O'REILLY"

Low-Code Al

A Practical Project-Driven Introduction
to Machine Learning

Gwendolyn Stripling, PhD
& Michael Abel, PhD



9

O'REILLY"

Low-Code Al

Take a data-first and use-case-driven approach with
Low-Code Al to understand machine learning and deep
learning concepts. This hands-on guide presents three
problem-focused ways to learn no-code ML using
AutoML, low-code using BigQuery ML, and custom
code using scikit-learn and Keras. In each case, you'll
learn key ML concepts by using real-world datasets
with realistic problems.

Business and data analysts get a project-based
introduction to ML/Al using a detailed, data-driven
approach: loading and analyzing data; feeding data
into an ML model; building, training, and testing; and
deploying the model into production. Authors Michael
Abel and Gwendolyn Stripling show you how to build
machine learning models for retail, healthcare, financial
services, energy, and telecommunications.

You'll learn how to:

e Distinguish between structured and unstructured data

and the challenges they present
e Visualize and analyze data

¢ Preprocess data for input into a machine learning model

¢ Differentiate between the regression and classification
supervised learning models

e Compare different ML model types and architectures,

from no code to low code to custom training

e Design, implement, and tune ML models

e Export data to a GitHub repository for data management

and governance

“This excellent and detailed
guide unlocks the potential
of ML, illustrated through
real-world use cases and
hands-on problems.”

—Michael Munn
Research software engineer, Google

"A very special book that
strikes the right balance
between practical low-
code solutions to get
started with ML and

in-depth explanations.”

—Benoit Dherin
ML engineer, Google Cloud

Gwendolyn Stripling, PhD, is the lead
AI/ML content developer at Google
Cloud Learning Services. She developed
two of the most popular generative

Al courses on YouTube as well as the
Introduction to Neural Networks series
on LinkedIn Learning.

Michael Abel, PhD, is technical lead
for the Specialized Training program
at Google Cloud. Formerly he was

a data and ML technical trainer at
Google Cloud, and was a visiting
assistant professor of mathematics
at Duke University.

DATA

US $79.99 CAN $99.99
ISBN: 978-1-098-14682-5

781 5

098114682

57999

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia



Praise for Low-Code Al

Everyone from those in tech-adjacent roles to aspiring data scientists and
ML engineers can benefit from the project-based approach and no-code and low-code
solutions presented in this wonderfully written book.

—Eric Pilotte,
Global head of Technical and Business Training Delivery, Google Cloud

Low-Code Al is what I have been looking for to help jumpstart learning Al

This book provides an easy-to-follow guide that helps those of us who want to harness
the power of Al for data-driven decision making, but that do not yet have years of ML
coding experience. I am grateful for this highly accessible book and feel seen!

—Shana Rigelhaupt,
Product manager, The Carey Group, and aspiring citizen data scientist

Low-Code Al is a very special book that manages to strike the right balance

between practical low-code recipes to get started with ML and in-depth explanations
that are accessible to beginners. A great read to start a journey in Al

from scratch and build quality intuition in this always-changing field.

—Benoit Dherin,
ML engineer, Google Cloud

Whether you are familiar with coding or are a beginner,

this excellent and detailed guide unlocks the potential of ML,
illustrated through real-world use cases and hands-on problems.
—Michael Munn,

Research software engineer, Google Cloud






Low-Code Al

A Practical Project-Driven
Introduction to Machine Learning

Gwendolyn Stripling, PhD
& Michael Abel, PhD

Beijing « Boston « Farnham - Sebastopol - Tokyo KON{={|HAE



Low-Code Al
by Gwendolyn Stripling and Michael Abel

Copyright © 2023 Gwendolyn Stripling and Michael Abel. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Nicole Butterfield Indexer: BIM Creatives, LLC
Development Editor: Corbin Collins Interior Designer: David Futato
Production Editor: Clare Laylock Cover Designer: Karen Montgomery
Copyeditor: nSight Inc. lllustrator: Kate Dullea

Proofreader: Piper Editorial Consulting, LLC
September 2023: First Edition

Revision History for the First Edition
2023-09-13:  First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098146825 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Low-Code AI, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-14682-5
[LSI]


http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098146825

Table of Contents

o] [

1. How Data Drives Decision Making in Machine Learning...................c..ueene.

What Is the Goal or Use Case?
An Enterprise ML Workflow
Defining the Business Objective or Problem Statement
Data Collection
Data Preprocessing
Data Analysis
Data Transformation and Feature Selection
Researching the Model Selection or Using AutoML (a No-Code Solution)
Model Training, Evaluation, and Tuning
Model Testing
Model Deployment (Serving)
Maintaining Models
Summary

2. Datalsthe First Step. .. c.ovuiirniiiiii i i i i it it eeaaas

Overview of Use Cases and Datasets Used in the Book

1. Retail: Product Pricing

2. Healthcare: Heart Disease Campaign

3. Energy: Utility Campaign

4. Insurance: Advertising Media Channel Sales Prediction

5. Financial: Fraud Detection

6. Energy: Power Production Prediction

7. Telecommunications: Customer Churn Prediction

8. Automotive: Improve Custom Model Performance
Data and File Types

17
17
18
18
19
19
20
21
21
22
23




Quantitative and Qualitative Data 23

Structured, Unstructured, and Semistructured Data 24
Data File Types 25
How Data Is Processed 26
An Overview of GitHub and Google’s Colab 27
Use GitHub to Create a Data Repository for Your Projects 27
Using Google’s Colaboratory for Low-Code AI Projects 30
Summary 48
3. Machine Learning Libraries and Frameworks. ..............ccovviiiiiiiiiinnnen 49
No-Code AutoML 49
How AutoML Works 58
Machine Learning as a Service 62
Low-Code ML Frameworks 66
SQL ML Frameworks 67
Open Source ML Libraries 68
Summary 70
4, Use AutoML to Predict Advertising Media Channel Sales.......................... VAl
The Business Use Case: Media Channel Sales Prediction 71
Project Workflow 72
Project Dataset 73
Exploring the Dataset Using Pandas, Matplotlib, and Seaborn 73
Load Data into a Pandas DataFrame in a Google Colab Notebook 74
Explore the Advertising Dataset 75
Use AutoML to Train a Linear Regression Model 85
No-Code Using Vertex Al 86
Create a Managed Dataset in Vertex Al 86
Select the Model Objective 87
Build the Training Model 93
Evaluate Model Performance 98
Model Feature Importance (Attribution) 101
Get Predictions from Your Model 103
Summary 111
5. Using AutoML to Detect Fraudulent Transactions..............ccovvvvivennnen. 113
The Business Use Case: Fraud Detection for Financial Transactions 113
Project Workflow 114
Project Dataset 115
Exploring the Dataset Using Pandas, Matplotlib, and Seaborn 116
Loading Data into a Pandas DataFrame in a Google Colab Notebook 116
Exploring the Dataset 118

vi | Tableof Contents



Exporting the Dataset
Classification Models and Metrics
Using AutoML to Train a Classification Model
Creating a Managed Dataset and Selecting the Model Objective
Exploring Dataset Statistics
Training the Model
Evaluating Model Performance
Model Feature Importances
Getting Predictions from Your Model
Summary

. Using BigQuery ML to Train a Linear RegressionModel..........................
The Business Use Case: Power Plant Production
Cleaning the Dataset Using SQL in BigQuery

Loading a Dataset into BigQuery

Exploring Data in BigQuery Using SQL
Linear Regression Models

Feature Selection and Correlation

Google Colaboratory

Plotting Feature Relationships to the Label

The CREATE MODEL Statement in BigQuery ML
Introducing Explainable Al

Explainable Al in BigQuery ML

Exercises
Neural Networks in BigQuery ML

Brief Overview of Neural Networks

Activation Functions and Nonlinearity

Training a Deep Neural Network in BigQuery ML

Exercises
Deep Dive: Using Cloud Shell to View Your Cloud Storage File
Summary

. Training Custom ML ModelsinPython............c.cooiiiiiiiiiiiiiiiennnnnn.
The Business Use Case: Customer Churn Prediction
Choosing Among No-Code, Low-Code, or Custom Code ML Solutions
Exploring the Dataset Using Pandas, Matplotlib, and Seaborn
Loading Data into a Pandas DataFrame in a Google Colab Notebook
Understanding and Cleaning the Customer Churn Dataset
Transforming Features Using Pandas and Scikit-Learn
Building a Logistic Regression Model Using Scikit-Learn
Logistic Regression
Training and Evaluating a Model in Scikit-Learn

131
132
134
135
136
137
140
141
142
145

147
147
148
149
154
160
163
166
170
175
178
179
182
183
183
185
187
190
190
192

193
193
194
196
196
199
213
218
219
221

Table of Contents

vii



Classification Evaluation Metrics
Serving Predictions with a Trained Model in Scikit-Learn
Pipelines in Scikit-Learn: An Introduction
Building a Neural Network Using Keras
Introduction to Keras
Training a Neural Network Classifier Using Keras
Building Custom ML Models on Vertex Al
Summary

. Improving Custom Model Performance. .............ccoovvveiiiinennnnnne

The Business Use Case: Used Car Auction Prices
Model Improvement in Scikit-Learn
Loading the Notebook with the Preexisting Model
Loading the Datasets and the Training-Validation-Test Data Split
Exploring the Scikit-Learn Linear Regression Model
Feature Engineering and Improving the Preprocessing Pipeline
Hyperparameter Tuning
Model Improvement in Keras
Introduction to Preprocessing Layers in Keras
Creating the Dataset and Preprocessing Layers for Your Model
Building a Neural Network Model
Hyperparameter Tuning in Keras
Hyperparameter Tuning in BigQuery ML
Loading and Transforming Car Auction Data

Training a Linear Regression Model and Using the TRANSFORM Clause

Configure a Hyperparameter Tuning Job in BigQuery ML
Options for Hyperparameter Tuning Large Models
Vertex Al Training and Tuning
Automatic Model Tuning with Amazon SageMaker
Azure Machine Learning
Summary

. Next StepsinYour AlJOUrNeY. .....covvviiiiiiiiiiiiriniiniineeeennnnns

Going Deeper into Data Science
Working with Unstructured Data
Generative Al
Explainable AT

ML Operations

Continuous Training and Evaluation

Summary

223
225
228
231
231
232
237
248

249
249
250
251
251
253
256
261
266
266
267
270
272
276
276
279
281
285
286
286
286
286

289
289
290
294
295
298
299
300

| Table of Contents



Preface

Artificial intelligence (AI) can be defined as the broad field of study where computers
show intelligence. The phrase “show intelligence” is vague; it could be interpreted as
a computer making a decision that we would expect from a living being. The concept
of Al has existed since ancient times, at least in mythology. A famous example of this
is the Greek myth featuring Talos, a bronze automaton made to protect Europa from
invaders who wished to kidnap her. As the centuries passed, basic forms of Al passed
from the realm of myth to real life.

In modern times, Al has found its home in augmenting human abilities and automat-
ing decision making and other processes that are time-consuming for people. Expert
systems, first developed in the 1970s, are one such example of modern Al An expert
system leverages a knowledge base, a collection of facts and rules, and an inference
system to synthesize new knowledge. The main disadvantage of an expert system
is that it needs domain expert time and effort to create the facts and rules for the
knowledge base.

In recent decades, another form of AI has become more ubiquitous. Machine learn-
ing (ML) is the discipline of having computers learn algorithms from the data pro-
vided rather than the programmer having to provide the algorithms. Another way to
phrase this in contrast to expert systems is that ML is about using data to discover the
rules versus having experts write the rules for you.

ML touches almost every industry nowadays. In retail, ML is used for demand
forecasting, predicting the expected sales of products or services months in advance.
The travel industry uses ML to recommend points of interest and destinations to
customers based on their past travel history and other information. In healthcare,
ML can be used to not only determine if an X-ray image contains a healthy or
diseased lung, but it can also pinpoint the region of the X-ray image that led to the
determination for medical experts to explore in more detail. The list of active uses of
ML could fill up an entire book on its own. In this book we focus on a few specific




ML use cases to get you started, including advertising media channel sales, energy
production, and customer churn just to name a few.

With so many applications of ML in industry, it is exciting to explore the different
possibilities. One assumption that many make is that ML is solely a field of study for
the experts. That is, unless you have a large amount of background knowledge across
many different fields (computer science, mathematics, statistics, and so on), you have
no hope of using ML in practice. That is simply not the case.

In recent years, the concept of a citizen data scientist has become much more com-
mon. A citizen data scientist is someone who does not necessarily have a formal
education and/or role in data science or related fields but can perform some data
science work alongside other domain-specific expertise they bring to the table. Many
easy-to-use tools have been developed for ML that are available to this group of
people, and the goal of this book is to enable and encourage more people to become
citizen data scientists.

Who Should Read This Book?

The goal of this book is to teach readers how to frame ML problems for structured
(tabular) data, prepare their data for ML workflows, and build and use ML models
using different no-code, low-code, and some basic custom code solutions. You will go
through step-by-step processes to understand these objectives within the framing of a
specific business problem. The primary audience for this book are business analysts,
data analysts, students, and aspiring citizen data scientists who seek to learn how to
apply ML to their work very quickly using automated machine learning (AutoML),
BigQuery ML (using SQL), and custom training in Python. Some basic familiarity
with data analysis is assumed, but you don't need to be an expert to benefit from
going through this book.

Anyone considering a career move into data science and/or ML engineering may also
find this book to be a great first step toward their goal. ML practitioners will likely
find this book to be too basic for their needs, but they may find discussions on some
of the tools being used to be helpful if they are unfamiliar.

No prior knowledge of ML or a specific programming language is required, but
readers will find the book a little easier to read with some basic knowledge of
programming concepts, Python, and SQL. We include references to additional foun-
dational material within context throughout the book. In addition to ML concepts
and use case-based examples, you will also explore different tools such as Jupyter
Notebooks and basic use of the Linux terminal.
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What Is and Isn’t in This Book

This book was created as a first step for those who wish to become ML practitioners,
not as a book to turn you into an ML expert. We do not cover the theory of ML
in detail, nor do we cover all of the topics from statistics and mathematics needed
to be a successful data scientist. We cover the theory that is needed for the projects
discussed in this book as a way to ease you into working on ML projects, but going
farther than that would be beyond the scope here. We do, however, give many
references to resources where you can dive deeper if you are interested in doing so.

Chapters 2 and 3 discuss many different types of data that can be used in ML problems
and different tools that can be used in practice. However, no single book can cover
every single circumstance with every available tool. We focus on use cases with struc-
tured data and only pursue a light discussion around ML for unstructured data in
Chapters 2 and 9. Some of the most exciting applications (AI-powered chatbots and
image generation, for example) use unstructured data, but in practice most applications
of ML in business and industry focus on problems involving structured data.

In terms of tools, we focus on a narrow range of tools so that you can focus on the
business use cases. Packages in Python such as NumPy, Seaborn, Pandas, scikit-learn,
and TensorFlow are popular across all industries, and we cover those alongside many
of the use cases in this book. Jupyter Notebooks are also an industry standard used to
interactively run Python code in a notebook environment.

We use Google Colab, a free Jupyter Notebook service, for running our notebooks.
Additionally, we will use other Google Cloud tools, such as Vertex AI AutoML for
no-code ML model training and BigQuery for SQL data analysis and training ML
models using SQL. Other major cloud providers, such as Microsoft Azure and Amazon
Web Services (AWS), offer similar services for running Jupyter Notebooks, AutoML,
analyzing data with SQL, and training ML models using SQL. We highly encourage
and recommend that you explore the other tools that we mention but do not use here.

Links for more information and documentation are included throughout the entire
book.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.
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Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This icon indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil ly/supp-lcai.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Low-Code AI by Gwendolyn Strip-
ling and Michael Abel (O’Reilly). Copyright 2023 Gwendolyn Stripling and Michael
Abel, 978-1-098-14682-5”
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O'Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/LowCodeAl

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.
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CHAPTER1

How Data Drives Decision Making
in Machine Learning

This chapter explores the role of data in the enterprise and its influence on business
decision making. You also learn the components of a machine learning (ML) work-
flow. You may have seen many books, articles, videos, and blogs begin any discussion
of the ML workflow with the gathering of data. However, before data is gathered, you
need to understand what kind of data to gather. This data understanding can only be
achieved by knowing what kind of problem you need to solve or decision you need to
make.

Business case/problem definition and data understanding can then be used to formu-
late a no-code or low-code ML strategy. A no-code or low-code strategic approach
to ML projects has several advantages/benefits. As mentioned in the introduction,
a no-code AutoML approach enables anyone with domain knowledge in their area
of expertise and no coding experience to develop ML models quickly, without need-
ing to write a single line of code. This is a fast and efficient way to develop ML
applications. A low-code approach enables those with some coding or deep coding
experience, to develop ML applications quickly because basic code is autogenerated—
and any additional custom code can be added. But, again, any ML project must begin
with defining a goal, use case, or problem.

What Is the Goal or Use Case?

Businesses, educational institutions, government agencies, and practitioners face
many decisions that reflect real-world examples of ML. For example:

+ How can we increase patient engagement with our diabetes web app?

» How can we increase our student feedback numbers on course surveys?




o How can we increase our speed in detecting cyberattacks against our company
networks?

+ Can we decrease the number of spam emails entering our email servers?
» How do we decrease downtime on our manufacturing production line?
o How can we increase our customer retention rate?

« How do we reduce our customer churn (customer attrition) rate?

In each of those examples, numerous data sources must be examined to determine
what ML solution is most appropriate to solve the problem or aid in decision making.
Let’s take the use case of reducing customer churn or loss rate—using a very simplis-
tic example. Churn prediction is identifying customers that are most likely to leave
your service or product. This problem falls into a supervised learning bucket as a
classification problem with two classes: the “Churn-Yes” class and the “Churn-No”
class.

From a data source perspective, you may need to examine customer profile informa-
tion (name, address, age, job title, employment statement), purchase information
(purchases and billing history), interaction information (customer experiences inter-
acting with your products [both digitally and physically]), your customer service
teams, or your digital support services. Popular data sources of customer informa-
tion are customer relationship management systems, system ecommerce analytics
services, and customer feedback. In essence, everything the customer “touches” as a
data point should be tracked and captured as a data source.

The nature of the decision you must make is tied directly to the data you will need
to gather to make that decision—which needs to be formulated into a problem state-
ment. Let’s say you are in charge of marketing for a company that makes umbrellas,
and the business goal is to increase sales. If you reduce the selling price of your
existing umbrellas, can you predict how many umbrellas you will sell? Figure 1-1
shows the data elements to consider for this option.
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Historical selling price data
> <
Time series data
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- \ Weather data
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Geolocation data
> i
Population data
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Product price reduction r )
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\ J
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Figure 1-1. Data elements that impact a price reduction strategy to increase sales.

As you can see in this data-driven business illustration, your business goal (to
increase sales) takes on a new dimension. You realize now that to understand a
product price reduction, you need to include additional data dimensions aside from
the selling price. You will need to know the rainy seasons in specific regions, popu-
lation density, and whether your inventory is sufficient to meet the demand of a
price reduction that will increase sales. You will also need to look at historical data
versus data that can be captured in real time. Historical data is typically referred
to as batch, whereas real-time data capture is typically called streaming. With these
added dimensions, the business goal suddenly becomes a very complex problem
as these additional columns may be required. For any organization, there could
ostensibly exist dozens of discrete data sources—with each source requiring certain
skills to understand the relationships between them. Figure 1-2 is an illustration of
this challenge.
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Abusiness Data & ML experience today

Data
People Management|___
Operational /
Network —_ — Problem
- Classification

Regression
Anomaly Detection
Clustering

Reinforcement Learning
Hybrid

MANY discrete data sources and skills gap to understand relationships with appropriate ML Model

Figure 1-2. A typical business data and ML experience today.

So what is your use case here? It depends. You would need to undergo a business
decision-making process, which is the process of making choices by asking questions,
collecting data, and assessing alternative resolutions. Once you figure out the use case
or business goal, you can use the same data to train machines to learn about your
customer patterns, spot trends, and predict outcomes using AutoML or low-code AL
Figure 1-3 shows our umbrella example as a business use case that then leads to data
source determination, ML framework, and then a prediction.

@ Machine learning: Aoed
AutoML or low-code Predictions
Business case:
Product price reduction

Figure 1-3. Business case that leads to predictions using ML framework.

An Enterprise ML Workflow

While decision-making processes help you identify your problem or use case, it is the
ML workflow that helps you implement the solution to your problem. This section
presents a typical ML workflow. In our ongoing umbrella example, you could use
your data to train an ML model using an AutoML service that provides a no-code
solution for running unsupervised ML clustering. From there, you could examine
clusters of data points to see what patterns were derived. Or, you could decide to
simply focus on historical data so that you could predict a specific target based on
a certain number of data input features. What would your enterprise ML workflow
look like? Not surprisingly, it is data-driven and requires decision making in the
process.
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The ML workflow can be shown as a series of steps, and the steps can be combined
into phases. Figure 1-4 shows the 10 steps, and then we briefly discuss each. Later
chapters provide more detailed examples of each step.

Phase 1: decision making

4>[ML problem/goal]-b[ Data collection ]1

2
S Cleandata |'%
e 8
2| Maintain model v <)
-~ . . o
@ Machine learning workflow Explore data g
3| Deploymodel — v 3
= Transformand | &
o select features g

Train, evaluate, Researchand I; I
Test model Hand tune modeIH select model

Phase 3: modeling

Figure 1-4. Ten-step ML workflow.

Defining the Business Objective or Problem Statement

The ML workflow starts with defining a specific question or problem with a defined
boundary. In this phase you are attempting to define scope and feasibility. The right
question will lead you to what data is required and potential ways data must be
prepared. It is important to note that any question that may arise in analyzing data
can be grouped in one of the five ML categories as shown in Table 1-1. Let’s continue
with our umbrella example.

Table 1-1. Categories of analyzing data

Algorithm/model Problem or question

Regression problem How many umbrellas do you expect to sell this month/season?

(lassification problem Did they buy straight umbrellas (A) or foldable umbrellas (B)?

Clustering problem How many straight umbrellas were sold by month or by region?

Anomaly detection Did the company sell more umbrellas in the Mojave Desert than in Portland, OR?
problem

Reinforcement learning Company policy is to only ship to customers with a balance owed of $500 or less. Can a
manufacturing robot be trained to extract, package, load, and ship straight umbrellas to our
customers based upon this policy?
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Data Collection

In the early part of the 21st century, companies, universities, and researchers typically
relied on local servers/hard drives or data centers to host their database applications
and store their data. Relying on on-premises data centers or even renting server space
in a data center was costly: server infrastructure needed to be maintained, software
needed to be updated, security patches had to be installed, physical hardware was
swapped out, and so on. In some cases, large amounts of data were stored across a
cluster of machines.

Today, to save on costs, enterprises and educational institutions have moved to the
cloud to host their database applications and store their data. Cloud storage, a service
offered by cloud vendors to store files, allows you to upload different file formats or
can be configured to automatically receive files from different data sources. Because
most ML models are trained using data from files, storing your data in a cloud
storage bucket makes for easy data collection. Cloud storage buckets can be used for
storing both structured and unstructured data.

Another option to store data files for data collection is GitHub, a service designed for
collaborating on coding projects. You can store data in the cloud for future use (for
free), track changes, and make data publicly available for replication. This option has
strict file size limits of 100 MB, but there is an option to use Git Large File Storage
(LES), an open source GitHub extension for versioning large files. Git LFS replaces
large files such as datasets, audio samples, graphics, and videos with text pointers
inside Git, while storing the file contents on a remote server like GitHub.com or
GitHub Enterprise.

The challenge of data collection is compounded within large organizations, where
many different types of operations management software such as enterprise resource
planning, customer relationship management, and production systems exist and may
run on different databases. Data may also need to be pulled from external sources
in real time, such as Internet of Things (IoT) sensor devices from delivery trucks.
Thus, organizations are challenged with collecting not only structured data, but also
unstructured and semistructured data formats in batches or real time (streaming).
Figure 1-5 shows various data elements that feed data collection for structured,
unstructured, and semistructured data.
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Figure 1-5. Goal/problem flow to data collection.

It is possible to have streaming structured data. Structured versus
unstructured is a property of data format. Streaming versus batch is
a property of latency. Chapter 2 presents more information on data
format and properties.

Data Preprocessing

To perform data cleanup you'll need to deal with missing data values, duplicates,
outlier data, formatting issues, or data that is inconsistent due to human error.
This is because real-world data is raw and messy and filled with assumptions. One
assumption could be that your data has a normal distribution, meaning that data is
symmetrically distributed with no skew, and that most values cluster around a central
region, with the frequency of the values decreasing further away from the center
(mean or average).

