive example indicated by the weight 1. 

Additionally, we will include three more examples for the get_euclidean_distance, reverse_

string, is_even, and is_odd functions.

Contrastive code-only – three training examples
In addition to providing high-quality examples, we can also include contrastive examples. These 

scenarios involve an initial assistant response that is undesirable, such as including explanations 

or comments in the code, followed by a chained request to refine the output into a more desirable 

version. The chained user prompt should follow the best practices introduced in Chapter 9, such 

as the following:

•	 Include code only

•	 Remove code comments

•	 Extract lower-level details to functions

As introduced in Chapter 9, when crafting chained prompts, we avoid unnecessary phrasing 

such as “Your answer is wrong!” since it does not follow the short best practice and adds no value. 

Instead, we should determine whether the assistant’s output is significantly incorrect or if only 

minor adjustments are needed.
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In the first case, if the output is far off, the user prompt should be refined to produce a more desir-

able result, and this example should not be included in our training data. In the second case, if the 

model’s output only requires minor refinements, we should focus on providing clear guidance on 

the necessary adjustments, such as instructing the model to return only code or extract low-level 

details into helper functions. This type of direction is more precise and informative.

For example, the following is a contrastive code-only training example for an implementation 

of is_palindrome, where the first assistant prompt includes an explanation along with the code. 

This output is marked with a weight of 0 to indicate undesirability. It is followed by a chained 

user prompt instructing the assistant to return only the code, leading to a refined implementation 

with a weight of 1:

{"messages": [

{"role": "system", "content": "...omitted..."},

{"role": "user", "content": "FUNCTION: {{{def is_palindrome(s: str) -> 
bool:}}}\nCODE: "},

{"role": "assistant", "content": "A palindrome is a word, phrase, or [...] 
otherwise `False`.\n\n```python\ndef is_palindrome(s: str) -> bool:\n s = 
s.lower()\n return s == s[::-1]\n```", "weight": 0},

{"role": "user", "content": "Include code only."},

{"role": "assistant", "content": "def is_palindrome(s: str) -> bool:\n s = 
s.lower()\n return s == s[::-1]", "weight": 1}]}

The final assistant message consists solely of the implementation code and is assigned a weight 

of 1 to indicate a desirable output. The fine-tuning file also includes similar contrastive examples 

for sum_of_squares and flatten_list_of_lists.

Code with no comments – five examples
In these examples, we focus on functions that go beyond simple 1-2 line implementations, breaking 

down more complex tasks into lower-level abstraction functions. This approach enhances read-

ability in the main function and eliminates the need for inline comments. For instance, consider 

the implementation of get_reversed_longer_string, which takes two strings as input and 

returns the reverse of the longer string. It can be structured as follows:

def get_reversed_longer_string(s1:str, s2: str) -> str:

longer_s = get_longer_string(s1, s2)

reversed_longer_s = reverse_string(longer_s)

return reversed_longer_s
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def get_longer_string(s1, s2):

return s1 if len(s1) > len(s2) else s2

def reverse_string(s):

return s[::-1]

While more concise implementations exist, they may be less readable. The preceding structure 

keeps get_reversed_longer_string clear and shifts the implementation details to dedicated 

lower-level functions.

To include this approach in our training examples, we will add the following:

{"messages": [{"role": "system", "content": "...omitted for brevity..."}, 
{"role": "user", "content": "FUNCTION: {{{def get_reversed_longer_
string(s1, s2):}}}\n CODE: "},

{"role": "assistant", "content": "def get_reversed_longer_string(s1, 
s2):\n longer_s = get_longer_string(s1, s2)\n reversed_longer_s = reverse_
string(longer_s)\n return reversed_longer_s\n\ndef get_longer_string(s1, 
s2):\n return s1 if len(s1) > len(s2) else s2\n\ndef reverse_string(s):\n 
return s[::-1]", "weight": 1}]}

This aligns with our preferred coding style of extracting lower-level functionality into separate 

functions. Similarly, we will include example implementations for the following:

•	 get_max_multiplication_from_lists

•	 get_maximal_second_element_squared

•	 get_sum_of_absolute_differences

•	 get_highest_even

These five implementations will demonstrate the separation of abstraction levels in functions, 

serving as a guideline for the fine-tuning process.

Contrastive no comments – two examples
To complete our dataset, we will include examples of initial implementations with excessive 

comments, followed by a refined version where low-level details are extracted into separate 

functions. For instance, consider a function that, given a list of lists, computes the average of the 

second elements of each sublist:

get_average_of_second_elements(numbers: List[List[int]])
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This function involves more complex logic than our previous examples, which may lead to an 

implementation with excessive comments. To steer the model toward a solution that separates 

levels of abstraction, we first provide an implementation with inline comments, followed by a 

chained prompt that refines the output. An initial incorrect assistant response might look like this:

def get_average_of_second_elements(numbers: List[List[int]]) -> float:

    if not numbers: # Check if the input list is empty

        return 0

    second_elements = [sublist[1] for sublist in numbers] # Extract second 
elements

    return sum(second_elements) / len(second_elements) # Compute the 
average

While this implementation is correct, the inline comments add unnecessary fluff. When including 

this negative example in our dataset, we assign it a weight of 0.

Next, we chain a user prompt requesting a refinement:

Extract low level details to functions

This results in a cleaner implementation:

import statistics

def get_average_of_second_elements(numbers: List[List[int]]) -> float:

    second_elements = get_second_elements(numbers)

    return statistics.mean(second_elements)

def get_second_elements(numbers: List[List[int]]) -> List[int]:

    return [sublist[1] for sublist in numbers]

By abstracting the extraction logic into a separate function, get_average_of_second_elements 

remains more readable. The corresponding example looks like this:

{"messages": [{"role": "system", "content": "...omitted for brevity..."}, 
{"role": "user", "content": "FUNCTION: {{{def get_average_of_second_
elements(numbers: List[List[int]]):}}}\n CODE: "}, {"role": "assistant", 
"content": "def get_average_of_second_elements(numbers: List[List[int]]) 
-> float:\n if not numbers: # Check if the input list is empty\n return 
0\n \n second_elements = [sublist[1] for sublist in numbers] # Extract 
second elements\n return sum(second_elements) / len(second_elements) # 
Compute the average", "weight": 0},

{"role": "user", "content": "Extract low level details to functions"},

{"role": "assistant", "content": "import statistics\n\n\ndef get_average_



Fine-Tuning Models with OpenAI280

of_second_elements(numbers: List[List[int]]) -> float:\n second_elements 
= get_second_elements(numbers)\n return statistics.mean(second_elements)\
n\n\ndef get_second_elements(numbers: List[List[int]]) -> List[int]:\n 
return [sublist[1] for sublist in numbers]", "weight": 1}]}

Additionally, we will include a similar contrastive example for get_smallest_squared, bringing 

our total to 15 training examples.

With the finalized JSONL dataset, we can now proceed with fine-tuning using OpenAI’s GUI.

Fine-tuning a model with the OpenAI GUI
Fine-tuning an LLM with OpenAI can be done either programmatically via an API call or through 

OpenAI’s GUI. In this chapter, we will focus on using the GUI to initiate fine-tuning jobs.

Costs of fine-tuning a model
Fine-tuning an LLM comes with two types of costs:

•	 Job cost: As of April 2025, fine-tuning a model costs $3 per 1M tokens. For reference, the 

JSONL file provided earlier, which contains approximately 12K tokens (2K tokens in the 

file × 6 iterations), would cost around $0.04 to fine-tune. There are no associated storage 

costs for the model or training files.

•	 Application: The pricing of using a fine-tuned model depends on the base model used. For 

instance, the cost for GPT-4o mini-based models is $0.30 per 1M input tokens and $1.20 per 

1M output tokens, and much cheaper than the GPT-4o models, as illustrated in Figure 11.6:

Figure 11.6: Fine-tuning costs for GPT-4o models
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As of April 2025, using a fine-tuned GPT-4o mini model costs exactly twice as much as using the 

model without fine-tuning. However, while the per-token cost is higher, a fine-tuned model can 

be more efficient, as its specialization allows for more concise inputs and outputs, potentially 

reducing overall costs.

To check the latest pricing for current and legacy models, visit OpenAI’s pricing page: https://

openai.com/api/pricing/.

With these costs in mind, we can now proceed with initiating the fine-tuning process.

Initiating a fine-tuning job
We can fine-tune a model using our JSONL file directly through OpenAI’s API GUI. While fine-tun-

ing can also be done programmatically, we will focus on the GUI method since it is by far the 

most common way.

To initiate the job, go to OpenAI’s platform home page at https://platform.openai.com/, click 

on Dashboard in the upper-right menu, and then select Fine-tuning from the left-hand menu, 

as shown in Figure 11.7:

Figure 11.7: Fine-tuning page in the OpenAI API platform

https://openai.com/api/pricing/
https://openai.com/api/pricing/
https://platform.openai.com/
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To start a new fine-tuning job, click the Create button in the upper-right corner of the screen. 

This will open the setup popup, as shown in Figure 11.8:

Figure 11.8: Fine-tuning job popup

We used the following settings for fine-tuning:

•	 Method: Supervised mode. Based on our experience, this is the most effective approach 

for coding style specialization.

•	 Base Model: gpt-4o-mini 2024-07-18 (or the latest available mini model). This model 

provides sufficient results for our use case and is cost-effective.

•	 Training data: The JSONL file introduced earlier in the chapter.

•	 Suffix (optional): This is appended to the model’s name for identification and does not 

need to be unique across fine-tuning jobs. We added the clean-code suffix for future 

reference.
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Now, we can start the fine-tuning job by clicking Create.

With 15 training examples, the process should take about five minutes to complete. Once finished, 

a success message will appear, as shown in Figure 11.9:

Figure 11.9: Successful completion of fine-tuning job

The fine-tuning job processed 12,500 tokens, running six iterations (or epochs) of our file, which 

contains approximately 2,000 tokens. The fine-tuned model can be used in any OpenAI API call 

or accessed through the Playground, as we will explore later in this chapter.

To monitor the cost of the fine-tuning job, navigate to the OpenAI usage page at https://platform.

openai.com/usage, scroll down to Spend categories, and review the fine-tuning expenses, as 

shown in Figure 11.10:

Figure 11.10: Incurred fine-tuning costs

https://platform.openai.com/usage
https://platform.openai.com/usage
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Here, we can see that fine-tuning the model with 15 training examples and 12K tokens resulted 

in a total cost of $0.04.

Using the fine-tuned model
The fine-tuned model can be accessed either through the OpenAI Playground or programmati-

cally. In Figure 11.9, OpenAI gave a formal name for our fine-tuned model under Output model, 

in the following format:

ft:{base model}:{account name}:{fine-tuning suffix}:{id}

For example, our model’s name is shown here, but your model will be named differently:

ft:gpt-4o-mini-2024-07-18:pazpaz-the-coder:clean-code:B5Ayo5q1

To use the fine-tuned model in code, replace the standard model reference:

completion: openai.ChatCompletion = (

    client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[{...]))

The updated call using the fine-tuned model will look as follows:

completion: openai.ChatCompletion = (

    client.chat.completions.create(

        model="ft:gpt-4o-mini-2024-07-18:pazpaz-the-coder:clean-
code:B5Ayo5q1",

        messages=[{...] ))

The fine-tuned model is also available in the OpenAI Playground, as shown in Figure 11.11:

Figure 11.11: Playground models, including our fine-tuned model
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Within the Playground interface, we can compare its results with the base model, which we will 

explore next.

Comparing our results
Now that we have fine-tuned our custom model, we can evaluate how its outputs compare to 

those of the base model. To do this, navigate to the OpenAI Playground, https://platform.

openai.com/playground/chat, select gpt-4o-mini-2024-07-18 as the base model, and click on 

Compare, as shown in Figure 11.12:

Figure 11.12: Playground comparison selecting the base model to compare

Next, add the fine-tuned model, as shown in Figure 11.13:

Figure 11.13: Adding a model for comparison

We will use the same system message from earlier in the chapter that will be applied to both 

models:

You will be provided with a Python function signature enclosed with {{{ 
FUNCTION }}}. Your task is to implement it.

https://platform.openai.com/playground/chat
https://platform.openai.com/playground/chat
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Next, we will enter the same user message as earlier in the chapter:

FUNCTION: {{{def get_quadratic_roots_only_if_real(a:int, b:int, c:int) -> 
Tuple[float, float] }}}

CODE:

Our comparison can be run by clicking Run, generating responses from both models. The base 

model’s output includes explanations and inline comments, while the fine-tuned model provides 

a more structured implementation, as shown in Figure 11.14:

Figure 11.14: Comparing the base model (left) and the fine-tuned model (right)

The fine-tuned model returns a cleaner implementation that abstracts computations into sep-

arate functions, keeping the main function concise and readable. For your reference, here is the 

full implementation proposed:

def get_quadratic_roots_only_if_real(a: int, b: int, c: int) -> 
Tuple[float, float]:

    discriminant = calculate_discriminant(a, b, c)

    if discriminant < 0:

        raise ValueError("Complex roots")

    return calculate_quadratic_roots(a, b, discriminant)

def calculate_discriminant(a: int, b: int, c: int) -> float:

    return b**2 - 4*a*c

def calculate_quadratic_roots(a: int, b: int, discriminant: float) -> 
Tuple[float, float]:
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    root1 = (-b + discriminant**0.5) / (2*a)

    root2 = (-b - discriminant**0.5) / (2*a)

    return root1, root2

This output aligns with our fine-tuning objective of separating computations into helper functions 

while keeping the primary function, get_quadratic_roots_only_if_real, clear. Additionally, 

the base model generates 535 tokens, compared to 179 tokens from the fine-tuned model. Despite 

the higher per-token cost of the fine-tuned model, it is ultimately more cost-efficient.

To conclude, we successfully fine-tuned the model to specialize in returning clean, code-only 

outputs. This targeted specialization was achieved with 15 JSONL examples, using a combination 

of positive and contrastive learning to guide the model’s behavior.

Fine-tuning enables us to adapt a pre-trained LLM for specific tasks, making it especially valu-

able for automated and large-scale coding projects. In later chapters, we will explore ways to 

further improve fine-tuning, such as refining the training data to separate validation logic from 

core functionality.

Fine-tuning in action
Currently, we use just two fine-tuned models for coding tasks. The first is for code implementation 

as we constructed in this chapter, providing an alternative perspective on new implementations. 

The other is for docstring maintenance, ensuring that a function’s code remains consistent with 

its docstring. For more narrowly scoped tasks, few-shot learning is usually sufficient and prefer-

able since it requires less effort. In general, fine-tuning is only considered when simpler prompt 

engineering techniques are ineffective or when the project operates at a repository-wide scale, 

making the investment worthwhile.

We encourage you to experiment frequently with prompt engineering and fine-tuning. In the 

next section of the book, we will introduce additional software development life cycle (SDLC) 

use cases that you can start applying to your code base right away.

Summary
In Part 2 of the book, we explored LLMs in greater depth. We explained how they work, what they 

excel at, and how to leverage prompt engineering techniques to achieve more effective results. 

We also covered strategies for evaluating their outputs to ensure reliability.
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This chapter took the concept of few-shot learning a step further by demonstrating how to fine-

tune an LLM to specialize on a given task. Through positive and contrastive training examples, 

we guided the model to generate function implementations based solely on their signatures, 

returning clean code without inline comments. This approach can be applied more broadly to 

tasks such as generating unit test suites, maintaining docstring quality, or refactoring for loops 

across an entire repository.

With this deeper understanding of LLMs, prompt engineering, and output evaluation, we now 

have the essential tools to become supercharged coders. We can determine the best tool for a given 

task, whether ChatGPT, OpenAI API, or Copilot, and craft prompts that maximize effectiveness 

using best practices and advanced techniques. Moreover, we now have the skills to assess the 

quality of the model’s output with confidence.

In the third part of the book, we will apply this knowledge to advanced SDLC tasks. We will 

explore how GenAI can assist in areas such as documentation, testing, scaling applications for 

runtime and memory efficiency, logging, monitoring, and error handling. Some tasks will rely on 

the five S’s framework for coding-related tasks, while others will require more advanced prompt 

engineering strategies or fine-tuning to achieve optimal results.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: When is fine-tuning a good approach?

Answer: Fine-tuning is beneficial for large-scale projects where a repetitive task needs to be 

performed consistently, such as generating function implementations from signatures while 

following specific coding standards. Instead of relying on few-shot learning or complex prompt 

engineering techniques within each request, fine-tuning allows the specialization process to be 

separate from the prompt, making it easier to maintain and, in some cases, more cost-effective.

Question 2: What are the costs involved in fine-tuning?

Answer: Fine-tuning involves two types of costs:

•	 Training cost: A one-time cost incurred when running the fine-tuning job.

•	 Usage cost: Fine-tuned models typically have higher per-token costs for input and output 

compared to their base models. For example, with GPT-4o mini, using fine-tuned models 

costs twice as much as those from the base model.
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However, the true cost of fine-tuning lies in the time and effort required to carefully construct 

training examples that ensure the model aligns with the desired specialization.

Question 3: Why does fine-tuning require more training samples than few-shot learning?

Answer: The specialization process in fine-tuning is fundamentally different from few-shot learn-

ing. In few-shot learning, examples are simply provided within the prompt, guiding the model 

without altering its internal parameters.

Fine-tuning, on the other hand, adjusts the model’s weights to align with the desired behavior. 

Given that the base model was pre-trained on vast amounts of data, requiring tens or even hun-

dreds of fine-tuning examples is relatively modest in comparison to the scale of its original training.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following 

resources:

•	 Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. 

(2020). Language Models are Few-Shot Learners. OpenAI. Retrieved from https://arxiv.

org/abs/2005.14165v4

•	 Deepchecks on contrastive learning: https://www.deepchecks.com/glossary/

contrastive-learning/

•	 OpenAI API fine-tuning: https://www.datacamp.com/tutorial/fine-tuning-large-

language-models

•	 OpenAI API request parameters: https://platform.openai.com/docs/api-reference/

responses/create

•	 Data camp fine-tuning tutorial for LLMs: https://www.datacamp.com/tutorial/fine-
tuning-large-language-models

Unlock this book’s exclusive 
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before 

you start.
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https://arxiv.org/abs/2005.14165v4
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Part 3
From Code to Production 

with GenAI
In Part 3 of this book, we branch from simple coding to the full software development life cycle 

(SDLC). We first focus on writing docstrings, followed by testing, since these are almost universally 

required for production-ready code. The next advanced topic is scaling applications for systems in 

terms of runtime and memory. The part will also cover logging, monitoring, and error handling.

The techniques for completing these SDLC steps build on both the five S’s framework and ad-

vanced prompt engineering techniques discussed in Part 2.

The final chapter examines the current trends, including vibe coding, and suggests what might 

be next for the field of GenAI.

This part contains the following chapters:

•	 Chapter 12, Documenting Code with GenAI

•	 Chapter 13, Writing and Maintaining Unit Tests

•	 Chapter 14, GenAI for Runtime and Memory Management

•	 Chapter 15, Going Live with GenAI: Logging, Monitoring, and Errors

•	 Chapter 16, Architecture, Design, and the Future





12
Documenting Code with GenAI

In Part 3 of the book, we will introduce advanced practices from the software development life-

cycle (SDLC) when working with ChatGPT, OpenAI API, and GitHub Copilot. Using the five S’s 

framework introduced in Chapter 4, and prompt engineering techniques introduced in Chapter 

8 and Chapter 9, we will see how to productionize our Python applications. 

In this chapter, we will introduce docstrings for Python objects, which already has a built-in slash 

command (i.e., /doc) with GitHub Copilot. We can use this slash command with the vanilla format 

or extend it with specific docstring requirements. Docstrings are already a feature of most IDEs 

as a template structure where arguments will be formatted with a fixed style, but the standard 

template does not include any descriptive information about the function or its parameters 

beyond their name. GitHub Copilot will usually produce a full docstring for high-quality code.

The topics covered in this chapter include the following:

•	 Introducing software documentation

•	 Using GenAI to write docstrings

•	 Finding outdated docstrings with GitHub Copilot, ChatGPT, and OpenAI API

•	 Practical insights
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Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub Copilot account

•	 IDE – either VS Code or PyCharm

•	 OpenAI account with access to OpenAI API

•	 Access to the book’s repository, available at https://github.com/PacktPublishing/

Supercharged-Coding-with-Gen-AI

•	 Virtual environment set up in VS Code or PyCharm

•	 OpenAI API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting 

up OpenAI API access and token generation, see Chapter 2. If you need help creating an OpenAI 

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Introducing software documentation
Software engineers not only write a lot of code, but they also need to read and understand code 

written by others. The code could be written the same day by other developers or be part of a 

legacy system maintained over multiple decades. While clean, well-written code is a critical 

aspect, code documentation is also a fundamental way of communicating with other developers.

Software documentation comes in multiple forms that serve different needs. Technical documen-

tation includes the comments in source code, API descriptions, database schemas, and software 

architecture diagrams. User documentation is a guide on how an end user can use software. The 

software engineering process also adds specific documentation on requirements, specifications, 

testing plans, CI/CD pipelines, sprint planning, and much more. This chapter focuses on the 

documentation of the source code.

A general guideline is that the documentation should focus on the “why” rather than the “what.” 

That is, the code is readable and one can figure out what it does, but the reason for its implemen-

tation is what should be documented. The rationale is that well-written code is self-explanatory 

about what it does, but the reason for the code (the why) can be better understood through 

documentation. The code documentation can therefore explain the code, improve its readability, 

and aid later software maintenance.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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In Python, the convention for documentation within the code is the docstring. Docstrings typically 

occur at the beginning of Python modules, classes, and methods. The purpose is to explain their 

function and the reason for their inclusion. Python’s docstrings are enclosed in triple quotes (single 

or double quotes) even if they are just one line. However, for the most common docstrings used 

to document methods, they should include arguments, return types, and any exceptions raised.

Docstrings serve a few different purposes. First, they provide documentation for a module, class, 

method, or function for developers. They can be compiled into formal documentation resources. 

In addition, these forms of documentation are accessible using Python’s help() function. Using 

docstrings makes the code easier to maintain, which reduces the lifetime cost of code.

The second purpose of docstrings is based on Miller’s Law, also known as the Magical Number 

Seven, Plus or Minus Two. Based on George Miller’s 1956 paper (https://psychclassics.yorku.

ca/Miller/), it states that humans can retain 5 to 9 pieces of information in their working memory. 

A software developer trying to understand even a medium-length Python file must understand 

the interaction of several methods. The docstring and naming conventions facilitate a quick 

understanding of the abstracted methods.

Although docstrings may appear to be standard, there are actually four common formats. The 

PEP 257 convention is the official Python standard, consisting of a single line with no string 

formatting that emphasizes readability. The Google style is among the most common and still 

emphasizes readability. It uses multi-line formatting for the arguments passed in, method returns, 

and exceptions raised. The NumPy/SciPy style is widely used, but primarily for scientific software. 

It has similar content to the Google style but uses different formatting. The reStructuredText 

(reST) or Sphinx style includes more detailed information than the others. This style is used by 

the Sphinx documentation generator, which produces HTML, PDF, and LaTeX documentation 

manuals directly from the source code with full hyperlinking and other advanced features. This 

chapter will focus on both single-line PEP 257 and Google styles due to their widespread use, but 

other styles are directly supported by requesting specific docstring styles. We have included a 

few sources in the Further reading section that describe comment styles for Python in more detail.

https://psychclassics.yorku.ca/Miller/
https://psychclassics.yorku.ca/Miller/
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Working with the /explain GitHub Copilot command
As a working example in this chapter, we use Flask routines that support the distance calculation 

found in Chapter 10. The base code is shown in the GitHub repository and copied for reference here:

from flask import Flask, request, jsonify

import numpy as np

app = Flask(__name__)

@app.route("/distances", methods=["POST"])

def calculate_distance():

    data = request.get_json()

    dist_type = data.get("distance")

    a = np.asarray(data.get("df1"))

    b = np.asarray(data.get("df2"))

    if a.shape != b.shape:

        return jsonify({"error": "Matrices must have the same shape"})

    if dist_type == "L1":

        dist = np.sum(np.abs(a - b))

        return jsonify({"distance": dist})

    elif dist_type == "L2":

        dist = np.sqrt(np.sum((a - b) ** 2))

        return jsonify({"distance": dist})

    else:

        return jsonify({"error": "Invalid distance type"})

In VS Code, by simply highlighting the method, right-clicking and selecting Copilot, and selecting 

Generate Docs as shown in Figure 12.1, a docstring can be automatically written. Note that we 

have ignored Generate Docstring shown under Copilot. That command is VS Code’s template 

approach for docstrings, which creates placeholders for the docstring and parameters but does 

not use any AI to write the comment or description.
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Figure 12.1: By highlighting the method and right-clicking, Copilot generates a docstring

The generated docstring is shown in Figure 12.2. Trying this several times, we obtained several 

variations on the docstring, some of which had exceedingly long lines or different formats, and 

some included different information. Regardless, the docstring format has a simple one-line 

description, but the remainder has a random format that does not follow any of the style guides. 

Specifically, the “expects…” section of the docstring is unclear.
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Figure 12.2: GitHub Copilot produces a vague docstring for a poorly constructed function

Another common case is for GitHub Copilot to produce multiple lines of text as the docstring, 

excluding the parameters, returns, and so on. Figure 12.2 fails in this respect, with two lines of 

explanation followed by the expects (This endpoint expects...) and returns sections. While 

both multi-line and one-line docstrings exist, the preference is for one line rather than an elab-

orate description, particularly for low-level methods. If such a method requires multiple lines, 

it is often considered good practice to refactor the method into multiple simpler methods that 

each perform a single task.

Copilot’s docstring creation is usually quite good, but can occasionally be incorrect. As in the 

previous example, you will encounter cases where it does not perform well. Some of these cases 

are due to the complexity of the underlying code. Rather than fixing the docstring, a preferred 

solution would be to refactor the code into a simpler form and recreate docstrings. In many cases, 

the /explain function is quite informative. In Figure 12.3, we apply /explain to the same code 

by using the GitHub Copilot Editor Inline Chat from within the same function:



Chapter 12 299

Figure 12.3: Using /explain for calculate_distance describes a complex method

A similar functionality occurs within the GitHub Copilot Chat with the /explain calculate_

distance() command, which often returns explanations that are more verbose. Although both 

provide a clear explanation, their content is technically complex, which is why we recommend 

refactoring the code as shown:

import numpy as np

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route("/distances", methods=["POST"])

def calculate_distance():

    a, b, dist_type = parse_request_parameters(request)

    dist_func = {"L1": get_manhattan_dist, "L2": get_euclidean_dist}.
get(dist_type)

    dist = dist_func(a, b)

    return jsonify({"distance": dist})
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def parse_request_parameters(request):

    data = request.get_json()

    a = np.array(data.get("df1",))

    b = np.array(data.get("df2",))

    dist_type = data.get("distance")

    return a, b, dist_type

def get_manhattan_dist(a: np.ndarray, b: np.ndarray) -> float:

    return np.sum(np.abs(a - b))

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

    return np.sum((a - b) ** 2)

This section has introduced one way of instructing GenAI to write a docstring. The next section 

provides other approaches.

Using GenAI to write docstrings
This section describes different techniques for creating docstrings for a single method and for a 

full Python file. Docstrings improve code readability and are often required by organizations as 

part of their continuous integration/continuous development (CI/CD) pipelines. Using GenAI 

to create docstrings can increase the speed of the software development process.

Docstring for a single method
The simplest approach to generating a docstring in VS Code is simply typing three double quotes 

“““ or the equivalent in single quotes on a blank line following the method signature, as shown in 

Figure 12.4, with results shown in the code block that follows, which can be accepted by pressing 

tab:

Figure 12.4: Initiating the request for a docstring with three single or double quotes

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

    '''Calculates the squared Euclidean distance between two arrays.'''

    return np.sum((a - b) ** 2)
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As we can see, it describes the method but is the simplest form of the PEP 257 style with a single 

line string and no parameters or return values.

If we want to have a different docstring style, we can request it using the Copilot Editor Inline Chat 

(/doc Google style) or any other specified style. Figure 12.5 shows the results for the Google style.

Figure 12.5: Docstring in Google style using the inline /doc Google style

This approach with the online Editor Inline Chat will not create docstrings for all the methods 

within a file. Other techniques for working at a file level are discussed next.

Similarly, with the GitHub Copilot chat, we can highlight a single method, such as get_euclidean_

dist, and request a Google-style docstring using the /doc Google style command. Shown on 

the left of Figure 12.6, the original (above) and new (below) docstrings are presented with the 

options to keep or undo the changes.

Figure 12.6: Using GitHub Copilot chat on a single method to change to Google style
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Docstrings for an entire file
GitHub Copilot and ChatGPT can be used to produce docstrings for all methods within a single 

file at once using the chat mode, which can be quite useful. This may not work with the inline 

chat, depending on the version you are using of VS Code or PyCharm, so the code may be produced 

in the chat window and will have to be copied and pasted back into the code base. We find this 

approach useful at the end of the day, when you are trying to submit code before a deadline. In 

practice, though, we recommend writing docstrings with the code since the GenAI should be 

verified, which is best accomplished when writing the code. A later section, Finding outdated doc-

strings with GitHub Copilot, ChatGPT, and OpenAI API,  will describe strategies for stale comments.

The first step is asking GitHub Copilot to write the docstrings for your current Python file, as 

shown in Figure 12.7. We will use the same code as we did earlier, using the Flask-based distance 

calculation.

Figure 12.7: GitHub Copilot chat request to produce docstrings for the entire file

After uploading or pasting the file, the results are shown in the following code block. The results 

appear in the chat and must be copied from it to the code development window. We have not 

specified the type of docstring, and it may default to the Google style or the equivalent of /doc 

Google style. By modifying the prompt to /doc single line style, the code will produce 

the corresponding single-line docstrings. Both versions are included in the GitHub repository 

for this book.

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route("/distances", methods=["POST"])

def calculate_distance():
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    """Calculate distance between two vectors."""

    a, b, dist_type = parse_request_parameters(request)

    dist_func = {"L1": get_manhattan_dist, "L2": get_euclidean_dist}.
get(dist_type)

    dist = dist_func(a, b)

    return jsonify({"distance": dist})

def parse_request_parameters(request):

    """Parse and validate request parameters."""

    data = request.get_json()

    a = np.array(data.get("df1",))

    b = np.array(data.get("df2",))

    dist_type = data.get("distance")

    return a, b, dist_type

def get_manhattan_dist(a: np.ndarray, b: np.ndarray) -> float:

    """Calculate Manhattan distance."""

    return np.sum(np.abs(a - b))

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

    """Calculate Euclidean distance."""

    return np.sum((a - b) ** 2)
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With these methods, we can create documentation for a single method or an entire file. Refac-

toring code often leads to a problem where the code and the docstrings are out of sync. The next 

section discusses strategies to overcome this problem.

Finding outdated docstrings with GitHub Copilot, 
ChatGPT, and OpenAI API
A frequent debate among software engineers is whether documentation should be written when 

writing the code or later, when the code has stabilized. One line of thinking is that the docstring 

(and test cases) should be written at the same time. The primary argument is that the intention 

of the code is clearest when the developer is working through its logic and understands its pur-

pose. The problem is that, as code is routinely refactored, the docstring comments and test cases 

must be adapted, making the original versions obsolete. The other line of thinking is that the 

documentation can and should be written later, once the code settles, to minimize the repeated 

rewriting of the comments.

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick 

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

 The next-gen Packt Reader is included for free with the purchase of this book. 

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this 

book by name. Double-check the edition shown to make sure you get the right one.
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New GenAI technology makes the debate irrelevant since it offers two solutions. The first solution 

is simply to regenerate and update all the comments at the method or file level. The previous 

section described this strategy. We can use GitHub Copilot or ChatGPT to write the docstrings 

for the entire file, which will update or redo all the docstrings.

The second strategy is more specific in that it can detect outdated or stale comments so that these 

can be manually or automatically adjusted. The advantage of this approach is that individual 

methods can be updated, leaving previously generated or verified comments unchanged. If we 

have individually written, verified, or otherwise invested effort in the docstrings, we do not want 

them to be overwritten.

For the comments, we have taken the previous example and created two versions of the Euclidean 

distance by copying one and modifying the code. The new code is shown here. As you can see, 

the first method returns the Euclidean distance and the second method returns the Euclidean 

distance squared, yet the docstrings have not been updated and are, in fact, identical due to our 

copy and paste approach.

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

    """Return the squared Euclidean (L2) distance between two arrays."""

    return np.sqrt(np.sum((a - b) ** 2))

def get_euclidean_squared_dist(a: np.ndarray, b: np.ndarray) -> float:

    """Return the squared Euclidean (L2) distance between two arrays."""

    return np.sum((a - b) ** 2)

Using GitHub Copilot or ChatGPT, we can simply ask whether any of the docstrings are out of 

sync, as shown in Figure 12.8. The approach cleverly recognizes the squared root function call in 

get_euclidean_dist and suggests an update to the docstring:
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Figure 12.8: Using GitHub Copilot to identify stale docstrings

A better approach is to use OpenAI API to compare the code and docstrings individually across 

a file. The sample code can be found in the repository for this chapter called openai_docstring_

review.py, which runs on the distance_versions.py file. The resulting output is shown next 

for each of the methods.

The output explains the logic and provides an answer as to whether the docstring correctly corre-

sponds to the code implementation. It correctly identifies that the get_euclidean_dist method 

does not match. 

Function: calculate_distance

Docstring: Calculate distance between two arrays from a POST request.

Source: @app.route("/distances", methods=["POST"])

def calculate_distance():

<…code deleted for space…>

Matches: The docstring matches the implementation. Both the docstring and 
the function's purpose convey that the function is designed to calculate 
the distance between two arrays based on parameters received from a POST 
request. Therefore, the conclusion is:

MATCHES: Yes

Function: get_euclidean_dist

Docstring: Return the squared Euclidean (L2) distance between two arrays.
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Source: def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

<…code deleted for space…>

Matches: The provided docstring states that the function returns 
the "squared Euclidean (L2) distance between two arrays," but the 
implementation actually returns the Euclidean distance (not squared) by 
taking the square root of the sum of squared differences. Therefore, the 
docstring does not accurately describe the implementation.

Thus, the conclusion is that the docstring does NOT match the 
implementation.

Function: get_euclidean_squared_dist

Docstring: Return the squared Euclidean (L2) distance between two arrays.

Source: def get_euclidean_squared_dist(a: np.ndarray, b: np.ndarray) -> 
float:

<…code deleted for space…>

Matches: The docstring and the function implementation match. The function 
`get_euclidean_squared_dist` computes the squared Euclidean distance (also 
known as the L2 distance) between two numpy arrays `a` and `b`, and the 
docstring accurately describes this functionality.

Therefore, the answer is:

MATCHES

Function: get_manhattan_dist

Docstring: Return the Manhattan (L1) distance between two arrays.

Source: def get_manhattan_dist(a: np.ndarray, b: np.ndarray) -> float:

<…code deleted for space…>

Matches: MATCHES: Yes

The chapter has covered several techniques for creating docstrings. It has also introduced different 

strategies for finding problems with stale comments. In the next section, we provide recommen-

dations based on how we approach writing docstrings with GenAI. 
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Practical insights
Given the choices of GitHub Copilot, ChatGPT, and OpenAI API, we find that Copilot is the most 

convenient for writing docstrings. The convenience of pair programming in the integrated envi-

ronment simply makes it easier to request documentation, rather than copying and pasting code 

to other places. Copilot chat can usually accurately locate stale comments by itself. One issue we 

have encountered is that the context of sending code to Copilot is not visible. If you copy code and 

ask if the comments are current, it may miss some methods that were not included in the context. 

This can be solved by copying and pasting the code in place to renew the context.

We recommend that the docstrings be created after writing the code for each method, or at least 

after the code for a method has stabilized, if not after each refactoring. We further suggest check-

ing that the docstring accurately reflects the implementation. At the beginning of the chapter, 

we discussed that documentation should reflect why a particular method was written rather 

than describing  what the code does. The current technology is quite reasonable for the what but 

ignores the why, which is an opportunity for software engineers to elaborate.

Summary
Docstrings are a standard practice for maintaining high-quality code. They enable future readers 

of the software to understand the code, which is important for debugging, feature enhancements, 

and more. We recommend docstrings be included as soon as the code has been written. GitHub 

Copilot offers multiple ways of writing docstrings for a single method, including three single or 

double quotes, using the Copilot menus on a highlighted method. These approaches will produce 

single-line docstrings, the Google docstring style, or others when specified as a command.

A challenge in writing software is keeping docstrings up to date with the code. All methods can 

identify discrepancies between the code and docstrings, which is the preferred method for iden-

tifying issues that can be resolved. Alternatively, docstrings can be updated at a method or file 

level, replacing any existing docstrings.
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Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: What are three ways of generating docstrings for code?

Answer: The three ways discussed in this chapter are as follows:

1.	 GitHub Copilot can recommend code by opening """ or ''' for a method on the line after 

the method signature

2.	 GitHub Copilot can be invoked by highlighting a method and using its menu to generate 

a docstring

3.	 ChatGPT or Copilot can be used to add docstrings to all methods

Question 2: What are two approaches for keeping docstrings consistent with the underlying code?

Answer: The first approach is simply overwriting any docstrings. This ensures that the GenAI pro-

duces a docstring for all methods based on the underlying code. If a docstring were inconsistent, 

then it would be overwritten. Unfortunately, this overwrites all previously created docstrings, 

which may be undesirable if you have invested time and effort into writing or checking any of them.

The second approach uses GitHub Copilot or ChatGPT to ask if there are discrepancies between 

the code and the docstrings. One can also use OpenAI API to match each code implementation 

against the docstring and return whether they match on a case-by-case basis as was shown with 

the openai_docstring_review.py, sample code. Any of the options in the second approach are 

preferred if docstrings are current and verified.

Question 3: Given that GenAI can produce quality docstrings, is it necessary to check the doc-

strings, or can they simply be regenerated?

Answer: While the quality is usually quite high, inaccurate docstrings can confound future de-

velopers. It is strongly recommended to use GenAI to save time, but to use human intelligence to 

verify that they are correct. At the present time, trust but verify is the best approach.
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Further reading
•	 Miller’s Law, also known as Magic Number 7 plus or minus 2: https://en.wikipedia.

org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

•	 Types of docstring formats: https://www.geeksforgeeks.org/python-docstrings/

•	 Further formatting of docstrings: https://www.linkedin.com/pulse/python-
docstrings-formats-samuel-thomas/

Subscribe for a free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled 

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs 

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help 

you stay focused and informed. 

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://www.geeksforgeeks.org/python-docstrings/
https://www.linkedin.com/pulse/python-docstrings-formats-samuel-thomas/
https://www.linkedin.com/pulse/python-docstrings-formats-samuel-thomas/
https://packt.link/TRO5B


13
Writing and Maintaining  
Unit Tests

The task of software engineering can be interpreted as the ability to deliver quality products that 

contribute to the business value of customers. In this age of technology, customers have high 

standards and demand excellence.

The notion of quality has been interpreted in different ways over the years. However, here are 

two key aspects:

•	 That it must meet the user requirements

•	 It must be free of defects

These two requirements are captured by verification and validation processes, which assert that 

the software achieves the intended goal without any defects. There are many software engineer-

ing techniques that aim to achieve these goals, including code reviews, pair programming, and 

so on, but the most common is testing. Although there are many books that focus on the art and 

practice of software testing, this chapter focuses on unit testing, which is the most widely used 

approach. Test-driven development (TDD) is a popular agile approach for software development. 

Rather than writing the code first and ensuring it functions correctly with unit tests, TDD involves 

writing the unit test cases first and subsequently writing the minimum code that passes the tests. 

Proponents of the practice claim superior code quality and an inherently testable design. In this 

chapter, we will refer to the primary code under development as the implementation code, and 

the unit tests as the test code.
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With GenAI coding, one can argue that testing is even more critical than conventional program-

ming. The generative AI process involves crafting code based on comments and/or method signa-

tures from other code, which lacks the precision that a developer would normally apply, given the 

trade-off for supercharged, faster coding. Unit testing serves as a check that the code functions 

correctly, as specified by tests. Combined with code inspection while creating the code, it offers 

a check of correctness.

This chapter is dedicated to working with both GitHub Copilot and ChatGPT to supercharge our 

creation of unit tests. In this chapter, we will cover the following topics:

•	 Unit tests with GenAI

•	 Data-driven tests

•	 Test-driven development

•	 Sample data creation with GenAI

•	 Practical insights

Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 A GitHub account

•	 Access to your preferred IDE – either VS Code or PyCharm

•	 Access to the book’s repository available at https://github.com/PacktPublishing/

Supercharged-Coding-with-Gen-AI 

•	 A virtual environment set up in your preferred IDE, VS Code, or PyCharm

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting 

up OpenAI API access and token generation, see Chapter 2. If you need help creating an OpenAI 

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Unit tests with GenAI
GenAI can save considerable time in writing unit tests. As the name suggests, each unit test is 

designed to test a single unit or aspect of the code. In fact, they are focused on the smallest frag-

ments of code that can be separated and tested in isolation. Together, they provide confidence 

that the code functions correctly at the component level and provide an early signal of issues 

when the code is refactored. The same developer typically writes the code implementation and 

unit tests. The unit tests prove that the code functions correctly, as understood, and may also 

help define the requirements.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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By their nature, unit tests require a deep understanding of the business and software requirements 

and how each method fulfills those requirements. One must consider the intended functionality 

as well as the  variety of edge cases for each method separately and incorporate those into the test 

framework. This includes decisions on the test framework, method call, test nomenclature, asser-

tion form, and the actual test. IDEs can certainly help with the test framework, but the actual test 

requires developer time, thought, and perhaps a strategy. These often become hurdles for junior 

or less motivated developers who perhaps see them as superfluous to the core software coding 

task. The current GenAI tools provide two-way functionality in writing unit tests for existing code 

as a common approach or writing code from existing unit tests, which is TDD.

The GenAI capability is not a substitute for testers or testing, but makes skilled testers much more 

efficient. The developer can write more tests in less time and focus on the more complex cases. 

The generic and simpler unit tests can be written by GenAI, usually with high accuracy. However, 

if the resulting tests are incomplete, one can request or prompt the GenAI to create additional 

tests to provide better coverage and confidence in the code.

As example code, we use the concept of creating n-grams for a given text string, which we intro-

duced in Chapter 6. N-grams are simply adjacent groups of N letters starting at any and every 

point within a string without exceeding the left or right side of the string. For example, the 

3-grams from the sequence “abcde” are [“abc”, “bcd”, “cde”]. Since we wanted to limit the range 

of possible characters, we only considered lowercase letters and spaces, but left tabs and line feeds. 

Uppercase letters were converted to lowercase, and both numbers and symbols were removed. 