Suppose your data showed, for the first time, an increase in the number of umbrellas
sold in August in Palm Springs, the California desert town. Would your data be
normally distributed, or would this be considered an outlier? Would it skew the
results of predictions for monthly umbrella sales in August? When data does not have
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a normal distribution, it needs to be normalized, made normal by grouping all the
records in a range of [0,1] or [-1,1], for example. You normalize a dataset to make it
easier and faster to train an ML model. Normalization is covered in Chapter 7.

This min-max normalization example can have detrimental effects
if there are outliers. For example, when scaling to [0,1], it essen-
tially maps the outlier to 1 and squashes all other values to 0.
Addressing outliers and anomalies is beyond the scope of our
book.

Thus, data preprocessing can mean normalizing the data (such that numeric columns
in the dataset use a common scale) and scaling the data, which means transforming
your data so that it fits within a specific range. Fortunately, normalization and
standardization are easily performed in Python with just a few simple lines of code.
Figure 1-6 shows actual data before and after normalization and standardization.

(o]

° ooo%O
o O < o |° .

() o « %00 |

(6) 0o[000
o %o ©0%0 o
R 0o0© R
1

[ Actual data ] After normalization [After standardization )

Figure 1-6. Three images showing actual, normalized, and standardized data.

Collecting data from a single source may be a relatively straightfor-
ward process. However, if you are aggregating several data sources
into one file, make sure that data formats match and that any
assumptions regarding time-series data (or timestamp and date
ranges needed for your ML model) are validated. A common
assumption is that the data is stationary—that the statistical prop-
erties (mean, variance, etc.) do not change over time.
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Data Analysis

Exploratory data analysis (EDA) is a process used to explore and analyze the
structure of data. In this step, you are looking to discover trends, patterns, feature
relevance, and correlations, such as how one variable (feature) might correlate with
another. You must select relevant feature data for your ML model based on the type
of problem you are trying to solve. The outcome of this step is a feature list of input
variables that can potentially be used for ML. Our hands-on exercise using EDA can
be found in Chapter 6.

Figures 1-7 and 1-8 are a result of an EDA process plotted using Seaborn, a Python
data visualization library (see Chapter 6 for more detail on the dataset). Figure 1-7
shows an inverse relationship between x and y. Figure 1-8 shows a heat map (or
correlation matrix) and illustrates that more energy is produced when temperatures
are lower.

Energy Production
&

440 -

430 1

420 1 L4

5 10 15 2 P EY) E3

Figure 1-7. Seaborn regplot showing that more energy is produced when temperatures
are lower.

An Enterprise ML Workflow | 9



-100

emp -
P -0.75

Exhaust_Vacuum -

Ambient_Pressure

-0.25
Relative_Humidity
-0.50

Energy_Production --0.75

Emp

Exhaust_Vacuum

Ambient_Pressure -
Relative_Humidity -
Energy Production -

Figure 1-8. Seaborn correlation matrix (heat map) showing a strong inverse relationship
between Temp and Energy_Production, -0.75.

Data Transformation and Feature Selection

After data has been cleaned and analyzed, you obtain a list of the features you
think you need to help you solve your ML problem. But might other features be
relevant? This is where feature engineering comes into play, where you engineer or
create new features that were not in the original dataset. For example, if your dataset
has separate fields/columns for month, day, and year, you can combine all three for
a “month-day-year” time feature. Feature engineering is the final step before feature
selection.

In reality, feature selection occurs at two stages: after EDA and after data transforma-
tion. For example, after EDA, you should have a potential list of features that may be
candidates to create new features—for example, combining time and day of week to
get an hour of day. After you perform feature engineering, you then have a final list
of features from which to select. Figure 1-9 shows the position of data transformation
and feature selection in the workflow.
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Figure 1-9. Position of data transformation and feature selection in the ML workflow.

Researching the Model Selection or Using AutoML
(a No-Code Solution)

In this step, you either research the model that will be best for the type of data that fits
your problem—or you could use AutoML, a no-code solution that, based on the data-
set you uploaded, selects the appropriate model, trains, tests, and generates evaluation
metrics. Essentially, if you use AutoML, the heavy lifting of model selection, model
training, model tuning, and generating evaluation metrics is done for you. Chapter 3
introduces AutoML, and Chapter 4 starts getting hands-on with AutoML. Note that
with a low-code solution, you would need to know what model to select.

Although AutoML might cover about 80% of your ML problems, you may want to
build a more customized solution. In that case, having a general understanding of
the types of problems ML algorithms can solve is helpful. Choosing the algorithm
is solely dependent upon the problem (as discussed earlier). In Table 1-2, a “Descrip-
tion” column is added to further describe the ML model problem type.

An Enterprise ML Workflow | 11



Table 1-2. Describing the model type

Problem or question Problem Description
How much or how many Regression Regression algorithms are used to deal with problems with
umbrellas? problem continuous and numeric output. These are usually used for problems

that deal with questions like how much or how many.

Did they buy straight umbrellas (A)  Classification A problem in which the output can be only one of a fixed number

or foldable umbrellas (B)? problem of output classes, like Yes/No or True/False, is called a classification
problem. Depending on the number of output classes, the problem
can be a binary or multiclass classification problem.

Company policy is to only ship Reinforcement  Reinforcement algorithms are used when a decision is to be made
to customers with a balance learning based on experiences of learning. The machine agent learns the
owed of $500 or less. Can our behavior using trial and error in interaction with the continuously
manufacturing robot be trained to changing environment. This provides a way to program agents
extract, package, load, and ship using the concept of rewards and penalties without specifying
straight umbrellas to our customers how the task is to be accomplished. Game-playing programs and
based upon this policy? programs for temperature control are some popular examples using

reinforcement learning.

Model Training, Evaluation, and Tuning

Before an ML model can be deployed to a production environment, it has to be
trained, evaluated, and tested. Training an ML model is a process in which stored
data instances are fed (input) into an ML model (algorithm). Since every stored data
instance has a specific characteristic (recall our umbrella examples of the different
types, prices, regions sold, and so forth), patterns of these data instances can be
detected using hundreds of variables, and the algorithm is thus able to learn from the
training data how to make a generalized prediction based on the data.

Every ML model needs to not only be trained but also evaluated. Thus, you hold out
a sample of data, called a validation dataset. The validation set measures how well the
model generalizes to unseen or new data. The training error is used to determine how
well the model fits the data because that is what the model is trained on.

Model evaluation metrics should be chosen or defined so that they align with the
problem or business goals. Model tuning should improve the model performance
as measured by the evaluation metrics. For example, how accurate were the sales
of umbrella predictions during the month of December? Can these predictions be
generalized for future forecasting efforts? Note that satisfactory performance is some-
thing that should be dictated by the business needs and should be agreed upon before
starting any ML engagement.

The validation set is also used to determine if the model is overfit-
ting. Chapter 8 discusses overfitting.
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Model Testing

There is no way to know if your umbrella prediction app can be generalized for
future forecasting efforts without testing the model. Once the training dataset is used
to fit the model to the data, and the validation dataset is used to improve model
accuracy, you test the model on data it has never seen before. Testing data is used to
assess model performance.

For example, let’s say you want to build an application that can recognize an umbrel-
la’s color or pattern based on images of the umbrellas. You train a model by providing
it with images of all umbrellas that are each tagged with a certain color or pattern.
You use that model in a mobile application to recognize any umbrella’s color or
pattern. The test would be how well the model performs in differentiating between
umbrella colors and patterns.

Figure 1-10 shows the relationship between the training, validation, and testing
datasets.

Model selection
Pick model that does
best on validation set

Model
evaluation

Model
development

Training set Validation set

Figure 1-10. Relationship between training, validation, and testing datasets in model
deployment and model evaluation.

Testing set

Figure 1-11 illustrates this relationship among the training, validation, and test data-
sets in five process steps. For simplicity, the arrow going back to the dataset in Step 5
is not shown, since once a model is deployed as an application and it begins collecting
data, new data enters the pipeline that may skew the original model’s results. (At this
point you enter the fascinating realm of machine learning operations, or MLOps,
which is beyond the scope of the book.)

An Enterprise ML Workflow | 13



s n \ s Q \ s a \ ﬂ e

Train model on Evaluate model Tweak model. Use Confirm results
training set i on validation set i validation set results "[ on test set ’ > ‘ Disploymes el ]

\ J \ J \ J

1 1 | *

Training set Validation set Testing set

S, S

Dataset

Figure 1-11. Five process steps of the ML workflow.

Model Deployment (Serving)

Once the ML model is trained, evaluated, and tested, it is deployed into a live
production environment where it can be used. Note that by the time the model
reaches production, it more than likely has a web app frontend (using a browser)
that communicates with the production system through an application programming
interface (API). Data can be captured in real time and streamed (ingested) into an
MLOps pipeline. Or data can be captured in batch and stored for ingestion into the
pipeline. Or both.

Maintaining Models

Models can become stale when predictions do not align with the original business
goal or use case metrics. Staleness might occur when the world changes or business
requirements change. These changes then impact the model. Post-deployment, you
need to monitor your model to ensure it continues to perform as expected. Model
and data drift is a phenomenon you should both expect and be prepared to mitigate
through regular retraining using MLOps. Let’s look at an example of data drift, which
means changes in the data that you trained with and the data that is now being
received from the web app.

In our umbrella example, a region that once experienced heavy rainfall is now
experiencing drought conditions. Similarly, a region that once experienced drought
conditions is now experiencing heavy rainfall. Any prediction tied to weather and
climate and the need for umbrellas and umbrella type will be impacted. In this
scenario, you would need to retrain and test a new model with new data.
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Summary

Businesses, educational institutions, government agencies, and practitioners face
many decisions that reflect real-world examples of ML, from increasing customer
engagement to reducing customer churn. Data—its collection, analysis, and use—
drives the decision making used in ML to determine the best ML strategic approach
that provides real-world solutions to real-world problems.

While decision-making processes help you identify your problem or use case, it is the
ML workflow that helps you implement the solution to your problem. An enterprise
ML workflow is data-driven and requires decision making in the process. The ML
workflow can be shown as a series of 10 steps, and the steps can be combined into
four phases:

1. Decision making
2. Data processing
3. Modeling

4. Deployment

Each phase of the ML workflow can be implemented using AutoML or low-code Al
AutoML does all of the heavy lifting for you. AutoML will train the model, tune it,
test it, and present you with evaluation metrics. Your role is simply to evaluate the
metrics and determine if they meet your business objective or solve your problem.
AutoML is recommended for quick experiments and prototypes. It is also used in
production environments. A low-code approach enables those with some coding or
deep coding experience to use autogenerated code that can be further customized
during any phase of the ML workflow.

In this chapter, you learned about data collection and analysis as part of the ML
workflow. Chapter 2 provides an overview of the datasets used in the book, where
to find data sources, data file types, and the difference between batch, streaming,
structured, semistructured, and unstructured data. You also get hands-on experience
using basic Python code to help you perform EDA and solve dirty data problems.
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CHAPTER 2
Data Is the First Step

This chapter provides an overview of the use cases and datasets used in the book
while also providing information on where to find data sources for further study and
practice. You'll also learn about data types, and the difference between batch and
streaming data. You'll get hands-on practice with data preprocessing using Google’s
free browser-based open source Jupyter Notebook. The chapter concludes with a

section on using GitHub to create a data repository for the selected projects used in
the book.

Overview of Use Cases and Datasets Used in the Book

Hopefully, you picked up our book to learn ML not from a math-first or algorithm-
first approach but from a project-based approach. The use cases we've chosen are
designed to teach you ML using actual, real-world data across different sectors. There
are use cases for healthcare, retail, energy, telecommunications, and finance. The use
case on customer churn can be applied to any sector. Each of the use case projects can
stand on its own if you have some data preprocessing experience, so feel free to skip
ahead to what you need to learn to upskill yourself. Table 2-1 shows each section, its
use case, sector, and whether it is no-code or low-code.

Table 2-1. List of use cases by industry sector and coding type

Section Use case Sector Type

1 Product pricing Retail N/A

2 Heart disease Healthcare Low-code data preprocessing
3 Marketing campaign Energy No-code (AutoML)

4 Advertising media channel sales Insurance No-code (AutoML)

5 Fraud detection Financial No-code (AutoML)

6 Power plant production prediction ~ Energy Low-code (BigQuery ML)
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Section Use case Sector Type
7 Customer churn prediction Telecommunications  Low-code (scikit-learn and Keras)
8 Improve custom model performance  Automotive Custom-code (scikit-learn, Keras, BigQuery ML)

1. Retail: Product Pricing

This section begins with a use case designed to illustrate the role of data in decision
making. In this use case, you are in charge of marketing for a company that makes
umbrellas, and the business goal is to increase sales. If you reduce the selling price
of your existing umbrellas, can you predict how many umbrellas you will sell?
Figure 2-1 shows the data elements that may impact a price reduction strategy to
increase sales.

Historical selling price data
> <
Time-series data
> i
- \ Weather data
- <
Geolocation data
> i
Population data
L J
Product price reduction % \
~ o Manufacturing data
> i
Supply chain data
\ J
Inventory data

Figure 2-1. Data elements that impact a price reduction strategy to increase sales.

2. Healthcare: Heart Disease Campaign

In this one, you are a healthcare consultant and are given data on heart disease
mortality for populations over the age of 35 in the United States. The goal is to
analyze the heart disease mortality data and suggest a possible use case in a heart
disease prevention campaign. For example, one possible use case would be to track
trends in heart disease mortality over time or to develop and validate models for
predicting heart disease mortality. This dataset is dirty. Some fields have missing
values. One field is missing. In working through these issues, you learn to import data
into a Python Jupyter Notebook, analyze it, and fix dirty elements. Figure 2-2 shows
the data elements that contribute to your analysis.
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Figure 2-2. Data elements for a heart disease mortality use case.

3. Energy: Utility Campaign

Here, you are a business analyst working for a utility company. You are tasked with
developing a marketing and outreach program that targets communities with high
electrical energy consumption. The data has already been preprocessed. You do not
have an ML background or any programming knowledge. You elect to use AutoML
as your ML framework. Figure 2-3 shows the data elements that contribute to your

model.
—[ Geolocation data ]

[ Time-series data ]

Kilowatt hours

—[ Customer class ]

Figure 2-3. Data elements that contribute to the utility energy campaign.

4. Insurance: Advertising Media Channel Sales Prediction

In this section, you work on a team charged with developing a media strategy for an
insurance company. The team wants to develop an ML model to predict sales based
on advertising spend in various media channels. You are tasked with performing
exploratory data analysis and with building and training the model. You do not have
an ML background or any programming knowledge. You elect to use AutoML as your
ML framework. Figure 2-4 shows the data elements that contribute to your model.
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Figure 2-4. Data elements that contribute to media channel sales prediction.

5. Financial: Fraud Detection

Your goal in this project is to build a model to predict whether a financial transaction
is fraudulent or legitimate. Your new company is a mobile payment service that
serves hundreds of thousands of users. Fraudulent transactions are fairly rare and
are usually caught by other protections. However, the unfortunate truth is that some
of these are slipping through the cracks and negatively impacting your users. The
dataset in this section consists of transaction data that has been simulated to replicate
user behavior and fraudulent transactions. You do not have an ML background or
any programming knowledge. You elect to use AutoML as your ML framework.
Figure 2-5 shows the data elements that contribute to your model.
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Fraud or not fraud
~ J
- . . <
Time-series data
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\ J & J
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Card balance data
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Figure 2-5. Data elements that contribute to a fraud detection model.
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6. Energy: Power Production Prediction

Your goal in this project will be to predict the net hourly electrical energy output for
a combined cycle power plant (CCPP) given the weather conditions near the plant
at the time. The dataset in this section contains data points collected from a CCPP
over a six-year period (2006-2011) when the power plant was set to work with a full
load. The data is aggregated per hour, though the exact hour for the recorded weather
conditions and energy production is not supplied in the dataset. From a practical
viewpoint, this means that you will not be able to treat the data as sequence or
time-series data, where you use information from previous records to predict future
records. You have some Structured Query Language (SQL) knowledge from working
with databases. You elect to use Google’s BigQuery Machine Learning as your ML
framework. Figure 2-6 shows the data elements that contribute to your model.

Temperature data
~ J
( )
Pressure data

~ J

( B

Electrical energy output Humidity data )
—[ Vacuum data ]

Figure 2-6. Data elements that contribute to the electrical energy output model.

7. Telecommunications: Customer Churn Prediction

Your goal in this project will be to predict customer churn for a telecommunications
company. Customer churn is defined as the attrition rate for customers, or in other
words, the rate of customers that choose to stop using services. Telecommunications
companies often sell their products at a monthly rate or via annual contracts, so
churn here will represent when a customer cancels their subscription or contract in
the following month. The dataset contains both numeric variables and categorical
variables, where the variable takes on a value from a discrete set of possibilities. You
have some Python knowledge and find AutoML very powerful, yet are looking to
learn low-code solutions that allow you to have a bit more control over your model.
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You elect to use scikit-learn and Keras as ML frameworks. Figure 2-7 shows the data
elements that contribute to your model.
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Figure 2-7. Data elements that contribute to the customer churn model.

8. Automotive: Improve Custom Model Performance

Your goal in this project (as a newer member of an ML team) will be to improve the
performance of an ML model trained to predict the auction price of used cars. The
initial model is a linear regression model in scikit-learn and does not quite meet
your business goals. You will ultimately explore using tools in scikit-learn, Keras,
and BigQuery ML to improve your model performance. The training, validation, and
testing datasets used for training the linear regression model have been supplied to
you as CSV files. These datasets have been cleaned (missing and incorrect values have
been remedied appropriately), and the code that was used to build the scikit-learn
linear regression model has also been provided. Figure 2-8 shows the data elements
that contribute to your model.
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Figure 2-8. Data elements that contribute to the automotive pricing model.

Data and File Types

Data is really the first step, so let's go over some basic terminology and concepts
around data. If you are already familiar with the differences between quantitative
and qualitative data; between structured, semistructured, and unstructured data; and
batch and streaming data, then skip to “An Overview of GitHub and Google’s Colab”
on page 27, where you can start creating the Jupyter Notebook in GitHub.

Quantitative and Qualitative Data

In data analysis, you work with two types of data: quantitative and qualitative. If
it can be counted or measured, and given a numerical value, it's quantitative data.
Quantitative data can tell you how many, how much, or how often—for example,
how many people visited the website to view the product catalog? How much revenue
did the company make this fiscal year? How often do the machines that manufacture
your umbrella handles break?

Unlike quantitative data, qualitative data cannot be measured or counted and can
include almost any non-numerical data. It’s descriptive, expressed in terms of lan-
guage rather than numbers. Why is this distinction important in ML? If you have
qualitative data, then you need to preprocess it so that it becomes quantitative—that
is because you cannot feed qualitative data into an ML model. You will learn how to
handle some qualitative data in subsequent chapters.
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Structured, Unstructured, and Semistructured Data

Data can be grouped into three buckets: structured, unstructured, and
semistructured.

Structured data is information that has been formatted and transformed into a well-
defined data model. A data model is a way of organizing and structuring data so
that it can be easily understood and manipulated. Data models are used in a variety
of applications, including databases, software applications, and data warehouses.
Structured data is well organized. Table 2-2 shows the schema and data type used in
Chapter 4’s Advertising Media Channel Sales Prediction use case. Note that there is
a column name and column type. There are four columns of numeric (quantitative)
data that feed into the AutoML model.

Table 2-2. Schema and field value information for the advertising dataset from Chapter 4

Column name Column type Notes about field values

Digital Numeric Budget of advertisements in digital
Newspaper Numeric Budget of advertisements in newspaper
Radio Numeric Budget of advertisements in radio

v Numeric Budget of advertisements in TV

Here are some examples of structured data:

» Customer records

o Product inventory

o Financial data

o Transaction logs

o Website analytics data

o Log files
Unstructured data is data that is not structured or tabular or formatted in a specific
way. Here are some examples of unstructured data:

o Social media posts

o Chats (text)

 Videos

+ Photos

o Web pages

« Audio files
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Semistructured data is a type of structured data that lies between structured and
unstructured data. It doesn't have a tabular data model but can include tags and
semantic markers for records and fields in a dataset. Semistructured data is, essen-
tially, a combination of structured and unstructured. Videos may contain meta tags
that relate to the date or location, but the information within has no structure.

Here are some examples of semistructured data:

o CSV, XML, JSON files
« HTML

o Email (Emails are considered semistructured data because they have some struc-
ture, but not as much as structured data. Emails typically contain a header,
a body, and attachments. The header contains information about the sender,
recipient, and date of the message. The body of the message contains the text of
the message.)

Figure 2-9 compares unstructured, semistructured, and structured data.

| Unstructured \ |Semistructured| l Structured l

M Media posts, emails, online reviews] [EEmaiIs by inbox, sent, drafts ] [ID codesin databases

[@ Videos, images [QTweets organized by hashtags] [%Spreadsheet numerical data ]

-»Speech,sounds ] [.Foldersorganizedbytopics ] [ﬁfStarratings

Figure 2-9. Unstructured, semistructured, and structured data examples.

Data File Types

You just learned about the different types of data, and several file types were men-
tioned. There are many different types of data file formats, each with its own purpose.
Table 2-3 shows some of the most common data file types.
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Table 2-3. Common data file types

Common data file types Common file extensions

Text files are files that contain plain text. They are typically used to store Some common text file extensions
documents, such as letters, reports, and code. include .txt, .csv, .tsv, .log, and json.
Spreadsheet files are files that contain data in a tabular format. They are Some common spreadsheet file extensions
typically used to store financial data, sales data, and other tabular data. include .xls, .xIsx, and .csv.

Image files are files that contain images. They are typically used to store Some common image file extensions
photos, graphics, and other visual content. include .jpg, .png, and .gif.

Audio files are files that contain audio recordings. They are typically used to Some common audio file extensions
store music, podcasts, and other audio content. include .mp3, .wav, and .0gg.

Video files are files that contain video recordings. They are typically used to Some common video file extensions
store movies, TV shows, and other video content. include .mp4, .avi, and .mov.

Webpage files are files that contain webpages. They are typically used to store ~ Some common webpage file extensions
HTML code, CSS code, and JavaScript code. include .html, .htm, and .php.

How Data Is Processed

There are two main modes of how data is processed: batch processing and real-time
processing. Batch processing is a mode of data processing where data is collected over
a period of time and then processed at a later time. This is a common mode of data
processing for large datasets, as it can be more efficient to process the data in batches
than to process it in real time. Real-time processing is a mode of data processing
where data is processed as soon as it is collected. This is a common mode of data
processing for applications where the data needs to be processed quickly, such as
fraud detection or stock trading.

The frequency of how data is processed can also vary. Continuous processing is a
mode of data processing where data is processed continuously, as it is collected.
This is a common mode of data processing for applications where the data needs to
be processed in real time. Periodic processing is a mode of data processing where
data is processed at regular intervals. This is a common mode of data processing
for applications where the data does not need to be processed in real time, such as
financial reporting.

The mode and frequency of how data is processed depends on the specific needs of
the application. For example, an application that needs to process large datasets may
use batch processing, while an application that needs to process data in real time may
use real-time processing. Table 2-4 summarizes the different modes and frequencies
of data processing.
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Table 2-4. Summary of the different modes and frequencies of data processing

Mode Frequency  Description

Batch processing Intermittent Data is collected over a period of time and then processed at a later time.
Real-time processing  Continuous  Data is processed as soon as it is collected.

Periodic processing  Intermittent Data is processed at regular intervals.

Batch data and streaming data are two different types of data that are processed
differently.

o Batch data is data that is collected over a period of time and then processed at a
later time.

« Streaming data is data that is processed as it is received.

Batch data requires data to be collected in batches before it can be processed, stored,
analyzed, and fed into an ML model.

Streaming data flows in continuously and can be processed, stored, analyzed, and
acted on as soon as it is generated. Streaming data can come from a wide variety of
distributed sources in many different formats. Simply stated, streaming data is data
that is generated continuously and in real time. This type of data can be used to train
ML models that can make predictions in real time. For example, a streaming data
model could be used to detect fraud or predict customer churn.

An Overview of GitHub and Google’s Colab

This section talks about how to set up a Jupyter Notebook and GitHub project
repository. The GitHub repository can hold your datasets and the low-code project
notebooks you create—such as the Jupyter Notebooks mentioned in this book.