Additionally, since English type uses single spaces, we replaced all adjacent spaces with a single 

space. This portion of the code is as follows:

import re

def lowercase_remove_punct_numbers(text, supercharte=True):

    return re.sub(r'[^a-z\s]', '', text.lower())

def multiple_to_single_spaces(text):

    letters_single_spaces = re.sub(r'\s+', ' ', text)

    return letters_single_spaces

def create_ngrams(text, n) -> list:

    '''create a list of n-gram tuples from the input text.'''

    processed_text = lowercase_remove_punct_numbers(text)

    single_space_processed = multiple_to_single_spaces(processed_text)



Writing and Maintaining Unit Tests314

    u = [single_space_processed[i:i+n] for i in range(len(single_space_
processed)-n+1)]

    return u

if __name__ == "__main__":

    text = "This is a sample text $ABC% for creating n-grams."

    n = 3

    print(create_ngrams(text, n))

The output of this function is a list of 3-grams that span the text input string:

['thi', 'his', 'is ', 's i', ' is', 'is ', 's a', ' a ', 'a s', ' sa', 
'sam', 'amp', 'mpl', 'ple', 'le ', 'e t', ' te', 'tex', 'ext', 'xt ', 't 
a', ' ab', 'abc', 'bc ', 'c f', ' fo', 'for', 'or ', 'r c', ' cr', 'cre', 
'rea', 'eat', 'ati', 'tin', 'ing', 'ng ', 'g n', ' ng', 'ngr', 'gra', 
'ram', 'ams']

If we start unit testing and have not set up the testing framework, we can use GitHub Copilot Chat 

with the prompt @workspace /setupTests, which will present an option to use either of the two 

main frameworks: pytest or unittest, as shown in Figure 13.1. The instructions are useful if you 

are installing unittest for the first time.

Figure 13.1: @workspace /setupTests provides a choice of the two main test frameworks

To generate unit tests, first select a single method from the implementation code, such as the 

lowercase_remove_punct_numbers code. Then, type the @workspace /tests generate unit 

tests command. Alternatively, explicitly type the name of the target method, such as @workspace 
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/tests generate unit tests for lowercase_remove_punct_numbers, into the GitHub Copilot 

Chat. It will first explain the tests that it will generate and then write the corresponding unit test 

file. The test explanation is shown in Figure 13.2:

Figure 13.2: The test plan from GitHub Copilot is provided along with the code for the method

The user will be prompted to save the resulting test file. The following code shows an example of 

what the output unit tests may look like, although it will vary in order and even the number of tests:

import unittest

from src.ngrams import lowercase_remove_punct_numbers

# File: test_ngrams.py

class TestLowercaseRemovePunctNumbers(unittest.TestCase):

    def test_mixed_input(self):

        text = "Hello, World! 123"

        expected = "hello world"

        self.assertEqual(lowercase_remove_punct_numbers(text), expected)

    def test_lowercase_only(self):

        text = "this is a test"

        expected = "this is a test"

        self.assertEqual(lowercase_remove_punct_numbers(text), expected)
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    def test_punctuation_and_numbers(self):

        text = "!@#$%^&*()1234567890"

        expected = ""

        self.assertEqual(lowercase_remove_punct_numbers(text), expected)

    def test_empty_string(self):

        text = ""

        expected = ""

        self.assertEqual(lowercase_remove_punct_numbers(text), expected)

    def test_spaces_and_special_characters(self):

        text = "   Hello!!   World??   "

        expected = "   hello   world   "

        self.assertEqual(lowercase_remove_punct_numbers(text), expected)

if __name__ == "__main__":

    unittest.main()

The test code is quite reasonable in the sense that it mostly proves that the regular expressions and 

lowercase are correct. The tests can be run from the parent level using the python -m unittest 

test_lowercase_remove_punct_numbers.py command.

Creating tests is an iterative process, and some of the test functions created by GenAI may be un-

necessary or incorrect. In other cases, additional tests may be warranted, and the GitHub Copilot 

Editor Inline Chat is useful for creating those tests from within the test file. As an example, we 

used /tests with a request to include 10-digit phone numbers to prove they would be correctly 

handled, which produced inline code in the test file. This process is shown in Figure 13.3:

Figure 13.3: Using Editor Inline Chat within the test code to add a new test
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In some cases, the Editor Inline Chat is more convenient since it will add directly to the code, 

whereas GitHub Copilot Chat may create a new test file. In either case, a request for a single test, 

such as a phone number or punctuation, may result in multiple additional tests. The developer 

can accept or reject these tests individually with the click of a button. Reviewing tests is important 

since the accuracy of the tests relates to the correctness of the code.

Rather than write tests for each method separately, the entire file can be converted into unit 

tests. Using GitHub Copilot chat and the @workspace /tests create unit tests for ngrams.

py command, Copilot will often, but not always, produce a test plan for each of the methods in 

ngrams.py. Then, it will create an output test file that you must name to save. Using the unittest 

conventions, each method will have its own class of one or more unit tests within that file. The 

full set of tests is not shown here but can be found in the test_ngrams.py file in the book’s 

GitHub repository.

There are guidelines for adding additional tests to the test file using a comment format. By typing 

a comment (starting with # in Python), GitHub Copilot reads the comment and suggests code. 

Although it should be equivalent, we have found this approach to sometimes be less accurate 

than using the Editor Inline Chat or GitHub Copilot Chat. As shown in Figure 13.4, the expected 

answer incorrectly includes numbers that should have been removed:

Figure 13.4: This test, generated from the #comment, incorrectly includes numbers

Revising the test with the #test create_ngrams with a 10-digit phone number and make 

sure the numbers are removed request resulted in fewer numbers included in the test. However, 

the variability of the unit tests with correct and incorrect responses means that checking them 

must be part of the verification process.

If we repeat a similar process of adding a zip code of the form 12345-6789 using the Editor Inline 

Chat feature, the results are more promising, as shown in Figure 13.5. Not only did it correctly 

produce the test, but it also added several additional tests. However, as a note of caution, the 

Inline Chat did not always produce accurate tests and sometimes incorrectly included numbers.
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Figure 13.5: The tests from Editor Inline Chat produced a correct test and others as well

This section has described how GitHub Copilot can create unit tests from the implementation 

code, either for a single method or an entire file. The next section describes how ChatGPT can 

achieve similar results.

ChatGPT for testing
ChatGPT can also be used to write unit tests. An example prompt to write Python unit tests is 

as follows:

You are a Python testing assistant.

Given Python code enclosed within {{{ }}}, generate unit tests using the 
unittest framework. For each function or method in the code:

1.Create a corresponding test method within a unittest.TestCase subclass.

2.Use meaningful test method names that reflect the function being tested.

3.Include appropriate assertions based on the function's logic and 
expected behavior.

4.Use mock objects or patching where necessary (e.g., for I/O, APIs, or 
external dependencies).

5.If a function has multiple logical branches or edge cases, include test 
cases for them.

6.Do not include the original code in the output—only the test code.



Chapter 13 319

7.Import any modules or classes necessary for the tests to run.

8.Format your output as a complete, valid Python test file using the 
unittest module.

________________________________________

Input:

python

{{{

# Paste Python code here

}}}

________________________________________

Output:

Applying this template to the ngrams.py code produced seven different tests without further 

elaboration. The file is listed in test_ngrams_chatgpt.py in the GitHub repository for the book. 

One of the tests created was incorrect and subsequently failed, as shown in Figure 13.6. The test 

incorrectly suggests that a $ and s are equivalent, instead of replacing the dollar symbol with a 

space.

Figure 13.6: ChatGPT produced one incorrect test out of seven for ngrams.py
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When prompted Are there additional tests that should be included?, ChatGPT produced 

an additional set of tests shown in Figure 13.7, each with code, and offered to convert them into 

a code library:

Figure 13.7: Additional ChatGPT tests that it suggested when prompted

As a supplement to the unit tests, additional tests can also be run directly within ChatGPT and 

included in the overall test suite. The test_ngrams_chatgpt_extra.py file in the GitHub repos-

itory shows the tests generated. In addition to running the tests in ChatGPT, this platform also 

explains why tests fail. Figure 13.8 presents a valuable discussion of the test failure and the han-

dling of tabs and newlines, which could be a failed test or an issue with the original code. Such 

insight into the code will help improve the overall quality. ChatGPT made suggestions to change 

the tests and rerun them:

 

Figure 13.8: Explanation of a failed text from ChatGPT



Chapter 13 321

ChatGPT is clearly effective at writing unit tests, even if it requires multiple requests. It is also pos-

sible to write other kinds of tests, such as data-driven tests, which is the topic of the next section.

Data-driven tests
The GitHub Copilot or ChatGPT prompt can enable data-driven or random testing that supple-

ments the unit test coverage. Using the Generate data driven tests for lowercase_remove_

punct_numbers prompt with Copilot gave the following code:

import unittest

from src.ngrams import lowercase_remove_punct_numbers

class TestLowercaseRemovePunctNumbers(unittest.TestCase):

    def test_data_driven(self):

        test_cases = [

            # (input, expected_output)

            ("Hello, World! 123", "hello world "),

            ("ABCdef", "abcdef"),

            ("1234!@#$", ""),

            ("A1! b2@ C3#", "a b c"),

            ("", ""),

            ("   ", "   "),

            ("Python3.8_is#awesome!", "pythonisawesome"),

            ("No PUNCTUATION", "no punctuation"),

            ("MiXeD CaSe &*^%", "mixed case "),

            ("newline\nTab\tSpace ", "newline\ttab\tspace "),

        ]

        for input_text, expected in test_cases:

            with self.subTest(input=input_text):

                self.assertEqual(lowercase_remove_punct_numbers(input_
text), expected)

if __name__ == "__main__":

    unittest.main()
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This file can be found as test_data_driven_ngrams.py in the book’s GitHub repository. This 

example and the unit tests in the previous section show how GenAI can create tests from the 

implementation code. GitHub Copilot and ChatGPT use this code to identify meaningful test 

cases, including many edge cases. To improve the coverage, additional tests can be written man-

ually, semi-manually with GenAI, or by simply requesting additional tests. These unit tests can 

be extended similarly to other types of testing, such as integration testing, performance testing, 

and A/B testing.

As discussed in these two sections, both unit tests and data-driven tests can be written using 

GenAI from the implementation code. While creating test code from the implementation code 

works, one should consider writing the tests first rather than the implementation. This approach 

is called test-driven development and is described in the next section.

Test-driven development
Test-driven development (TDD) is one component of the Extreme Programming (XP) agile soft-

ware methodology proposed by Kent Beck in the 1990s. Two of his books can be found in the Further 

reading section. The main concept of TDD is that the unit tests are written first and subsequently 

fail since there is no code to support them. The software engineer then writes the code until the 

tests pass. It is widely accepted that this practice improves code design and enhances testability. 

Empirical studies such as that by Mäkinen & Jürgen Münch (https://link.springer.com/cha

pter/10.1007/978-3-319-03602-1_10) generally support the value of TDD. The approach also 

focuses the software engineer on passing tests rather than adding other features.

Whether to write tests first or last often becomes a religious debate with devout followers on 

either side. We will not attempt to resolve the issue here. If we believe that GenAI always writes 

perfect code that exactly and cleanly meets all the requirements, then it does not matter whether 

the tests or the code are used to write the other. A recent 2024 IEEE study by Jiri et al. (https://

ieeexplore.ieee.org/document/10685204) showed that unit tests written by humans have 

fewer errors than unit tests by GenAI, but the technology is advancing rapidly and closing this gap. 

This leaves us with a conundrum that the code may be flawed, and the tests may not be perfect, 

yet we need both to be accurate. The more common convention of software engineers is to write 

the code using GenAI and then use GenAI to write the tests, which mirrors their development 

practice. With TDD, there is a potential to write the perfect tests, perhaps with GenAI, and then 

use GenAI to prove that the implementation passes the tests and their perceived requirements. In 

fact, we can go further and use GenAI to iterate and craft the code that meets these requirements.

https://link.springer.com/chapter/10.1007/978-3-319-03602-1_10
https://link.springer.com/chapter/10.1007/978-3-319-03602-1_10
https://ieeexplore.ieee.org/document/10685204
https://ieeexplore.ieee.org/document/10685204
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As an example for this section, we will use the intersection of two rectangles problem, which 

simply identifies the overlapping area between two rectangles. To simplify the problem, we 

restrict the rectangle definition to use two points—the x and y coordinates of the lower-left and 

upper-right corners of the rectangle. In our notation, the rectangle is represented as (xll, yll, xur, 

yur) as shown in Figure 13.9:

Figure 13.9: Intersecting rectangle problem

Rather than immediately start coding the result, we will instead consider the various test cases, 

which are broken down into the following:

1.	 Intersecting rectangles (Figure 13.10):

Figure 13.10: Example test cases for overlapping rectangles

2.	 Non-intersecting rectangles (Figure 13.11):

Figure 13.11: Example test cases for non-overlapping rectangles
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3.	 Invalid rectangles (Figure 13.12):

Figure 13.12: Example test cases for invalid rectangles that fail our definition

As part of the TDD process, we begin by coding the unit tests using GenAI. Using descriptive test 

names facilitates the accurate creation of the test code. A few tests are shown to illustrate the 

idea in the following code snippet (the full file with 21 unit tests is available in the book’s GitHub 

repository as test_rectangle_intersection.py):

import unittest

from rectangle_intersection import rect_intersection_area

class TestRectangleIntersectionArea(unittest.TestCase):

    def test_intersecting_rectangles(self):

        rect1 = (0, 0, 4, 4)

        rect2 = (2, 2, 6, 6)

        self.assertEqual(rect_intersection_area(rect1, rect2), 4)

    def test_intersecting_rectangles_swapped(self):

        rect1 = (2, 2, 6, 6)

        rect2 = (0, 0, 4, 4)

        self.assertEqual(rect_intersection_area(rect1, rect2), 4)

    def test_non_intersecting_rectangles(self):

        rect1 = (0, 0, 2, 2)

        rect2 = (3, 3, 5, 5)

        self.assertEqual(rect_intersection_area(rect1, rect2), 0)

For the tests to appropriately fail as the next step of the TDD process, we need a stub file, rectangle_

intersection.py, containing rect_intersection_area(rect1, rect), which arbitrarily returns 

None. An example of this code is shown as follows and is stored as rectangle_intersection.
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py in the same folder. These names are based on the import statement at the beginning of the 

preceding test file code, as shown: 

def rect_intersection_area(rect1, rect):

    return None

With the TDD process, we have encoded the requirements of the code as tests. The only missing 

piece is the actual implementation. Normally, we would iterate between writing the implemen-

tation and running the tests to ensure that the code functions as expected. Using GenAI, we can 

replace this process with a request to GenAI to iteratively write the code until it passes all the tests. 

We will discuss how this can be achieved using GitHub Copilot in both VS Code and PyCharm 

IDEs, and then show the TDD approach using ChatGPT.

TDD using GitHub Copilot within VS Code
The TDD approach within VS Code is arguably the most straightforward. First, we ensure that 

both rectangle_intersection.py and test_rectangle_intersection.py are open, then run 

the latter unit test file. Then, we can use this command in the Copilot chat window:

@terminal /fix rect_intersection_area according to the unit test failure

This produces an updated set of code in the same chat window that we copied and pasted as a 

replacement for the rectangle_intersection.py implementation. This is shown as follows:

def rect_intersection_area(rect1, rect2):

    """

    Calculate the area of intersection between two rectangles.

    Each rectangle is represented as a tuple (x1, y1, x2, y2):

    - (x1, y1): bottom-left corner

    - (x2, y2): top-right corner

    """

    # Calculate the overlapping region

    x_overlap = max(0, min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]))

    y_overlap = max(0, min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]))

    # If there is an overlap, calculate the area

    return x_overlap * y_overlap
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Running the same unit tests against this new implementation reduced the number of tests that 

failed from 21 to 9. Most of the failures are caused by the lack of exceptions raised for invalid 

rectangles. These were included in the tests but ignored by the GenAI.

We repeated the process with the same /fix command to produce the next iteration of code 

implementation, but the errors persisted. In some cases, running the process two or three times 

resolved the errors. In other cases, we needed to manually revise the /fix command with more 

explicit instructions:

@workspace /fix rectangle_intersection_area according to the unit test 
failure and be sure to raise ValueError for invalid rectangle dimensions

The generated implementation passed all the unit tests and is shown as follows:

def rect_intersection_area(rect1, rect2):

    """

    Calculate the area of intersection between two rectangles.

    Each rectangle is represented as a tuple (x1, y1, x2, y2):

    - (x1, y1): bottom-left corner

    - (x2, y2): top-right corner

    """

    # Ensure the rectangles are valid

    if rect1[0] >= rect1[2] or rect1[1] >= rect1[3]:

        raise ValueError(f"Invalid rectangle dimensions for rect1: 
{rect1}")

    if rect2[0] >= rect2[2] or rect2[1] >= rect2[3]:

        raise ValueError(f"Invalid rectangle dimensions for rect2: 
{rect2}")

    # Calculate the overlapping region

    x_left = max(rect1[0], rect2[0])

    y_bottom = max(rect1[1], rect2[1])

    x_right = min(rect1[2], rect2[2])

    y_top = min(rect1[3], rect2[3])

    # Check if there is an actual overlap

    if x_left < x_right and y_bottom < y_top:

        return (x_right - x_left) * (y_top - y_bottom)

    else:

        return 0  # No overlap
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In this section, we used a simple one-line command within the VS Code chat to create an im-

plementation. It uses the implementation code, unit tests, and the output of the tests directly to 

write an improved version of the implementation code.

TDD using GitHub Copilot within PyCharm
Using the TDD approach within PyCharm is not quite as simple as with VS Code. As of January 

2025, GitHub Copilot cannot access PyCharm’s terminal window, which means it cannot access 

the failed unit tests directly. The output of failed tests informs Copilot what needs to be fixed 

in the implementation, and so this is a critical component. As a solution, we can paste the error 

message of the failed messages into the GitHub Copilot chat window:

CONTEXT: You will be given an error message enclosed in {{{ERROR}}}.

TASK: Fix the implementation of rectangle_intersection_area _mean so it 
passes all tests.

ERROR: {{{ ... <omitted for brevity> ... }}}

FIXED CODE:

This prompt, whether used in an inline chat or a chat window, should generate a fully functional 

implementation that passes the unit tests.

For TDD with PyCharm, we need to use a more complete template call within the chat that passes 

the output of the failed unit tests. With this information, as well as the implementation and test 

code, a new version of the implementation code aims to solve the issues and pass the unit tests. 

A similar approach can be used with ChatGPT, which will be described next.

TDD using ChatGPT
As part of the TDD process, ChatGPT can also be used to generate improved implementation code 

based on the combination of the existing implementation code, unit test code, and the errors or 

results of the unit test execution. We use triple brackets to enclose each of these components:

CONTEXT: You are provided with

1. Python function enclosed with {{{ FUNCTION }}} that has a bug.

2. Test suite code enclosed with {{{ UNIT TESTS }}}.

3. Error message enclosed with {{{ ERROR }}}.

TASK: Fix the function implementation

FUNCTION: {{{def rect_intersection_area(rect1, rect2):

    return None
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 }}}

UNIT TESTS: {{{ ... omitted for brevity ... }}}

ERROR: {{{ ... omitted for brevity ... }}}

CODE:

In this instance, ChatGPT produced the following output code, which is similar but mildly differ-

ent from the GitHub Copilot output. ChatGPT explained the implementation, and all the created 

tests passed in the first iteration.

def rect_intersection_area(rect1, rect2):

    x1_1, y1_1, x2_1, y2_1 = rect1

    x1_2, y1_2, x2_2, y2_2 = rect2

    # Validate input rectangles

    def is_invalid_rect(x1, y1, x2, y2):

        return x1 >= x2 or y1 >= y2

    if is_invalid_rect(x1_1, y1_1, x2_1, y2_1) or is_invalid_rect(x1_2, 
y1_2, x2_2, y2_2):

        raise ValueError("Invalid rectangle with non-positive width or 
height")

    # Find intersection bounds

    inter_left = max(x1_1, x1_2)

    inter_right = min(x2_1, x2_2)

    inter_bottom = max(y1_1, y1_2)

    inter_top = min(y2_1, y2_2)

    # Check if rectangles intersect

    if inter_left >= inter_right or inter_bottom >= inter_top:

        return 0

    # Compute and return intersection area

    return (inter_right - inter_left) * (inter_top - inter_bottom)
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If the tests had not passed, the new code would need to be copied and pasted into the IDE, replacing 

the previous version. The unit tests would need to be rerun against the new code. The revised im-

plementation code and resulting unit test errors must be copied again into the ChatGPT template.

The advantage of the TDD approach is that it asserts that the implementation is correct based 

on the fact that the code passes the unit tests. The code produced in this simple example is quite 

reasonable, but more complex tasks may produce functional code of lower quality. In such cases, 

the code should be refactored. However, this is much easier with a full set of tests that continue 

to prove the code is meeting the functional requirements.

Whether TDD is the ideal strategy is still up for debate. Without TDD, the user focuses on the 

implementation, from which the GenAI can certainly create reasonable tests. As we observed, 

some of the tests may fail, and some may indicate limitations of the implementation. The software 

developer must then understand all the tests and provide enough logical coverage to be confident 

in the implementation. With TDD, the cognitive effort is in assuring the tests are sufficient, from 

which code can be generated. If the GenAI provides an implementation, the most the developer 

will have to do is refactor the code.

Whether the code or tests are written first, the tests often require meaningful datasets. The next 

section describes how GenAI can be used to create realistic data.

Sample data creation with GenAI
One aspect of testing is the availability of data that is representative of the kind you will encoun-

ter in the wild. If you have been involved in creating mock data in years past, you will certainly 

appreciate GenAI approaches to this problem. The new techniques can create a variety of types 

of data with as specific a prompt as you need. For example, the following prompt works in either 

ChatGPT or GitHub Copilot:

create a table with 10 rows and the following columns:

5 digit integer id called "ID"

first name

last name

address consisting of a number, street name, and whether it is a st., dr. 
or ave.

city

country

disease

age



Writing and Maintaining Unit Tests330

The resulting table output is shown in Figure 13.13, which includes typical names, address formats, 

diseases, and so on. This kind of data can be saved to a file and used for testing. Although such 

data could be generated on the fly, the purpose of unit testing is to create repeatable tests that 

achieve consistent results. Tests are usually added to a regression test package as part of the CI/

CD methodology and rerun periodically to ensure that past errors do not recur as code versions 

evolve. Therefore, the data should be stored and reused.