Use GitHub to Create a Data Repository for Your Projects

GitHub is a code repository where you store your Jupyter notebooks and experimen-
tal raw data for free. Let’s get started!

1. Sign up for a new GitHub account

GitHub offers personal accounts for individuals and organizations. When you create
a personal account, it serves as your identity on GitHub.com. When you create a
personal account, you must select a billing plan for the account.
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2. Set up your project’s GitHub repo

To set up your first GitHub repo, see the full steps in the “Use GitHub to Create a
Data Repository for Your Projects” page in Chapter 2 of the book’s GitHub repo. You
can also refer to GitHub documentation on how to create a repo.

Type a short, memorable name for your repository; for example, low-code book
projects. A description is optional, but in this exercise, enter Low-code AI book
projects. Choose a repository visibility—in this case, the default is Public, which
means anyone on the internet can see this repository. Figure 2-10 shows what your
setup should look like.

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Owner * Repository name *

4% gstripling00 ~ [ low-code book projects ]

A Your new repository will be created as low-code-book-projects,|

Great repository names are short and memorable. Need inspiration? How about legendary-sniffle?

Description (optional)
Low-code Al book projects

o q Public

Anyone on the internet can see this repository. You choose who can commit.

O 6 Private

You choose who can see and commit to this repository.

Figure 2-10. Create a new repository page.

Have GitHub create a README.md file. This is where you can write a long descrip-
tion for your project. Keep the other defaults: .gitignore lets you choose which
files not to track, and a license tells others what they can and can’t do with your
code. Lastly, GitHub reminds you that you are creating a public repository in your
personal account. When done, click “Create repository.” Figure 2-11 shows what the
page should look like.
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Initialize this repository with:
Add a README file

This is where you can write a long description for your project. Learn more about READMEs.

Add .gitignore
.gitignore template: None ¥

Choose which files not to track from a list of templates. Learn more about ignoring files.

Choose a license

License: None ¥

A license tells others what they can and can't do with your code. Learn more about licenses.

This will set $main as the default branch. Change the default name in your settings.

@ You are creating a public repository in your personal account.

Create repository

Figure 2-11. Initialize the repo settings.

After clicking “Create repository; the repo page appears, as shown in Figure 2-12.

O gstripling00 / low-code-book-projects Q Type (/) to search

<> Code ( lIssues I Pullrequests () Actions [ Projects OO Wiki @ Security |~

low-code-book-projects ( Public R Pin || ©Unwatch 1
¥ main ~ ¥ 1branch © 0tags Go to file Add file ~
gstripling00 Create README.md ... 0370ab7 10 minutes ago © 1 commit
[ README.md Create README.md 10 minutes ago
README.md Vi

low-code-book-projects

Figure 2-12. Your GitHub repo page.

An Overview of GitHub and Google’s Colab
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In the next section, you will create a Jupyter Notebook in Google’s
Colaboratory. You will save the notebook file from Colab into
GitHub, which will create a file under the Main branch. Creating a
file in GitHub is a great way to improve collaboration on a project.
It provides a number of features that can help teams work more
effectively together:

Version control
GitHub tracks changes to files. This means that everyone who
has access to the file can see the changes that have been made,
and they can revert to a previous version if necessary.

Pull requests
Pull requests allow collaborators to propose changes to a file.
This gives everyone a chance to review the changes before they
are merged into the main branch.

Issues
Issues can be used to track bugs or feature requests. This
allows everyone to collaborate on solving problems and
adding new features.

Comments
Comments can be added to files to provide feedback or ask
questions. This allows for a more collaborative way of working
on code.

Using Google’s Colaboratory for Low-Code Al Projects

Years ago, if you wanted to learn Python, you had to download the Python interpreter
and install it on your computer. This could be a daunting task for beginners, as it
required knowledge of how to install software and configure your computer. Today,
there are many ways to learn Python without having to install anything on your com-
puter. You can use online IDEs (integrated development environments) that allow
you to write and run Python code in a web browser. You can also use cloud-based
Python environments that provide you with access to a Python interpreter and all the
libraries you need to get started.

These online and cloud-based resources make it easier than ever to learn Python,
regardless of your level of experience or technical expertise. Here are some of the
benefits of using online and cloud-based resources to learn Python:

No installation required
You can start learning Python right away, without having to download or install
any software.
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Access from anywhere
You can use online and cloud-based resources to learn Python from anywhere, as
long as you have an internet connection.

Affordable
Online and cloud-based resources are often free or very affordable.

Easy to use
Online and cloud-based resources are designed to be easy to use, even for

beginners.

You build your low-code Python Jupyter Notebook using Google’s Colaboratory, or
Colab. Colab is a hosted Jupyter Notebook service that requires no setup to use,
while providing access to computing resources, including graphical processing units
(GPUgs). Colab runs in your web browser and allows you to write and execute Python
code. Colab notebooks are stored in Google Drive and can be shared similarly to how
you share Google Docs or Sheets.

Google Colaboratory is free to use, and there is no need to sign up for any accounts
or pay for any subscriptions. You can share your notebooks with others and work on
projects together.

1. Create a Colaboratory Python Jupyter Notebook

Go to Colab to create a new Python Jupyter notebook. Figure 2-13 shows the home
screen.

»

Examples Recent Google Drive GitHub Upload

Filter notebooks -

Title Lastopened o First opened + (H

CO Welcome To Colaboratory 1:32PM 1:32PM 4]

New notebook  Cancel

Figure 2-13. Google Colab home page.
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Title the notebook in the title bar as shown in Figure 2-14 (A) and expand to show
the table of contents (B). Then click the + Code button (C) to add a cell to hold your
code. The + Text button allows you to add text, such as documentation.

& Chapter 2.ipynb °

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text
|SE Table of contents 0O X

° Section e
Q ‘ (>

Figure 2-14. Title notebook and add a new cell code.

2. Import libraries and dataset using Pandas

Once you have added the code cell, you need to import any libraries you will need. In
this simple example, you’ll just import Pandas. Type import pandas as pd into the
cell and run it by clicking the arrow, as shown in Figure 2-15.

+ Code + Text

° import pandas as pd

Figure 2-15. Code to import Pandas.

The Pandas library is used for data analysis. Typically, when you import a library, you
want to provide a way to use it without having to write out the words Pandas each
time. Thus, the pd is a short-hand name (or alias) for Pandas. This alias is generally
used by convention to shorten the module and submodule names.
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The dataset is from the data.gov website. It is entitled “Heart Disease Mortality Data
Among US Adults” (Figure 2-16).

DATA CATALOG P DEICECM Organizations

@ / I / U.S. Departmentof... / Centers for Disease... _

Heart Disease Mortality Data Among US Adults (35+) by
State/Territory and County — 2018-2020

Metadata Updated: November 2, 2022

2018 to 2020, 3-year average. Rates are age-standardized. County rates are spatially smoothed. The data
can be viewed by gender and race/ethnicity. Data source: National Vital Statistics System. Additional data,
maps, and methodology can be viewed on the Interactive Atlas of Heart Disease and Stroke
http://www.cdc.gov/dhdsp/maps/atias

U.S. Department of

Health & Human Access & Use Information

Services @ Public: This dataset is intended for public access and use.
There is no description for this [@ License: See this page for license information.
organization

Figure 2-16. Heart disease mortality data among US adults by region.

Scroll down the page until you get to the section shown in Figure 2-17. Now, there
are two ways you can import the file into your Jupyter Notebook. You can download
the file to your desktop and then import it, or you can use the URL. Let’s use the URL
method. Click on the Comma Separated Values File shown in Figure 2-17, which
takes you to the URL download shown in Figure 2-18.
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Downloads & Resources

& Download

EI  Comma Separated Values File

% RDF File & Download

EEI  JSON File & Download

XML File

& Download
<l

3 Landing Page

Visit page

Figure 2-17. Downloads and resources page.

DATA CATALOG

@& / I / U.S. Department of Health... / Heart Disease Mortality...

Comma Separated Values File

Figure 2-18. Comma separated values file URL link.

Copy the URL shown in Figure 2-18 from the website. Then, go to your Google
Colab notebook and type in the code shown in Figure 2-19 into a new cell (A). Run
the cell by clicking the arrow (B).
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url = 'https://data.cdc. gov/api/views/jiwm-ppbh/rows.csv?accessType=DOWNLOAD"

heart_df = pd.read csv(url, index col=0)

+ Code + Text
M 1 im d
T port pandas a
% [kl 1
2
3

Figure 2-19. Code to read the URL into a Pandas DataFrame.

You have written code to import the dataset into a Pandas DataFrame. A Pandas
DataFrame is a two-dimensional data structure that is used to store data in a table

format. It is similar to a spreadsheet.

Now you add code to show the first five rows (or head) of the DataFrame. Add a new
cell, type heart_df.head() into the cell, and run the cell. The code and output are

shown in Fig

ure 2-20.

heart_df . head()|

GeographicLevel DataSource

County NVSS
County NVSS
County NVSS
County NVSS
County NVSS

Class

Cardiovascular
Diseases

Cardiovascular
Diseases

Cardiovascular
Diseases

Cardiovascular
Diseases

Cardiovascular
Diseases

Topic Data_Value Data_Value_Unit

Heart
Disease
Mortality

Heart
Disease
Mortality

Heart
Disease
Mortality

Heart
Disease
Mortality

Heart
Disease
Mortality

182.4

1726

255.6

343.4

NaN

per 100,000
population

per 100,000
population

per 100,000
population

per 100,000
population

per 100,000
population

Data_Value_Type

Age-adjusted,
Spatially
Smoothed, 3-year
Avera...

Age-adjusted,
Spatially
Smoothed, 3-year
Avera...

Age-adjusted,
Spatially
Smoothed, 3-year
Avera...

Age-adjusted,
Spatially
Smoothed, 3-year
Avera...

Age-adjusted,
Spatially
Smoothed, 3-year
Avera...

Figure 2-20. First five rows of the DataFrame. Some columns were removed for the sake

of readability.
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Add a new code cell. Type heart_df.info() and run the cell to see information on
the DataFrame. The .info() method gives you information on your dataset. The
information contains the number of columns, column labels, column data types,
memory usage, range index, and the number of cells in each column (non-null
values). Figure 2-21 shows the output. Exact values may differ depending on when
data is downloaded.

° heart_df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 59094 entries, 2019 to 2019

Data columns (total 19 columns):

# Column Non-Null Count Dtype

@ LocationAbbr 59094 non-null object
1 LocationDesc 59094 non-null object
2  GeographicLevel 59094 non-null object
3  DataSource 59094 non-null object
4  Class 59094 non-null object
5 Topic 59094 non-null object
6 Data_Vvalue 33087 non-null float64
7 Data_Value_Unit 59094 non-null object
8 Data_Value_Type 59094 non-null object
9 Data_Value_Footnote_Symbol 26007 non-null object
10 Data_Value_Footnote 26007 non-null object
11 StratificationCategoryl 59094 non-null object
12 Stratificationl 59094 non-null object
13 StratificationCategory2 59094 non-null object
14 Stratification2 59094 non-null object
15 TopicID 59094 non-null object
16 LocationID 59094 non-null int64
17 Y_lat 59076 non-null float64
18 X_lon 59076 non-null float64

dtypes: float64(3), int64(1), object(15)

memory usage: 9.0+ MB

Figure 2-21. DataFrame information output.

From what the .info() output shows, you have 15 string object columns (which is
qualitative data) and 4 numeric columns (quantitative data). Think of int64 as a number
without a decimal (for example, 25) and float64 as a number with a decimal (25.5).

3. Data validation

As a best practice, validate any data you import from a URL—especially if you have
a CSV file format to compare it with. If the dataset page had listed more metadata
about the data, such as the number of columns and the column names, you could
have avoided the steps to follow. But alas, it is the nature of working with data!
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Now, return to the data.gov page and download the CSV file to your computer. You
are going to validate that the file you have downloaded matches the file you imported
from the URL.

You do this by uploading the downloaded file to your Colab notebook and then
reading that file into a Pandas DataFrame. Expand the table of contents in your
Chapter 2 notebook by selecting the folder shown in Figure 2-22 (A). Then, to upload
a file, select the up arrow folder (B).

& Chapter 2.ipynb
File Edit View Insert

= Files 0O X

Grcm

D
{x} ®

0.
mtl » @B sample_data

Figure 2-22. Upload file to your Colab notebook.

Jo

As you upload the file, you will see the warning message shown in Figure 2-23. This
warning basically states that any file you upload will not be saved if the runtime is
terminated (which can happen if you close out of Colab). Note that runtime provides
the program with the environment it needs to run.

Warning

Ensure that your files are saved elsewhere. This runtime's files will be deleted
when this runtime is terminated.

More info

OK

Figure 2-23. Warning message that any uploaded files are not permanently saved.

Refresh your notebook browser tab after the upload and expand it to see the table of
contents. Your screen should look as shown in Figure 2-24.
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& Chapter 2.ipynb v

File Edit View Insert Runtime Tools

= Files B X
a G B W
[+
) » B sample_data
- B Heart_Disease_Mortality_Data_Amo...

Figure 2-24. Table of contents that shows uploaded file.

Note how long the filename is—go ahead and rename it by right-clicking on the file
and renaming it heart.csv. Your screen should look as shown in Figure 2-25.

+
= Files 0O X
Q G B X 1
4s
[+ |
X
o} » @@ sample_data
- B Heart_Disease_Mortality_Data_Amo...
Download
Rename file
Delete file
<>
Copy path
= py p
Refresh
m

Figure 2-25. Select “Rename file” option.

Your screen should look as shown in Figure 2-26 after renaming the file.
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= Files O X
. BB W
'+
) » [ sample_data
- B heart.csv

Figure 2-26. File renamed to heart.csv.

So, you've renamed your file to heart.csv. Now you need to copy the path of the file, as
shown in Figure 2-27. Why? You will need the exact location to input as a parameter
in the Pandas read.csv method. Right-click on the heart.csv file to get the path.

= Files 0O X
Q G B ®
(+
X
i} » B sample_data
B heart.cev
= Download
Rename file
Delete file
<>
Copy path
= Refresh
[, |

Figure 2-27. Copying the path of the file.
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Add a code cell and type in the following code. Make sure to paste the path to the
file between the two single quote marks around /content/heart.csv. Run the cell and
review the output:

heart_df = pd.read_csv('/content/heart.csv', error_bad_lines=False,
engine="python")

heart_df.head()
Type heart_df.info() into a new cell. Run the cell to see DataFrame information.
Compare the total columns from Figures 2-21 to 2-28. Figure 2-21 has 19 columns
and Figure 2-28 has 20 columns. This means that by uploading the file, a Year column
was added. The Year datatype is not a numeric value—it has numbers, but those
numbers are meant to rank and order, not calculate on. Figure 2-28 indicates you
have your first case of dirty data for our machine learning use case.

° Data columns (total 20 columns):
#  Column Non-Null Count Dtype
L - -~/ TTTTmmmmmmmmmm T
@ Year 41071 non-null int64
1 LocationAbbr 41071 non-null object
2  LocationDesc 41071 non-null object
3  GeographicLevel 41071 non-null object
4  DataSource 41071 non-null object
5 Class 41071 non-null object
6 Topic 41071 non-null object
7 Data_Value 23316 non-null float64
8 Data_Value_Unit 41071 non-null object
9 Data_Value_Type 41071 non-null object
10 Data_Value_Footnote_Symbol 17755 non-null object
11 Data_Value_Footnote 17755 non-null object
12 StratificationCategoryl 41071 non-null object
13 Stratificationl 41071 non-null object
14 StratificationCategory2 41071 non-null object
15 Stratification2 41071 non-null object
16 TopicID 41071 non-null object
17 LocationID 41071 non-null int64
18 Y_lat 41071 non-null float64
19 X_lon 41071 non-null float64
dtypes: float64(3), int64(2), object(15)

Figure 2-28. Year column showing as int64.
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Type heart_df.isnull().sum() into a new cell as shown in Figure 2-29. Run the
cell. Are there any null values? A null value is a value that indicates the absence of
a value. You have your second case of dirty data! Three of your columns have null
values. You will learn how to deal with missing values in a subsequent chapter. Since
you really don’t have a use case yet, you may be wondering whether you really need
all of these features. Note that features are the input data that is used to train a model.
The model then uses the features to make predictions. You'll learn about feature
selection in a subsequent chapter.

° heart_df.isnull().sum()

> Year 0
LocationAbbr (%]
LocationDesc (%]
GeographicLevel 0
DataSource 0
Class (%]
Topic (%]

Data_Value 17755

Data_Value_Unit 0

Data_Value_Type 0

Data_Value_Footnote_Symbol 23316

Data_Value_Footnote 23316

StratificationCategoryl

Stratificationl

StratificationCategory2

Stratification2

TopicID

LocationID

Y_lat

X_lon

dtype: inte64

O OO0

Figure 2-29. IsNull output showing the number of null cells in the three columns with
null values.

What are your data quality issues?

Missing values
Most algorithms do not accept missing values. Therefore, when we see missing
values in our dataset, there may be a tendency to just “drop all the rows” with
missing values. However, there are various ways you can deal with missing
values, as explained in the following note.
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There are two main approaches to handling missing values in
a dataset in ML: deletion or imputation.

Deletion involves removing the rows or columns with missing
values from the dataset. This can be done by dropping all
rows with missing values, dropping all columns with missing
values, or dropping rows or columns with a certain threshold
of missing values.

Imputation involves filling in the missing values with esti-
mates. There are many different imputation techniques,
including (1) mean imputation, which replaces missing values
with the mean of the observed values for that variable; (2)
median imputation, which replaces missing values with the
median of the observed values for that variable; (3) mode
imputation, which replaces missing values with the most fre-
quent value of the variable; and (4) regression imputation,
which uses a regression model to predict the missing values
based on the observed values of other variables.

Although Pandas will fill in the blank space with NaN (not a number), we should
handle them in some way. More on that later in the book.

Data type incorrect
Year is shown as an int64 data type and should be a string object—where you
would need to handle it as a qualitative, categorical feature.

Categorical columns
There are quite a number of string object features—which are not numeric. You
cannot feed values like this into an ML model. These features need to be one-hot
encoded. You'll see this in a subsequent chapter.

4. Alittle bit of exploratory data analysis

Before concluding this section, lets look at some simple ways to explore the
data. Want to see all of the unique values in the feature Stratification2? Type

heart_df.Stratification2.unique() into a new cell as shown in Figure 2-30. Run
the cell.
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° heart_df.Stratification2.unique()

array(['Overall', 'White', 'Black', 'Hispanic’,
'Asian and Pacific Islander', 'American Indian and Alaskan Native'],
dtype=object)

Figure 2-30. Code to show unique values of column Stratification2.

Let’s use Seaborn’s violin plot to visualize this feature. Seaborn is a Python library
for making statistical graphics. You can write all of this in the same cell, as shown in
Figure 2-31. This code uses the Data_Value feature as the x and the Stratification2
as the y. Note that the Data_Value feature is the count of heart disease in each region
and by group, as shown in Figure 2-32.

© import seaborn as sns
sns.violinplot(x="Data_Value", y="Stratification2", data=heart_df)

Overall 4 —’——
white | ——
Black 1 —.:
Hispanic -’—
Asian and Pacific Islander 4 —F

American Indian and Alaskan Native { -~ RN —

Stratification2

0 500 1000 1500 2000
Data_Value

Figure 2-31. Violin plot of Stratification2 column.

The “long tails” indicate there are more outliers in the data for that particular feature.
The large shape of the violin body indicates how many heart disease cases are
distributed by race.
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° sns.displot(heart_df[ 'Data_Value'])

> <seaborn.axisgrid.FacetGrid at @x7ff879aa0e80>
1000 A

800 1

600 A

Count

400

200 1

0 250 500 750 1000 1250 1500 1750 2000
Data_Value

Figure 2-32. Distribution plot of heart disease count.

Seaborn’s violin plot is a good way to visualize the distribution of a
univariate set of data.

It is used to visualize the distribution of numerical data. Unlike a
box plot that can only show summary statistics, violin plots depict
summary statistics and the density of each variable.
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In later chapters, you'll perform more data analysis and learn data preprocessing. For
now, save your notebook to GitHub. On the Colab menu, click File > Save a copy in
GitHub, as shown in Figure 2-33.

& Chapter 2.ipynb 7«

File | Edit View Insert Runtime Tools Help

Locate in Drive

Open in playground mode

New notebook
Open notebook Ctrl+0

Upload notebook

Rename
Move

Move to trash

Save a copy in Drive
Save a copy as a GitHub Gist

Save a copy in GitHub

Figure 2-33. How to save a file copy of the notebook in GitHub.
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Figure 2-34 shows the setup. From the drop-down under Repository, select the repo
to save your notebook to. Under Branch, select Notebooks (you created this earlier).
Keep the default “Include a link to Colaboratory” This will show a link in GitHub that
allows you to open your notebook directly from GitHub.

Copy to GitHub

Repository: [/ Branch: [£
gstripling00/low-code-book-projects \ main v
File path

Chapter_2.ipynb

Commit message

Created using Colaboratory

Include a link to Colaboratory

Cancel OK

BC USUBIGPILLLSYSL LALESUMILE LdESsIUREY CELa_Vadus  LaLa_vadus_viiy  vaca_vasus_i1yp€
Figure 2-34. Colab’s GitHub export window.

After Colab copies the notebook to GitHub, it takes you directly to GitHub, as shown
in Figure 2-35.
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gstripling00 Created using Colaboratory

AX 1 contributor

2542 lines (2542 sloc) 131 KB

Open in Colab

In [ 1* import pandas as pd

In[] # Next, you read the dataset into a Pandas dataframe.
url = "'
heart_df= pd.read_csv(url,index_col=0)

In [ ]

# Next, you read the dataset into a Pandas dataframe.

url = "https://data.cdc.gov/api/views/jiwm-ppbh/rows.csv?accessType=DOWNLOAD'
heart_df= pd.read_csv(url,index_col=0)

In [ 15 heart_df.head()

Figure 2-35. Notebook copied to GitHub.

Refresh the screen in the repo. You should see your Colab Jupyter notebook, as shown
in Figure 2-36.
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|ow-code-book_projects Public R Pin © Unwatch 1

¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~

gstripling00 Created using Colaboratory adédcee 2 minutes ago &) 2 commits
[ Chapter_2.ipynb Created using Colaboratory 2 minutes ago
(3 README.md Create README.md 12 hours ago
README.md Va

low-code-book-projects

Figure 2-36. Copy of Colab Jupyter notebook in GitHub.

Summary

This chapter provided an overview of the use cases and datasets used in the book. You
learned about data types and the difference between structured, semistructured, and
unstructured and batch and streaming data. You got hands-on practice with a free
browser-based Python Jupyter Notebook and GitHub. You discovered that dirty data
is tricky and can impact data type and data ingestion into an ML model.

In the next chapter, you'll learn about ML frameworks and you’ll get to work with
AutoML. You are given a preprocessed dataset, and all you'll have to do is upload
the dataset into the AutoML framework and you will be able to build and train a
predictive model without writing a single line of code.
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CHAPTER 3

Machine Learning Libraries
and Frameworks

This chapter introduces machine learning (ML) frameworks that simplify the devel-
opment of ML models. Typically, you need to understand the underlying working
principles of mathematics, statistics, and ML to build and train ML pipelines. These
frameworks help you by automating many of the time-consuming ML workflow tasks
such as feature selection, algorithm selection, code writing, pipeline development,
performance tuning, and model deployment.

No-Code AutoML

Imagine you are a business analyst working for a utility company. You have a project
that requires you to help the company develop marketing and outreach programs
that target communities with high electrical energy consumption. The data is in a
comma separated value (CSV) file format.

You do not have an ML background or any programming knowledge—but the team
lead has asked you to take on this project because you have expressed an interest
in ML and how it can be applied in the organization. Although you have no coding
experience, the little research you have done has yielded a few observations:

« For noncoders like yourself, there are automated no-code ML frameworks with a
graphical user interface (GUI) that you can use to build and train an ML model
without writing a single line of code.
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o For light coders, there are low-code ML frameworks that provide the ability to
build and train an ML model by writing just a little bit of code.

o For seasoned coders, there are ML libraries that allow the flexibility and control
to code every phase of the ML workflow.

Based on the data from your utility marketing outreach project and use case, you
determine that your target is to predict total kilowatt-hours (kWh) based on multiple
variables: zip code, month, year, and customer class (Residential, Commercial, Indus-
trial, and Agricultural).

Let’s assume you need to quickly get a baseline prediction. This is an excellent use
case for AutoML. A GUI-based AutoML framework is the easiest to use. Figure 3-1
shows a high-level overview of the typical AutoML no-code workflow you can use
for your business use case. This example uses Google’s Vertex Al, which is an ML
platform that helps you build, deploy, and scale ML models. Overall, Google AutoML,
Microsoft Azure AutoML, and AWS SageMaker AutoML are all powerful AutoML
solutions that can help you build and deploy ML models without writing any code.
The best solution for you will depend on your specific needs and requirements.

0 2 e e ) e o \ r o

Select the model
objective q
] Select afew Submit the
Load daGtSIV'a thel I . Regression > training » training job by
« Classification parameters clickinga button
« Clustering
e etc.

Figure 3-1. Typical Vertex AI AutoML no-code workflow.

Since the file format is CSV, you select the Tabular tab. Given that total kWh is the
output and is the numeric value you want to predict, you note that this is a regression
task—and since you have column names (or labels) for the multiple variables, it is a
supervised ML problem. Data without labels require an unsupervised ML task, such
as clustering. Figure 3-2 shows Regression/classification selected as the objective.
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Vertex Al lets you create the following model types for tabular data:

Binary classification models
These models predict a binary outcome (one of two
classes). Use this type for yes or no questions.

Multi-class classification models
These models predict one class from three or more dis-
crete classes. Use this type for categorization.

Regression models
These models predict a continuous value. Use this type to
predict sales.

Forecasting models
These models predict a sequence of values. Use this type
to forecast daily demand.

Select a data type and objective

First select the type of data your dataset will contain. Then select an objective, which is the outcome that

IMAGE TABULAR TEXT VIDEO
. o.... % oo 0 -
0,00 | /\/\/\/\/ .
ee ° ‘
.o °e%e + \
e o ® o I [~ ]
@ Regression/classification QO Forecasting

Predict a target column'’s value.
Supports tables with hundreds of
columns and millions of rows.

Predict the likelihood of certain events
or demand.

Figure 3-2. Regression/classification selection.
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Some frameworks will generate statistics after the data loads. Other frameworks help
minimize the need to manually clean data by automatically detecting and cleaning
missing values, anomalous values, and duplicate rows and columns. Note that there
are a few additional steps that you can employ, such as to review the data after it
has loaded to check for missing values and view data statistics. Figure 3-3 shows the
dataset upload options.

SOURCE ANALYZE

Add data to your dataset

Before you begin, read the data guide to learn how to prepare your data. Then choose a data
source.

Select a data source

» CSV file: Can be uploaded from your computer or on Cloud Storage. Learn more

» BigQuery: Select a table or view from BigQuery. Learn more

@ Upload CSV files from your computer
QO select CSV files from Cloud Storage
QO select atable or view from BigQuery

Upload CSV files from your computer

Add up to 500 CSV files per upload. The files will be stored in a new Cloud Storage bucket
(charges apply). Data from multiple files will be referenced as one dataset.

SELECT FILES

Figure 3-3. Data source options.

Figure 3-4 shows statistics of your energy utility dataset generated using Google’s
Vertex Al framework. There are no missing values, and the number of distinct values
for each column is shown. For example, there are 145 zip codes. Because zip code is
a number, the Transformation column shows it as “Numeric” However, zip code is a
categorical feature, as each zip code is different from one another and can thus be put
into its own “category” Changing ZipCode from numeric to categorical is as easy as
selecting the drop-down to customize the transformation.
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= Filter Enter property

name or value

O  columnname 4 Transformation Missing % (count) @ Distinct values @
O  AveragekWh Numeric ¥ - 920

O customerClass Categorical v - 4

O Month Numeric v - 1

[0 TotalCustomers Numeric ¥ - 1341

O  Totalkwh @RElEE: - 1517

O Year Categorical v - 1

O  zZipCode Numeric v - 145

Total 7 feature columns are included in the training

Figure 3-4. Generated statistics from Googles Vertex Al

Figure 3-5 shows ZipCode now as a categorical feature. Also note the far right
column, where you can select or deselect a feature to be included for training.

GENERATE STATISTICS ~

= Filter Enter property name or value ()
O columnname 4 Transf Missing % (count) @ Distinct values @ Correlation w/ targe
O  Averagekwh Numeric v . 920 o
[0 customerClass  Categorical v - 4 o
O Month Numeric v . 1 ©)
[0  TotalCustomers  Numeric ¥ - 1341 (S
[0  Totalkwh 1517

Year Categorical v - 1 ®
O  zipCode Categorical ~ 145 ®

Total 5 feature columns are included in the training

Figure 3-5. ZipCode shown as categorical feature.

AutoML presents a data profile of each feature. Figure 3-6 shows zip code 92694 as
the most common feature, which indicates more customers live in that zip code area.
You can leverage this information for your marketing campaigns.
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ZipCode

Column name: ZipCode
Missing % (count): -
Distinct values: 145

Mean: 92,141.698
Standard Deviation: 224.966

Most common value (%): 92694(2.5%)

3,000
2,500
2,000

1,500

Number of instances

1,000

500

92,000 92,250 92,500
ZipCode

Figure 3-6. Zip code shown as the most common feature.

In Step 3, you train a new model by selecting a few training parameters. Vertex
ATs “Train new model” window lets you select the training method, model details,
training options, and compute and pricing. Note the dataset and the objective
(Regression) are shown as inputs in the “Training method” parameter. AutoML is
selected by default. Figure 3-7 shows the “Train new model” window.
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Train new model Dataset

utility-marketing-outreach v @
® Training method I

Objective *
© Model details [ Regression v
e Training options Please refer to the pricing guide for more details (and available deployment options) for

each method.
© compute and pricing

) You can now run AutoML Tabular training on Vertex Al Pipelines. This
START TRAINING CANCEL provides greater visibility into every step of the training process and a
greater level of customization.

GO TO PIPELINES LEARN MORE

Model training method

@® AutoML
Train high-quality models with minimal effort and machine learning expertise. Just specify
how long you want to train. Learn more

QO custom training (advanced)

Run your TensorFlow, scikit-learn, and XGBoost training applications in the cloud. Train with
one of Google Cloud's pre-built containers or use your own. Learn more

CONTINUE

Figure 3-7. The “Train new model” window with compute and pricing selected.

Once all the parameters are entered, you start the training job. Figure 3-8 shows that
it’s ready to submit the training job for training.

Train new model Enter the maximum number of node hours you want to spend training your model.

9 Training method You can train for as little as 1 node hour. You may also be eligible to train with free node
hours. Pricing guide

Q Model details

Budget *
[ 1 Maximum node hours @

Q Training options

Estimated completion: Feb 13,2023 9 PM GMT-8
o Compute and pricing I

Q Enable early stopping
Ends model training when no more improvements can be made and refunds leftover
START TRAINING CANCEL training budget. If early stopping is disabled, training continues until the budget is

exhausted.

Figure 3-8. Submit the training job for training.
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Training can take up to several hours, depending on the size of
your data and type of model objective you choose. Image and video
data types may take much longer to process than a structured
data type such as a CSV file. The number of training samples
also impacts training time. AutoML training is also time intensive
because of the nature of AutoML and how it works.

Model training results are presented after training. You can now present your pre-
liminary findings to the team before next steps—which could include more experi-
mentation or deploying your model as a web page, where a user selects the customer
class and zip code and the predicted total kWh is shown.

Figure 3-9 shows training results. You will see examples of a complete AutoML
project in an upcoming chapter, where the metrics presented in Figure 3-9 are
discussed in more detail.

& energy_usage_marketing_project > Version1 [l VIEW DATASET & EXPORT
EVALUATE DEPLOY & TEST BATCH PREDICT VERSION DETAILS
Target column MAE @ MAPE @ RMSE @ RMSLE @ "2 @
TotalkWh 28,695.36 103,916,450,000 96,801.92 2.769 0.999

Figure 3-9. Model training results.

Model feature attribution tells you how much each feature impacted model training.
Figure 3-10 shows attribution values expressed as a percentage; the higher the per-
centage, the stronger the correlation—that is, the more strongly that feature impacted
model training. Model feature attribution is expressed using the sampled Shapley
method (see the glossary on GitHub).
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Feature importance

Model feature attribution tells you how much each feature impacted model training.
Attribution values are expressed as a percentage; the higher the percentage, the more
strongly that feature impacted model training. Model feature attribution is expressed
using the Sampled Shapely method. Learn more

AveragekWh

TotalCustomers

ZipCode

Month

CustomerClass

Figure 3-10. Attribution values are expressed as a percentage.

Figure 3-11 shows model metadata. You see various information about the model,
from its ID, date created, and training time, to the dataset used, target column, data
splitting percentage allocation, and the model evaluation metric used—in this case,
root mean squared error (RMSE). Clicking on “Model” or “Trials” lets you retrieve
info on which model has been used by AutoML.
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Status

Model ID

Version description
Created

Budget (original)

Finished
6483584773506727936
Feb 13,2023, 7:09:23 PM

1 node hours

Training time 2hr 11 min

Region us-centrall

Encryption type Google-managed key
Dataset utility-marketing-outreach
Dataset ID 5624285650074206208
Target column TotalkWh

Data split Randomly assigned (80/10/10)
Model hyperparameters

Column metadata VIEW DETAILS
Algorithm AutoML

Objective Tabular regression
Source AutoML training
Optimized for RMSE

Figure 3-11. Model metadata.

How AutoML Works

Implementing an ML workflow is time-consuming. As you saw from the preceding
marketing outreach use case, AutoML simplified the process of building an ML
model for you—you did not have to write a single line of code—for any tasks.
Figure 3-12 shows the workflow for the utility marketing outreach project. Phases 2,
3, and 4 required no coding.
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Phase1 Phase 2 Phase 3 Phase 4
AutoML No-Coding
« Cleandata * Research and . .
« Problem/goal « Explore data select model . Eggltldz:gon I
« Data collection « Transform and « Train and evaluate importance
select features « Test model P

Figure 3-12. Workflow for the utility marketing outreach project.

To better understand how AutoML works, note what you did not have to do!

First, you did not have to set up an environment to run a Python Jupyter Notebook.
There was no need to install any software libraries. In fact, there was nothing to
install.

Once you uploaded the CSV data file into Vertex Al, the file was stored in the cloud.
If you were using Python and Pandas, there was no need to write any code to load a
dataset or even to split the dataset into training, validation, and testing files.

While the data was clean, there were two categorical features: zip code and customer
class. If you had coded for those two features, you would have had to “one-hot
encode” each one. One-hot encoding is the process of converting categorical data vari-
ables into numerical values. The following shows sample code for one-hot encoding
for the feature zip code:

from import OneHotEncoder
one_hot = OneHotEncoder()

encoded = one_hot.fit_transform(df[[ zipcode']])
df[one_hot.categories[0]] = encoded.toarray()

One-hot encoding is an example of feature transformation or engineering. You also
had the ability to easily select the target (output) and/or deselect features—or drop

them. You did not have to write code that resembled what is shown in the following,
where the column “id” is being dropped from a Pandas DataFrame:

import as

df = pd.read_csv('/path/file.tsv’, header=0, delimiter="\t")

print df.drop(‘id", 1)
More features in your dataset lead to more complex relationships that may be nonlin-
ear. Neural networks are perfect for working with nonlinear relationships. You may
not have had any idea about any of this, so let’s break it down a bit further.

As stated earlier, this is a prediction problem because you wanted to know whether
future total kWh can be predicted based upon average KWh, customer class, month,

How AutoMLWorks | 59



year, and zip code. Going a little deeper into the theory, this type of use case can be
considered complex due to the number of input features—it has multiple variables
and is multivariate. These types of complex relationships are considered nonlinear
because you cannot simply draw a “straight” line that will be the “best fit” between
what the known total kWh are and the other multiple variables.

This dataset is an excellent candidate for a neural network. Neural networks are
difficult to construct without prior ML knowledge. Although neural networks are a
topic for a later chapter, let’s look quickly at an image to determine what you did not
have to think about. Figure 3-13 shows a typical neural network with an input layer,
hidden layers, and an output layer.

Input layer Hidden layer #1 Hidden layer #2 Output layer
SR C 2 e 2  Sam——
W Neurons Neurons Neuron
ijk

XO"'NE:: - slr
X1"kEEE
Xz.é >\|r
X3.é 2\ )X

Bias inputs ' ‘ ‘ é

1 1

= Wik

-
/

z >y

KT

.

Figure 3-13. Four-layer neural network.

Coding a neural network in Python would look something like this:

# Create the 'Network' class and define its arguments:
# Set the number of neurons/nodes for each layer

# and initialize the weight matrices:

class Network:

def __init__(self,

no_of_in_nodes,

no_of_out_nodes,

no_of_hidden_nodes,

learning_rate):
self.no_of_in_nodes = no_of_1in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
self.create_weight_matrices()

def create_weight_matrices(self):
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""" A method to initialize the weight matrices of the neural network"""

rad = 1 / np.sqrt(self.no_of_in_nodes)

X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)

self.weights_in_hidden = X.rvs((self.no_of_hidden_nodes,
self.no_of_in_nodes))

rad = 1 / np.sqrt(self.no_of_hidden_nodes)

X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)

self.weights_hidden_out = X.rvs((self.no_of_out_nodes,

self.no_of_hidden_nodes))

def train(self, input_vector, target_vector):

pass # More work is needed to train the network

def run(self, input_vector):

o

running the network with an input vector 'input_vector'.
"input_vector' can be tuple, list or ndarray

# Turn the input vector into a column vector:
input_vector = np.array(input_vector, ndmin=2).T

# activation_function() implements the expit function,

# which is an implementation of the sigmoid function:

input_hidden = activation_function(
self.weights_in_hidden @ input_vector)

output_vector = activation_function(
self.weights_hidden_out @ input_hidden)

return output_vector

Using Keras, the coding becomes somewhat easier. Coding a neural network would
look something like this:

# Import python libraries required in this example:
from keras.layers import Dense, Activation

from keras.models import Sequential

import numpy as np

#
X

y

#
#

Use

numpy arrays to store inputs (x) and outputs (y):

= np.array([[0, 0], [0, 1], [1, o], [1, 11])
= np.array([[0], [1]1, [1], [0]I])

Define the network model and its arguments.

Set

model

model.
model.
model.
model.

the number of neurons/nodes for each layer:
= Sequential()

add(Dense(2, input_shape=(2,)))
add(Activation('relu'))

add(Dense(1))

add(Activation('relu'))

# Compile the model and calculate its accuracy:
model. compile(

)

loss='mean_squared_error', optimizer='rmse', metrics=['accuracy']

How AutoML Works
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# Print a summary of the Keras model:
model.summary()

When you built your training job, you simply had to select a dataset and then select a
few training parameters. There was no need for any of the following:

No need to understand what kind of regression algorithm to use
There are many types of regression analysis techniques, and the use of each
method depends upon a number of factors. These factors include the type of
target variable, shape of the regression line, and the number of independent
variables.

No need to understand “classical machine learning” versus neural networks
There was no need to comprehend the commonly used neural-network building
blocks such as layers, neurons (nodes), objectives, activation functions, or opti-
mizers (see the glossary on GitHub).

No need to understand the training process or any model optimization strategies
During training, AutoML focuses on optimizing not only the model weights but
also the architecture. Selecting the appropriate architecture is done by AutoML.

No need to understand or specify compute resources
When you chose “one node,” AutoML selected the right machine type.

See the glossary on GitHub for definitions of the types of regres-
sion algorithms, such as linear regression, logistic regression, ridge
regression, lasso regression, polynomial regression, and Bayesian
linear regression.

Machine Learning as a Service

AutoML is part of the machine learning as a service (MLaaS) platform offered by
cloud providers. The top three cloud providers are Google, Amazon, and Microsoft.
If you are not familiar with cloud architecture and services, Figure 3-14 shows the
typical cloud “platform pyramid”

Occupying the bottom of the pyramid is IaaS (infrastructure as a service). Think of
this layer as the hardware and storage layer, with customers using the cloud provider’s
servers to handle the actual computation and storage services for storing dataset files,
models, containers, and so on. The middle layer is PaaS (platform as a service). Think
of this layer as providing the platform (operating systems such as Linux or Windows)
that customers use to run their own software. The top layer is SaaS (software as a
service). The best example of this is AutoML—you don’t have to configure a server or
write code, you just open a browser and use it.
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Software as a service
Fully functional applications provided. AutoML is here.
Email, subscription services.

Platform as a service
PaaS Operational environment included, Windows/.NET,
Linux/J2EE apps.

Infrastructure as a service
laas Operational environment not included. Rent storage,
computing, and networking.

Figure 3-14. Typical cloud “platform pyramid.”

Google, Amazon, and Microsoft offer services to support the entire ML workflow,
including ML learning algorithm training and tuning, data visualization, data prepro-
cessing, and deep learning. They also provide managed Jupyter Notebooks for using
frameworks such as scikit-learn, Keras, TensorFlow, and PyTorch. Table 3-1 shows
the benefits of MLaaS.

Table 3-1. MLaas$ benefits

Data extraction and
exploration

« Extract and clean dataset using Jupyter Notebook or, in some cases, the cloud provider's own data
visualization tools.

Apply data transformations and feature engineering to the model, and split the data into training,
validation, and test sets.

Explore and visualize data using the GUI tool or Jupyter Notebook.

Model training

« Use AutoML for tabular, image, text, and video data. Automatic featurization and algorithm
selection.

Shared notebooks, compute resources, data, and environments.

Custom training using open source platforms, such as PyTorch, TensorFlow, or scikit-learn.
Optimize hyperparameters.

Experiment by running different model versions using different techniques and compare results.

Distributed training

Offer multinode distributed training.

Model evaluation
and iteration

Provide evaluation metrics so that you can make adjustments to your data and iterate on your model.

Model explainability

Understand how each feature contributes to model prediction (feature attribution).

Model serving

Deploy your model to production and get predictions.

Model monitoring

Monitors the performance of your deployed model for training-serving skew and prediction drift and
sends you alerts when the incoming prediction data skews too far from the training baseline .
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AutoML is a valuable tool for businesses and organizations that want to use ML to
improve their operations. By automating many of the time-consuming and complex
tasks involved in building ML models, AutoML can help businesses and organiza-
tions get their models up and running more quickly. Here are some specific examples
of how AutoML is being used in businesses today:

Telecom
AutoML is being used by telecom companies to improve customer churn predic-
tion, fraud detection, and network optimization.

Manufacturing
AutoML is being used by manufacturing companies to improve product quality,
optimize production processes, and predict equipment failure.

Retail
AutoML is being used by retailers to personalize customer experiences, recom-
mend products, and optimize inventory levels.

Healthcare
AutoML is being used by healthcare companies to diagnose diseases, predict
patient outcomes, and personalize treatment plans.

These are just a few examples of how AutoML is being used in businesses today.
As AutoML technology continues to mature, expect to see even more innovative
applications of AutoML in the future. Table 3-2 shows the benefits of AutoML.

Table 3-2. AutoML benefits

Improved accuracy ~ AutoML can help businesses and organizations build more accurate ML models. This is because AutoML
can experiment with a wider range of algorithms and hyperparameters than a human data scientist
could.

Democratized ML AutoML makes ML more accessible to nonexperts. This is because AutoML provides a simple, user-
friendly interface for building and deploying ML models.

Reduced timeto  AutoML can help businesses and organizations get their ML models up and running more quickly. This is

market because AutoML automates many of the time-consuming tasks involved in building ML models, such as
data cleaning, feature engineering, and model training.

Reduced risk AutoML can help businesses and organizations reduce the risk of building ML models that are biased
or inaccurate. This is because AutoML automates many of the steps involved in model validation and
testing.
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Figure 3-15 shows Google’s Vertex Al solution, Figure 3-16 shows Microsoft’s Azure
ML Studio solution, and Figure 3-17 shows the AutoML for Amazon SageMaker

solution.
\ﬂ Vertex Al Dashboard 1
[ Datasets
|

-] Feature Store Ntz
@ Labelingtasks Get started with Vertex Al Q
B Workbench Vertex Al empowers machine learning developers, data S

scientists, and data engineers to take their projects from
8 Pipelines ideation to deployment, quickly and cost-effectively. Learn

more T °

@  Training

A Experiments

®  Model Registry
(#)  Endpoints

@  Batch predictions
i Metadata

sk Matching Engine

A ' LY
s |l °
Try an interactive tutorial o learn how to train, evaluate, and @_eo ‘
deploy a Vertex Al AutoML or custom-trained model \

B VIEW TUTORIALS ﬁ .

V SHOW API LIST
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E Recent datasets ® Recent models & Get predictions

Figure 3-15. Google’s Vertex Al interface.
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Welcome to the studio!

Notebooks Automated ML Designer
Create new v Code with Python SDK and run Automatically train and tune a Drag-and-drop interface from
sample experiments. model using a target metric. prepping data to deploying
models.

Tutorials

What is Azure Machine
Learning designer?

What is Azure Machine E] Train your first ML model Create, explore and deploy
Learning? with Notebook Automated ML experiments.
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Azure Machine Learning?
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Figure 3-16. Microsoft’s Azure ML Studio interface.
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@ Amazon SageMaker
Studio

SageMaker Studio is the first
fully integrated development
environment for machine
learning, to build, train, and
deploy ML models at scale.

@ Amazon SageMaker
Feature Store

SageMaker Feature Store is a
purpose-built repository to
store, update, retrieve, and
share ML features.

AutoML for Amazon SageMaker

@ Amazon SageMaker
Autopilot

SageMaker Autopilot is the
industry’s first automated
machine learning capability
that gives you complete
visibility into your ML models.

@ Amazon SageMaker
Clarify

SageMaker Clarify brings
transparency to your models
by detecting bias across the
ML workflow and explaining
model behavior.

Amazon SageMaker
Ground Truth

SageMaker Ground Truth
makes it easy to build highly
accurate training datasets for
ML using custom or built-in
data labeling workflows for
3D point clouds, video,
images, and text.

@ Amazon SageMaker
Pipelines

SageMaker Pipelines is the
first easy-to-use continuous
integration and continuous
delivery (CI/CD) service for
ML.

Amazon SageMaker is a fully managed service that provides every developer and data scientist with the ability to build, train, and deploy ML models at
scale. It removes the complexity from each step of the ML workflow so you can more easily deploy your ML use cases, anything from predictive
maintenance to computer vision to predicting customer behaviors.

@ Amazon SageMaker
Data Wrangler

SageMaker Data Wrangler
reduces the time it takes to
aggregate and prepare data
for ML from weeks to

minutes.

@ Amazon SageMaker
Edge Manager

SageMaker Edge Manager
helps you efficiently mange
and monitor ML models
running on edge devices.

Figure 3-17. AutoML for Amazon SageMaker interface.

Low-Code ML Frameworks

Low-code AutoML requires installation and configuration of libraries, plus some

knowledge of Python or some knowledge of Structured Query Language (SQL).
Low-code is defined here as the following:

o ML frameworks that provide an “abstraction layer” on top of an existing ML
framework.

o Databases that allow you to run ML models using SQL or databases that allow
you to run Python code that includes ML code.

Table 3-3 shows some examples.

Table 3-3. ML framework examples

Cloud providers (SQL) Open source
Google | BigQuery AutoKeras
Amazon | Aurora, Redshift | Auto-sklearn
Microsoft | Azure SQL Server | Auto-PyTorch
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SQL ML Frameworks

Data analysts and data scientists typically use SQL for data analysis. They can leverage
their existing SQL skills and expertise and apply them to ML—without any ML
programming backgrounds. If they know SQL but can’t code in Python, Java, or
R, they can work within a SQL-ML framework for their ML projects. This is why
SQL-ML frameworks are considered low-code. There is not a lot of SQL coding
required.

Benefits of using databases/data warehouses for SQL-ML:

Model building with large datasets
When you can build the ML model where the data “lives,” then the ML SQL code
stays “close to the data” and reduces latency (data transmission times). This is
especially crucial for large datasets using deep learning, where training requires
iteration through a percentage of the data for training, validation, and testing.

Backend integration with existing ML systems
Integrate with the cloud provider’s backend ML framework (for example, Goo-
gle’s Vertex Al, Amazon’s SageMaker, and Microsoft’s Azure).

Common model build statements
All use the CREATE MODEL SQL command and specify training data either as
a table or SELECT statement. They then compile and import the trained model
inside the data warehouse and prepare a SQL inference function that can be
immediately used in SQL queries.

Use cases
Typical use cases include fraud detection, product recommendations, and ad
targeting due to low-latency, real-time requirements.

A database is a collection of data or information. The term data-
base is commonly used to reference both the database itself as
well as the database management system (DBMS). Data warehouses
store large amounts of current and historical data from various
sources.