Figure 13.13: Example table of mock data produced by GitHub Copilot

Of course, the data is not limited to addresses but can be more technical, such as the Create a 

FASTA file with 3 sequences of length 15 to 25 nucleotides prompt, which returns 

three bioinformatics DNA sequences as shown in Figure 13.14:

Figure 13.14: A FASTA bioinformatics sequence file with three DNA sequences
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As can be seen from the previous output, it suggests saving the file as a .fasta file. In fact, it can 

create and save data in any format, including tables, JSON, CSV, and so on.

Another use case that is often convenient when scripting is to create some temporary data for a 

function, perhaps in a Jupyter notebook. Consider the Euclidean distance method:

def get_euclidean_dist(a: np.ndarray, b: np.ndarray) -> float:

    """Return the squared Euclidean (L2) distance between two arrays."""

    return np.sqrt(np.sum((a - b) ** 2))

GitHub Copilot used the Create sample inputs for get_euclidean_distance() prompt to 

produce a few samples of inputs that can be directly applied, as shown in Figure 13.15:

Figure 13.15: GitHub Copilot creates example inputs for functions for informal testing

In the TDD process, developers write the unit test code first, and the implementation code is 

written to pass the unit tests. The unit tests can be written by developers using standard Ge-

nAI approaches to verify that the implementation code will meet the requirements. From either 

VS Code or PyCharm, GitHub Copilot can iteratively create the implementation code from the 

unit test code alone. ChatGPT offers similar functionality through a prompt template. The next 

section provides recommendations on how GenAI approaches can best be used to complete the 

implementation and test code.
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Practical insights
Testing has been a focus of technology from the templates of “vintage AI” to the present time 

with GenAI. There has always been a tendency to write the code and eventually write the tests 

to make it acceptable to your organization. These new GenAI tools can definitely increase the 

velocity of the coding process. The verification process to check the code should not be just a 

one-time visual inspection but should involve unit tests that can be applied repeatedly to assert 

the correctness of the code.

The different GenAI solutions produce slightly different results, but we generally prefer GitHub 

Copilot for creating tests since the close integration with the code and iterative approach is easier 

using the single tool within the IDE, whether VS Code or PyCharm. By keeping similar test code 

open in the browser, accuracy and style improve due to the extra context.

Regardless of the particular GenAI tool used, it is critical to check the implementation and test 

code. Using GenAI to create the test code from the implementation or vice versa helps minimize 

errors since the implementation code that passes unit tests achieves at least a first level of re-

quirement verification. Failing unit tests provide a chance to rethink code requirements for the 

implementation and test code.

Summary
In this chapter, we explored various aspects of testing using GenAI. Although there are many 

types of tests and they are the topic of many books, the most common tests are unit tests. In unit 

testing, each test should test a single point of functionality and should be independent of other 

tests. Together, a complete set of unit tests proves that the code implementation functions as 

expected. If the code is refactored, augmented, or integrated in the future, the same unit tests 

assert the correctness of the functionality.

The chapter described a few approaches to creating tests from the implementation. GitHub Co-

pilot and ChatGPT can both be used to easily write unit tests for a single method or an entire 

Python file. Both techniques have some variability in terms of the types of tests and coverage that 

they provide in a first pass. In some cases, the tests may not be correct and may need additional 

prompting or manual correction. In other scenarios, prompting may be useful to add further tests 

to improve the coverage of the edge cases. Developers must be cautious that the tests accurately 

capture the requirements and are sufficient to assert the correctness of the code.
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TDD is a methodology from Extreme Programming where unit tests are written first and, by defi-

nition, fail. The implementation code is written to pass all the unit tests. GenAI can help suggest 

the test code, especially when descriptive method names are used. Using a set of tests, either 

GitHub Copilot or ChatGPT can iteratively generate the implementation code automatically. The 

process repeats until the unit tests pass. By writing the full set of tests first, the developer conveys 

the scope of the tests and behavior in various edge cases. The only required interaction with the 

generated implementation code is possibly refactoring it to improve quality, which is easier to 

achieve with the unit tests.

Two additional topics were covered in the chapter, which involved enriching data for tests. GenAI 

can create more elaborate tests by synthesizing different scenarios. Data-driven testing creates 

test pairs for inputs and outputs to test multiple scenarios. In addition, the technology can create 

realistic test sets applicable to a wide range of disciplines.

In the next chapter, we introduce ways that GenAI can identify capacity limits in terms of execution 

speed and memory management. We will also show how GenAI can optimize code to improve 

performance under these two constraints.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions: 

Question 1: What are the advantages of TDD?

Answer: TDD, or test-driven development, is a methodology where the tests are written first, 

and the implementation code follows. The tests cover the range of required functionality and 

edge cases to ensure they meet expectations. Using TDD ensures that the tests are written and 

that the code (written by humans or GenAI) functions correctly. Empirical results show that the 

implementations are generally structured better and are more amenable to tests.

Question 2: If software includes both implementation and unit tests, does it need to be manually 

verified?

Answer: Without question, a full set of unit tests and correct implementation help identify failures 

or misinterpretations of the requirements. A failed test is likely due to a flawed test or a flawed 

implementation and provides an opportunity to review the requirements. While testing helps 

identify such issues, we have observed many cases where the generated tests lack full coverage 

and may be incorrect. Similarly, there are numerous examples of incorrect implementations. The 

authors recommend manual verification in addition to complete unit tests.
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14
GenAI for Runtime and  
Memory Management

In the age of big data, artificial intelligence, and intensive data processing, an essential char-

acteristic of well written Python programs is their ability to efficiently manage both memory 

usage and runtime performance. As part of the Software Development Life Cycle (SDLC), it 

is common practice to profile our programs, anticipate performance limitations and strive for 

efficiency in both aspects.

In addition to utilizing traditional tools for profiling program performance and addressing inef-

ficiencies, we can leverage the model mastery of Large Language Models (LLMs) to code profile 

snippets, analyze maximal capacities, and optimize code to handle larger workloads.

In this chapter, we will examine two examples of inefficient implementations: a Fibonacci calcu-

lator with significant runtime overhead and a statistical analysis function that demands excessive 

memory for large matrices. By utilizing prompt precision best practices and chaining prompt 

engineering technique, we will demonstrate how GenAI applications can help profile performance 

metrics, estimate maximum capacities, and optimize the code to handle larger inputs effectively.

The topics covered in this chapter include:

•	 Introducing time and space complexity analysis

•	 Profiling runtime and memory consumption with GitHub Copilot

•	 Analyzing maximal capacity with ChatGPT

•	 Optimizing code with chained prompts
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Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 GitHub Copilot account

•	 IDE – either VS Code or Pycharm

•	 OpenAI account with access to ChatGPT and OpenAI API

•	 Access to the book’s repository available at: https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

•	 Virtual environment set up in VS Code or PyCharm

•	 OpenAI API token

For assistance setting up a GitHub Copilot account, refer to Chapter 3. For instructions on setting 

up OpenAI API access and token generation, see Chapter 2. If you need help creating an OpenAI 

account or setting up a virtual environment in your IDE, refer to the Appendix for detailed guidance.

Introducing time and space analysis
In our current technology cycle, most companies are leveraging big data and artificial intelligence 

to improve their businesses. For example, videos on the YouTube and TikTok platforms are viewed 

over a billion times per day which generates recommendations and advertising value. In these 

cases, even 1% gains in efficiency for storage or computation may save millions of dollars.

According to Lambda Labs, training the generative pre-trained transformer model GPT-3 involved 

about 700 gigabytes of Random Access Memory (RAM) and thousands of powerful Nvidia GPUs 

operating in parallel, with a cumulative compute time equivalent to 355 years. Even a minor 

inefficiency in implementing these models could lead to substantial costs or, in the worst case, 

create a bottleneck that would prevent the model from running effectively.

The runtime of a program
The runtime of a program refers to the time it takes to execute the tasks defined in the source 

code on a specific hardware configuration with a given input. The runtime duration of a program 

depends on factors such as the computational complexity (the number of operations required to 

complete the task) and the hardware such as the central processing unit (CPU).

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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For example, consider an inefficient implementation of the Fibonacci number computation using 

recursion:

def fibonacci_recursive(n):

    if n <= 1:

        return n

    return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)

In this implementation, each Fibonacci number computation involves two recursive calls: one 

for the previous number and another for the one before that. Each of these calls triggers two 

additional recursive calls, and so on, until the base condition n <= 1 is met.

To illustrate how quickly the runtime of this implementation grows, here are examples of recorded 

runtimes on a MacBook Pro with an M1 chip using this implementation:

Runtime for fibonacci_recursive(5): 0.000006 seconds

Runtime for fibonacci_recursive(35): 1.7051 seconds

Runtime of fibonacci_recursive(40): 19.5045 seconds

Computing the fibonacci_recursive(100) is estimated to take 15 trillion seconds, or approxi-

mately 475,000 years, making it completely impractical. This exponential growth represents one 

of the least desirable complexities in algorithm design as it remains inefficient regardless of the 

hardware used, as we will now explore.

Runtime complexity refresher
Since computers vary in speed, it is widespread practice to measure runtime complexity in general 

terms using Big-O notation, denoted as 𝑂𝑂(… ). This notation describes how the runtime scales 

relatively to the size of the input data.

For instance:

•	 Finding the minimum number in an unsorted array of length 𝑛𝑛𝑛has a runtime complexity 

of 𝑂𝑂(𝑛𝑛)
•	 Printing all (𝑖𝑖𝑖 𝑖𝑖𝑖) combinations of elements in an array of length 𝑛𝑛𝑛has a runtime com-

plexity of 𝑂𝑂(𝑛𝑛2).
Retrieving the nth Fibonacci number using fibonacci_recursive has a runtime complexity of 𝑂𝑂(2𝑛𝑛).
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If you need a further refresher on Big-O notation or are unfamiliar with it, we recommend checking 

the Further Reading section at the end of this chapter. Big-O notation is an essential concept for 

developers, both in application design and day-to-day problem-solving.

The space consumption of a program
The RAM consumed by a program during execution reflects its memory space usage. For instance, 

a MacBook Pro with 16 gigabytes (GB) of RAM can hold about 2 billion float64 values where each 

float64 occupies 8 bytes.

Consider the following inefficient function get_top_video that reads a comma-separated values 

(CSV) file into memory as a Pandas DataFrame and returns the video with the highest average 

watch percentage:

def get_top_video(path):

    interactions = pd.read_csv(path)

    avg_ratio = interactions.mean(axis=0, skipna=True)

    return avg_ratio.idxmax()

The input CSV file may represent a matrix as follows, where each cell indicates the percentage of 

a specific video watched by a user:

video_1 video_2 video_3 video_4 video_5 video_6 ...

user_1 0.5 1

user_2 0.1 0.7 0.9

If the input dataset contains 50,000 users (rows) and 50,000 videos (columns), this would involve 

loading 2.5 billion cells into memory. Such a large dataset exceeds the 16 GB RAM limit, leading 

to an out-of-memory error and causing the function to fail.

Space complexity
To assess memory usage, developers often use space complexity, expressed in Big-O notation, to 

describe how memory usage scales with the size of the data structure. For example, in get_top_

video, the space complexity is 𝑂𝑂(𝑚𝑚 𝑚 𝑚𝑚) for a CSV file with 𝑚𝑚𝑚rows and 𝑛𝑛𝑛columns, as the function 

loads the entire dataset into memory.
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Balancing efficiency tradeoffs
When designing programs, it is common to encounter tradeoffs between memory usage and 

runtime efficiency. For instance, caching is the process of storing information such as a function’s 

calculated output values in RAM rather than recomputing them.  This can significantly improve 

the speed of repeated calculations but also increases memory consumption. In a program that 

calls fibonacci_recursive repeatedly with the same input, such as n=35 which previously took 

1.7 seconds to run, caching the result could save 1.7 seconds for each subsequent call.

Another tradeoff is with the get_top_video we read the entire file into memory before starting 

the calculations. It may be more practical to read smaller batches of data from disk and compute 

the cumulative top videos for each batch sequentially rather than handling the entire dataset at 

once. Reading and processing smaller chunks of large CSV files might take more time but helps 

avoid exceeding RAM limitations.

Now that we grasp the importance of runtime and space efficiency, how to assess their complexity, 

and the trade-offs involved, we can move forward and explore how GenAI can assist with each 

step in managing and optimizing program efficiency.

Profiling runtime and memory consumption with 
GitHub Copilot
Profiling runtime and memory usage is a straightforward process. The built-in time module is 

useful for tracking runtime and the third-party memory_profiler library monitors memory usage. 

The next two sub-sections describe how GitHub Copilot can assist by either completing our imple-

mentation or generating the code from scratch for these two cases. At the end of this section, we 

will ask ChatGPT to predict runtimes and memory size constraints using these analyses as input.

Profiling runtime
Measuring the runtime of a function in Python helps evaluate whether the time taken to complete 

the tasks in the source code aligns with acceptable thresholds and identifies potential areas for 

improvement. This can be achieved using a script like the following:

start = time.process_time()

recursive_fibonacci(35)

end = time.process_time()

print(f"Time taken: {end – start:.3f} seconds")
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By recording the time before and after execution, we can calculate the runtime as the difference 

between these times to compute the 35th Fibonacci number.

In Chapter 15, we will explore how to use decorators to log application performance. For now, we 

will simply use start and end times to measure program runtime.

Since the profiling code is short and straightforward, the authors mostly use GitHub Copilot for 

such tasks. The following example demonstrates how Copilot can understand the purpose of 

our file, profile_runtime.py, by applying the five S’s for prompt precision as shown in Figure 14.1:

Figure 14.1: Copilot completion

In this example, we named the file profile_runtime.py and included the necessary imports for the 

time package and the fibonacci_recursive function to establish a clear context for Copilot. 

Based on these, Copilot is likely to identify our goal of profiling the fibonacci_recursive func-

tion and suggests a complete implementation for runtime profiling.

Alternatively, we can use chat, ChatGPT or OpenAI API to generate the profiling script from scratch. 

For example, we could use the following prompt in Copilot chat:

print the runtime of fibonacci_recursive for n=35
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Below is a sample implementation provided by Copilot in PyCharm:

Figure 14.2: Copilot chat to write the full method from a profiling suggestion

This code can be used as-is to profile the runtime of the function. Alternatively, we can make 

slight modifications, such as rounding the runtime value for better readability.

Here is an output from running the suggested profiling script:

Result: 9227465

Runtime: 1.7093181610107422 seconds

While a runtime of 1.7 seconds for n=35 might seem reasonable, the runtime for larger inputs, such 

as 50 or 100, becomes impractical. Later in this chapter, we will explore techniques to identify 

and address these challenges.
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Profiling space usage
Profiling a program’s memory usage can be achieved with the @profile decorator from the 

memory_profiler package. This lightweight tool monitors memory usage for every line within 

a function. The package should be included in the requirements.txt file of this book’s repository, 

so it should already be accessible in your virtual environment.

For example, to profile the function get_top_video, which retrieves the video with the highest 

average watch percentage, we can add the @profile decorator before the function definition. A call 

to the function with the file interactions_10_000.csv that records 10,000 users’ watch percentages 

of 10,000 videos will log the memory consumption for each line:

import pandas as pd

from memory_profiler import profile

@profile

def get_top_video(path):

    interactions = pd.read_csv(path)

    avg_ratio = interactions.mean(axis=0, skipna=True)

    return avg_ratio.idxmax()

get_top_video('interactions_10_000.csv')

The profiling output provides details such as line numbers, total memory usage, incremental 

memory usage, the number of times each statement was executed, and the content of those 

executions. For reference, Figure 14.3 shows the output from the code above:

Figure 14.3: Profiler output showing memory consumption by line
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The file interactions_10_000.csv contains 10,000 x 10,000 cells of type float64, requiring 8 bytes 

each, and the expected memory usage is approximately: 10,000 × 10,000 × 8  ≈ 800 MB

This aligns closely with the memory consumption recorded at line 7, where loading the CSV file 

into a Pandas DataFrame consumed 889.7 MB. This includes both the memory required for the 

cell data and the overhead associated with the Pandas DataFrame object such as column and 

row names, metadata, and type.

Having learned how to use GitHub Copilot to simplify the creation of profiling scripts for runtime 

and space complexity, we can move forward and explore how to use Copilot to profile multiple 

runs and ChatGPT to estimate the maximum input capacity that our functions can manage.

Analyzing maximal capacity with ChatGPT
Identifying the maximal capacity of a function means determining the largest input beyond 

which it will fail due to either memory limitations or unacceptable runtime. One strategy for 

such predictions involves profiling its performance for a few input sizes, identifying the runtime 

or space growth, and then estimating the maximal capacity the function can handle. GenAI can 

assist in this two-step process by automating profiling for different inputs and using the results 

as supplementary data for a prompt to compute the maximal capacity.

Profiling runtime across multiple runs
Copilot can assist us in creating a profiling loop for fibonacci_recursive like we did for a single 

profile. For instance, if we want to profile the runtime of the function for inputs ranging from 10 

to 40 in steps of 5, we can start by adding the following import statements to the file:

import time

from fibonacci import fibonacci_recursive

Then use a prompt in Copilot chat like this:

print the runtime of fibonacci_recursive for n=10:41:5
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This prompt, along with the surrounding context of the import statements in the file, is likely to 

generate a code to profile runtimes for varying arguments:

Figure 14.4: Profiling suggestion for profiling multiple Fibonacci inputs

We can use the generated code as-is or make minor adjustments, such as rounding the recorded 

times to four decimal places or changing the range’s stop value to 41. When executed on an M1 

MacBook Pro with a 16GHz CPU, the following runtime profiling was recorded:

Runtime for fibonacci_recursive(10): 0.0000 seconds

Runtime for fibonacci_recursive(15): 0.0002 seconds

Runtime for fibonacci_recursive(20): 0.0013 seconds

Runtime for fibonacci_recursive(25): 0.0150 seconds

Runtime for fibonacci_recursive(30): 0.1571 seconds

Runtime for fibonacci_recursive(35): 1.7051 seconds

Runtime for fibonacci_recursive(40): 19.5045 seconds

This runtime profiling will be used as input for a GenAI application to analyze the function’s 

complexity and determine the input size capacity.
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Profiling memory consumption across multiple runs
Profiling the memory consumption across multiple runs of get_top_video function can be done 

with a straightforward approach:

paths = ['interactions_100.csv',

         'interactions_1000.csv',

         'interactions_10_000.csv']

for p in paths:

    print("top video: ", get_top_video(p))

In this example, the files interactions_100.csv, interactions_1000.csv, and interactions_10_000.csv 

represent datasets of user-video interactions of row and column length corresponding to the 

numbers in their filenames.

Copilot can assist by completing the for loop, after including the filenames, as shown below:

Figure 14.5: Copilot code completion suggestion

The generated code can be used as-is or modified slightly, for instance, by enhancing the print 

statement to include information about the file size.
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For reference, running this code produced the following profiling:

Figure 14.6: profiling memory usage output

The memory usage for reading the CSV files grows as follows:

•	 0.6 MB for a 100 x 100 matrix

•	 29.9 MB for a 1,000 x 1,000 matrix

•	 889 MB for a 10,000 x 10,000 matrix

This memory consumption data can be included as supplementary information in our prompts 

included as supplementary information in our prompts to estimate maximum matrix sizes that 

the function can handle, as we see next in this chapter.
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Determining maximal capacity within runtime constraints
The GPT-4o1 model is specifically designed to excel in chain-of-thought reasoning, making it 

highly effective for determining maximum capacities under runtime constraints. To leverage this 

capability, we can create precise prompts following the five S’s, including the function’s source 

code and associated profiling. An ideal structure for these prompts might look as follows:

CONTEXT: You are provided with:

1. Python function enclosed with {{{ FUNCTION }}} 

2. Runtime profiling enclosed with {{{ PROFILING }}}. 

3. Runtime limit enclosed with {{{ LIMIT }}}

TASK: What is the maximal input the function can run in the time limit?

FUNCTION: {{{ ... }}}

PROFILING: {{{ ... }}}

LIMIT: {{{ ... }}}

MAXIMAL INPUT:

For example, when using this prompt with a runtime limit of 100 seconds, the GPTo1-mini model 

in ChatGPT provided the following reasoning steps:

1.	 Profiling Analysis: Repeatedly reviewed the reported profiling.

2.	 Observations: Identified the exponential growth in runtime.

3.	 Calculations: Computed the largest input within the time limit.

4.	 Conclusion: Determined the maximum input to be 43.

These reasoning steps result in the final answer, the conclusion step, as illustrated in Figure 14.7:

Figure 14.7: GPT-4o1-mini maximal capacity conclusion
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The model predicted a runtime of 78.5 seconds for n=43 and 123 seconds for n=44. When we mea-

sured the actual runtime using our script, it was 81.08 seconds and 129.07 seconds respectively, 

demonstrating a close match and correct identification of the maximal capacity:

Elapsed time for n=43: 81.08 seconds

Elapsed time for n=44: 129.07 seconds

For your reference, here is the full prompt used in this example:

CONTEXT: You are provided with:

1. Python function enclosed with {{{ FUNCTION }}} 

2. Runtime profiling enclosed with {{{ PROFILING }}}. 

3. Runtime limit enclosed with {{{ LIMIT }}}

TASK: What is the maximal input the function can run in the time limit?