Google’s BigQuery ML

Google’s BigQuery is a data warehouse. It can provide decision-making guidance
through predictive analytics by using its ML tool. You can create and train a model
without ever exporting data out of BigQuery. Like Vertex AI, BigQuery ML does not
require an environment and dependency setup. BigQuery ML is browser-based and
serverless, meaning you don't need a server to run it. If you have data already residing
in BigQuery’s data warehouse, then you can use that data for your ML projects.
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Amazon Aurora ML and Redshift ML

Amazon Aurora is a relational database management system (RDBMS) built for the
cloud with full MySQL and PostgreSQL compatibility. Amazon Aurora ML enables
you to add ML-based predictions to applications using SQL. When you run an ML
query, Aurora calls Amazon SageMaker for a wide variety of ML algorithms.

Redshift ML is a data warehouse. You use SQL statements to create and train Amazon
SageMaker ML models using Redshift data and then use these models to make
predictions. Redshift ML makes the model available as a SQL function within the
Redshift data warehouse.

Open Source ML Libraries

Open source AutoML refers to open source frameworks such as AutoKeras, Auto-
sklearn, and Auto-PyTorch that add an additional layer of abstraction on top of
existing open source libraries. Typically, you will need to code for the following using
a Jupyter notebook:

Install the AutoML package.
Import the package.

Load a dataset.

Split the data.

Fit the model.

Predict.

Evaluate.

® N U E D=

Export the model.

After Step 4, each open source framework has its own way to perform model fit,
prediction, and evaluation. Figure 3-18 shows the first four steps.
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0[ Install an AutoML package.

( Y

#Pick one to install
«install autokeras
«install auto-sklearn
« install auto-PyTorch

\ J

o[ Importa package. ]

#Pick one to import
- import autokeras
- from autosklearn.regression import AutoSklearnRegressor
« from autoPyTorch.api.tabular_regression import TabularRegressionTask

J

Load a dataset, view first five rows, and get datatset info. )

«'blood _transfusion_uci_url = - - -'
*https://archive.ics.uci.edu/ml/machine-learning-databases/blood-transfusion/transfusion.data’

« df = pd.read_csv(blood_transfusion_uci_url)

«df.head()

«df.info()

[ import pandas as pd # (this would typically go with the imports section)

Split the dataset (using the most common method). ]

from sklearn.model_selection import train_test_split
training_data, testing data = train_test_split(df, test_size=0.2, random_state=25)

Figure 3-18. First four steps using open source libraries.

AutoKeras

AutoKeras, a Keras-based open source AutoML framework, was developed to allow
nonexperts to quickly build neural networks with minimal code. When using Auto-
Keras, you only need to specify the training data, and AutoKeras performs the data
preprocessing independently. For example, if the data has categorical variables, it
will convert them into one-hot encoding depending on whether it is a classification
or regression task; if the input data contains text, AutoKeras transforms it into an
embedding.

Auto-Sklearn

Auto-sklearn is an open source Python package based on the scikit-learn ML library.
Auto-sklearn automatically searches for the right learning algorithm for a new ML
dataset and optimizes its hyperparameters. This framework only supports sklearn-
based models. Auto-sklearn was developed by labs at the University of Freiburg and
the University of Hannover.
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Auto-PyTorch

In addition to Auto-sklearn, the Freiburg-Hannover AutoML group also developed
an AutoML based on PyTorch that focuses on deep learning. Auto-PyTorch is
deemed excellent at rapid prototyping. It also supports distributed training.

Summary

Business analysts, data analysts, citizen data scientists, data scientists, software devel-
opers, and ML engineers can all use AutoML frameworks to streamline the develop-
ment process.

First, you load a dataset that includes a target variable and input feature data used for
predictions. After the data is loaded, a data profile is generated for each data column.
To submit a training job, you select just a few parameters. AutoML then experiments
with multiple models and performs model optimization. Results are presented, as
well as feature attribution.

Cloud vendors provide MLaaS to accelerate and automate day-to-day ML workflows,
tools for integrating models into applications or services, and tools for deploying
models into production.

Low-code AutoML requires installation, configuration of libraries, and some knowl-
edge of SQL or Python. Open source AutoML refers to open source frameworks
such as AutoKeras, Auto-sklearn, and Auto-PyTorch that add an additional layer of
abstraction on top of existing open source libraries.

In Chapter 4, you build an AutoML model to predict advertising media channel sales.
First, you explore your data using Pandas. Then you learn how to use AutoML to
build, train, and deploy an ML model to predict sales.
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CHAPTER 4

Use AutoML to Predict
Advertising Media Channel Sales

In this chapter, you build an AutoML model to predict advertising media channel
sales. First, you explore your data using Pandas. Then you learn how to use AutoML
to build, train, and deploy an ML model to predict sales. You gain an overall under-
standing of the performance of your model using performance metrics and answer
common business questions. Along the way, you’ll learn about regression analysis, a
common technique used for prediction use cases.

The Business Use Case: Media Channel Sales Prediction

Businesses use advertising media channels to promote their products, services, or
brand. Marketers and media planners create marketing campaigns that may run on
digital, TV, radio, or in the newspaper. In this scenario, you work as a media planner
in the marketing department for a midsize solar energy company. Your firm has a
modest media budget and needs to evaluate which channels offer the greatest number
of benefits for the least cost. This is a spend optimization problem.

You have been asked to develop a marketing plan that will increase next year’s prod-
uct sales. To accomplish this goal, you need to understand the impact of the media
channel product advertising budgets on overall sales. The advertising dataset captures
the sales revenue generated with respect to advertisement costs across digital, TV,
radio, and newspaper media channels.

Typically, this type of ask from the team lead would go to a data scientist or data
analyst. But, although you do not have any coding experience, the marketing team
lead has asked you to build a sales predictive model using AutoML, something they
want to try for the first time on the team. The goal is to build an ML model to predict

n



how much sales volume will be generated based on the money spent in each of the
media channels.

Business questions include:
o Can the model predict how much sales volume will be generated based on the
money spent in each media channel?
o Is there a relationship between advertising budget and sales?
o Which media channel contributes the most to sales?

e Can the model be used to forecast future sales based on the media channels
proposed budget?

« How accurately can the model predict future sales?

The use case is a simple regression problem with just five variables that you can use to
answer the preceding five questions.

Project Workflow

Figure 4-1 shows the high-level overview of the typical AutoML no-code workflow
from Chapter 3. This workflow is appropriate for your use case.

AutoML workflow
Data extraction Machine
and analysis learning

Business case:
Predict sales volume

Deploy and make
predictions

Evaluate results

\. J

Figure 4-1. AutoML workflow for the business case.

Now that you understand the business use case and objective, you can proceed
to data extraction and analysis. Note that this workflow does not include a data
preprocessing step. You will get lots of hands-on experience with data preprocessing
in later chapters. After data extraction and analysis, you will upload the dataset into
the AutoML platform. The advertising budgets of digital, TV, newspaper, and radio
data are then fed into the model. You'll then evaluate the AutoML results and then
deploy the model to make predictions. After this chapter’s hands-on exercise, you will
be able to create a strategic marketing plan for your team.
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Project Dataset

The dataset is composed of historical marketing channel data that can be leveraged to
gain insights for spend allocation and to predict sales. The dataset being used for this
chapter, the advertising 2023 dataset, is based on data taken from An Introduction to
Statistical Learning with Applications in R by Daniela Witten, Gareth M. James, Trevor
Hastie, and Robert Tibshirani (Springer, 2021). The advertising dataset captures
the sales revenue generated from advertising (in thousands of units) for particular
product advertising budgets (in thousands of dollars) for TV, radio, and newspaper
media.

For this book, the dataset has been updated to include a digital variable and modified
to show the impact of digital budgets on sales. The number of markets has been
increased from 200 to 1,200. Thus, the data consists of the advertising budgets for
four media channels (digital, TV, radio, and newspapers) and the overall sales in
1,200 different markets. You should feel encouraged to look at other examples of how
to work with this dataset to grow your knowledge after completing the exercises in
this chapter.

The data is initially supplied in a CSV file, so you will need to spend some time
loading the data into Pandas before you can explore it. The dataset contains only
numeric variables.

There are five columns in the dataset. Table 4-1 gives the column names, data types,
and some information about the possible values for these columns.

Table 4-1. Schema and field value information for the advertising dataset

Column name Column type Notes about field values

Digital Numeric Amount spent on advertisements in digital
Newspaper Numeric Amount spent on advertisements in newspapers
Radio Numeric Amount spent on advertisements in radio

v Numeric Amount spent on advertisements in TV

Sales Numeric Total media channel sales

Exploring the Dataset Using Pandas, Matplotlib,
and Seaborn

Before you begin using AutoML, you follow the workflow discussed in earlier chap-
ters around understanding and preparing data for ML. This section shows you how
to load data into a Google Colab notebook using Pandas, an open source Python
package that is widely used for data science and data analysis. Once the data is
loaded into a DataFrame, you will explore the data. Fortunately, the data has already
been cleaned—there are no missing values or strange characters in the dataset. Your
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exploratory data analysis is to assist you in validating that the data is clean and
to explore relationships between the variables to assist you in answering questions
posed from the team. As noted in previous chapters, much of the ML work goes into
understanding and preparing the training data—not training the model—because
you are relying on AutoML to build the model.

All of the code in this section, including some additional examples, is included in a
Jupyter notebook titled Chapter4_Media_Channel_Sales_Notebook in the low-code-
ai repository on GitHub.

Load Data into a Pandas DataFrame in a Google Colab Notebook

First, go to https://colab.research.google.com and open a new notebook, following the
process discussed in Chapter 2. You may rename this notebook to a more meaningful
name by clicking on the name as shown in Figure 4-2 and replacing the current name
with a new name, say Advertising_Model.ipynb.

&{ Advertising_Model.ipynb | +¢

File Edit Viewe Tools Help All changes saved

+ Code + Text

Q O :
{x}

(]

Figure 4-2. Renaming the Google Colab notebook to a more meaningful name.

Now type the following code into the first code block to import the packages needed
to analyze and visualize the advertising dataset:

import as

import as

import as
from import stats
import as

%matplotlib inline

You saw some of these packages before in Chapter 2 when first exploring the use of
Colab notebooks.

Now execute the cell containing the import statements to import the packages. To
do this, you click the Run Cell button on the left side of the cell. You can also press
Shift + Enter to run the cell.
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Now you are ready to import your data. Using Pandas, you can directly import a CSV
file into a DataFrame from a location on the internet without having to download
the file first. To do this, copy the code from the solution notebook or type in the
following code into a new cell and execute the cell:

url="https://github.com/maabel®0712/1low-code-ai/blob/main/advertising_2023.csv?raw=true"
advertising_df=pd.read_csv(url, index_col=0)

In general, it is a good idea to look at the first few rows of the DataFrame. Use
advertising_df.head() to explore the first few rows of the DataFrame. The head
Pandas method lets us see the first five rows of our data. By doing this, you can
quickly see the features, some of their possible values, and whether they are numeri-
cal or not.

An example of a few of the columns is shown in Figure 4-3.

out[4]: digital TV radio newspaper sales
1 34515 1560 3738 69.2 221
2 6675 460 393 451 104
3 2580 183 459 69.3 93
4 22725 1451 413 58.5 185
5 27120 1652 108 584 129

Figure 4-3. A few columns of the first five rows of the DataFrame advertising_df
printed using the head() method.

Explore the Advertising Dataset

Now that the data has been loaded into the DataFrame advertising_df, you can
begin to explore and understand it. The immediate goal is to get an idea of where
there could be issues with the data so that you may resolve those issues before moving
forward.

Descriptive analysis: Check the data

First check the data using standard Python methods. To check the data types for
your DataFrame, type advertising_df.info() into a new cell and execute the cell.
The information contains the number of columns, column labels, column data types,
memory usage, range index, and the number of cells in each column (non-null
values).
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Figure 4-4 shows an example of the info() method output.

© advertising_df.info()

Data columns (total 5 columns):

# Column Non-Null Count
0 digital 1199 non-null
1 TV 1199 non-null
2 radio 1199 non-null
3 newspaper 1199 non-null
4  sales 1199 non-null

dtypes: float64(5)
memory usage: 56.2 KB

[» <class 'pandas.core.frame.DataFrame'>
Int64Index: 1199 entries, 1 to 1197

float64
float64
float64
float64
float64

Figure 4-4. Information on the dataset using the info() method.

Note that with information on the data type, you can check to make sure that the
types inferred by Pandas match up with what was expected from Table 4-1.

Shown in Figure 4-5 is the describe() method, which computes and displays sum-
mary statistics for the dataset. The describe function shows information about
the numerical variables of our dataset. You can see the mean, maximum, and mini-
mum values of each of these variables, along with their standard deviation. Type

advertising_df.describe() into a new cell and execute the cell.
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° advertising_ df.describe()

G digital TV radio newspaper sales
count 1199.000000 1199.00000 1199.000000 1199.000000 1199.000000
mean 135472394 146.61985 23.240617 30.529942 14.005505

std 135.730821 85.61047 14.820827 21.712507 5.202804
min 0.300000 0.70000 0.000000 0.300000 1.600000
25% 24.250000 73.40000 9.950000 12.800000 10.300000
50% 64.650000 149.70000 22.500000 25.600000 12.900000
75% 256.950000 218.50000 36.500000 45.100000 17.400000

max  444.600000 296.40000 49.600000 114.000000 27.000000

Figure 4-5. Summary statistics for all columns in the advertising dataset.

Shown in Figure 4-6 is the output of the .isnull() method. Type
advertising_df.isnull().sum() into a new cell and execute the cell. The output
shows all of the columns in the DataFrame with associated zeros. If there were null
values, the number of null values for the column would be shown.

° advertising df.isnull().sum()

digital

TV

radio
newspaper
sales

dtype: int64

[OSENO BRI ]

° advertising_df.isnull().values.any()

> False

Figure 4-6. Determining null values using the isnull() method.
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Explore the data

Exploratory data analysis (EDA) is the first step of any ML project. You need to
explore your data before building any ML model. The goal is to take a look at the
raw data, explore it, and gather relevant insights from the information derived from
the data. Doing this also helps make models better, as you’ll be able to spot any “dirty
data” issues—such as missing values, strange characters in a column, etc.—that may
impact performance.

Heat maps (correlations). A heat map is a way of representing the data visually. The
data values are represented as colors in the graph. The goal of the heat map is to
provide a colored visual summary of information. Heat maps show your relationships
(correlations) between variables (features). Correlation is a statistical measure that
shows the extent to which two or more variables move together. Shown in Figure 4-7
is the output of a correlation method that plots correlation values on the grid. Type
the following code into a new cell and execute the cell:

plt.figure(figsize=(10,5))
sns.heatmap(advertising_df.corr(),annot=True,vmin=0,vmax=1,cmap="viridis')
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Figure 4-7. Correlation matrix for advertising media channels.
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The results from a correlation matrix can be used in a variety of ways, including:

Identifying relationships between variables

The correlation coefficient between two variables can tell you how strongly they
are related. A correlation coefficient of 0 means there is no relationship, whereas
a correlation coefficient of 1 means there is a perfect positive relationship. A
correlation coefficient of -1 means there is a perfect negative relationship. Note
that the stronger relationships are between sales and television (0.78), followed
by sales and radio (0.58). This information can be used to develop targeted
marketing campaigns that are more likely to improve sales.

Selecting variables for inclusion in a model

When you are building a predictive model, you need to select the variables that
are most likely to be predictive of the outcome. For example, should you include
newspapers (with a 0.23 correlation to sales) as a feature for inclusion in the
model to predict sales?

Detecting multicollinearity

Multicollinearity occurs when two or more predictor variables in a regression
model are highly correlated. For example, if both TV and radio were highly
correlated (meaning that both had a value >0.7 instead of 0.056 as shown in
Figure 4-7), it would indicate multicollinearity. Since it is harder to numerically
distinguish predictors with a strong collinear relationship from one another, it is
more difficult for a regression algorithm to determine the degree of influence or
weight one of them should have on sales.

As a warning, the results of a correlation matrix may change due to
sample size or outliers in the dataset.

Scatterplots. Scatterplots are used to determine relationships between two numerical
variables. They can help you see if there is a direct relationship (positive linear
relationship or negative linear relationship, for example) between two variables. Also,
they can help you detect if your data has outliers or not. Figure 4-8 shows a scatter
of the digital feature and the sales target. Type the following code into a new cell and
execute the cell:

advertising_df.plot(kind="scatter', x=['digital'], y='sales')
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advertising_df.plot(kind="'scatter', x=['digital'], y='sales"')

> <Axes: xlabel="[digital]', ylabel='sales'>
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Figure 4-8. Scatterplot of digital and sales.

You want to explore the scatterplots for each variable with the predicted variable
sales. You can plot each feature as a scatterplot separately (as you did earlier), or
you can plot them so all of the relationships are shown in one plot. Type all of the
following code into a new cell and execute the cell (Figure 4-9 shows the output):

plt.figure(figsize=(18, 18))

for 1, col in enumerate(advertising_df.columns[0:13]):
plt.subplot(5, 3, i+1) # each row three figure
x = advertising_df[col] #x-axis
y = advertising_df['sales'] #y-axis
plt.plot(x, y, '0')

# Create regression line

plt.plot(np.unique(x), np.polyld(np.polyfit(x, y, 1)) (np.unique(x)),
color="'red")

plt.xlabel(col) # x-label

plt.ylabel('sales') # y-label
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Figure 4-9. Scatterplots of all features and sales targets.

Note that TV and sales have a strong linear relationship—as it appears to show that
for an increase in TV budget, there is a positive impact on sales volume. There
does not appear to be a strong relationship between newspaper and sales. Recall
the correlation values of 0.23 for this relationship. This is very different from the
relationship between TV and sales (0.78).

Histogram distribution plot. A common approach to visualizing a distribution is the
histogram. A histogram is a bar plot where the axis representing the target variable is
divided into a set of discrete bins, and the count of observations falling within each
bin is shown using the height of the corresponding bar.

Type this code into a new cell and run the cell:
sns.displot(advertising_df, x="sales")

Figure 4-10 shows the data values from the sales column. The plot looks somewhat
like a bell curve that is slightly skewed to the left. The most common sales amount is
$11,000 dollars.

Exploring the Dataset Using Pandas, Matplotlib, and Seaborn | 81




° sns.displot(advertising_df, x="sales")

[» <seaborn.axisgrid.FacetGrid at @x7fe@75eedofo>

160 -

140 1

5 10 15 20 25
sales

Figure 4-10. Sales histogram that is slightly skewed to the left.

What about the other features—are they skewed left or right or do they have a
“normal distribution,” like a bell curve? You can type the preceding code for each
individual feature or use the following code to see all of the features together. Type
the following code into a new cell and execute the cell (Figure 4-11 shows the output):
1is = ['digital', 'newspaper', 'radio','TV']
plt.subplots(figsize=(15, 8))
index = 1
for 1 in lis:
plt.subplot(2, 2, index)
sns.distplot(advertising_df[i])
index += 1
As you saw in Figure 4-10, sales have somewhat of a normal distribution. However, in
Figure 4-11, digital appears to be skewed left, and TV, radio, and newspaper are not
normally distributed. Standardizing these features so they are normally distributed
before feeding them into your ML model would generate better results.
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However, your role is not that of a data scientist. Do not worry
about understanding these concepts. Discussing each transforma-
tion required for the features is beyond the scope of this chapter.
Chapter 7 is where you perform transformations on a dataset.
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Figure 4-11. Distribution plots for digital, TV, radio, and newspaper.

Export the advertising dataset

After you have checked and explored the dataset, it is time to export the file so that
it can be uploaded into your AutoML framework. Type the following code into a new
cell and execute the cell. The first line imports the operating system that will allow
you to make a directory called data (lines two and three):

import os
if not os.path.isdir("/content/data"):
os.makedirs("/content/data")

After the directory has been created, type the following code into a new cell and
execute the cell. The first line of code creates a CSV file format of the advertising
DataFrame and places it in the content/data directory you made in the previous step:

advertising_df.to_csv('/content/data/advertising.csv',
encoding="utf-8', index=False)

Exploring the Dataset Using Pandas, Matplotlib, and Seaborn | 83



Figure 4-12 shows the newly created directory called data with the file advertising.csv.

;
) v [ data
B advertising.csv

= » @@ sample_data

Figure 4-12. Newly created data directory with advertising.csv file.

As a best practice, validate that you can see the contents of the newly exported file
in the newly created directory. Type 'head /content/data/advertising.csv into a
new cell and execute the cell. Check that the output shown in Figure 4-13 is the same
as yours.

° lhead /content/data/advertising.csv

digital,TV,radio,newspaper,sales
345.15,156.0,37.8,69.2,22.1
66.75,46.0,39.3,45.1,10.4
25.8,18.3,45.9,69.3,9.3
227.25,145.1,41.3,58.5,18.5
271.2,165.2,10.8,58.4,12.9
13.05,8.7,48.9,75.0,7.2
86.25,57.5,32.8,23.5,11.8
180.3,120.2,19.6,11.6,13.2
12.9,8.6,2.1,1.0,4.8

Figure 4-13. Output of the advertising.csv file.

Now that you have verified that the file has been properly exported, you can down-
load it to your computer.

Right-click the advertising.csv file in the newly created data directory and select
Download as shown in Figure 4-14. The file will download to your desktop. You are
now ready to upload the file for AutoML use.
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Figure 4-14. Validate advertising.csv in data directory.

In the next section, you build a code-free model based on the training data file you
just exported.

Use AutoML to Train a Linear Regression Model

The AutoML projects for this book will be implemented using Google’s Vertex Al the
GUI-based AutoML and custom training framework the authors are most familiar
with. Note that the top three major cloud vendors (Google, Microsoft, and AWS)
all offer AutoML tutorials. Each of these three major cloud vendor’s guides can be
found in their documentation. Many cloud vendors offer a trial period to explore
their products without cost.

Given that Google offers a step-by-step tutorial on AutoML, some introductory steps
are excluded.

Figure 4-15 shows a high-level overview of the AutoML no-code workflow for your
business use case.
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Figure 4-15. AutoML no-code workflow for your use case.

No-Code Using Vertex Al

Figure 4-16 shows the Vertex Al Dashboard. To create an AutoML model, turn on
the Vertex AI API by clicking the Enable All Recommended APIs button. From the
left-hand navigation menu, scroll down from Dashboard and select Datasets.

G Vertex Al Dashboard I LEARN
TOOLS
i1 Dashboard Get started with Tutorials
¥ Model Garden Vertex Al Try an interactive tutorial to
Vertex Al empowers machine learn how to train, evaluate, and
R Workbench leaming developers, data deploy a Vertex Al AutoML or

scientists, and data engineers to custom-trained model

{0 Pipelines take their projects from ideation
to deployment, quickly and cost-
GENERATIVE Al STUDIO ~ effectively. Learn more about
Vertex Al (2

B VIEW TUTORIALS

4 Overview

ENABLE ALL RECOMMENDED APIS
¥  Marketplace

Figure 4-16. Vertex Al Dashboard showing the Enable All Recommended APIs button.

Create a Managed Dataset in Vertex Al

Vertex Al offers different AutoML models depending on data type and the objective
you want to achieve with your model. When you create a dataset you pick an initial
objective, but after a dataset is created you can use it to train models with different
objectives. Keep the default region (us-centrall), as shown in Figure 4-17.

Select the Create button at the top of the page and then enter a name for the dataset.
For example, you can name the dataset advertising_automl.
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& Vertex Al Datasets CREATE

~ oo

=%  Speech Managed datasets contain data used 1
Learn more [4
DATA A .
Region
©  Feature Store { us-centrall1 (lowa)
[l Datasets = Filter Enter a property name

Figure 4-17. Vertex Al Dataset navigation that allows you to create a dataset.

Select the Model Objective

Figure 4-18 shows Regression/classification selected as the model objective under the
Tabular tab. Given that you want to predict a target column’s value (sales), this is the
appropriate selection.

& Create dataset

Dataset name *
[ advertising_automl ]

Can use up to 128 characters.

Select a data type and objective

First select the type of data your dataset will contain. Then select an objective, which is the outcome that

IMAGE TABULAR TEXT VIDEO

L ] L ]
°, .o
o ® "
e %o . /\/ . \
e o ® | |
- -
@ Regression/classification Q Forecasting
Predict a target column’s value. Supports Predict the likelihood of certain events or
tables with hundreds of columns and demand.

millions of rows.