FUNCTION: {{{

def fibonacci_recursive(n):

    if n <= 0:

        return 0

    if n == 1:

        return 1

    return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)

}}}

PROFILING: {{{

Runtime for fibonacci_recursive(10): 0.0000 seconds

Runtime for fibonacci_recursive(15): 0.0002 seconds

Runtime for fibonacci_recursive(20): 0.0013 seconds

Runtime for fibonacci_recursive(25): 0.0150 seconds

Runtime for fibonacci_recursive(30): 0.1571 seconds

Runtime for fibonacci_recursive(35): 1.7051 seconds

Runtime for fibonacci_recursive(40): 19.5045 seconds

}}}

LIMIT: {{{ 100 seconds }}}

MAXIMAL INPUT:

In the upcoming chapters, we will explore how to intentionally collect data for integration with 

OpenAI API as part of SDLC automation.
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Determining maximal capacity within memory constraints
A similar prompt structure to the one used for identifying maximum capacities under runtime 

constraints can also be applied to memory constraints:

CONTEXT: You are provided with:

1. Python function enclosed with {{{ FUNCTION }}} 

2. RAM usage profiling enclosed with {{{ PROFILING }}}. 

3. RAM usage limit enclosed with {{{ LIMIT }}}

TASK: What is the maximal input the function can run in the RAM limit?

FUNCTION: {{{ ... }}}

PROFILING: {{{ ... }}}

LIMIT: {{{ ... }}}

MAXIMAL ROWS / MAXIMAL COLUMNS:

Here, the cue in the prompt is adjusted slightly to MAXIMAL ROWS / MAXIMAL COLUMNS, to empha-

size the 2D dimensions of the input.

For instance, when using this template for the get_top_video function in ChatGPT with the 

GPT-4o1 model, along with recorded results from sparse matrices of sizes 100 x 100, 1,000 x 1,000, 

and 10,000 x 10,000, the model generated the following reasoning steps:

1.	 Profiling Analysis: Included an understanding of the memory usage data and its scaling 

behavior.

2.	 Conclusion: Estimated the largest input for a memory limit of 5GB.

3.	 Final Recommendation: Suggested a matrix size of 22,000 x 22,000 as the largest fea-

sible input.

These reasoning steps result in the final answer, the final recommendation step, as illustrated 

in Figure 14.8:
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Figure 14.8: GPT-4o1-mini reasoning for maximal capacity

When executing the script with a file containing a 22,000 x 22,000 matrix, the recorded memory 

usage peak was 4.63 GB, closely aligning with the model’s prediction.

Figure 14.9: Memory usage below 5GB

This memory usage aligns with ChatGPT’s capacity assessment and is below the required 5GB 

RAM limit.

For reference, here is the complete prompt used to generate this output:

CONTEXT: You are provided with:

1. Python function enclosed with {{{ FUNCTION }}}  

2. RAM usage profiling enclosed with {{{ PROFILING }}}.  

3. RAM usage limit enclosed with {{{ LIMIT }}}

TASK: What is the maximal input the function can run in the RAM limit?

FUNCTION: {{{ def get_top_video(path):

    interactions = pd.read_csv(path)

    avg_ratio = interactions.mean(axis=0, skipna=True)
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    return avg_ratio.idxmax() }}}

PROFILING: {{{...}}}

LIMIT: {{{ 5 GB }}}

MAXIMAL ROWS / MAXIMAL COLUMNS:

The profiling information was omitted due to brevity constraints and includes a direct copy-paste 

of the terminal output, as shown in Figure 14.6. The full prompt can be found at ch14/code_samples/

chatgpt_maximum_input_prompt.txt. This prompt successfully predicted a maximum input size 

of 22,000 rows and 22,000 columns.

In both these cases, ChatGPT is certainly extrapolating the input values to predict the runtime 

or maximum dimensions. It requires sufficient input values to make such a prediction and may 

not be as accurate as performing your own calculations, but it is a reasonable approximation.

Next in this chapter, we will explore how to use GenAI and increase the capacity of the functions 

such as algorithms with better runtime complexity and dealing with chunks.

Optimizing code with chained prompts
The previous examples depict the simple coding and estimation capability of LLMs. However, 

LLMs can do much more. They can create code for improved algorithms and even balance specific 

runtime and memory efficiency goals.

To effectively increase the input capacities, we will chain our optimization prompt to the results 

of the maximal capacity prompt. The initial prompt already provides essential details, such as 

the function, runtime or memory limits, and profiling various inputs. The optimization prompt 

should also include the following key information:

•	 Optimization goal: Clearly specify the primary goal, either on improving runtime com-

plexity, reducing memory usage, or both. Detail the desired approach as much as possible, 

such as batching, or improving algorithm complexity.

•	 Function docstring: Provide a concise description of the function’s purpose, along with 

any constraints or requirements.

•	 Input requirements: Define the new input goals under the runtime or memory constraints, 

such as computing the 1,000,000th Fibonacci number or handling a matrix with 100,000 

rows and 100,000 columns.
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For more complex scenarios, additional details may be helpful, such as previous optimization 

attempts, dependencies on external functions or resources, frequency of function calls or con-

current usage patterns, and acceptable trade-offs, such as allowing longer runtimes in exchange 

for reduced memory usage.

This information will be integrated into a chained prompt, following the five S’s for precision 

and clarity.

Runtime optimization
Let us examine a runtime optimization for the fibonacci_recursive function. Below is an exam-

ple of a chained prompt, building on an initial prompt of maximal capacity as presented earlier in 

the chapter. This prompt requests an improved implementation with better runtime complexity 

to handle an input of 1,000,000:

CONTEXT: You are provided with the function's docstring enclosed with {{{ 
DOCSTRING }}} and the required input enclosed with {{{ REQUIRED_INPUT }}}.

TASK: Optimize the function to run in a better time complexity within the 
runtime limit.

DOCSTRING: {{{ """

    Calculate the nth Fibonacci number using a recursive approach.

    Args:

        n (int): The position in the Fibonacci sequence.

    Returns:

        int: The nth Fibonacci number.

    """

}}}

REQUIRED_INPUT = {{{ 1,000,000 }}}

IMPROVED IMPLEMENTATION:

This prompt includes a docstring describing out specific task of optimizing runtime complexity 

to achieve the target input of 1,000,000. Providing different constraints, such as a smaller input 

size, will yield a different output from the model.

A typical approach for Fibonacci calculations has a 𝑂𝑂(𝑛𝑛) complexity, however GPT-4o1 suggest-

ed a more efficient implementation for large inputs, achieving a runtime complexity of 𝑂𝑂(log 𝑛𝑛) 
through the fast-doubling recursive approach:
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Figure 14.10: Fast-doubling approach for handling large inputs

And here is the code proposed by GPT-4o1:

def fib_pair(n):

    if n == 0:

        return (0, 1)

    a, b = fib_pair(n // 2)

    c = a * ((2 * b) - a)

    d = a * a + b * b

    if n & 1:

        return (d, c + d)

    else:

        return (c, d)

While this implementation also uses recursion, it makes a call to 𝑛𝑛𝑛 𝑛𝑛⁄  (𝑛𝑛𝑛 𝑛  2 without remainder) 

reducing the number of function invocations to approximately log(𝑛𝑛). To illustrate its efficiency, 

here are performance comparisons for calculating the 1,000,000th Fibonacci number:

Fast-doubling approach: 0.057893 seconds

Iterative (memoization) approach: 9.175633 seconds

As another benchmark, computing the 10,000,000th Fibonacci number with fibonacci_fast_

doubling took 2.26 seconds, whereas the iterative approach did not complete within a 10-minute 

time limit.
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This method leverages the mathematical identities:𝐹𝐹(2𝑘𝑘)  =  𝐹𝐹(𝑘𝑘)  ⋅ (2𝐹𝐹(𝑘𝑘 𝑘 𝑘) − 𝐹𝐹(𝑘𝑘))𝐹𝐹(2𝑘𝑘 𝑘 𝑘)  =  𝐹𝐹(𝑘𝑘 𝑘 𝑘)2  + 𝐹𝐹(𝑘𝑘)2

Where 𝐹𝐹(𝑘𝑘) is the k-th  Fibonacci number.

Using these identities, once 𝐹𝐹(𝑘𝑘) and 𝐹𝐹(𝑘𝑘 𝑘 𝑘) are calculated, 𝐹𝐹(2𝑘𝑘) and 𝐹𝐹(2𝑘𝑘 𝑘 𝑘) can be de-

termined efficiently. This means we do not need to compute all Fibonacci numbers sequentially 

up to the 1,000,000th number but only focus on its halves, significantly reducing the required 

computations.

Space optimization
Like the runtime optimization prompt, we can chain a request to optimize a function to fit within 

RAM constraints. The prompt structure remains similar, but it describes a memory limit instead 

of a runtime limit, along with an optimization request to address memory usage.

For example, consider the following chained prompt requesting an optimization for the get_top_

video function to handle a matrix of 100,000 rows by 100,000 columns within a 5GB RAM limit:

CONTEXT: You are provided with the function's docstring enclosed with {{{ 
DOCSTRING }}} and the required input enclosed with {{{ REQUIRED_INPUT }}}.

TASK: Optimize the function to run in batches within the RAM limit.

DOCSTRING: {{{ """

    Reads a CSV file containing video interactions, calculates the average 
watch ratio for each video,

    and returns the video with the highest average watch ratio.

    Args:

        path (str): The file path to the CSV file containing video 
interactions.

    Returns:

        str: The identifier of the video with the highest average watch 
ratio.

    """

}}}
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REQUIRED_INPUT = {{{ 100,000 rows x 100,000 columns matrix}}}

IMPROVED IMPLEMENTATION:

This prompt specifies the size of the input matrix (100,000 rows by 100,000 columns) and builds 

upon the previously defined RAM limit of 5GB.

 

Figure 14.11: ChatGPT suggestion for chunk-based processing

Based on this information, ChatGPT suggested processing the CSV file in batches of 1,000 rows, 

which is an appropriate solution for handling data of this size efficiently.

In this scenario, specifying the input requirements is vital. For larger matrices, working with a 

Pandas DataFrame may become impractical, necessitating an alternative solution. Conversely, 

for matrices with fewer columns, larger column chunks might be sufficient.

For your reference, here is the implementation for processing the matrix in chunks provided by 

ChatGPT with the prompt above:

def get_top_video(path):

    cumulative_sum = None

    cumulative_count = None

    chunksize = 1000

   for chunk in pd.read_csv(path, chunksize=chunksize):

        chunk_sum = chunk.sum(skipna=True)

        chunk_count = chunk.count()
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        if cumulative_sum is None:

            cumulative_sum = chunk_sum

            cumulative_count = chunk_count

        else:

            cumulative_sum += chunk_sum

            cumulative_count += chunk_count

    average_ratio = cumulative_sum / cumulative_count

    top_video = average_ratio.idxmax()

    return top_video

When profiling the implementation with an input of 100,000 rows and 100,000 columns, the 

chunked implementation concluded with a memory usage of 4,326.1 GB:

Figure 14.12: Improved memory utilization with chunking

In line 13, we can see that the matrix was processed in 100 chunks, with each chunk containing 

1,000 columns.
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The proposed solutions can be further refined to meet both memory and runtime requirements. 

It is always advisable to test new implementations against both criteria to ensure the solution is 

satisfactory in terms of both efficiency and performance.

Further runtime and space optimization
The previous optimizations focused on single CPU algorithms. GenAI can go beyond these and 

recommend additional techniques. For instance, it may be appropriate to use parallelization with 

threads, leverage graphical processing units (GPUs), or adopt more efficient file formats like 

sparse matrices or Apache Parquet. In the function get_top_video, processing different videos 

can be performed in parallel by integrating threading. Further acceleration could be achieved 

by leveraging GPUs, as each column can be processed independently of others. Alternatively, 

converting the file format from CSV to a more efficient option could enhance performance. For-

mats like compressed sparse row (CSR) or compressed sparse column (CSC) from SciPy are 

well-suited for sparse data, while columnar storage formats like Apache Parquet are ideal for 

handling large datasets.

Summary
In this chapter, we explored how LLMs can assist in ensuring efficient applications by profiling 

runtime and memory usage, identifying maximal capacities, and suggesting optimized code to 

increase those capacities.

Using the recursive Fibonacci example, we saw how adopting a more efficient algorithm sig-

nificantly reduces runtime. With the get_top_video function, we tackled large matrices under 

RAM constraints, assisting GenAI to optimize memory usage through chunking. GitHub Copilot 

assisted in profiling runtime and memory consumption and profiling runs across different in-

puts. ChatGPT estimated the maximal capacity within runtime and RAM constraints. Leveraging 

chained prompts, ChatGPT demonstrated the ability to vastly improve the implementation to 

achieve larger capacities and can do much more.

In the next chapter, we will further explore how to integrate GenAI into the SDLC, focusing on 

logging, monitoring applications, and error handling.
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Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: How can Copilot assist in profiling the runtime and memory usage of a program?

Answer: Profiling runtime and memory usage in Python can be achieved using the built-in time 

module and the third-party memory-profiler package. Copilot can assist by either completing 

a starter code or generating that functionality from scratch based on a precise prompt.

Question 2: How can ChatGPT help identify maximal inputs under runtime or RAM constraints?

Answer: By crafting precise prompts that include the function’s source code, runtime or RAM 

constraints, and profiling results, we can utilize the GPT-4o1 model, designed for chain-of-thought 

reasoning, to calculate the largest input manageable within those constraints.

Question 3: How can chaining prompts help increase program input capacity?

Answer: After identifying the maximal input a function can handle without becoming a bottle-

neck, a chained prompt can include the desired input size and a specific optimization request. 

GPT-4o1 can leverage this information to propose an optimized solution that follows the runtime 

and/or memory constraints.

Further reading
To learn more about the topics that were covered in this chapter, look at the following resources:

•	 Wikipedia, CPU: https://en.wikipedia.org/wiki/Central_processing_unit

•	 Geeks for geeks memory consumption: https://www.geeksforgeeks.org/how-to-get-
current-cpu-and-ram-usage-in-python

•	 Introduction to memory profiling in Python: https://www.datacamp.com/tutorial/
memory-profiling-python

•	 Big-o Python package: https://pypi.org/project/big-O-calculator/

•	 Lambda Labs on GPT-3 training costs: https://lambda.ai/blog/demystifying-gpt-3

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit

https://www.geeksforgeeks.org/how-to-get-current-cpu-and-ram-usage-in-python
https://www.geeksforgeeks.org/how-to-get-current-cpu-and-ram-usage-in-python
https://www.geeksforgeeks.org/how-to-get-current-cpu-and-ram-usage-in-python/

https://www.datacamp.com/tutorial/memory-profiling-python
https://www.datacamp.com/tutorial/memory-profiling-python
https://www.datacamp.com/tutorial/memory-profiling-python

https://pypi.org/project/big-O-calculator/
https://pypi.org/project/big-O-calculator/

https://lambda.ai/blog/demystifying-gpt-3
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Going Live with GenAI: Logging, 
Monitoring, and Errors

Large Language Models (LLMs) can supercharge our going-live processes, which refers to de-

ploying code to production. But if prompted incorrectly, they can also degrade code quality. In 

this chapter, we will examine how, even when following the five S’s to prompt GenAI for logging, 

monitoring, and input validation, the resulting code can become cluttered, combining these 

elements with core functionality and violating the single responsibility principle. For instance, 

models sometimes suggest using print statements instead of proper logging, handling input 

validation within functions, or incrementing counters without reporting their values. This vio-

lates the single responsibility principle and reduces overall code quality.

To address this, we will apply the Chain-of-Thought (CoT) prompt engineering technique to 

GitHub Copilot to generate well-monitored code without interfering with the function’s core 

functionality, leveraging decorators as a design pattern. We will also leverage few-shot learning 

to guide it toward following a coding style. While GitHub Copilot is well suited for these tasks, 

we will explore how similar results can be achieved using CoT with few-shot learning in ChatGPT 

and CoT with fine-tuning in OpenAI API.

The key topics covered in this chapter include the following:

•	 Introducing logging, monitoring, and raising errors

•	 Leveraging GenAI for higher-level coding patterns

•	 Applying inverse CoT with ChatGPT and OpenAI

•	 Utilizing few-shot learning and fine-tuning as style guides
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Technical requirements
To get the most out of this chapter, ensure you have the following:

•	 A GitHub Copilot account

•	 An integrated development environment (IDE) – either VS Code or PyCharm

•	 An OpenAI account with access to ChatGPT and OpenAI API

•	 Access to the book’s repository, available at https://github.com/PacktPublishing/
Supercharged-Coding-with-Gen-AI

•	 A virtual environment set up in VS Code or PyCharm

•	 An OpenAI API token

For assistance with setting up a GitHub Copilot account, refer to Chapter 3. For instructions on 

setting up OpenAI API access and token generation, see Chapter 2. If you need help with creating 

an OpenAI account or setting up a virtual environment in your IDE, refer to the Appendix for 

detailed guidance.

Introducing logging, monitoring, and raising errors
When Python software goes live in the production stage and serves clients, it is important to verify 

that it is consistently working as expected in real-world use cases. If some problems are identified, 

understanding the behavior of these issues is critical. Thus, logging, monitoring, and raising errors 

for problematic inputs are an essential aspect of the Software Development Life Cycle (SDLC). 

They involve tracking key checkpoints within internal processes, which are usually performed 

by loggers, and these facilitate debugging and other analyses. Recording performance statistics 

such as counting function calls is often used with profiling to improve performance. Lastly, han-

dling unexpected scenarios, such as receiving arguments of an invalid type, is a process to ensure 

that the code is robust against the wide range of user inputs. These three aspects help maintain 

software quality, minimize unexpected issues, and simplify debugging when problems occur.

In this chapter, we will focus on these three fundamental practices since these are typically the 

first going-live initiatives in any project, and they are likely to be relevant to your software as well. 

As your strategy expands to additional metrics and error-handling techniques, these standard 

approaches using GenAI tools can easily be generalized and extended from what we introduce 

in this chapter.

https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
https://github.com/PacktPublishing/Supercharged-Coding-with-Gen-AI
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The FizzBuzz use case
To explore how monitoring efforts can be integrated into our code, let us consider developing a 

program that generates the FizzBuzz sequence, a coding challenge introduced in Chapter 2. As 

part of the monitoring efforts for this program, we want to log each function call along with its 

arguments, maintain a counter of total function calls, and ensure inputs are positive integers 

less than 500.

As a starting point, a basic implementation of FizzBuzz can be generated from the function sig-

nature:

def print_fizzbuzz(limit: int) -> None:

Figure 15.1 shows an implementation suggested by GitHub Copilot in PyCharm:

Figure 15.1: Copilot’s initial FizzBuzz implementation

This implementation serves as a foundation for incorporating going-live features. Before intro-

ducing best practices for monitoring with prompt engineering techniques, we will first explore 

how simply chaining logging, monitoring, and error-raising requests can degrade code quality. 

Adding GenAI implementation for these tasks results in a longer and more complex function. 

However, techniques such as CoT and few-shot learning can help add these functionalities yet 

maintain clean, well-structured code.
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Logging
Logs are generated text records that serve as a diary of our program’s execution. For example, at the 

start of the FizzBuzz sequence, we may want to log the call’s arguments. While using a simple print 

statement is an option, the built-in logging library is a much better choice as it can write to the 

console but also provides more control over the output and where the logs can be written, such as 

files and remote servers. It enables the structured formatting of records and log-level management, 

which can report all outputs for debugging, or a subset of warnings based on importance.

To use the logging library, we typically define a logger instance with the module’s name:

import logging

logger = logging.getLogger(__name__)

This creates a logger instance linked to the module name using the __name__ special attribute 

(also referred to as a magic attribute). This association allows better filtering and customization 

of log messages in that file.

When using GenAI for logging, it is essential to separate the logging task into its own prompt, 

rather than embedding it within the implementation prompt. This approach aligns with the 

single-task principle, one of the five S’s best practices introduced earlier in the book.

For example, when working with Copilot in VS Code’s edits window, we can select the print_

fizzbuzz implementation and use the following prompt:

#selection log the function arguments

For your reference, here is the suggestion we got when using the 3o-mini model as appears in 

Figure 15.2:
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Figure 15.2: Log suggestion for FizzBuzz

In PyCharm, we can leverage the inline chat after selecting the function’s code, and prompt the 

following to yield similar results:

Log the function arguments

While the generated log statement correctly logs the function’s argument, it also introduces two 

lines of unnecessary code clutter within the function, which should remain focused on printing 

the FizzBuzz sequence. Later in the chapter, we will explore how to maintain cleaner code with 

prompt engineering techniques.

Handling unexpected input
When our program receives unexpected inputs at runtime, such as incorrect argument types (for 

example, float instead of int) or values that are beyond a manageable range for our program, 

we want to control the program’s behavior by raising errors rather than failing or producing 

unpredictable results.

For instance, in the print_fizzbuzz function, the limit argument is expected to be a positive 

integer so that we can print numbers, fizz, or buzz from 0 up to that value. An additional con-

straint might be that the input should be less than 500 to ensure the output fits on the screen. To 

enforce both requirements with error handling, we can leverage Copilot.
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When using Copilot in VS Code’s edit window, we can select the print_fizzbuzz code and use 

the following prompt:

#selection validate limit type, and that it is in the range [0,500]

In PyCharm, we can use the inline chat by selecting the print_fizzbuzz function and entering 

the following prompt:

validate limit type, and that it is in the range [0,500]

For reference, here is the result obtained using Copilot for VS Code with the o3 mini model:

Figure 15.3: VS Code output correctly handles inputs but creates code clutter

This recommendation verifies both the argument’s type and its range limits, as requested. How-

ever, like the logging prompt, it introduces an additional responsibility of validating inputs to 

the function. Later in this chapter, we will explore how prompt engineering can help generate 

higher-quality code.

Monitoring
Another key aspect of going live is tracking the usage of different functions. By recording metrics, 

we can collect valuable statistics on performance, call frequency, and execution rates.