Figure 4-18. Regression/classification selection for model objective.
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You selected Regression/classification as your objective. Let’s cover some basic con-
cepts to help you with future use cases. Regression is a supervised ML process. It is
similar to classification, but rather than predicting a label for a classification, such as
classifying spam from your email inbox, you try to predict a continuous value. Linear
regression defines the relationship between a target variable (y) and a set of predictive
features (x). If you need to predict a number, then use regression. In your use case,
linear regression predicts a real value (sales) using some independent variables given
in the dataset (digital, TV, radio, and newspaper).

Essentially, linear regression assumes a linear relationship with each feature. The
predicted values are the data points on the line, and the true values are in the
scatterplot. The goal is to find the best fitting line so that when new data is input
the model can predict where the new data point will be in relation to the line. The
“evaluation” of how good that fit is includes an evaluation criteria—which is covered
in “Evaluate Model Performance” on page 98.

Figure 4-19 shows a “best-fit” line based on your dataset, where the model tries to fit
the line to your data points, which are the dark scatters.
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Figure 4-19. True and predicted values with a best-fitted line.
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After making the Regression/classification selection, scroll down and click the Create
button. You are now ready to add data to your dataset. Vertex AI-managed datasets
are available for a variety of data types, including tabular, image, text, and video data.

Figure 4-20 shows the data source upload options—upload CSV from your computer,
select CSV files from Cloud Storage, or select a table or view from BigQuery (Google’s
data warehouse).

SOURCE ANALYZE

Add data to your dataset

Before you begin, read the data guide to learn how to prepare your data. Then choose a data
source.

Select a data source

» CSV file: Can be uploaded from your computer or on Cloud Storage. Learn more

» BigQuery: Select a table or view from BigQuery. Learn more

@ Upload CSV files from your computer
QO select CSV files from Cloud Storage

QO Select atable or view from BigQuery

Upload CSV files from your computer

Add up to 500 CSV files per upload. The files will be stored in a new Cloud Storage bucket
(charges apply). Data from multiple files will be referenced as one dataset.

SELECT FILES

Figure 4-20. Data source upload options for your dataset file.

To upload your advertising dataset, select “Upload CSV files from your computer”
Find the file on your local computer and load it.
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Scroll down the page and review the Select a Cloud Storage Path section, which
requires that you store the file in a cloud storage bucket. Why do you need to store
the file in a cloud storage bucket? Two reasons: (1) when training a large-scale ML
model, you may need to store terabytes or even petabytes of data; and (2) cloud
storage buckets are scalable, reliable, and secure.

Figure 4-21 shows that the file Advertising_automl.csv has been uploaded and a cloud
storage bucket has been created to store the uploaded file. To see the step-by-step
process of creating the storage bucket and the entire exercise, see the PDF entitled
Chapter 4 AutoML Sales Prediction in the repository.

Upload CSV files from your computer

Add up to 500 CSV files per upload. The files will be stored in a new Cloud Storage bucket
(charges apply). Data from muiltiple files will be referenced as one dataset.

Advertising_automl.csv 1 file X

SELECT FILES

Select a Cloud Storage path
Choose where your uploaded CSV files will be stored (charges apply)

Cloud Storage path *
( gs:// low_code_ai/Marketing/ BROWSE ()

What happens next?

The CSV file data will be uploaded to Cloud Storage and associated with your dataset. Making
changes to the referenced CSV files will affect the dataset before training.

CONTINUE

Figure 4-21. Data source options to load a CSV file and store it in a cloud storage
bucket.
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Some frameworks will generate statistics after the data loads. Other frameworks help
minimize the need to manually clean data by automatically detecting and cleaning
missing values, anomalous values, and duplicate rows and columns. Note that there
are a few additional steps that you can employ, such as to review the data after it has
loaded to check for missing values and view data statistics.

Figure 4-22 shows the output of the Generate Statistics window. Note there are no
missing values and the number of distinct values for each column is shown.

= Filter Enter property name or value

Column name 4 Missing % (count) @ Distinct values @
digital - 190

newspaper - 172

radio - 167

sales - 121

TV - 190

Figure 4-22. The output of the Generate Statistics window.

AutoML presents a data profile of each feature. To analyze a feature, click the name of
the feature. A page shows the feature distribution histograms for that feature.

Figure 4-23 shows the data profile for sales. Note that the mean is 14.014, which is
very close to the numeric value you received when you typed in the advertising_
df.describe() code earlier in the chapter as you were exploring the dataset.
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sales

Column name: sales
Missing % (count): -
Distinct values: 121

Mean: 14.014
Standard Deviation: 5.2
Most common value (%): 9.7(4.862%)
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5 . II

Number of instances

o

Figure 4-23. Feature profile for sales.
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Build the Training Model

Figure 4-24 shows that the model is now ready to train. Select Train New Model
under the “Training jobs and models” section. Select Other and not AutoML on
Pipelines. AutoML on Pipelines is a feature that allows you to specify the type of ML
model you want to build and other parameters. It is beyond the scope of the book.

< advertising_automl_1

SOURCE ANALYZE
Training jobs and models
Properti Use this dataset and annotation set to train a new machine
roperties . . .
P learning model with AutoML or custom code. Selecting

Created Mar 31, 2023 9:05 PM AutoML Pipeli il t R Vertex Al Pipeli
pataset format csv utoML on Pipelines will create a Run on Vertex ipelines.
Dataset location(s) s://low_code_ai/M._tising_automl.csv 2 1) Run information will be found on the Runs tab under Pipelines.
Encryption type Google-managed key

TRAIN NEW MODEL

AutoML on Pipelines
Summary
Total columns: 5§ Oth er

Total rows: 1,197

Figure 4-24. Model now ready for training.

The “Train new model” window appears. There are four steps:

1. Select the training method
2. Configure model details
3. Determine training options

4. Select compute and pricing
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In Step 1, under the Objective, select the drop-down and choose Regression. Under
“Model training method,” select AutoML (as shown in Figure 4-25). Click Continue.

Train new model Dataset
advertising_automl|_1 v @
@ Training method

[ Objective *

© Model details Regression - ]

o Training options Please refer to the pricing guide for more details (and available deployment options) for
each method.
o Compute and pricing
) You can now run AutoML Tabular training on Vertex Al Pipelines. This

START TRAINING CANCEL provides greater visibility into every step of the training process and a
greater level of customization.

GO TO PIPELINES LEARN MORE

Model training method

@ AutoML

Train high-quality models with minimal effort and machine learning expertise. Just specify
how long you want to train. Learn more [4

QO Custom training (advanced)

Run your TensorFlow, scikit-learn, and XGBoost training applications in the cloud. Train with
one of Google Cloud's pre-built containers or use your own. Learn more [4

CONTINUE

Figure 4-25. Configure the training method in Step 1.
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In Step 2, under “Model details,” name your model and give it a description. Under

“Target column,” select sales from the drop-down (as shown in Figure 4-26). Click
Continue.

Train new model @ Train new model

o Creates a new model group and assigns the trained model as version 1
@ Training method

QO Train new version

X Trains model as a version of an existing model
© Model details
Name *
e Training options { advertising_automl|_1 ]
© Compute and pricing Description
marketing media channel sales prediction project ]

START TRAINING CANCEL Target column *
[ sales v @

[OJ Export test dataset to BigQuery

‘v ADVANCED OPTIONS

CONTINUE

Figure 4-26. Add model details in Step 2.
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In Step 3, review the training options. Note that any data transformations (or
data processing) such as standardization are handled automatically (as shown in
Figure 4-27). Click Continue.

Train new model
Before continuing, use the Transformation

0 Training method AutoML will try to apply the most relevant t
® Model details
© Training options I

= Filter Enter property name or value

© cCompute and pricing

O Column name 4 Transformation
STARTTRAINING  CANCEL O  digital Numeric ~

O  newspaper Numeric ¥

O radio Numeric ~

O sales

D TV Numeric ¥

Total 5 feature columns are included in the training

Figure 4-27. Add training options in Step 3.

In Step 4, you see “Compute and pricing” (as shown in Figure 4-28). The time
required to train your model depends on the size and complexity of your training
data. A node hour is one hour’s usage of one node (think virtual machine) in the
cloud, spread across all nodes. Enter the value 3 in the Budget field for maximum
number of node hours—this is just an estimate. You pay only for compute hours
used; if training fails for any reason other than a user-initiated cancellation, you are
not billed for the time. You are charged for training time if you cancel the operation.
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Train new mOdeI Enter the maximum number of node hours you want to spend training your model.

0 Training method You can train for as little as 1 node hour. You may also be eligible to train with free node
hours. Pricing guide
& Model details

Budget *

0 Training options 3 Maximum node hours @ ]

Estimated completion: Apr 1, 2023 1 AM GMT-7
© Compute and pricing I

Q Enable early stopping
Ends model training when no more improvements can be made and refunds leftover
START TRAINING CANCEL training budget. If early stopping is disabled, training continues until the budget is
exhausted.

Figure 4-28. Select compute and pricing in Step 4.

Also under “Compute and pricing” is early stopping. When you enable this option,
this means that training will end when AutoML determines that no more model
improvements can be made. If you disable early stopping, AutoML will train the
model until the budget hours are exhausted.

Once all the parameters are entered, you start the training job. Click Start Training.

After model training, the model is registered in the model registry (as shown in
Figure 4-29).

Model Registry CREATE & IMPORT

Models are built from your datasets or unmanaged data sources. There are many
different types of machine learning models available on Vertex Al, depending on your use
case and level of experience with machine learning. Learn more

Region
[us-centran (lowa) v @

= Filter Enter a property name

O Name 1

O  advertising_automl_1

O utility-marketing-outreach

Figure 4-29. Advertising_automl model showing in model registry.
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As previously mentioned, training can take up to several hours,
depending on the size of your data and type of model objective
you choose. Image and video data types may take much longer to
process than a structured data type such as a CSV file. The number
of training samples also impacts training time.

Also, AutoML is time intensive. AutoML algorithms need to train a
variety of models, and this training process can be computationally
expensive. This is because AutoML algorithms typically try a large
number of different models and hyperparameters, and each model
needs to be trained on the entire dataset. AutoML algorithms then
need to select the best model from the set of trained models, and
this selection process can also be time-consuming. This is because
AutoML algorithms typically need to evaluate the performance of
each model on a holdout dataset, and this evaluation process can
be computationally expensive.

Evaluate Model Performance

Figure 4-30 shows the model training results.

& advertising_automl_1 > Version1 ~ [E VIEWDATASET % EXPORT

EVALUATE DEPLOY & TEST BATCH PREDICT VERSION DETAILS

€ untitled_996201938822743370 ¥ --COMPARE [ CREATE EVALUATION

Target column MAE @ MAPE @ RMSE @ RMSLE @ " @
sales 0.304 2.28 0.345 0.026 0.997

Figure 4-30. Model training results with five evaluation metrics.

There are a few factors that a practitioner should consider when weighing the impor-
tance of different linear regression evaluation metrics:

The purpose of the model
The purpose of the model will determine which evaluation metrics are most
important. For example, if the model is being used to make predictions, then the
practitioner may want to focus on metrics such as mean squared error (MSE)
or root mean squared error (RMSE). However, if the model is being used to
understand the relationship between variables, then the practitioner may want to
focus on metrics such as R-squared or adjusted R-squared.
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The characteristics of the data
The characteristics of the data will also affect the importance of different evalua-
tion metrics. For example, if the data is noisy (e.g., contains unwanted informa-
tion or errors), then the practitioner may want to focus on metrics that are robust
to noise, such as mean absolute error (MAE). However, if the data is not noisy,
then the practitioner may be able to focus on metrics that are more sensitive to
changes in the model, such as MSE.

The practitioner’s preferences
Ultimately, the practitioner’s preferences will also play a role in determining
the importance of different evaluation metrics. Some practitioners may prefer
metrics that are easy to understand, while others may prefer metrics that are
more accurate. There is no right or wrong answer, and the practitioner should
choose the metrics that are most important to them.

Here are common linear regression evaluation metrics:

R-squared
R-squared is a measure of how well the model fits the data. It is the square of the
Pearson correlation coefficient between the observed and predicted values. It is
calculated by dividing the sum of squared residuals (the difference between the
predicted and the actual values) by the total sum of squares. A higher R-squared
value indicates a better fit. R-squared ranges from 0 to 1, where a higher value
indicates a higher-quality model. Your R? should be around 0.997.

Adjusted R-squared
Adjusted R-squared is a modified version of R-squared that takes into account
the number of independent variables in the model. It is calculated by dividing
the sum of squared residuals by the total sum of squares minus the degrees of
freedom. A higher adjusted R-squared value indicates a better fit, but it is less
sensitive to the number of independent variables than R-squared.

Mean squared error (MSE)
MSE is a measure of the average squared error between the predicted values and
the actual values. A lower MSE value indicates a better fit. Figure 4-31 shows the
loss visualized in a table and graph.
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Figure 4-31. Loss formula for RMSE of true and predicted values.
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Root mean squared error (RMSE)
RMSE is the square root of MSE. It is a more interpretable version of MSE.
A lower RMSE value indicates a better fit and a higher-quality model, where 0
means the model made no errors. Interpreting RMSE depends on the range of
values in the series. Your RMSE should be around 0.345.

Root mean squared log error (RMSLE)
Interpreting RMSLE depends on the range of values in the series. RMSLE is
less responsive to outliers than RMSE, and it tends to penalize underestimations
slightly more than overestimations. Your RMSLE should be around 0.026.

Mean absolute error (MAE)
MAE is a measure of the average absolute error between the predicted values and
the actual values. A lower MAE value indicates a better fit. Your MAE should be
around 0.304.

Mean absolute percentage error (MAPE)
MAPE ranges from 0% to 100%, where a lower value indicates a higher-quality
model. MAPE is the average of absolute percentage errors. Your MAPE should be
around 2.28.

Model Feature Importance (Attribution)

Model feature importance tells you how much each feature impacted model train-
ing. Figure 4-32 shows attribution values expressed as a percentage; the higher the
percentage, the more strongly the correlation—that is, the more strongly that feature
impacted model training. Feature attribution allows you to see which features con-
tributed most strongly to the resulting model training shown in Figure 4-32.
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Feature importance

Model feature attribution tells you how much each feature impacted model training.
Attribution values are expressed as a percentage; the higher the percentage, the more
strongly that feature impacted model training. Model feature attribution is expressed
using the Sampled Shapley method. Learn more

radio

digital

newspaper

Figure 4-32. Advertising dataset feature importance results.

If you were to hover over the newspaper feature shown in Figure 4-32, you would
see that its contribution to model training is 0.2%. This supports what you discovered
during the EDA phase you completed earlier—the relationship between sales and
newspaper advertising spend is the weakest. These results mean that advertising on
radio, digital, and TV contribute the most in sales, and newspaper advertisements
have little effect on sales.
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Get Predictions from Your Model

To deploy your model, you will need to test it. You can deploy to your environment
to test your model without building an application you would need to deploy to the
cloud. After you train an ML model, you need to deploy the model so that others
can use it to do inferencing. Inferencing in machine learning is the process of using a
trained ML model to make predictions on new data.

There are four steps, but for this chapter you'll only need the first two. For this
exercise, it is not necessary to configure model monitoring or model objectives.
Model monitoring adds an additional charge for logging, while model objectives
require you to choose from a variety of model objectives, depending on the type of
model you are training and the application you are using it for. Here are the four
steps:

1. Define your endpoint.

2. Configure model settings.

3. Configure model monitoring.
4

. Configure model objectives.

What are endpoints and deployments? In ML, an endpoint is a
service that exposes a model for online prediction. A deployment
is the process of making a model available as an endpoint. An
endpoint is an HTTPS path that provides an interface for clients
to send requests (input data) and receive the inferencing (scoring)
output of a trained model. Endpoints are typically used to make
predictions in real time. For example, you could use an endpoint to
predict the likelihood of a customer clicking on an ad or the risk of
a loan defaulting.

Deployments are typically used to make a model available to a
larger audience. For example, you could deploy a model to a pro-
duction environment so that it can be used by your customers or
employees.

Figure 4-33 shows the deploy and test page. To deploy your model, go to Model
Registry, select Deploy and Test, and select your model.
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Vertex Al & advertising_automl_1 > Version1 +~ [ VIEW DATASET & |

. EVALUATE DEPLOY & TEST BATCH PREDICT VERSION DETAILS
Ii!  Dashboard F—

A  Workbench

& Pipelines Use your edge-optimized model

DATA A

@

Container

€  Feature Store

El  Datasets Export your model as a TF Saved

Model to run on a Docker container.
Q  Labeling tasks

MODEL DEVELOPMENT A

®  Training

Experiments
4 P Deploy your model

i Metadata Endpoints are machine learning models made available for online prediction requests. Endpoints
are useful for timely predictions from many users (for example, in response to an application

request). You can also request batch predictions if you don't need immediate results.
DEPLOY AND USE

X DEPLOY TO ENDPOINT
®  Model Registry

(#)  Endpoints

>

Name ID Status Models Region
@  Batch predictions advertising_automl  6125401268572651520 @ Active 1 us-
centrall

‘;&: Matching Engine

Figure 4-33. Deploy your model to an endpoint page.

In Step 1, you define your endpoint. You select a region and determine how your
endpoint will be accessed.

In Step 2, you add the model and add traffic split. A traffic split in Vertex Al is a way
to distribute traffic between multiple models that are deployed to the same endpoint.
This can be useful for a variety of purposes, such as:

A/B testing
Traffic splitting can be used to A/B test different models to see which one
performs better.
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Canary deployments
Traffic splitting can be used to deploy a new model to a small percentage of users
before deploying it to a larger audience. This can help to catch any problems with
the new model before they affect too many users.

Rollouts
Traffic splitting can be used to roll out a new model to users gradually. This can
help to mitigate the impact of any problems with the new model.

In Step 3, you choose how compute resources will serve the predictions to your
model (shown in Figure 4-34). For this exercise, use the minimum number of com-
pute nodes (virtual machine servers). Under “Machine type,” select Standard.

A\ HIDE ADVANCED SCALING OPTIONS

Machine type *
{ n1-standard-8, 8 vCPUs, 30 GiB memory v @

Logging
Logging settings are permanent for this endpoint, and Logging charges will

apply. To change your logging preference in the future, create a new
endpoint. Learn more [2

D Enable access logging for this endpoint
(O] Disable container logging for this endpoint

Explainability options
@nable feature attributions for this model

Sampled Shapley 16 samples

EDIT

It may take several minutes for endpoint settings to take effect.

CANCEL DONE

Figure 4-34. Select compute resources to train the model.
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Note: “Machine types” differ in a few ways: (1) number of virtual central processing
units (vCPUs) per node, (2) amount of memory per node, and (3) pricing.

There are a few factors to consider when choosing compute resources for a prediction
model:

Size and complexity of the model
The larger and more complex the model, the more compute resources it will
need. (This is more applicable to custom coding neural networks.)

Number of predictions that will be made
If you expect to make a large number of predictions, you will need to choose a
compute resource that can handle the load.

Latency requirements
If you need to make predictions in real time or with very low latency, you will
need to choose a compute resource that can provide the necessary performance.
Note: low latency in machine learning refers to the time it takes for an ML model
to make a prediction once it receives a new data point.

Cost
Compute resources can vary in price, so you will need to choose one that fits
your budget.

Once you have considered these factors, you can start to narrow down your choices.
Here are a few examples of compute resources that can be used to serve prediction
models:

CPUs
Central processing units (CPUs) are the most common type of compute resource
and are a good choice for models that are not too large or complex.

GPUs
Graphics processing units (GPUs) are more powerful than CPUs and can be used
to speed up the training and inference of large and complex models.

TPUs
Tensor processing units (TPUs) are specialized hardware accelerators that are
designed for ML workloads. They are the most powerful option and can be used
to train and serve the most demanding models.

As part of Step 2 under “Model settings,” there is a Logging setting. If you enable
endpoint logging, charges will apply. Thus, for this exercise, please do not enable it.
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The next setting is Explainability options, which do not carry a charge. Check
“Enable feature attributions for this model”

Step 3 is “Model monitoring” Do not enable it for this project (as shown in
Figure 4-35).

Deploy to endpoint

Model monitoring applies to all models deployed on this endpoint.
@ Define your endpoint Learn more (2

Q Model settings o
Model monitoring

e Model monitoring I Models used in production require continuous monitoring to ensure that they perform
as expected. Use model monitoring to track training-serving skew or prediction drift,

DEPLOY CANCEL then set up alerts to notify you when thresholds are crossed. Learn more (2

Model monitoring supports AutoML tabular and custom-trained models and incurs
additional charges. Learn more (2

a Enable model monitoring for this endpoint

Figure 4-35. “Model monitoring” configuration window.

Now that all configurations are made, the Deploy button should be highlighted. Click
Deploy to deploy your model to the endpoint (as shown in Figure 4-36).

Deploy to endpoint
Q Define your endpoint
& Model settings

© Model monitoring I

DEPLOY CANCEL

Figure 4-36. Deploy to the endpoint.

After the endpoint is created and the model deployed to the endpoint, you should
receive an email regarding the endpoint deployment status. If deployment was suc-
cessful, you can start making predictions. There are four steps:
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1. Go to Model Registry.

2. Select your model.

3. Select the model’s version.
4

. Scroll down until you see the “Test your model” page.

Figure 4-37 shows the “Test your model” page. Note, this page could be an app or
web page that looks like this—where you and your team input media channel values
and predict sales volume.

Click the Predict button.

Test your model

Feature column name Type Value Local feature importance
digital Text

{ 224.55 ]
v Text

[ 149.7 ]
radio Text

{ 233 ]
newspaper Text

{ 25.9 ]
PREDICT RESET

Figure 4-37. Testing page for online predictions.

After clicking the Predict button, you will get a prediction for your label (sales), as
shown in Figure 4-38.
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& advertising_automl_1 > Version1 ~ [E] VIEW DATASET & EXPORT
EVALUATE DEPLOY & TEST BATCH PREDICT VERSION DETAILS
Predict label
digital Text 0
[ 224.55 ] Prediction result
14.636249542236328
v Text 0
[ 149.7 ] 95% prediction interval
[13.58131885528564, 15.53612232208252]
radio Text 0
[ 233 ]
newspaper Text 0
[ 259 ]
| |

Figure 4-38. Prediction of sales volume based on initial values.

Regression models return a prediction value. Figure 4-38 shows a sales prediction
result value of 14.63—which is very close to the mean from the sales histogram
(shown in Figures 4-10 and 4-23). The prediction interval provides a range of values
that the model has 95% confidence to contain the actual result. So, since the sales
prediction result is 14.63, and the prediction interval is a range between 13.58 and
15.53, you can be 95% certain that any prediction result will fall within this range.

The Prediction Interval in Linear Regression

Prediction intervals are often used in regression analysis. A prediction interval is
different from a confidence interval—though both are statistical measures that pro-
vide an estimate of the range of values within which a true value is likely to live.
A confidence interval focuses on past or current events and is used to estimate a
population parameter (e.g., standard deviation, mean).

A prediction interval is used to predict the value of a future observation, given what
has already been observed. It provides an estimated range of values that may contain
the value of a single new observation, based on previous data.

If you create a regression model, you can use it to develop a prediction interval that
can determine where the next data point sampled may appear. Prediction intervals are
wider than confidence intervals. This is because prediction intervals account for the
uncertainty associated with predicting an individual value, as opposed to a population
parameter.
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Prediction intervals can be used to make decisions about future observations. For
example, a company might use prediction intervals to decide whether to invest in
a new product or service or to increase or decrease an advertising media channel
budget.

Now, let’s answer those business questions.

The goal was to build an ML model to predict how much sales volume will be
generated based on the money spent in each of the media channels.

Can the model predict how much sales volume will be generated based on the money
spent in each media channel?
Yes. Since Vertex Al allows you to input values for each media channel, you can
now make decisions about future budget allocation. For example, your company’s
strategic media plan may now include increasing the digital channel budget
based upon the results obtained from a prediction.

Is there a relationship between advertising spend and sales?
Yes. There is a positive linear relationship between advertising spend and sales
for digital, TV, and radio. Newspaper spend has a weak relationship to sales.

Which media channel contributes the most to sales?
TV contributes more to sales than the other media channels. How? The scatter-
plot you built during the EDA section, and your review of the Vertex Al feature’s
attribution bar chart after the model was trained, show the contribution of TV to
sales.

How accurately can the model predict future sales?
The regression model returns a prediction value when media channel values are
input into the Predict window to predict sales volume. The prediction results
showed a sales prediction value and prediction interval. Prediction intervals can
be used to make decisions about future observations, so you can be 95% certain
that any future sales prediction result will fall within that range.