A simple starting point is to track the number of function calls in our program. To do this with 

print_fizzbuzz, we can define a global counter variable, FIZZBUZZ_COUNTER = 0, and instruct 

Copilot to increment it before or after each successful execution. For example, when working 

with Copilot in VS Code’s edits window, we can select the print_fizzbuzz implementation and 
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use the following prompt:

#selection increment FIZZBUZZ_COUNTER after a successful execution.

Similarly, in PyCharm, we can select the code and use the inline chat to prompt the following:

Increment FIZZBUZZ_COUNTER after a successful execution.

Figure 15.4 illustrates a suggested completion for this prompt when using Copilot in VS Code 

with the o3 mini model:

Figure 15.4: VS Code adds a record usage counter

At this point, our print_fizzbuzz function integrates multiple monitoring components: logging, 

handling invalid inputs, and counting calls. While these fulfill our monitoring needs, they lead 

to a lengthy and less readable function. This violates clean coding principles, particularly the 

single responsibility principle, which emphasizes that functions should focus on a single task.

Code created by GenAI using simple prompts tends to generate code and add it within existing 

methods which can lead to cluttered implementations. To maintain clean and structured code, 

we can leverage CoT prompting. This approach enables us to handle monitoring at a higher ab-

straction level, as we will explore next.
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Leveraging GenAI for higher-level coding patterns
To balance clean code principles, such as the single responsibility principle, with the need for 

going-live requirements, a Pythonic approach is to use higher-level coding patterns such as dec-

orators. Rather than embedding logging statements within a function, we delegate this respon-

sibility to a decorator pattern:

def log_function_args(func: callable):

    # logging logic here

@log_function_args

def print_fizzbuzz(limit: int) -> None:

    # main functionality here

Here, log_function_args is responsible for logging function calls, allowing print_fizzbuzz to 

focus on handling the FizzBuzz sequence. This approach ensures cleaner, more modular code 

while enabling logging for multiple functions.

GenAI applications may not suggest this pattern unless we actively steer them toward clean coding 

practices. As introduced in Chapter 9, CoT prompting helps LLMs reason through complex tasks. 

We can direct the model toward better design choices by using CoT prompting and explicitly 

writing a decorator call, such as @log_function_args, prior to implementing the actual decorator 

function. This will result in cleaner and more maintainable implementations.

Using decorators to separate responsibilities
A decorator is a structural design pattern that enables stacking tasks before and after a function 

call without altering the function’s code. It is a specialized use case of a closure, where a function 

retains access to its associated arguments. A typical decorator implementation looks like this:

def sample_decorator(func: callable) -> callable:

    def wrapper(*args, **kwargs):

        print("Function is wrapped")

        return func(*args, **kwargs)

    return wrapper

A common usage involves applying the @ annotation, as shown here:

@sample_decorator

def foo(*num):

    return len(nums)
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Here, the sample_decorator decorator accepts a function object and returns a wrapper function 

that takes the same arguments as the original function but prints Function is wrapped before 

execution.

LLMs can certainly include decorators in their generated code as their training data contains 

many common decorator implementations. For well-known use cases such as timers, loggers, 

argument validation, and retry mechanisms, the models can generate decent implementations 

based on the decorator’s signature when prompted to.

Next, we will explore how to apply inverse CoT prompting to generate the desired implementation.

Inverse CoT for decorator implementation
In Chapter 9, we explored how defining a function that calls low-level implementations provides 

strong guidance for GitHub Copilot. With inverse CoT, we take a similar approach by referencing 

functions that have not yet been defined. We use the term inverse because we want the decorators 

to appear earlier in the file than the function that uses them. To achieve this, we place the cursor 

higher in the file, allowing Copilot to generate code above an existing implementation.

As a review, here is an example of CoT prompting used in Chapter 9 to implement a variation of a 

geometric mean calculator, where Copilot successfully generated the missing low-level functions:

Figure 15.5: CoT-driven implementation of a higher-level function with GitHub Copilot

In this approach, the function is broken into named functions that are intentionally called undefined. 

Copilot understands that its role is to generate these necessary implementations. Such an approach 

enables Copilot to implement the missing functions, producing structured and predictable code.
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We can apply the same technique when implementing going-live functionality, by defining a dec-

orator structure and allowing Copilot to generate the implementation. By merely adding calls to 

the required decorators, we guide Copilot to generate their corresponding implementations. For 

instance, in our FizzBuzz use case, we can layer three monitoring functionalities onto our function:

1.	 Validate the input: Define a decorator with parameters to enforce input bounds, that is, 

@validate_args_types_and_limits(0, 500).

2.	 Increment a global counter:

3.	 @increment_counter.

4.	 Log function calls:

5.	 @log_function_args.

For reference, here is how stacking these decorators would appear before Copilot generates their 

implementations:

Figure 15.6: Inverse CoT approach

Here, as usual with the CoT technique, the IDE will correctly mark the decorators as undefined 

with the red underlines. After calling the decorators, we move the cursor to line 7 before the call 

to the first decorator, press Enter three times to create space for their implementations, then 

return to line 8 and type the following:

def l
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This prompt is sufficient for Copilot to infer that it should generate the first decorator, interpreting l 

as a reference to log_function_args. Moving the cursor up and pressing Enter three times is all that 

is involved in inverse CoT, but it is very effective. As shown in Figure 15.7, this cue enables Copilot to 

generate a complete implementation of a logging mechanism, including the function’s arguments.

Figure 15.7: Copilot’s decorator implementation

The suggested implementation of log_function_args correctly logs the function name and 

arguments as an info-level log statement.

After the initial def l prompt, pressing the Enter key twice is enough for Copilot to generate the 

next decorator, increment_counter, as shown in Figure 15.8:
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Figure 15.8: Enter key as a cue for Copilot to implement the next decorator

The Enter key serves as a sufficient cue for the next implementation. This highlights how Copi-

lot can supercharge our workflow. For your reference, here is the suggested implementation of 

increment_counter by Copilot:

def increment_counter(func):

    def wrapper(*args, **kwargs):

        global FIZZBUZZ_COUNTER

        FIZZBUZZ_COUNTER += 1

        logger.info(f"Function {func.__name__} called {FIZZBUZZ_COUNTER} 
times")

        return func(*args, **kwargs)

    return wrapper

This decorator correctly increments the previously initialized global variable, FIZZBUZZ_COUNTER, 

before the function call. If we prefer to increment it after execution, we could have used a different 

decorator’s call, such as @increment_counter_after_call.
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Finally, Copilot’s suggested implementation for argument validation efficiently manages both 

type-checking and value constraints using a parameterized decorator. This type of decorator 

introduces an additional closure layer, allowing us to specify arguments, such as the minimum 

and maximum limits, in this case.

By calling @validate_args_types_and_limits(0, 500), we provide a clear cue for Copilot to recognize 

the need for a parameterized decorator with the given constraints. Here is the suggested implementation:

def validate_args_types_and_limits(min_limit: int, max_limit: int):

    def decorator(func):

        def wrapper(limit: int):

            if not isinstance(limit, int):

                raise TypeError(f"Argument 'limit' must be of type int, 
got {type(limit)}")

            if limit < min_limit or limit > max_limit:

                raise ValueError(f"Argument 'limit' must be between {min_
limit} and {max_limit}, got {limit}")

            return func(limit)

        return wrapper

    return decorator

Here, the parameterized decorator, validate_args_types_and_limits, ensures that the argument 

falls within the specified inclusive range before executing the function.

For reference, here is an example of calling print_fizzbuzz(-15), which should raise a value 

error due to the negative input:

File "supercharge/ch15/application/fizzbuzz_printer.py", line 32, in 
wrapper

ValueError: Argument 'limit' must be between 0 and 500, got -15

validate_args_types_and_limits raised an error due to a bad input, preventing the function 

from being called with a negative limit. Similarly, if we had called print_fizbuzz(3.14), we would 

have received a TypeError error, indicating that it handles integers but not floating-point values.
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To see how our log_function_args and increment_counter decorators operate, we will add a 

basic logging configuration at the beginning of the file, capturing INFO-level and higher logs, in 

a file named fizzbuzz.log:

logging.basicConfig(level=logging.INFO,

                    filename="fizzbuzz.log")

This ensures that the log messages are stored in fizzbuzz.log. In most software systems, print 

statements should not be used and should be replaced by logging that can direct output to the 

console or a file.

Next, we add two function calls with valid inputs:

print_fizzbuzz(5)

print_fizzbuzz(50)

For reference, the fizzbuzz_printer.py output is shown in Figure 15.9:

Figure 15.9: Console output for the two function calls

This produces a clean output, containing the FizzBuzz results. Meanwhile, the fizzbuzz.log log 

file records log messages in the specified format, as illustrated in Figure 15.10:
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Figure 15.10: fizzbuzz.log output containing logs and counter messages

This implementation follows clean code principles, separating core functionality from monitor-

ing while leveraging inverse CoT prompting in Copilot to generate neat and maintainable code. 

However, decorators can be styled in various ways. Later in the chapter, we will explore how 

few-shot learning can help refine their structure for even better results.

Next, we will apply the inverse CoT technique when prompting ChatGPT and OpenAI API.

Applying inverse CoT with ChatGPT and OpenAI
GitHub Copilot is the preferred tool for integrating going-live functionality, as it provides the 

fastest code completion experience. However, we will also demonstrate how to apply the same 

CoT prompting technique with ChatGPT and OpenAI API. To do this effectively, we will structure 

our prompts using the five S’s best practices for prompt precision introduced earlier in this book.

Using ChatGPT to monitor decorators
Similar to our approach with GitHub Copilot, we can leverage ChatGPT to generate the required 

decorators for monitoring. Since we submit the full code rather than moving the cursor up in 

the file, this approach aligns with a standard CoT technique. The following is an example of a 

structured prompt that provides context about the incomplete Python implementation, focusing 

on a single task, with specific and short instructions, followed by a lead-in cue:

CONTEXT: You are provided with a partial Python script in {{{ FIZZBUZZ_
PRINTER }}}, where some of the code is missing.

TASK: Implement the decorators with the missing implementation in the 
code.

FIZZBUZZ_PRINTER: {{{

import logging

logger = logging.getLogger(__name__)
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FIZZBUZZ_COUNTER = 0

@log_function_args

@increment_counter

@validate_args_types_and_limits(0, 500)

def print_fizzbuzz(limit: int) -> None: ... full code implementation 
omitted for brevity ... }}}

CODE:

When used in ChatGPT with the o3-mini high model (available to Plus subscribers as of April 

2025), this prompt generated a complete script including the full implementation of the missing 

decorators, as follows:

def log_function_args(func: callable) -> callable:

    def wrapper(*args, **kwargs):

        logger.info(

            f"Calling function '{func.__name__}' with args: {args} and 
kwargs: {kwargs}"

        return func(*args, **kwargs)

    return wrapper

def increment_counter(func: callable) -> callable:

    def wrapper(*args, **kwargs):

        global FIZZBUZZ_COUNTER

        FIZZBUZZ_COUNTER += 1

        logger.info(f"FIZZBUZZ_COUNTER incremented to {FIZZBUZZ_COUNTER}")

        return func(*args, **kwargs)

    return wrapper

def validate_args_types_and_limits(min_limit: int, max_limit: int):

    def decorator(func: callable) -> callable:

        def wrapper(*args, **kwargs):

            # Use inspect to bind the arguments to the function's 
signature

            sig = inspect.signature(func)

            bound_args = sig.bind(*args, **kwargs)

            bound_args.apply_defaults()

            # Expecting the argument to be named 'limit'
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            if 'limit' not in bound_args.arguments:

                raise ValueError("Missing required argument 'limit'.")

            limit = bound_args.arguments['limit']

            if not isinstance(limit, int):

                raise TypeError("Argument 'limit' must be an integer.")

            if not (min_limit <= limit <= max_limit):

                raise ValueError(f"Argument 'limit' must be between {min_
limit} and {max_limit}.")

            return func(*args, **kwargs)

        return wrapper

    return decorator

This implementation retains the same functionality as the decorators generated by Copilot but 

differs in style. It includes docstrings and the addition of the @functools.wraps(func) decora-

tor, which helps preserve the original function’s attributes. Later in the chapter, we will explore 

how to guide ChatGPT toward a more desirable implementation style using few-shot learning.

Using OpenAI API to monitor decorators
The approach for using OpenAI API closely mirrors the ChatGPT prompt structure. We construct 

a system prompt that provides context and a single task, as was done for ChatGPT. Additionally, 

we use a user prompt that includes the existing script along with a cue for code completion.

The system prompt should look as follows:

SURROUND = "You are provided with a partial Python script in {{{ FIZZBUZZ_
PRINTER }}}, where some of the code is missing."

SINGLE_TASK = "Implement the decorators with the missing implementation in 
the code."

These prompt pieces serve the same role as the context and task definitions in the ChatGPT 

prompt. The user prompt should incorporate the incomplete implementation, for example, by 

reading the code from a file, as shown here:

def get_user_prompt(script_path: str) -> str:

    with open(script_path, 'r') as file:

        incomplete_code = file.read()

    return f"""
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    FIZZBUZZ_PRINTER: {{{{{{ {incomplete_code} }}}}}}

   

   CODE:

   """

By providing the incomplete script alongside the CODE: cue, we can guide OpenAI API toward 

generating the missing decorator implementations. Calling OpenAI API with these prompts should 

yield a decorator implementation like the outputs from ChatGPT and GitHub Copilot. The full 

script is available for your reference at ch15/inverse_cot_openai.py.

Now that we have seen how to use GenAI tools to implement monitoring decorators, the next 

step is refining their style to better fit our needs. This can be achieved using few-shot learning to 

guide Copilot and ChatGPT with structured examples or by fine-tuning a model through OpenAI 

API GUI. We will explore both approaches in the next section.

Utilizing few-shot learning and fine-tuning as style 
guides
While the decorators generated by GenAI applications provide the desired functionality, we can 

further refine their style using few-shot learning techniques, as introduced in Chapter 8.

For instance, we might want to include the @functools.wraps decorator to preserve the original 

function’s attributes and enforce a specific logging style with the extra parameters. Both objec-

tives can be achieved by supplying few-shot examples to Copilot and ChatGPT or adding desired 

prompt outputs to our fine-tuning file to be used by OpenAI API.

Few-shot decorator style for GitHub Copilot
As introduced in Chapter 8, enforcing a specific style with GitHub Copilot requires a few exam-

ples, which can be provided as a style guide script. This few-shot example achieves the desired 

implementation.

To achieve this, we can create a style_guide_decorator.py file, which should be treated like 

another non-project file and is typically placed outside the src folder in a project repository.

This style guide should include all the elements we want Copilot to follow, such as log message 

formatting, type hints, and spacing. These examples guide Copilot and reduce the need for chained 

prompts or additional edits.
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When creating a style guide for decorators, we suggest including a time_it decorator to log a 

function’s runtime. The implementation should demonstrate the use of @functools.wraps to 

retain the decorated function’s attributes, type hints for arguments and variables, and a hanging 

indent logging style with extra parameters:

import logging

import time

from functools import wraps

from typing import Any

logger: logging.Logger = logging.getLogger(__name__)

def time_it(func: callable) -> callable:

    @wraps(func)

    def wrapper(*args, **kwargs):

        start_time: float = time.time()

        res: Any = func(*args, **kwargs)

        end_time: float = time.time()

        logger.info(

            "Function called.",

            extra={

                "function": func.__name__,

                "args": args,

                "kwargs": kwargs,

                "error": "",

                "timing": f"{end_time - start_time} sec"})

        return res

    return wrapper

In this case, the logger message combines static text with the extra parameter, resulting in a 

structured log message that is better suited for large-scale logging. For instance, to quickly iden-

tify all timing messages where execution exceeded five seconds, we could filter logs based on the 

timing parameter with a condition such as timing > 5.
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To incorporate the style guide into the session, we open decorators_style_guide.py, then cut 

and paste the entire content of the file in place. This trick ensures that Copilot recognizes the 

code in the file as part of the active session and incorporates its style when making suggestions.

Next, we return to print_fizzbuzz.py and repeat the inverse CoT process. This time, Copilot’s 

suggestions should align with the style guide defined in style_guide_decorator.py. As shown 

in Figure 15.11, Copilot includes the @functools.wraps decorator in its suggested implementation, 

while the logging indentation and extra parameters maintain the same formatting as specified 

in the style guide:

Figure 15.11: Decorator implementation using the style guide in GitHub Copilot

This implementation demonstrates that Copilot follows our preferred logging style, using a static 

log message and extra parameters to support a more structured logging format.

Next, we will explore how to apply the style guide when prompting with ChatGPT. We will then 

show how to incorporate it into a fine-tuning approach when working with OpenAI API.

Few-shot learning in ChatGPT
When using ChatGPT, we can apply a few-shot approach to deploying decorators, like that we 

explored in Chapter 8. For this task, we recommend the o3-mini high model since it is better at 

complex coding tasks.
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 We first enhance the prompt’s surrounding context by including a reference example:

CONTEXT: You are provided with a partial Python script enclosed with 
{{{FIZZBUZZ_PRINTER}}} where some of the code is missing, and examples of 
a good implementation enclosed with {{{ EXAMPLES }}}.

TASK: Implement the decorators with the missing implementation in the code 
while following the style guide.

For the few-shot example, we will label the input and output code snippets, with INCOMPLETE_CODE 

used for the input, indicating the missing time_it decorator, and COMPLETE_CODE for the fully 

implemented script. This distinction clearly highlights the intended transformation:

INCOMPLETE_CODE: {{{

import logging

logger: logging.Logger = logging.getLogger(__name__)

@time_it

def my_func(a: int, b: int) -> int:

    return a + b

}}}

With this incomplete code snippet, we expect the model to generate a fully implemented decorator 

that follows a specific style. To guide the model, we will provide a fully implemented version of 

the desired code, as shown here:

COMPLETE_CODE: {{{

import logging

import time

from functools import wraps

from typing import Any

logger: logging.Logger = logging.getLogger(__name__)

def time_it(func: callable) -> callable:

    @wraps(func)

    ...omitted for brevity but using "extra" parameter...
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@time_it

def my_func(a: int, b: int) -> int:

    return a + b

}}}

Providing this example of the desired output helps guide ChatGPT toward generating the expected 

implementation. The following is the structure of the prompt, with previously introduced parts 

omitted for brevity:

CONTEXT: You are provided with a partial Python script enclosed with 
{{{FIZZBUZZ_PRINTER}}} where some of the code is missing, and examples of 
a good implementation enclosed with {{{ EXAMPLES }}}

TASK: Implement the decorators with the missing implementation in the code 
while following the style guide.

EXAMPLES:

INCOMPLETE_CODE: {{{...omitted for brevity...}}}

COMPLETE_CODE: {{{...omitted for brevity...}}}

FIZZBUZZ_PRINTER: {{{...omitted for brevity...}}}

CODE:

The full prompt is available in the book’s repository at ch15/decorators_few_shot_chatgpt.txt. 

For reference, the results generated using this prompt closely resemble Copilot’s code completion, 

as shown in Figure 15.12:

Figure 15.12: Few-shot learning using ChatGPT



Chapter 15 383

In ChatGPT’s implementation, we can see that the model followed the style guide from our exam-

ple, incorporating the extra parameter alongside the static log message and using the @functools.

wraps decorator to preserve the function’s attributes. However, this is a relatively lengthy prompt 

to achieve a code completion that GitHub Copilot can generate much faster. Therefore, we rec-

ommend using Copilot whenever possible for a more efficient workflow.

Leveraging fine-tuning for OpenAI API
With OpenAI, we can either apply the few-shot technique, as in the ChatGPT input-output exam-

ples, or train a fine-tuned model by adding a few training samples in JSONL format, as introduced 

in Chapter 11. This approach would take even longer than ChatGPT to achieve what GitHub Co-

pilot can generate almost instantly. Fine-tuning would be more practical for large-scale projects, 

such as scanning an entire repository to implement logging, monitoring, and error handling for 

all files automatically, at scale.

As we saw in Chapter 11, fine-tuning generally requires more examples than few-shot learning 

because of the differences in how models handle prompts versus how they update weights during 

fine-tuning. However, considering our starter fine-tuning file, fine_tuning.jsonl, from Chapter 

11, which has already established the preferred logging style, indentation, and spacing, a single 

decorator may be sufficient to achieve the desired implementation.

For example, here is a time_it decorator added to ch13/fine_tuning.jsonl, structured with a 

system and user prompt as used in ChatGPT, along with a desirable assistant response assigned 

a weight of 1:

{"messages": [{"role": "system", "content": "You are provided with a 
partial Python script enclosed with {{{ INCOMPLETE_CODE }}} where some of 
the code is missing. Your task is to implement the decorators with the 
missing implementation"}, {"role": "user", "content": "INCOMPLETE_CODE: 
{{{import logging\nimport time\n\nlogger: logging.Logger = logging.
getLogger(__name__)\n\n@time_it\ndef my_func(a: int, b: int) -> int:\n    
return a + b\n}}}\n COMPLETE_CODE:"}, {"role": "assistant", "content": 
"...omitted for brevity...", "weight": 1}]}
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We can then upload the fine-tuning file by going to platform.openai.com, selecting Dashboard 

| Fine-tune, and uploading the JSONL file, as shown in Figure 15.13:

Figure 15.13: Upload the fine-tuned JSONL file

After the upload is complete, the fine-tuned model will be trained, which takes around 15 minutes. 

When done, a Succeeded icon will appear, as shown in Figure 15.14:

platform.openai.com
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Figure 15.14: Successful fine-tuning job indicates the model has finished training

To compare the benefits of fine-tuning against the base GPT-4o mini model, we can use the 

Playground page. This allows us to compare the fine-tuned model’s output against the baseline 

results, highlighting improvements. It is always recommended to validate these enhancements 

on key prompts once the fine-tuning process is complete.

We will select gpt-4o-mini-2024-07-18 as the base model on the left and choose the fine-tuned 

model from the drop-down menu on the right, as shown in Figure 15.15:

Figure 15.15: Base model and fine-tuned model comparison
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This comparison allows us to assess the performance of both models. Next, we add the system 

instructions on both sides of the screen, mirroring the surrounding context and single-task ap-

proach used in ChatGPT:

You are provided with a partial Python script in {{{FIZZBUZZ_PRINTER}}}, 
where some of the code is missing. Your task is to implement the 
decorators with the missing implementation in the code.

The user message follows a format like our ChatGPT prompt:

FIZZBUZZ_PRINTER: {{{ ...omitted for brevity... }}}

CODE:

At this stage, our prompt is ready to run, producing more precise results when using the fine-

tuned model. Compared to gpt-4o-mini-2024-07-18, the fine-tuned model returns only the 

code with our preferred logging style, and including the @functools.wraps decorator, as shown 

in Figure 15.16:

Figure 15.16: Comparison of the fine-tuned model and the base model

In this figure, we can see that the assistant’s response begins directly with the code, reflecting 

the influence of the fine-tuned examples. Additionally, the preferred logging style is consistently 

applied, aligning with the provided sample.
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While fine-tuning helps maintain the desired structure and style, it requires significantly more 

effort than using Copilot for going-live tasks related to code completion. For this reason, we rec-

ommend Copilot as your primary tool for such tasks. Fine-tuning may be a viable option if you’re 

building a custom GenAI application for internal use and have dozens of training examples, such 

as scanning an entire repository for suggestions or developing a GenAI-powered solution to serve 

other customers. However, Copilot with few-shot learning tends to be a more efficient method 

of achieving results without having to invest time in finding many use cases.

Summary
In this chapter, we explored how going-live tasks, such as adding logs, monitoring usage, and 

handling bad input, can introduce unnecessary complexity to functions. GenAI does not inherently 

suggest using decorators to separate these objectives from the core functionality of the program, 

which can lead to lower-quality code.

The most effective way to leverage GenAI for these tasks is through CoT prompting with GitHub 

Copilot. This approach involves first implementing the core function and then specifying addi-

tional requirements for decorators to handle logging, metric recording, or argument validation.

To ensure that the decorator implementation follows our desired style, we can use few-shot 

learning with Copilot and ChatGPT or fine-tune a model for OpenAI API. This allows us to achieve 

more desirable results, minimizing the requirements for chained edits to the code.

In the final chapter of the book, we will summarize the key takeaways from the 15 chapters and 

explore how to enhance our coding efforts with GenAI tools.

Quiz time
Before you proceed to the next chapter, make sure that you can confidently answer the following 

questions:

Question 1: Do LLMs guarantee higher coding standards?

Answer: No, not necessarily. Simply asking GenAI applications to add monitoring responsibilities 

can lead to undesirable suggestions, such as merging monitoring tasks with core functionality 

instead of properly separating responsibilities.
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Question 2: What is the inverse CoT for Copilot?

Answer: It involves defining higher-level coding structures, such as decorators, first and then 

moving the cursor up to let Copilot complete the implementation details.

Question 3: How can we guide GenAI applications to follow a style guide that aligns with our 

internal standards?

Answer: We can use a style guide file for Copilot, provide a few examples when prompting ChatGPT, 

and apply fine-tuning when working with OpenAI API.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following 

resources:

•	 Real Python on decorators: https://realpython.com/primer-on-python-decorators/

•	 Python’s logging documentation: https://docs.python.org/3/howto/logging.html

•	 Metrics of code, Wikipedia: http://en.wikipedia.org/wiki/Software_metric

•	 Exception handling, Wikipedia: https://en.wikipedia.org/wiki/Exception_handling_
(programming)

Unlock this book’s exclusive 
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search for this book by name.

Note: Keep your purchase invoice ready before 

you start.
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16
Architecture, Design,  
and the Future

It seems that every discussion about the future of artificial intelligence (AI) bears considering 

the famous quote of Niels Bohr: “Prediction is very difficult, especially if it’s about the future.” When 

it comes to AI, though, we already have ideas about what the future will bring. That is, we have 

read various science fiction books by Asimov and other authors. We have watched The Terminator 

and other futuristic movies and TV shows. Even cartoons across different generations embody 

different versions of the future, whether it’s The Jetsons, Futurama, or various anime. We have 

conceptions of what the future looks like; the uncertainty rests on how long it will take to get there.

With the increasing investments in AI and their exponential growth, the fields of AI and GenAI 

continue to evolve and bring new capabilities faster than most practitioners expect, let alone 

can keep up with. The landscape of software engineering is changing as a result of the new capa-

bilities brought about by AI and GenAI for coding. Before we can look forward and estimate the 

timeframes for advancements in the future, it is useful to look back and understand the major 

technological advances that have accelerated the transformation over the past 10 years. This 

chapter briefly reviews these major advances as a conceptual framework for what happens next.

This book enables readers to embrace these changes and gain the skills to effectively use them 

for not just coding but a range of software engineering skills. As we all continue to learn, it is 

useful to understand the impact of these advances on the industry. These include the impact on 

software engineers and their companies, as well as what the future might bring.
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In this chapter, we explore the following topics:

•	 The rapid rise of GenAI

•	 The economics of faster software development

•	 The shifting landscape of software developers

•	 Will GenAI change programming languages?

•	 The future of GenAI in software engineering

The rapid rise of GenAI
It was only in late 2012 that Thomas Davenport and DJ Patil declared that data science is the 

“sexiest job of the 21st century” in their Harvard Business Review article (https://hbr.org/2012/10/

data-scientist-the-sexiest-job-of-the-21st-century). Just over a decade later, the pace of 

transformation in the industry has been nothing short of remarkable.

In the same period of the last decade, neural networks were finally making their third resurgence 

after a couple of AI winters. Although neural network research started back in the 1950s, it faced 

difficulties in reaching its extremely hyped expectations, which resulted in periods of minimal 

funding and research known as the “AI winters.” By 2012, new neural network architectures had 

emerged. AlexNet, a type of convolutional neural network (CNN), drew widespread attention 

from the computer vision community after winning the ImageNet Large Scale Visual Recogni-

tion Challenge (ILSVRC) in 2012 by a wide margin. This changed the course of computer vision 

as all image understanding work quickly shifted to CNNs. The ensuing research over the next few 

years led to the ability of CNNs to extract information from images as accurately as humans by 

2016, according to the ILSVRC competition, although human accuracy levels are still disputed.

While computer vision work was advancing through the CNN architecture, the transformer ar-

chitecture was introduced through a 2017 paper from Google. This Attention Is All You Need paper 

(https://arxiv.org/abs/1706.03762) describes an attention mechanism and the transformer 

architecture. In the years since, this architecture has had a massive impact on neural networks 

and the field of AI. Although it has improved solutions for many diverse problems within AI, its 

primary beneficiary has been the subfield of natural language processing (NLP). The work of 

this paper led to the adoption of large language models (LLMs).

LLMs have had a profound impact on the public perception of AI, though the early generations 

of this technology were far less impressive. GPT-1 and GPT-2 were released by OpenAI in 2018 

and 2019 and served as a step forward in LLMs. These models are essentially prediction models 

trained on large volumes of text to predict the next word. The transformer architecture learned the 

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://arxiv.org/abs/1706.03762


Chapter 16 391

relationship between the words in a sentence to predict the next word. Empirical research found 

that the LLMs performed significantly well with ever larger models trained on ever more data. 

GPT-3 was released in 2020 with 175 billion parameters as compared to the 1.5 billion parameters 

of GPT-2. GPT-4, released in March 2023, scaled up to an estimated 1.76 trillion parameters, a 

10-fold increase over GPT-3.

InstructGPT and ChatGPT were developed as new tools that utilize underlying GPT LLMs. In-

structGPT was designed to generate text for specific tasks that follow user instructions. These 

tasks could be emails, summaries, or even code. InstructGPT included AI predictions based on 

training data as well as a reinforcement learning technique based on human feedback to adjust 

the next word predictions based on a human feedback mechanism. In contrast, the release of 

OpenAI’s ChatGPT in November 2022 was based on GPT-3.5 and was arguably the first time an 

average user could interact with an LLM without having to program. It focused on conversations 

with users and general dialogue but also included the reinforcement learning method. These two 

tools developed many of the LLM methods that led to the prompting techniques field.

The LLM and ChatGPT methods focus on accurately predicting the next words across languages. 

The same models have opened other research avenues by training on other types of data. Instead 

of training on text, researchers in biology have found that the same results can be applied to 

genomes and protein sequence predictions. Chemists are using the technology to create new 

drugs and chemical substances with specialized properties. This book, of course, is based on the 

same idea of applying the same prediction techniques to code by training on public code bases.

A few years ago, AI was rarely discussed in the media. Today, the financial news seems to focus on 

the recent technology advances and their implications for the markets and the larger economy. 

The next section discusses some of the economic issues that GenAI coding may offer.

Economics of faster software development
Software development is one of the key enablers of technology and the digital economy. Software 

impacts many aspects of modern society, from governments to businesses. Most industries rely 

on software. Software is closely tied to the productivity of workers across the globe, making it a 

key economic measure.



Architecture, Design, and the Future392

The field of software economics researches and estimates the value provided by software against 

the costs associated with its development. Software platforms and tools are designed to provide 

incremental business/economic value to the organizations using them. The key decisions of buying 

commercial off-the-shelf (COTS) software, licensing software, customizing third-party software, 

or building it in-house are based on the estimated incremental value proposition.

With GenAI, software engineers can write quality code substantially faster. With the techniques 

described in this book, the efficiency in writing code should improve and the quality of the pro-

duced code should remain quite high. The ability to automate the testing and documentation 

further reduces the costs of software development. In financial terms, the use of GenAI by the 

same workforce would result in an increased supply of software. The current costs for the GenAI 

coding empowerment remain $25/month or under, which is arguably a bargain. The reduced 

cost will increase the demand for software, creating greater automation and adding value for 

businesses. There are always more problems to solve, and the lower development cost barrier 

will alter the economics of software engineering. To reap these benefits, software engineers need 

to begin using this technology, which is discussed in the next section.

Will GenAI be adopted by software engineers?
The improved efficiency, speed, and capability that GenAI brings for software engineers is at least 

a paradigm shift but may be a revolution in the way that software is being developed. As discussed 

in this book, the current capabilities of GenAI include many of the tasks that software engineers 

engage in daily. These include writing code and tests, generating documentation, refactoring, 

and optimizing code. GenAI aids with the cognitively complex tasks of code debugging down to 

the less mindful tasks of conforming to code style.

Gartner predicts that 50% of software engineers will use AI-powered coding tools by 2027, which 

is up from the 5% in 2023 when GenAI was at the peak of the hype cycle (https://www.gartner.
com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-
and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-i-

n-two-to-five-years). Over the last two years, GenAI tools have rapidly shifted from marginally 

useful due to their many errors to widespread tools that software engineers and corporations find 

valuable. In this brief period, KPMG claims that GenAI has become a software engineer’s most 

valuable coding partner (https://kpmg.com/us/en/articles/2023/generative-artificial-

intelligence.html). Over the next few years, these tools will continue to evolve and produce 

ever higher quality code, test instances, docstrings, and documentation.

https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://kpmg.com/us/en/articles/2023/generative-artificial-intelligence.html
https://kpmg.com/us/en/articles/2023/generative-artificial-intelligence.html
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Given the improved accuracy and overall efficiency that GenAI coding provides, the effect may 

not be uniform across all ranks of developers. The next section examines how the tools may affect 

different classes of programmers.

Shifting landscape of software developers
At the current market pricing, GenAI tools are generally available to all developers. It is interest-

ing to speculate how the software engineer landscape may change due to this recent technology. 

Some have suggested that GenAI tools will level the playing field since any developer will be able 

to program with increased efficiency in any language. They argue that junior developers may take 

over more roles and increase the volume of code delivered, and more senior developers will be 

pushed out of organizations. Others argue the opposite.

The rise of GenAI tools has also lowered the barrier for software development. Programming in 

each language has a steep learning curve since it includes syntax, algorithms, libraries, integrated 

development environments (IDEs), compiler messages, and more. Printing the “hello world” 

message in any language is usually the first accomplishment. If coding a new language is like 

reading the front page of a foreign language newspaper, GenAI for coding is a tutor that shows 

the meaning of all words and explains the grammar upon request. For coding alone, a junior 

developer may quickly become productive in straightforward coding.

Tools such as ChatGPT and GitHub Copilot will empower developers to quickly learn and become 

productive in new programming languages. There are always new languages and frameworks 

that all software engineers must continually learn and apply to projects. The implication is that 

developers can more quickly get up to speed with new languages and frameworks and become 

productive in far less time. This has implications for not only new languages but also older lan-

guages such as COBOL, FORTRAN, and others that are still running in legacy systems, described 

later in this section.

Our perception is that the landscape will shift toward senior developers, and more junior develop-

ers may be displaced by the GenAI tools. If we consider a typical software engineering or computer 

science undergraduate curriculum, the primary technical courses include calculus, programming, 

data structures, algorithms, and maybe software engineering. The more advanced courses will 

include networking, compilers, operating systems, big data, AI, programming language theory, 

optimizations, cloud computing, and much more.
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Junior developers tend to focus more on writing code, tests, and documentation, while the more 

senior developers focus on the complex interplay between the system requirements, stakeholders, 

architecture, design, and other aspects that tend to require more experience. The GenAI efficiencies 

clearly overlap the skillsets of the junior developers, but not the senior developers.

GenAI as related to the Software Engineering Body of 
Knowledge
Another viewpoint is that GenAI performs very well within a limited scope of coding within 

software engineering. The IEEE Computer Society produces a Software Engineering Body of 

Knowledge (SWEBOK). The current version, developed in 2024, captures the collective skills, 

methodologies, knowledge, and so on for the software engineering profession. It has been curated 

by experts with the goal of reaching a consensus on the core body of knowledge. Table 16.1 lists 

the 18 knowledge areas (KAs) found in the SWEBOK guide, available at https://www.computer.

org/education/bodies-of-knowledge/software-engineering:

Software requirements Software architecture Software design

Software construction Software testing Software engineering operations

Software maintenance Software configuration 

management

Software engineering management

Software engineering 

process

Software engineering 

models and methods

Software quality

Software security Software engineering 

professional practice

Software engineering economics

Computing foundations Mathematical foundations Engineering foundations

Table 16.1: Software Engineering Body of Knowledge (SWEBOK) 2024 V4

Compared to the SWEBOK, GenAI enhances a few processes but only a fraction of the overall 

skillset currently. Specifically, it directly enhances software construction and software testing. 

Indirectly, it helps support software maintenance and software quality KAs.

https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
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Democratization of software engineers
The GenAI tools will help a wider audience than many people expect. We have discussed how 

junior software engineers and those getting up to speed in a new language can receive help with 

their programming. Senior developers can leverage their architectural, design, and other software 

systems experience. There is a wide class of former developers who have software experience 

but have shifted into other roles in computational biology, finance, business, or management.

Former programmers who have left the field to take on different responsibilities may return to 

coding in the near future with the GenAI tools. If they have been out of programming for several 

years, they would need to learn new languages, cloud computing, new IDEs, and so on. Nor-

mally, they would be unlikely to invest considerable time learning this multitude of new skills. 

However, with GenAI, they are now empowered to write niche applications within their specific 

roles that use their expertise. The implications are that part of software engineering may shift 

somewhat from being a domain-independent technical skill to an extra skill of domain experts. 

That is, rather than hiring expert software engineers who have traditionally applied their techni-

cal skills to write code for banking, healthcare, or other industries, these industries may turn to 

experienced practitioners in their field who can also program. We started to experience some of 

this with robotic process automation (RPA), where the subject matter experts learned the tools 

and drove specific workflows. In the last couple of years, we have seen similar domain experts 

learning prompt engineering to leverage LLMs in their workflow pipelines. We see a similar shift 

in the democratization of AI, where subject matter experts may be replaced by subject matter 

experts with AI experience.

Legacy software and flexible teams
With the explainability and guidance of GenAI technology, software development will certainly 

change corporate and industry approaches to software, especially legacy systems. Many compa-

nies and industries rely on legacy software systems developed decades ago and continue to run. 

The systems may be decades old and written in a language that only one or two people in the 

company have ever learned. The software systems pose a significant risk to organizations. They 

may run on legacy hardware, but they are still part of existing workflows. Efforts to understand, 

let alone rewrite, such systems have been cost-prohibitive.

GenAI systems can now be trained on the code bases and both provide support for understanding 

the code and perhaps enable them to be quickly rewritten. Using similar technology to human 

language translation, the code can use GenAI techniques to efficiently rewrite the full code base, 

adhere to the more recent documentation and testing strategies, and eliminate the risk. In terms 
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of staffing, this would reduce the need to keep developers with specialized language ability or 

experience with these legacy systems.

As the barriers with legacy systems decrease, software engineers may become empowered to work 

on a wider set of projects. While subject matter knowledge in the industry domain is critical, the 

coding implementation has become more accessible through GenAI.

With GenAI, coders can more quickly get up to speed with new code bases and become productive, 

but this has implications. The speed provided by GenAI increases the flexibility of developer teams. 

Developers can shift more quickly between projects and gear up for new projects. With agile project 

development practices and changing requirements, this is certainly a positive outcome. However, 

this flexibility would also presumably lead to increased outsourcing of code development since 

offshore teams could also quickly ramp up to tackle projects in a similar fashion. This is not a 

new trend, and many teams still rely on senior developers, designers, and business analysts who 

interact with customers.

This section focused on the people involved in software engineering and the impact of GenAI 

on the field. The next section discusses the potential opportunities for computer languages to 

change based on GenAI capabilities.

Will GenAI change programming languages?
The traditional art and science of writing software involves creating a set of instructions that 

a computer can follow. This communication currently occurs through a specific programming 

language. The instructions usually include combinations of data structures that store and manip-

ulate data. The instructions may include algorithms that efficiently sort, manipulate, or transform 

data to add business value. Most programming languages can perform these operations, but their 

true power is only achieved when using added libraries or packages that enable user interfaces, 

networking, database interaction, and much more.

Our GenAI coding tools today focus on writing and modifying our code. That is, ChatGPT, OpenAI 

API, and GitHub Copilot serve as programming assistants that guess the specific programming 

language code lines from the method signature. While this speeds up our programming at the 

method level, it requires that the developer have knowledge of how the problem breaks down 

into multiple methods and the transmission of information between the methods as dictated 

by their signature.
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We can draw parallels between writing a document using an LLM and writing code using GenAI. 

ChatGPT and other LLMs are remarkable at rephrasing text for technical audiences, doctors, or 

children. This is equivalent to refactoring code. To write a letter from scratch, it’s not a single 

command but a series of prompts that map out the instructions and sequence. Similarly, one does 

not write the entire code file but must break it down into a series of commands that can each be 

developed into code. Throughout this book, we have provided many examples that illustrate that 

GenAI will usually write reasonable functional code. However, by breaking functions into smaller 

units, the GenAI will produce higher-quality and more readable code that is easier to maintain.

The next stage of GenAI software development is possibly a more natural language way of com-

municating with computers. While computer languages emphasize the precision of commands, 

they require an unnatural and more formal structure for communicating ideas. This requires a 

learning curve and arguably slows down development. Natural language could speed up the 

translation into computer-readable form and enable greater accessibility to software.

The rise of natural languages for computer instructions will likely require some time and face 

some hurdles that can be overcome with pseudocode. Three of the formal steps of computer lan-

guages are sequences, iterations, and selection (conditions). The interaction of these elements is 

the formal control flow of computer programs. Natural language can handle the sequences and 

conditional flows reasonably well, but the notion of iteration loops is arguably not commonly part 

of languages. Pseudocode represents a somewhat arbitrary syntax but captures the three formal 

steps well. General pseudocode that can be interpreted by LLMs to produce formal programming 

languages may further empower a wider set of developers.

The future of GenAI in software engineering
This section first discusses vibe coding and then breaks down the future of software engineering 

into two different horizons. The shorter term considers the next few years, and the longer term 

considers what the field might look like in five or more years.

Vibe coding
Vibe coding is a recent trend where the developer describes what they want to do in natural lan-

guage and leaves the technical coding aspects up to the LLM. Using LLMs to write code is certainly 

a theme of this book, and vibe coding essentially takes this to an extreme. Essentially, vibe coding 

provides a form of rapid prototyping that is a valuable part of the overall software engineering 

process, particularly in defining requirements. We believe the software community will come to 

recognize its value as such. However, for larger projects, code quality is important since most of 
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the costs associated with software are in its maintenance, such as adding new features. Many 

unhappy memes describe the difficulty of “vibe debugging” the relatively poor-quality code 

produced by vibe coding. we expect a future that lands somewhere between where we are now 

and vibe coding. We will describe the shorter- and longer-term expectations next.

Shorter term
Over the last year, the GenAI market has blossomed, and many developers are now working with 

this technology. It is available as a VSCode extension, Jetbrains products including PyCharm plugin, 

and other integrated development environments (IDEs) so it’s readily available. In addition, new 

IDEs with built-in GenAI capabilities have entered the market, including Cursor, Windsurf, and 

Replit. Other tools, such as AWS CodeWhisperer and Tabnine, offer code suggestions for multiple 

languages. All of these are offered at a low price, compared to the potential savings of developer 

time. In the short term, all of these will increase their accuracy and lead to the creation of better 

software in less time.

Longer term
After many have adopted the GenAI coding approaches and can use them effectively, the technol-

ogy push will focus on trying to move from formal requirements and specifications to code. As 

one of the first steps in the software development life cycle, requirements gathering is a formal 

process to understand the intended goals, the user interfaces, non-functional requirements, and 

so on. In many organizations, there are more formal diagrams, such as Unified Markup Language 

(UML), that describe the design. Others include sample user interface designs from Balsamiq 

and Figma. Efforts are underway to automatically convert these diagrams directly into code.