Do not forget to undeploy your model once you are finished with
this chapter. Deployed models incur cost even when they are not
being used so that they are always available to return quick predic-

, tions. To undeploy the model, go to Vertex AI Endpoints, click the
endpoint name, then click the “More actions” three-dot menu, and
finally click “Undeploy model from endpoint”
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Summary

In this chapter, you built an AutoML model to predict advertising media channel
sales. You explored your data using Pandas, creating heat maps, scatterplots, and
histograms. After you exported the data file, you uploaded it into Google’s Vertex Al
framework. Then you learned how to use Google Cloud’s AutoML to build, train,
and deploy an ML model to predict sales. You gained an overall understanding of
the performance of your model using performance metrics and answered common
business questions. You used the model to make online predictions and do a bit of
budget forecasting. You are now ready to present to your team!
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CHAPTER 5

Using AutoML to Detect
Fraudulent Transactions

In this chapter, you build a Vertex AI AutoML model to predict whether a financial
transaction is fraudulent or not. You will clean and explore the dataset in a Google
Colab notebook environment before creating a managed dataset on Vertex Al as you
did in Chapter 3. Once you have created a managed dataset, you will use AutoML
to create a classification model to predict if a transaction is fraudulent or not. Along
the way, the chapter discusses classification models in general and the corresponding
metrics that are commonly used to evaluate them.

The overall workflow of this chapter is very similar to what you worked through in
Chapter 4 for the problem of predicting advertising media channel sales. For this
reason, in many places in this chapter you will see more concise details where the
conversations would be very similar. If you get stuck in these sections, please refer
back to Chapter 4 for more details.

The Business Use Case: Fraud Detection for
Financial Transactions

Your task in this chapter, as mentioned, is to build a model to predict whether
a financial transaction is fraudulent or legitimate. Your new company is a mobile
payment service that serves hundreds of thousands of users. Fraudulent transactions
are fairly rare and are usually caught by other protections. However, the unfortunate
truth is that some of these are slipping through the cracks and negatively impacting
your users. Your company can rectify these after the fact, but there is a fear of losing
customers due to them having to report these transactions. The goal is to improve the
fraud-detection software that your company is using by leveraging machine learning
(ML) to build a bespoke model.
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One complicating factor will be that the corresponding dataset will be highly unbal-
anced. The vast majority of transactions are going to be legitimate transactions, so
a simple model that predicts that all transactions are legitimate would be equally
accurate and useless. You will need to leverage other metrics to better understand
your model’s performance along the way.

This task might normally be one that is passed to a data scientist to create some sort
of advanced model (such as an autoencoder), but you have been tasked to quickly
get together a benchmark model that could be used to prototype other parts of the
fraud-detection system. That may seem like a hopeless task, but remember in the
previous project you were able to quickly create such a prototype using AutoML for
media channel sales prediction. So, you should feel confident that you are up to the
challenge!

Project Workflow

The project workflow in this chapter, illustrated in Figure 5-1, will be similar to that
in the previous chapter. For this reason, some details of the process will be omitted to
avoid repetition, but feel free to refer back to the previous chapter as needed.

Business case:
Detecting fraudulent
transactions

Data extraction Machine learning:
and analysis AutoML

Deploy and make
predictions

Evaluate results

Figure 5-1. Overall workflow for the fraud-detection project.

Now that you understand the business use case and objective, you can proceed to
data extraction and analysis as in your previous project. After the data extraction and
analysis steps, you will upload the dataset into the AutoML platform. The various
features (soon to be introduced) will be fed into the model. You'll evaluate the
AutoML results and then deploy the model to make predictions. After this activity
is completed, you will have the benchmark model ready for the engineering team to
start developing a better fraud-detection pipeline. And who knows, this model may
actually be the one that goes into production.
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Project Dataset

The project dataset consists of transaction data that has been simulated to replicate user
behavior and fraudulent transactions. This has been done using PaySim. PaySim is an
open source tool developed by a group of researchers who at the time were studying
scalable resource-efficient systems for big data analytics.'

Since financial transaction data can be difficult to use without exposing user informa-
tion, your company decided to use this simulated data. Data analysts at your company
have confirmed that the dataset that has been shared is really similar in distribution
to the actual data that your company sees in its application, so you can move forward
assuming that the data is representative of the real-world data that your company
wants to leverage at prediction time.

The dataset has been provided as a CSV file in Google Cloud Storage (download at
https://oreil.ly/n1y1X). In your version of the dataset, there are 10 columns. Table 5-1
gives the column names, data types, and some information about the possible values
for these columns.

Table 5-1. Schema and field value information for the customer churn dataset

Column name Column type Notes about field values

step Integer Represents number of hours since simulated data was generated
type String Type of transaction

amount Float Amount of transaction

nameOrig String Anonymized name of customer who originated transaction
oldbalanceOrg Float Initial balance before the transaction for the originator
newbalanceOrig Float New balance after the transaction for the originator

nameDest String Anonymized name of the customer who owns the destination account
oldbalanceDest Float Initial balance before the transaction for the destination account
newbalanceDest Float New balance after the transaction for the destination account
isFraud Integer 1if the transaction was fraudulent and 0 otherwise

1 For more details, see “PaySim: A Financial Mobile Money Simulator for Fraud Detection” by E. A. Lopez-Rojas,
A. Elmir, and S. Axelsson (in The 28th European Modeling and Simulation Symposium-EMSS, Larnaca, Cyprus,
2016).
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Exploring the Dataset Using Pandas, Matplotlib,
and Seaborn

All of the code in this section, including some additional examples, is included in
a Jupyter notebook in the low-code-ai repository on GitHub. You will walk through
how to create this notebook from the very beginning, but the notebook in GitHub is
great to use as a resource for later independent work or in case you get stuck.

As in Chapter 4, you will be loading a CSV file into a Jupyter Notebook environment
and analyzing and exploring your data using Pandas, Matplotlib, and Seaborn to get
a better understanding of your features. You will use the information you gain from
this process to select the best set of features for your model in AutoML.

Loading Data into a Pandas DataFrame in a Google Colab Notebook

First, go to https://colab.research.google.com and open a new notebook, following the
process discussed in Chapters 2 and 4 for notebook creation in Google Colab. You
may rename this notebook to a more meaningful name by clicking on the name and
replacing the current name with a new one, say, Fraud_Detection_Model.ipynb.

Next, type the following code into the first code block to import the packages needed
to analyze and visualize the financial transactions dataset and execute the cell:

import as
import as

import as

import as

%matplotlib inline

Now that the packages are imported, the next step is to load the data into a Pandas
DataFrame:

url = ('https://storage.googleapis.com/' +
'low-code-ati-book/financial_transactions.csv')

transaction_df = pd.read_csv(url)

Your data is now loaded into the DataFrame. It is always a good idea to take a peek at
a few rows of data before moving forward. To look at the first few rows of data, add
the following code to a new cell and execute that cell:

transaction_df.head()

Take a look now at the first five rows of data in the DataFrame. This will give you
some insight into what the different columns look like. What do you notice about the
data? Tables 5-2 and 5-3 show the output from this line of code.
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Table 5-2. The first six columns of output from the transaction_df.head() statement

step type amount nameOrig oldbalanceOrg newbalanceOrig
1 PAYMENT 9839.64 (1231006815 170136.0 160296.36

1 PAYMENT  1864.28 (1666544295 21249.0 19384.72

1 TRANSFER 181.00 C1305486145 181.0 0.00

1 CASH_OUT 181.00 (84003671 181.0 0.00

1 PAYMENT  11668.14 (2048537720 41554.0 29855.86

Table 5-3. The last five columns of output from the transaction_df.head() statement

nameDest oldbalanceDest newbalanceDest 1isFraud isFlaggedFraud

M1979787155 0.0 0.0 0 0
M204428225 0.0 0.0 0 0
C553264065 0.0 0.0 1 0
(38997010 21182.0 0.0 1 0
M1230701703 0.0 0.0 0 0

Note that so far the step column has a value of 1 for all of the rows you're looking at.
There are many reasons this could be the case. For example, all rows could have the
same value, the data could be grouped up in some way by step, or it could just be a
coincidence since we are only looking at five rows. In this case, it is actually that the
data is sorted by step in ascending order, though this is not clear at all from only five
rows of data.

You may also notice a pattern with the type column with the oldbalanceDest and
newbalanceDest columns. In these rows, whenever there is a PAYMENT or TRANSFER
transaction type, the oldbalanceDest and newbalanceDest columns are both zero. This
could be a coincidence, but it is something you should explore in the dataset later on.

In the last column in the DataFrame, you should notice something odd. There is a
column, isFlaggedFraud, that you did not see in the original schema. There are a lot
of reasons this could be the case, but this is another reason why basic data exploration
can be useful. If you run across this sort of scenario in practice, you may have to
reach back out to the person or team who shared the data so that you can validate
whether the column should be there, and if so what it represents.

In this case, you learned that this was a column that gave the output of the previous
model’s prediction if the transaction was legitimate or fraudulent. Why would this be
a bad feature for your model to use? Because you may not have isFlaggedFraud at
prediction time. Ideally, this is coming from a model that you will deprecate once a new
and better model has been deployed. However, this discovery is still useful. You can use
the previous model as a benchmark to compare against to be sure that your new model
shows improvement.
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Exploring the Dataset

As you saw in Chapter 4, AutoML will do a lot of the work of describing your features
and performing feature engineering before training your model, but it is important
that you still take the time to understand the data you are using for training your
model. ML is very sensitive to the quality of your data. If there are problems with
your data, they will not magically go away in the process of using AutoML.

Descriptive analysis

First, use the .info() method on your DataFrame to get a quick understanding of
the amount of data you are working with and the data types of the columns. Add the
following code into a cell and execute it to do so:

transaction_df.info()

You should see that there are 6,362,620 rows of transaction data with the 11 columns
that you expect. The data types all match the expected types (with the object type
corresponding to the String data type in the Pandas DataFrame).

As before, the easiest way to get a quick look at the descriptive statistics of your
dataset in Pandas is to use the .describe() method. Create a new cell in your
notebook, add the following code, and execute the cell to see the descriptive statistics
(as seen in Figure 5-2):

transaction_df.describe()

° 1 transaction_df.describe()

=3 step amount oldbalanceOrg newbalanceOrig oldbalanceDest newbalanceDest isFraud isFlaggedFraud
count 6.362620e+06 6.362620e+06 6.362620e+06 6.362620e+06 6.362620e+06 6.362620e+06 6.362620e+06 6.362620e+06
mean 2.433972e+02 1.798619e+05 8.338831e+05 8.551137e+05 1.100702e+06 1.224996e+06  1.290820e-03 2.514687e-06

std  1.423320e+02 6.038582e+05 2.888243e+06 2.924049e+06 3.399180e+06 3.674129e+06  3.590480e-02 1.585775e-03

min  1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

25% 1.560000e+02 1.338957e+04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

50% 2.390000e+02 7.487194e+04 1.420800e+04 0.000000e+00 1.327057e+05 2.146614e+05 0.000000e+00 0.000000e+00

75% 3.350000e+02 2.087215e+05 1.073152e+05 1.442584e+05 9.430367e+05 1.111909e+06 0.000000e+00 0.000000e+00

max 7.430000e+02 9.244552e+07 5.958504e+07 4.958504e+07 3.560159e+08 3.561793e+08 1.000000e+00 1.000000e+00

Figure 5-2. Rendered output of transaction_df.describe().

It seems like there are no null values by looking at the count for each row. The
step field varies between 1 and 743 fairly uniformly. The amount, oldbalanceOrg,
newbalanceOrig, oldbalanceDest, and newbalanceDest vary over a large range, but
this is reasonably to be expected of financial transactions.
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The isFraud column shows an interesting feature of the dataset. The mean of a field
with values of only 0 and 1 corresponds to the proportion of values that are equal
to 1. In this case, about 0.129% of transactions were indeed fraudulent, or about 1
in every 800 transactions. This represents a fairly unbalanced dataset that can cause
issues when attempting to build a classification model. You will explore these issues
and possible solutions in later sections, but for now continue to explore the data.

The isFlaggedFraud column has about double the number of rows flagged as frau-
dulent transactions compared with the actual amount of fraudulent transactions. Is
this a bad thing? Not necessarily. You want to be sure you are catching the fraudulent
transactions, and if you flag a few extra transactions and recognize them as legitimate
transactions upon further consideration, then it is a small price to pay for capturing
fraudulent transactions. However, if you flag too many additional transactions, then
you will be wasting a significant amount of time and resources exploring legitimate
transactions. These are both things you will need to consider when evaluating models
in the near future.

There are a few columns missing from your descriptive analysis, though. Notice that
you only have statistics for the numeric features (the columns of type integer and
float), but youre missing data from the type, nameOrig, and nameDest columns. The
describe() method will only return the statistics for numerical features if there is a
mix of numerical and categorical features. To see descriptive statistics for categorical
features, limit the scope to just those columns. To do that, add the following code to a
new cell and execute that cell:

cols = ['type', 'nameOrig', 'nameDest']

transaction_df[cols].describe()
You are defining a list of columns you want to see the descriptive statistics for, and
then using the notation transaction_df[cols], only considering those columns for
the .describe() method (Figure 5-3).

© 1 cols = ['type','nameOrig', 'nameDest']
2 transaction_df[cols].describe()

[Bg type nameOrig nameDest
count 6362620 6362620 6362620
unique 5 6353307 2722362

top CASH_OUT (C1902386530 (1286084959

freq 2237500 3 113

Figure 5-3. Code and output of the describe() method for categorical columns.
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Once again, we see that there is a value for every row for each of these columns by
comparing the count with the number of rows in the DataFrame. As expected, there
are five unique values for the type column, but notice that the nameOrig column
is almost in a one-to-one relationship with the transactions. In particular, there are
6,353,307 values for nameOrig and 6,362,620 total transactions. This is not a good
sign for this being a useful feature for building a good model. Why? Because if there
is a feature that identifies a row, or nearly identifies a row, then you risk the model
only looking at that value and not learning more complex relationships between the
features. This seems to be less of an issue for the nameDest column, but it’s still a risk
given the large number of unique values.

AutoML will perform feature engineering and selection for you,
but if you can give it a better set of features to start with, you
will still see better performance. For example, you could re-create
the nameOrig and nameDest features as a Boolean-valued column
where the value is True if the value is repeated more than once
and False otherwise. Is this the right approach? Maybe. To verify
this, you should reach out to domain experts and experiment with
different feature transformations to see what works best. You will
learn more about feature engineering as a whole when working
through upcoming chapters.

Exploratory analysis

Before visualizing certain features of the data, it is worth exploring how well the
previous model is performing. One easy way to do this is by creating a new column,
which you will call isCorrect, which is a simple 1 if isFraud and isFlaggedFraud
are the same and 0 otherwise. To compute this new column and count the number
of times that the old model correctly predicted fraudulent transactions, execute the
following code in a new cell:

transaction_df['isCorrect'] = (
transaction_df['isFraud'] == transaction_df['isFlaggedFraud']

iransaction_df[ 'isCorrect'].sum()

You should see the result of 6354423, but what does that actually mean? In Python,
the Boolean data type has two possible values: True and False. When you use the sum
function, it treats the True value as 1 and the False value as 0. The result that you see
then is the number of True values from the statement transaction_df['isFraud']
== transaction_df['isFlaggedFraud']. This statement returns True when the col-
umns have the same value and False otherwise. Recall that there were 6362620 rows
of data total, which means that 99.87% of transactions were correctly flagged.
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So, the old model was a really good model, right? Most of the transactions are not
fraudulent, and those are the ones that you are most worried about. But consider
another related question: How many fraudulent transactions did it correctly predict?
You can figure that out by asking where the isFraud column has a value of 1 and the
isCorrect column also has a value of 1. Execute the following code in a new cell to
see the results:

(transaction_df['isFraud']*transaction_df['isCorrect']).sum()

Why does that line of code tell you the number of fraudulent transactions that were
successfully flagged? The isFraud column has a value of 1 only if the transaction was
fraudulent, and the isCorrect column is True (which is treated as 1 for arithmetic) if
the prediction was correct. So, multiplying the values of these columns will only give
1 if both columns have a value of 1—otherwise that product will be 0. Adding up the
number of 1s gives the total number of correctly flagged fraudulent transactions.

The number of correctly marked fraudulent transactions was 16. By using the code
transaction_df['isFraud'].sum(), you see that the total number of fraudulent
transactions was 8,213. That means only 0.19% of fraudulent transactions were suc-
cessfully flagged. This model, which looked great when we saw the overall accuracy,
did very poorly when we asked a slightly different, maybe more relevant question.
This is an example of a metric known as recall. When selecting the model objective
and considering evaluation metrics later in the chapter, you will explore how to
interpret the different available metrics in AutoML.

The next way that you can visualize the data is to create a bar chart for categorical fea-
tures to understand the percentage of fraudulent transactions by value. For example,
for the type feature, there are five values. To create such a bar chart, use the following
code in a new cell to create the visualization:

transaction_df.groupby('type')['isFraud'].mean().plot.bar()

This line of code groups the rows by the value of type and takes the mean of the
isFraud column. Recall that since isFraud has a value of 1 or 0, this is equivalent to
the percentage of values that are 1. You then use the plot.bar() method to plot the
results as a bar graph, as shown in Figure 5-4.
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Figure 5-4. Bar graph of percentage of fraudulent transactions versus type of transaction.

You should notice something interesting immediately. There are only two transaction
types in your dataset that have fraudulent transactions: CASH_OUT and TRANSFER. You
can confirm this with the following line of code:

transaction_df.groupby('type')['isFraud'].value_counts()

That outputs the number of times each value combination appears. The output you
should see will be similar to Table 5-4.
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Table 5-4. Output from the value_counts() function

type isFraud

CASH_IN © 1399284

CASH_OUT © 2233384
1 4116

DEBIT 0 41432

PAYMENT 0 2151495

TRANSFER 0 528812
1 4097

In this case you can confirm that fraudulent transactions only appear for the transac-
tion types mentioned. That means—as long as this dataset is really representative of
the transactions your company sees—this could be a very useful feature. However, if
fraudulent transactions of new types start appearing, your model will almost certainly
miss them because it never saw such an example.

It will be important to monitor the transaction types for fraudu-
lent transactions over time and consider retraining the model as
needed. This conversation around model monitoring and continu-
ous training is beyond the scope of this book, but it’s certainly a
concept worth being aware of.

Another useful way to visualize data with categorical labels is to bucketize the
numeric features and see for each bucket what percentage of rows is fraudulent
versus legitimate. Bucketization, or discretization, is the process of splitting a numeric
variable into value ranges or “buckets” and assigning each element to one of the
buckets. You did this in Chapter 4 when you created histograms as well. You can do
this for exploring the amount of the transaction and the new and old balance features
for the originator and destination accounts.

For example, suppose you want to visualize the percentage of different ranges of the
amount feature:

transaction_df['amountBkts'] = pd.qcut(transaction_df['amount'], 10)

transaction_df.groupby('amountBkts')['isFraud'].mean().plot.bar()
Before looking at the output, take a moment to parse that first line of code. You are
creating a new column, amountBkts, in your DataFrame that will contain the bucket
information. The pd.qcut() function assigns buckets based on quantiles. You are
bucketizing the amount column into 10 buckets. The first bucket contains the data
from the Oth to the 10th percentile, the second contains the data from the 10th to the
20th percentile, and so on (see Figure 5-5).
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Figure 5-5. Percentage of fraudulent transactions versus decile ranges for the amount

column.
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You can see a general trend here that hints at something you may have intuitively
considered. The larger the transaction amount, the more likely it is that the trans-
action is fraudulent. In particular, you see that there is a sevenfold jump in the
fraudulent transaction rate for transactions with an amount above the 90th percentile.

To look at the same visualization for the oldbalanceOrg column, add the following
code into a new cell and execute that cell:

transaction_df['oldbalanceOrgBkts'] = pd.qcut(transaction_df['oldbalanceOrg'],
10, duplicates='drop')
transaction_df.groupby('oldbalanceOrgBkts')['isFraud'].mean().plot.bar()

There is a new argument, duplicates="drop', in the pd.qcut() function. This
argument is here to merge duplicate buckets into a single bucket. In this case, the

30th percentile of the oldbalanceOrg column is 0, so the first three buckets would be
identical. These buckets are merged into the 30th to 40th percentile bucket instead.

As you can see in Figure 5-6, there is definitely some sort of relationship between
oldbalanceOrg and isFraud. The overall trend is that the higher the old balance
in the originator account, the higher the chance of fraud—but only up to a certain
point. This chance of fraud decreases once the value is in the 90th to 100th percentile
bucket.
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Figure 5-6. Percentage of fraudulent transactions versus decile ranges for the
oldbalanceOrg column.

As an exercise, explore the relationship between the other numeric features and the
label in a similar fashion. The code for these examples is available in the GitHub
notebook, and the corresponding visualizations can be found in Figures 5-7, 5-8,
and 5-9.
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Figure 5-7. Percentage of fraudulent transactions versus decile ranges for the

newbalanceDest column.
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Figure 5-8. Percentage of fraudulent transactions versus decile ranges for the
newbalanceOrig column.
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Figure 5-9. Percentage of fraudulent transactions versus decile ranges for the
oldbalanceDest column.

There are other ways to explore transactions. For example, you know that only two
types of transactions historically have been fraudulent. You can create a scatterplot
for one of these types, say CASH_OUT, where you plot the newbalanceDest versus
the oldbalanceDest and then color the points depending on whether they were
fraudulent or not. Use the following code to create this visualization:

cashout_df = transaction_df.query("type == 'CASH_OUT' & newbalanceDest < 1e8")
cashout_df.plot.scatter(x="'oldbalanceDest',
y="newbalanceDest"',
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c="1sFraud',

colormap="Y1lOrRd",

alpha=0.1)
The first line applies two filters. The first filter pulls rows with the type of CASH_OUT
and all transactions where the newbalanceDest is less than 1e8 or 100,000,000. The
second line is about building the scatterplot. We set the x and y columns, the column
for coloring the points (isFraud), and a color map Y10rRd to make it easier to see
the points. This specific color map assigns a darker color (red) to isFraud=1 and a
lighter color (yellow) to isFraud=0. For other color maps, see the documentation for
Matplotlib. Finally, since you are plotting many points, you set alpha=0.1 to add a

little bit of transparency to the points. This makes the visualization easier to parse
(see Figure 5-10).
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Figure 5-10. A plot of newbalanceDest versus oldbalanceDest for CASH_OUT transac-
tion type colored by the value of isFraud.

There seems to be a region where the points are closer to red than yellow, or where
there are more fraudulent transactions than legitimate transactions. This is a good
sign that there is some sort of cross-correlation between these two columns. This
relationship can be captured in a few different ways, such as feature crossing, which
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AutoML will use as part of the feature selection and engineering process. Feature
crossing is the process of creating synthetic features by concatenating, or crossing,
two or more preexisting categorical features. You will explore manually performing
this process in Chapter 8 when working with custom code models.

As an exercise, continue to visually explore the dataset using the tools you have
learned about in this chapter and the previous chapter. See if you can find any
interesting new insights that you may have not expected.

Exporting the Dataset

After exploring the dataset, you are ready to export it into a form that will ultimately
be usable by Vertex AI AutoML. You will see a reminder here of how to do this, but
note that the data is already stored in a CSV file in Google Cloud Storage and stored
in a table on BigQuery, so for the next section you don’t need to load the exported
dataset. If you are interested in learning more about loading data into BigQuery, this
will be one of the steps in the project you work through in Chapter 6.

To export data from a Pandas DataFrame to a CSV file, you can use the following
code:

transaction_df.to_csv('transactions.csv', encoding='utf-8', index=False)

It is always a good practice to check the contents of the CSV file after it has been
written, and you can use the 'head command to do this:

'head transactions.csv

To download the file, follow the process from Chapter 4. Additionally, Google Colab
has a function in the google.colab package that can also download the file for
you. To use this function, import the function from the google.colab package and
download the file to your local machine:

from import files
files.download('transactions.csv')

Though downloading files programmatically is a very convenient
capability of Google Colab, this is also why it is extremely impor-
tant to go through any notebook that you are running and be sure

\ that you understand what code is being run in the notebook. You
do not want to have unexpected files downloaded to your machine
that could be malicious in nature, and the easiest way to avoid this
is to carefully read through the code being executed.
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Classification Models and Metrics

Before you begin to train the model, let’s ask what exactly classification models are
and how to properly evaluate them. More mathematical details will be found later in
Chapter 7, but with at least a basic understanding of classification models, you can
comprehend results and detect troublesome behavior from your model.