GenAI has not solved many of the other aspects of software development processes. The planning, 

designing, higher-level integration, DevOps, deployment, orchestration, and other aspects of 

software have had minimal impact from GenAI. We are excited about the long-term prospects, but 

do not have an opinion on when GenAI techniques will make meaningful strides in these areas.

Will AI replace software engineering?
The need for software engineering will continue for two reasons. First, we know that GenAI is 

much more effective at writing parts rather than full end-to-end content. For prose text, we don’t 

expect GenAI to draft full reports, but we can break it down into sections and paragraphs and 

use prompt engineering. It’s no surprise that some of the main use cases are web searches and 

summarization, which have weak parallels in software engineering and improving text, which 

is essentially refactoring. With software engineering, knowledge of software structure and sup-
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porting architectures is needed to break code into modules, files, and succinct methods. The need 

for human skills for these tasks will likely continue for several years, even though individual 

methods may be fully crafted using GenAI. Humans will shift to roles in architecture, design, and 

integration, and will still ultimately be responsible for validating the code.

The second reason is that GenAI is most effective when working with widely available code 

bases but often fails without such expansive sets of examples. Most software engineers need to 

learn a new language every 3–5 years on average. Certainly, some of this is due to switching jobs. 

However, new languages, frameworks, and new versions of both continue to emerge—none of 

which begin with sufficiently large code bases for training GenAI models. Domain-specific lan-

guages are another good example of limited training data. In addition, the newest technologies 

in databases, cybersecurity, quantum computing, and so on need software engineers since their 

respective code bases are still being written.

Risk and governance
Humans are currently ultimately responsible for the code that is produced, but the use of GenAI 

raises a number of challenges. In heavily regulated industries such as transportation, banking, 

and healthcare, the use of AI will undergo significant scrutiny. The ability to provide explainability 

and understanding of which programmers, agents, or AI created different sections of code will 

likely become standard. The risks, legal responsibilities, and ethical considerations will need to 

address responsibilities and safeguards for software. The ethical, moral, and legal issues around 

self-driving cars today provide a good example of some of the considerations. MIT’s trolley prob-

lem (https://en.wikipedia.org/wiki/Trolley_problem) and the Moral Machine (https://

en.wikipedia.org/wiki/Moral_Machine) provide further examples of the challenges.

Another challenge is the copyright issue of software. For regular texts, News Corp, the Financial 

Times, the Associated Press, and other media companies have negotiated agreements to license 

their text to OpenAI. Microsoft and Google have also negotiated with content providers to scale 

their training sets without violating copyright laws. For software code, the laws are less clear 

since it’s a relatively new problem that has not yet been resolved. It is certainly possible that the 

GenAI could duplicate copyrighted code. Since the accuracy of the GenAI depends in part on the 

size of the training set, more code licensing may be required to improve performance.

The education in programming languages and the evaluation of skills must also adapt. Schools and 

universities have taught programming skills for decades. Just as spelling and grammar checkers 

are standard practice for writing reports, GenAI is likely to eventually not just be accepted but be 

a required part of software development. Universities have tended to focus more on the language 

https://en.wikipedia.org/wiki/Trolley_problem
https://en.wikipedia.org/wiki/Moral_Machine
https://en.wikipedia.org/wiki/Moral_Machine
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nuances and syntax rather than the set of available tools, such as compilers, debuggers, and linters. 

However, ignoring GenAI will be difficult since it will be used extensively. Job interviewers have 

often used LeetCode forms of technical questions to weed out candidates, even though many of 

the questions are more academic than common industry practices. With GenAI, such low-level 

coding skills have become even less relevant, and we expect these forms of interview questions 

to evolve as well.

Summary
AI and GenAI capabilities have advanced rapidly over the past several years through a number 

of major technology innovations. With GenAI’s boost in software engineering productivity at a 

low price point, it will increase the volume of code written and lower the overall costs. This will 

change the software engineer landscape, perhaps to favor more senior developers with more ex-

perience in architecture, design, and SWEBOK. It may also enable specialists with deep domain 

experience to develop more code. Legacy systems may be rewritten with GenAI support, which 

will free companies to use software developers across projects in a more agile manner.

There is a strong movement toward adopting GenAI for coding, and it has already been integrat-

ed into many IDEs. In the longer term, we will see how it surpasses the coding tasks and enters 

more aspects of software engineering. GenAI still requires the communication of commands to 

computers, and natural language may eventually supplement or replace programming languages, 

but pseudocode may be the next frontier. The world will still need software engineers for the 

foreseeable future. There are still many issues to manage, from risk to compliance, but GenAI has 

arrived and is already supercharging software engineering.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following 

resources:

•	 Thomas Davenport and DJ Patil. Harvard Business Review. https://hbr.org/2012/10/

data-scientist-the-sexiest-job-of-the-21st-century

•	 AI winters: https://www.historyofdatascience.com/ai-winter-the-highs-and-lows-

of-artificial-intelligence/

•	 Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convo-

lutional Neural Networks. NeurIPS 2012. https://proceedings.neurips.cc/paper_files/

paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://www.historyofdatascience.com/ai-winter-the-highs-and-lows-of-artificial-intelligence/
https://www.historyofdatascience.com/ai-winter-the-highs-and-lows-of-artificial-intelligence/
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
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•	 ImageNet Large Scale Visual Recognition Challenge. https://arxiv.org/pdf/1409.0575

•	 Attention Is All You Need. https://en.wikipedia.org/wiki/Attention_Is_All_You_Need

•	 Gartner hype cycle for AI practices. https://www.gartner.com/en/newsroom/press-
releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-
engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-
to-five-years

•	 The startling power generative AI is bringing to software development. https://kpmg.com/us/

en/articles/2023/generative-artificial-intelligence.html

•	 H. Washizaki, eds., Guide to the Software Engineering Body of Knowledge (SWEBOK Guide), 

Version 4.0, IEEE Computer Society, 2024. https://www.computer.org/education/

bodies-of-knowledge/software-engineering

•	 Moral Machine. https://en.wikipedia.org/wiki/Moral_Machine

•	 Trolley problem. https://en.wikipedia.org/wiki/Trolley_problem
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Subscribe at https://packt.link/TRO5B or scan the QR code below.
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https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
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Set up an OpenAI Account
Here are the steps to create an OpenAI account:

1.	 Navigate to https://openai.com/. At the top left of the page, click on either ChatGPT or 

API Platform to start the account creation process, as shown in Figure 1:

Figure 1: Access to ChatGPT and API Platform from OpenAI API

2.	 Each of these links will take you to an account creation page, where you can sign up using 

popular platforms such as Google, Microsoft, or Apple, or register with an email address, 

as shown in Figure 2:

https://openai.com/
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Figure 2: OpenAI platform sign-up page

3.	 To register with an email address, click on Sign up.

In the next section, we will go through the setup of a virtual environment.

Creating a virtual environment
A virtual environment in Python is an isolated setup that ensures the reproducibility of depen-

dencies, which are external libraries our project depends on.

For example, consider the following code:

import pandas as pd

df = pd.read_csv('df.csv')

df.to_markdown()

Important Note

As of August 2025, you will need to create two separate accounts: one for ChatGPT 

and one for the OpenAI platform to access the API. 
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Here, we depend on Pandas, a third-party and open-source library available at: https://github.

com/pandas-dev/pandas. Pandas provides the read_csv function, which returns a DataFrame. 

Since version 1.0.0, which can only run on Python 3.6.1 or higher, the DataFrame class also 

includes the to_markdown method. If we use earlier versions of Python or Pandas, this code may 

not run.

Generally, developers specify their required dependencies in a file named requirements.txt. 

In this book’s repository, you will find a specification of the external libraries that we use in 

requirements.txt, as shown in Figure 3:

Figure 3: Requirements.txt file for this book

In later chapters of the book, where we dive deeper into the software development lifecycle 

(SDLC) functions, the requirement files for these projects will include specific versions, as shown 

in Figure 4:

Figure 4: requirements.txt with versioning from Chapter 10

https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
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Just like in this figure, our production projects also include specific versioning. For the dependency 

versioning resolution, we leverage dependency and environment management tools such as pipenv 

that proposes dependency management for specific versioning resolution. Other developers may 

use Conda, poetry, or other tools. In this book, however, we will use Python’s built-in venv tool 

for our environment setup.

Prompting virtual environment
In this book, we leveraged GenAI for every step of the SDLC, and installing a virtual environment 

is no exception. This task is a good candidate for using the agent mode within the GitHub Copilot 

chat window, with a prompt that follows the Five S’s discussed in detail in Chapter 4.

A prompt to install our dependencies should include the following components:

1.	 Python version: Which version of Python should be used to run this project, in our case, 

it is Python 3.11.

2.	 Environment tool: Either venv or its alternatives.

3.	 Requirements file: The default is requirements.txt placed in the root of the project.

4.	 Environment name: A common practice is to name the environment .venv. We can also 

customize it to suit the project name with a prefix of a period, such as .supercharged.

5.	 Environment location: The library code is typically installed at the project root.

Considering these, here is an example of a prompt we can use with GitHub Copilot, either in 

PyCharm or VS Code:

CONTEXT: You are provided with:

1. Python version enclosed with {{{ VERSION }}}

2. Requirements file path enclosed with {{{ PATH }}}

3. Environment tool enclosed with {{{ TOOL }}}

4. Environment name enclosed with {{{ ENV NAME }}}

5. Location for the environment enclosed with {{{ Location }}}

TASK: Set up a virtual environment using the Python version, requirements 
file path, using the provided name and location for this project.

VERSION: {{{ Python 3.11 }}

PATH: {{{ requirements.txt }}}

TOOL: {{{ venv }}}
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ENV NAME: {{{ .supercharged }}}

LOCATION: {{{ project root }}}

For reference, the output of the setup using agent mode with GitHub Copilot and the underlying 

Claude Sonnet 4.0 specifies the steps for setting up an environment, activating it, and installing 

its dependencies. Figure 5 demonstrates creating the environment with our desired name and 

activating it:

Figure 5: Activating the virtual environment

Figure 6 illustrates the installation of dependencies as specified in requirements.txt:

Figure 6: Installation of the dependencies
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Once installation is complete, Copilot may propose some tests, such as validating the correct 

versioning of the packages, concluding with a success message as shown in Figure 7:

Figure 7: Successful installation message

After the setup is complete, we can see that a .supercharged folder is added to the repository, 

as shown in Figure 8:

Figure 8: Added files to the repository
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For reference, here are the typical three shell commands we can use to manually install the virtual 

environment:

python3.11 -m venv .supercharged

source .supercharged/bin/activate

pip install -r requirements.txt

Next, we will see how to instruct git to ignore the dependencies files.

Adding virtual environment to .gitignore
Since requirements.txt is sufficient for replicating the dependencies on any machine, there 

is no need to include the actual environment code in the repository. For that reason, it is best 

practice to ignore the installed dependencies. We can do this by adding the path of the installed 

requirements to the .gitignore file. We can chain another prompt in agent mode:

Add the environment path to .gitignore file.

This prompt successfully adds the path of the virtual environment to .gitignore, as shown in 

Figure 9.

Figure 9: Adding the path to the .gitignore file

If you named your environment differently, Copilot would likely add the correct name to the file. 

If you used .supercharged or .venv, no changes are required because these names are already 

in our files.

 Important Note

Now that you are a supercharged coder, we encourage you to help your colleagues 

use these prompts when setting up a new virtual environment. These can be adapt-

ed for different environment tools, environment names, and projects, reducing the 

chances of errors when working with Agent mode
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Further reading
To learn more about the topics that were covered in this chapter, take a look at the following 

resources:

•	 Venv, virtual environment built-in: https://docs.python.org/3/library/venv.html

•	 Pipenv, dependency and environment management tools: https://pipenv.pypa.io/

en/latest/

•	 Poetry, dependency and environment management tools: https://python-poetry.org/

docs/dependency-specification/

•	 Conda, dependency and environment management tools: https://anaconda.org/
anaconda/conda

https://docs.python.org/3/library/venv.html
https://pipenv.pypa.io/en/latest/
https://pipenv.pypa.io/en/latest/
https://python-poetry.org/docs/dependency-specification/
https://python-poetry.org/docs/dependency-specification/
https://anaconda.org/anaconda/conda
https://anaconda.org/anaconda/conda
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generating, with OpenAI API  110
Google-style docstring  113-116

docstrings, with GenAI
writing  300
writing, for entire file  302, 304
writing, for single method  300, 301

double underscore (dunder)  105

E
Euclidean distance  243
evaluation metrics  80
expert systems  6
Extreme Programming (XP)  10, 243, 322

F
few-shot decorator style

for GitHub Copilot  378, 380
few-shot  

learning  152, 189, 190, 265, 274, 361
code implementation, with OpenAI  

API  200-203
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in ChatGPT  381-383
using, as style guides  378
working with, for OpenAI API  199

few-shot prompting, with ChatGPT
leveraging  192
output improvement, with code  

refactoring  193-195
structure  192

fine-tuning  152, 203
used, for OpenAI API  383-387
using, as style guides  378
versus prompt engineering  268

FizzBuzz  363
use case  363

Frobenius norm  243

G
Gemini  7
GenAI  390, 391

adopting, by software engineers  392, 393
for coding tasks  78, 79
for unit tests  312-317
programming languages  396, 397
sample data creation  329-331

GenAI for higher-level coding patterns
decorators, using  368, 369
inverse CoT for decorator  

implementation  369-374
using  368

GenAI future  397
longer term  398
risk and governance  399
shorter term  398
software engineering, need for  398, 399
vibe coding  397

GenAI toolkit  9
ChatGPT  9
GitHub Copilot  10
OpenAI API  10

Generative artificial intelligence  
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benefits, of coding  12
downsides, of coding  12, 13
software development, improving  11

Generative Pretrained Transformer  
(GPT)  7, 9
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calculating, with chat completion  57
guided walk-through  58, 59

geometric mean calculations
analysis  63-65
completion and keyboard shortcuts  61
guided walk-through  61, 62

geometric mean scope  210, 211
GitHub Copilot  10, 46, 155, 164, 196

account, activating  50, 51
chat feature, using  54, 56
code, analyzing  65, 66
code, analyzing with Copilot editor window 

in VS Code  67, 68
code completion design overview  46, 47
code completion policies  49
debugging with  177-179
dependency code, debugging  180, 181
/explain command, using with  164, 165
extension, installing for VS Code  53
faulty implementation, fixing  125
free account limits  48
imports and hashtags  118-121
interaction modes  54
lead-in cue structure  117, 118
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pricing  49
setting up, in PyCharm  51
setting up, in VS Code  51
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fluff  124, 125
single task  121-123
style guide  196-199
unit test, evaluating  126-134
used, for profiling runtime  339
used, for profiling space usage  339
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(CoT)  251-253
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docstrings  304-307
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working, in VS Code Jupyter Notebook  

for Code Analysis  69
GitHub Copilot baseline  213
GitHub Copilot command

working with  296-300
GitHub Copilot, prompt analysis
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PyCharm chat  135
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implementation  135, 136
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specific and short prompt  

principles  134, 135
structured prompt principle, with  

lead-in cue  134
surrounding context, with VS Code  135

Google style  295

Google-style docstring  112-116
analysis  116, 117

GPT-3.5 model  154
GPT-4o mini  209

used, for computing quadratic roots  271
GPT-o series  219

adoption  220
graphical processing units (GPUs)  357
graphical user interface (GUI)  269
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Hypertext Transfer Protocol (HTTP)   19, 161
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implementation code  311
in-context learning  189, 190, 265
integrated development environment  

(IDE)  5, 45, 104, 362, 393
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analysis  54
chat  54
completion  54

inverse CoT for decorator  
implementation  369-374

inverse CoT with ChatGPT
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decorators, monitoring  375, 377

inverse CoT with OpenAI
applying  375
decorators, monitoring  377, 378
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crafting, for fine-tuning  273
file structure, fine-tuning  274, 275
strategy  275

JSONL file, strategy
code-only  276
code with no comments  277, 278
contrastive code-only  276, 277
contrastive no comments  278-280

K
Kite  6

L
L1 norm  243
L2 norm  243
language models (LMs)  7
large language models (LLMs)  4, 18, 45, 78, 

106, 149, 209, 265, 335, 361, 390
ChatGPT, for explaining code  166-168
code task, specializing  268
costs  280, 281
/explain command, using with GitHub 

Copilot  164, 166
fine-tuned model, using  284
fine-tuning  267, 268
fine-tuning in action  287
fine-tuning job, initiating  281-284
fine-tuning, with OpenAI GUI  280
limitations  153, 154
OpenAI API, for explaining code  168, 169
outputs, comparing  285-287
rise  6, 7
used, for explaining code  163
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Llama  7
LLM output performance

context window, adding  151, 152
fine-tuning  152
improving  151
prompt engineering  151
retrieval-augmented generation  153
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examples  267

logging  362-365
longer term  398

M
machine learning (ML)  6
Maestro I  5
magic attribute  364
Manhattan distance  159-162, 243

for matrices  162, 163
memory space usage  338

efficiency tradeoffs, balancing  339
space complexity  338

Miller’s Law  295
model mastery  79
monitoring  362, 366, 367
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natural language generation (NLG)  7
natural language processing  

(NLP)  6, 7, 18, 155, 390
neural networks  6
neurons  7
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non-project files  169
entire file, explaining  170
explaining, with ChatGPT  172, 173
explaining, with context  171, 172
explaining, with OpenAI API  174, 175

NumPy/SciPy style  295

O
one-shot learning  152
OpenAI  17

billing, computing  30, 31
project API keys, obtaining  22-24
used, for performance refactoring  258, 259

OpenAI accounts
rate limits  31
reference link  403
setting up  403, 404
usage restrictions  31

OpenAI API  10, 18
body  19
endpoint  19
headers  19
history  231-235
HTTP method  19
precise prompts, crafting  107
prompt  256
routing chat capabilities, to code 

completion  37-41
structured prompts  107, 108
system prompts, with surrounding context 

and single task  108
through RESTful HTTP request  19
used, for explaining code  168, 169
used, for extracting Python objects 

properties  104-106
used, for generating docstrings  110

used, for refactoring chain-of-thought  
(CoT)  254, 255

used, for searching outdated  
docstrings  304-307

user prompts, with specific instructions  109
using, to generate code  36
vectorizing  260, 261

OpenAI API baseline  215-217
OpenAI API Playground

experimenting with  269-271
quadratic roots, computing  

with GPT-4o mini  271
OpenAI API request

cost calculating  28
parameters analyzing  32-36

OpenAI GUI
used, for fine-tuning large language models 

(LLMs)  280
openai Python package

installing  21
OpenAI API request, sending  24-27

OpenAI Tokenizer
reference link  29

outdated docstrings
searching, with ChatGPT  304-307
searching, with GitHub Copilot  304-307
searching, with OpenAI API  304-307
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pattern matching  5
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with ChatGPT  258, 259
with GenAI  256
with GitHub Copilot  256-258
with OpenAI  258, 259

precise prompts  81
crafting, for GitHub Copilot  117

production system  8
profiling runtime  339-341

with GitHub Copilot  339
profiling space usage  342

with GitHub Copilot  339
program runtime  336, 337

runtime complexity, measuring  337
prompt chaining for LLM

ChatGPT, chaining with  228-231
Copilot, chaining  236, 237
OpenAI API, history  231-235
using  227

prompt engineering  10, 151
for coding  188, 189
versus fine-tuning  268

prompt engineering, techniques  203, 266
additional methods  206
bug fix at scale  203, 204
chain-of-thought (CoT) prompting  205, 206
iterative prompting  204, 205
template-based prompting  205

prompt implementation scope  210
prompting techniques  391
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user prompts  18

prompt samples by OpenAI  94, 95
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chain-of-thought prompting  101
code debugging  95, 96
guided walk-through  97-99
iterative prompting  101

prompts for ChatGPT
analysis  92- 94
crafting  84, 85
guided walk-through  87, 88
single task  89
specific instructions  90-92
structuring  88
surrounding context, adding  89

prompts for coding tasks, best practices  81
short prompts  83
single task per prompt  82
specific instructions  83
structured  81
surrounding information  82

proof of concept (POC)  9
pull request (PR)  78
PyCharm  5

used, for setting up GitHub Copilot  51
PyCharm GUI

converting, to CLI  85, 87
Python objects properties

extracting, for OpenAI API  104-106
Python threading  80
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quadratic roots

calculator, implementing  272, 273
computing, with GPT-4o mini  271
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Representational State Transfer (REST)  19
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RESTful HTTP request  17
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retrieval-augmented generation  153
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robotic process automation (RPA)  395
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Singleton design pattern  104, 110, 111
small language model  149
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335, 362, 405
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software engineers democratization  395
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software engineering  4
Software Engineering Body of Knowledge 

(SWEBOK)  394
software testing  5
SonarQube  5
Sphinx style  295
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Stack Overflow  6
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structured prompts  107, 108
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with single task  108
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T
test code  311
Test-Driven Development  

(TDD)  9, 243, 311, 313, 322-325
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within PyCharm  327
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memory space usage  338
program runtime  336, 337
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tokens per minute (TPM)  31
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unittest frameworks  5
unit tests
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USA Mathematical Olympiad (USAMO)  78
user prompts  18, 107

with specific instructions  109
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vectorized computations  256
version control systems  5
vibe coding  13, 397
virtual environment  404
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creating  404, 405
prompting  406-408

Visual Studio  5
Visual Studio Code (VS Code)  5

used, for setting up GitHub Copilot  51
VS Code Jupyter Notebook for Code Analysis

analysis  72, 74
GitHub Copilot, working with  69
guided walk-through  69-71

W
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