A classification model is a model that returns a categorical output, like cat, dog, fish,
or fraudulent. In a classification model, you know up front which classes you are
trying to distinguish. These classes can be numbers as well; for example, a rating or
a problem where numeric labels have been used in place of categorical labels. In the
case of your problem in this chapter, those classes are ® and 1, representing legitimate
and fraudulent transactions respectively.

In practice, classification models do not return the predicted class per se, but rather
return a probability for all of the possible classes. Usually, the predicted class is simply
the most likely class. In the case of binary classification, where there are two possible
classes, that may not be the case. For example, suppose you only classify a transaction
as fraudulent if there is at least a 50% chance of the transaction being fraudulent
from the output of the model. You may be missing cases of fraud. On the other
hand, if you set that threshold too low, say 5%, then you may end up flagging way
too many transactions as fraudulent and thus spending too many resources exploring
those transactions further. As you may guess, figuring out where exactly to place the
threshold is both a modeling problem and a business problem.

To help determine where to place this threshold, you can leverage different evaluation
metrics to make the decision based on your business needs. Accuracy is a simple and
easy-to-understand metric that is commonly used for classification models. However,
you have already seen the danger in using accuracy as your main evaluation metric.
After all, the original model was highly accurate, over 99%, but barely caught any of
the fraudulent transactions. Accuracy is an important metric nonetheless, but it does
not always give the complete picture.

These sorts of issues tend to arise when you have unbalanced classes, that is, when
one class is much more common than other classes. In your case here, recall that only
0.129% of transactions were fraudulent. The ratio of fraudulent to legitimate is nearly
1:800. This scenario means that certain issues can easily be masked by metrics like
accuracy. In scenarios such as fraud detection, where the positive class is very rare,
accuracy quickly becomes unreliable on its own.

You can use metrics like recall and precision together with accuracy to get a clearer
picture of your model’s performance. Recall can be thought of as the true positive
rate. In this example of fraudulent transactions, the recall represents the percentage of
fraudulent transactions that the model successfully predicts. Precision can be thought
of as the probability the model is right when it predicts a positive case. In the case
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of the fraudulent transactions problem, precision represents the percentage of the
predicted fraudulent transactions that were indeed fraudulent. If your goal is to
proactively flag fraudulent transactions for review, recall would be a very important
metric to consider. You would likely be willing to sacrifice a little bit of accuracy or
precision to improve recall. Of course, this is still something you want to balance, as
there is a resource cost to reviewing a large number of transactions.

Often, recall and precision are computed in terms of the confusion matrix. The
confusion matrix breaks down the predictions into a table based on the predicted class
and the actual class. An example of this is shown in Table 5-5.

Table 5-5. Confusion matrix for a general problem

Predicted positives Predicted negatives

Actual positives  True positives (TP)  False negatives (FN)
Actual negatives False positives (FP)  True negatives (TN)

Recall is defined as ———— > Or the percentage of actual positives that was predicted

(FN+ TP
TP

as positive. Precision is defined as FPLTD

that was actually positive. As you may expect, there is a balancing act between
precision and recall in practice. Having a lower threshold for the positive class (say,
fraudulent transaction) will lead to more false positives and fewer false negatives,
thus lower precision and higher recall. On the other hand, having a higher threshold
for the positive class will lead to more false negatives and fewer false positives, thus
higher precision and lower recall.

, or the percentage of predicted positives

Which is more important: precision or recall? Many times, the
answer to this question comes down to a business decision. What
are your priorities? For example, if your company wants to capture
fraudulent transactions as much as possible but is willing to check
some legitimate transactions as well, you will likely want to favor
recall as your evaluation metric.

How do you know you are finding the right balance between precision and recall?
One metric is known as the FI-score, which is the harmonic mean of precision and
recall. In general, harmonic means are often considered the “best average” for ratios.
For two numbers it is easy to write down. Let P be the precision and R be the recall.
Then the F1-score can be computed using the following formula:

2(Px R)
P+R

Fl-score =
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The F1-score tends to be skewed more toward the smaller of precision and recall. For
that reason, this can be a good metric for ensuring that you don’t sacrifice too much
of one metric to optimize another.

Precision and recall heavily depend on the set threshold, but also on the underlying
model as well. How do you decide on the underlying model when your metrics
(including accuracy) depend so heavily on the threshold? There are metrics that
depend only on the underlying model, such as the area under the receiver operator
characteristic curve (ROC AUC) and the area under the precision-recall curve (PR
AUC). Both of these metrics vary between 0 and 1. The closer in value to 1 your
metric is, the better the model. A deep discussion on these metrics is beyond the
scope of this chapter, but an intuitive understanding will be helpful in practice.

The ROC curve plots the recall (or the true positive rate) versus the false positive
rate, which is defined as the percentage of negative examples that were classified as
positive. The different points on this curve correspond to different thresholds, thus
the curve as a whole sees all of the different possible thresholds. The area under this
curve, the ROC AUC, can be thought of as the chance that the model (independent of
threshold) gives a higher probability that a positive example is indeed positive, versus
a negative example. This is a really useful metric for classification problems, but often
it is not as useful for situations where the dataset is unbalanced or there is a bigger
cost to a false negative than a false positive. One could reasonably argue that this is
the situation that you are in here, where missing a fraudulent transaction will likely
be more costly than having to check a legitimate one.

Another metric is the PR curve. The idea is the same as the ROC curve, but here you
plot precision versus recall instead. The PR curve tends to be a stronger metric in
the case of unbalanced datasets. Why is this? Well, both the precision and recall are
focused on the positive class, and if you set the positive class to be the rarer class, then
your metrics are based on the success of predicting this class rather than the dataset
as a whole.

In the following section, when evaluating the model that you train in AutoML, you
will see examples of both the ROC curve and the PR curve.

Using AutoML to Train a Classification Model

Now that you have explored your data, you are ready to train a model using AutoML.
Similarly to Chapter 4, you will create a managed dataset on Vertex Al and then
explore the dataset statistics. Then you will train the model and check model perfor-
mance. Since classification metrics in general may be newer to you, you will spend
some time studying those before moving on to understanding feature importances
and serving predictions with your model.
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Many of these steps were covered in detail in Chapter 4 for a regression problem.
For that reason you will see a lighter treatment of some topics in this chapter and be
referred back to Chapter 4 for more details.

Creating a Managed Dataset and Selecting the Model Objective

Go to console.cloud.google.com and then go to Vertex Al (either using the side menu
or the search bar). From there, select Datasets, and once on the Datasets page
click the Create button. Replace the autogenerated name with fraud_detection.
Similarly to the project from Chapter 4, you first need to choose a data type and
objective. Since you are working with tabular data and want to solve a classification
problem, you should choose Tabular and then “Regression/classification” as shown in
Figure 5-11.

Dataset name *
[ fraud_detection

Can use up to 128 characters.

Select a data type and objective

First select the type of data your dataset will contain. Then select an objective, which is the outcome tha

IMAGE TABULAR TEXT VIDEO

@ Regression/classification

Predict a target column'’s value.
Supports tables with hundreds of
columns and millions of rows.

QO Forecasting

Predict the likelihood of certain events
or demand.

Figure 5-11. The required options for your new fraud_detection dataset.
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Click the Create button and you will be taken to the next page, where you can
specity the source data. Here you have two choices: the CSV file in Google Cloud
Storage, which you used in your notebook exploration, or a table in BigQuery that
contains the exact same data that was prepared for you in advance. The data stored in
BigQuery will come with additional schema information—for example, the data types
of each column—that the CSV does not contain, so you will use this approach.

Under “Select a data source,” click the radio button for “Select a table or view from
BigQuery” and then type in the following BigQuery path and hit the Continue
button:

ma-low-code-ai.low_code_ai.financial_transactions

It will take around 15-20 minutes to load and preprocess the data. AutoML does
a lot of additional preprocessing to analyze and prepare the data for the upcoming
training job. Afterward you will be ready to explore the data in the Vertex Al
Datasets UL

Exploring Dataset Statistics

Once the data has been loaded and prepared, you can move on to analyzing the
dataset. Click the Generate Statistics button. It will take a few minutes to generate the
statistics. Once they are generated, you can click on the various columns and explore
the statistics. Based on your analysis from before, there should not be any surprises,
but it is always worth taking an additional look before moving forward. For example,
if you click the type column you will see the statistics shown in Figure 5-12. You will
see that there are no missing values; there are the five distinct values that you saw
before and the breakdown of the number of times each value appears. The new part
here should be the nice visualization to be able to quickly visually parse the portion of
the total number of values each value comprises.
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Column name: type
Missing % (count): -
Distinct values: 5

Most common value (%): CASH_OUT(35.166%)

@ CASH_OUT (2237500)
@ PAYMENT (2151495)
@ CASH_IN (1399284)
@ TRANSFER (532909)
@ DEBIT (41432)

Figure 5-12. Column statistics for the type column generated by Vertex AL

Before moving on to the next section, go through each column and ensure that
everything looks how you expect based on the analysis you did before. Pay attention
to the data types and the statistics and ensure that there are no surprises. You will not
find any such surprises this time around, but developing this habit is good, and it is a
best practice to be sure before you begin any training using AutoML.

Training the Model

To train your model, click the Train New Model button and select the Other option
(as shown in Figure 5-13). Be sure that Classification is chosen as the objective and
AutoML is selected as the model training method, and hit the Continue button.
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Training jobs and models

Use this dataset and annotation set to train a new machine
learning model with AutoML or custom code. Selecting
AutoML on Pipelines will create a Run on Vertex Al Pipelines.
Run information will be found on the Runs tab under Pipelines.

TRAIN NEW MODEL

AutoML on Pipelines
Other

Figure 5-13. Options for training a new model in Vertex AI AutoML.

Next, on the “Model details” page, select “Train new model” and set the name of the
model as fraud_detection. Also, choose isFraud as the target column. Your inputs
should look like those shown in Figure 5-14. Hit the Continue button to go to the
next page.

Train new model @ Train new model

Creates a new model group and assigns the trained model as version 1

9 Training method (O Train new version

. Trains model as a version of an existing model
© Model details I
Name *
e Training options [ fraud_detection ]
© Compute and pricing
Description
START TRAINING CANCEL Target column *
{ isFraud (INTEGER) v @ ]

[OJ Export test dataset to BigQuery

vV ADVANCED OPTIONS

CONTINUE

Figure 5-14. Model details page after model name and target column are selected.
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On the “Training options” page, choose which features to use to train and ensure that
the features are treated correctly as either categorical or numeric. On the right side of
the screen, click the minus signs beside the isFlaggedFraud, nameDest, and nameOrig
features. This will remove these features from the training process. Ensure that the
step feature is treated as categorical as well. This will be important because this
represents a time period and not a numeric value. In particular, step being 10 should
not be counted as twice as influential on the model as step being 5. See Figure 5-15 to
see what your page should look like before hitting the Continue button.

= Filter Enter property name or value [~)
D Column name /  Transformation BigQuery type  BigQuery mode Missing % (count) 0 Distinct values o
[ amount Numeric v FLOAT NULLABLE - 5316900 [S)
D isFlaggedFraud Categorical + INTEGER NULLABLE 100% (6362620) 1 [©)
[ isFraud INTEGER NULLABLE - 2
D nameDest Categorical + STRING NULLABLE 100% (6362620) 1 @
D nameOrig Categorical v  STRING NULLABLE 100% (6362620) 1 @
[ newbalanceDest ~ Numeric v FLOAT NULLABLE - 3555499 (€]
[ newbalanceOrig ~ Numeric v FLOAT NULLABLE - 2682586 (€]
O oldbalanceDest Numeric v FLOAT NULLABLE - 3614697 e)
[ oldbalanceOrg Numeric v FLOAT NULLABLE - 1845844 [S)
D step Categorical « INTEGER NULLABLE - 743 @
O type Categorical ¥  STRING NULLABLE - 5 [C)
|
Rows per page: 50 v 1-110f 11 < >

Figure 5-15. Training options page after options are selected.

On the final “Compute and pricing” page, you will set the training budget. As a
note, the pricing is computed per hour of training performed. For up-to-date pricing,
please see the Vertex Al documentation. With this in mind, set the budget to one
hour. Be sure Early Stopping is selected since it will terminate the model training
process once improvement is no longer being seen. This is very useful if you set a
higher budget but ultimately end up not needing that time. Once you are done, click
Start Training.

After model training is completed, you will receive an email notification, and the
model is registered in the model registry.

Using AutoML to Train a Classification Model | 139


https://oreil.ly/x8C3f

Evaluating Model Performance

Once your model has completed the training process, you are ready to view the
evaluation metrics. Navigate, either via the side menu or the search bar, to Vertex
AT Model Registry. Click on your model, fraud_detection, and then click the corre-
sponding version you want to view. If you are following this chapter, that will be
version 1.

Since you care most about trying to predict fraudulent transactions, click the 1 class
(highlighted in Figure 5-16) to see how your model performed on the test dataset set
aside by AutoML. Note that the evaluation metrics for your model may differ from
the one shown in this chapter due to randomness in the model training process.

Confidence threshold @ @————————— 0.06

PRAUC @ 0929 Precision-recall curve @
ROC AUC @ 0.997

Log loss @ 0.001

F1 score @ 0.65859765

Precision @ 50.4%

Recall @ 95.2%

Precision

To evaluate your model, set the confidence threshold to see
how precision and recall are affected. The best confidence
threshold depends on your use case. Read some example
scenarios [4 to learn how evaluation metrics can be used.

0% 100%
Recall

Figure 5-16. Model evaluation metrics for the fraud_detection model.
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Note the slider for Confidence threshold. You can move this around to see how
it affects the precision and recall. Suppose, for example, your company is willing
to have up to 50% of flagged transactions be legitimate so that they can capture
as much fraud as possible while still being able to have the resources to check the
flagged transactions. For the model represented in Figure 5-16, the threshold that
corresponds to 50% precision is 0.06. That is, if the model predicts that there is more
than a 6% chance of fraud, you would want to flag it as fraud and check it out. Note
that the recall in this scenario is 95.2%—in other words, only 1 in 20 fraudulent
transactions would be expected to be missed in this scenario.

The best confidence threshold will depend on your business needs and goals, so there
is no single correct answer here.

Model Feature Importances

If you click “All labels” on the side of the UI and then scroll down to the bottom of
the page, you can see the feature importances for your model. Recall from Chapter 4
that feature importances measure features’ impact on model predictions. Note that, as
with the evaluation metrics, the exact importances you see for your model may differ
from the importances that are shown in this chapter.

The feature importances for this model are shown in Figure 5-17. The
oldbalanceOrg and newbalanceOrig features were the most important features, and
amount and type were the third and fourth, respectively. Recall, when you were
exploring your data in the notebook environment, these features seemed to have the
clearest patterns between the feature value and the percentage of fraudulent transac-
tions. In general, these are good to check to be sure that nothing is possibly odd with
what your model learned. It is not uncommon for a model to notice patterns that
you may not have noticed, but it should be a red flag if your model seems to have
learned something nonsensical. For example, if a model to predict taxi fare learned
that the distance of the ride was the least important feature, in some circumstances
this could be a reason to explore your data more closely. Feature importances are very
useful both to stakeholders, to understand how a model makes predictions, and to
data scientists and ML engineers, to understand how to debug models in the case that
surprising or nonsensical predictions are being made.
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oldbalanceOrg

newbalanceOrig

amount

type

step

newbalanceDest

oldbalanceDest

0% 10% 20% 30% 40%

Figure 5-17. Feature importances for the fraud_detection model.

Getting Predictions from Your Model

Now that you have seen the evaluation metrics for your model, you are ready to
deploy the model for prediction. If you get stuck in the process for deploying your
model, refer back to Chapter 4, as the process in this chapter will be identical.
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Complete the following steps to deploy your model, leaving all unmentioned options
as the default value:

1. On the “Define your endpoint” page, name the endpoint fraud_endpoint.

2. On the “Model settings” page, select n1-standard-2, 2vCPUs, 7.5GiB memory
as the Machine type. Using a smaller machine type will lower the cost of the
deployed model and meet your needs in this example.

3. On the “Model settings” page, under Explainability options, click the checkbox
for “Enable feature attributions for this model”

4. On the “Model monitoring” page, disable model monitoring, as you will not need
it here.

After completing these steps, click Deploy. The model will take a few minutes to
deploy. Once the model has finished deploying, you can test the model on the bottom
of the page.

Use the following values to test your model, noting that once again, your exact results
will vary from the model being shown in Figure 5-18:

step 14
type CASH_OUT
amount 1000000

oldbalanceOrg 1000000
newbalanceOrig 0
oldbalanceDest ©

newbalanceDest 0
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Test your model

Feature column name Type Value Local feature importance
step Text { ] -0.03812966236250759
14
type Text 0
{ CASH_OUT ]
amount Numerical -0.01308150704767286
{ 1000000 ]
oldbalanceOrg Numerical 0.9009111765758462
[ 1000000 ]
newbalanceOrig Numerical { ] -1.818989403545856e-12
0
oldbalanceDest Numerical [ ] 0.04963157639076599
0
newbalanceDest Numerical [ ] 0.01061847894379753
0

PREDICT RESET

Figure 5-18. Model testing with predictions and local feature importances.

Once you are done, click the Predict button. To see the predicted probability of a
fraudulent transaction from your model, change the “Selected label” to 1.

For the model shown in Figure 5-18, the “Confidence score” is the predicted proba-
bility. In this case, it gives a 91% chance of the transaction being fraudulent. Based on
the conversation from before around evaluation metrics and thresholds, this transac-
tion would be marked as fraudulent. You can also see the local feature importances.
The highest feature importance value corresponds to the oldbalanceOrg feature.
In this case, there is a CASH_OUT transaction for the exact balance of the account
with 1,000,000 dollars in it. Based on your model, there is a high chance that this
transaction is fraudulent.

As an exercise, explore different combinations of feature values and see what the
predicted probabilities and corresponding feature attributions are.
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Do not forget to undeploy your model once you are finished with
this chapter. Deployed models incur cost even when they are not
being used so that they are always available to return quick predic-
tions. To undeploy the model, go to Vertex AI Endpoints, click the
endpoint name fraud_endpoint, click the “More actions” three-dot
menu (as shown in Figure 5-19), and finally click “Undeploy model
from endpoint”

O Model Status Most recent alerts Monitoring Traffic split ‘Compute nodes Type Created 4

[0  fraud_detection (Version 1) @ Ready - Disabled 100% Auto (1 minimum, 1 Tabular Apr 24,2023, H
maximum)
Undeploy model from endpoint

DEPLOY ANOTHER MODEL

Figure 5-19. The location of the “Undeploy model from endpoint” option.

Summary

You have now trained both a regression model and a classification model over the
past two chapters using AutoML! In this chapter you explored your data in a Google
Colab environment, then uploaded that data to a Vertex Al managed dataset before
training the classification model using AutoML. The recall of the original model was
significantly lower than the recall of the new model, meaning that this new model will
ultimately lead to better flagging of transactions and saving your customers” accounts.

This is just the beginning of your ML journey, though. In many cases, you will want
the ability to have more control over your model training process. In practice, this
means moving toward more low-code and custom code solutions. The next chapter
covers how to explore data using SQL in BigQuery and train ML models using SQL
in BigQuery ML.
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CHAPTER 6

Using BigQuery ML to Train
a Linear Regression Model

In this chapter you learn how to build a linear regression model and a neural network
model from scratch to forecast power plant production. You perform this task using
SQL for data analysis, Jupyter Notebook for data exploration, and BigQuery Machine
Learning (BigQuery ML) for training the ML model. Along the way, you learn new
techniques for understanding your data in preparation for ML and how to apply this
knowledge in improving your model performance.

The Business Use Case: Power Plant Production

Your goal in this project will be to predict the net hourly electrical energy output for
a combined cycle power plant (CCPP) given the weather conditions near the plant at
the time.

A CCPP is composed of gas turbines, steam turbines, and heat recovery steam gener-
ators. The electricity is generated by gas and steam turbines, which are combined
in one cycle, and is transferred from one turbine to another. While the vacuum is
collected from the steam turbine, the other three ambient variables (temperature,
ambient pressure, and relative humidity) affect the gas turbine performance.

The dataset in this section contains data points collected from a CCPP over a six-year
period (2006-2011) when the power plant was set to work with a full load. The data
is aggregated per hour, though the exact hour for the recorded weather conditions
and energy production is not supplied in the dataset. From a practical viewpoint,
this means that you will not be able to treat the data as sequence or time-series data,
where you use information from previous records to predict future records.
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The data is initially supplied in a CSV file,' so you will need to spend some time
loading the data into BigQuery before you can explore it and ultimately use it to
create the ML model. As you will see momentarily, there are five columns in our
dataset, as shown in Table 6-1, and 9,590 rows.

Table 6-1. The five columns in the dataset: the target variable, Energy Production, is shown
in bold

Column name Minimum value Maximum value

Temperature 1.81°C 37.11°C
Ambient pressure  992.89 millibar  1,033.30 millibar
Relative humidity ~ 25.56% 100.16%

Exhaust vacuum 25.36 cm Hg 81.56 cm Hg
Energy production  420.26 MW 495.76 MW

These expected value ranges are well documented by the power plant engineers and
have been shared with you (say, via a technical report). This will be helpful when
exploring the data to ensure that there are no issues, such as null values or magic
numbers, as discussed in Chapter 4.

Cleaning the Dataset Using SQL in BigQuery

As discussed before, it is important that you understand your dataset before begin-
ning the processing of building ML models. Recall that the quality of any ML model
you train will rely heavily on the quality of the dataset being used to train the model.
If the dataset is filled with erroneous data or missing values, then the ML model will
not be able to learn the proper insights.

In this section, you will use SQL as the tool of choice and BigQuery as the platform.
All of the SQL code from this chapter is also available in the low-code-ai repository.
BigQuery is Google Cloud’s solution for a serverless data warehouse. Here, serverless
will mean that you can quickly load the data into BigQuery and begin SQL data
analysis without having to provision any servers. If you are not familiar with SQL,
then the “Prepare Data for Exploration” course by Google on Coursera is a great free
starting point. Learning SQL (3rd edition) by Alan Beaulieu (O'Reilly, 2020) is a good
resource for those wanting to dive deeper into using SQL.

1 This dataset was created using the Combined Cycle Power Plant dataset from UC Irvine’s Machine Learning
Repository. Some small changes were made to better demonstrate concepts in this chapter.
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If youre not already using BigQuery, it has a free tier that will cover the activities
within this chapter for linear regression. The first 1 TB of data processed by SQL
queries per month and 10 GB of storage each month are free. Additionally, the
first 10 GB of data processed for creating certain types of ML models, such as
linear regression, are free. If you are interested in doing ML on your data stored in
BigQuery, then you can use BigQuery ML. BigQuery ML uses resources in Vertex Al
for training neural network models. If you wish to follow this section to train a neural
network model in BigQuery ML, you will incur charges against a free trial or billing
account.

Loading a Dataset into BigQuery

The CCPP dataset is not already available in BigQuery. The first thing that you will
need to do is load the data into BigQuery. For your convenience, we have placed the
data into a public Google Cloud Storage bucket (download at https://oreil.ly/zY85-).

To load the data into BigQuery, first open the Google Cloud Console and return to
the BigQuery SQL workspace. On the left side of the Ul, select your project name and
then click the “View actions” button, the three vertical dots, to the right of the project
name. Select “Create dataset” as shown in Figure 6-1.

@)  Explorer +ADD K @ untitled ~ X
@ Untitled
. [ Q, Type to search o ]
-
Q Viewing workspace resources.
SHOW STARRED ONLY
;
-
} ma-low-code-ai W o
® q Create dataset
& Refresh contents
D

Figure 6-1. The “Create dataset” button in the BigQuery console.
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Ensure that your project is selected under Project ID. For Dataset ID, type
data_driven_ml into the box. Select US as the data location. We make this choice
since the data we will be loading into BigQuery is located in a US-based Cloud
Storage bucket. Now click Create Dataset. Enter the data into the fields as shown in
Figure 6-2.

Dataset ID *
[ data_driven_ml|

Letters, numbers, and underscores allowed

Location type @
QO Region
Specifying a region provides dataset colocation with other GCP services

@ Multi-region
Letting BigQuery select a region within a group of regions provides higher quota limits

Multi-region *
[ US (multiple regions in United States) -

Default table expiration

[ Enable table expiration @

Default maximum table age Days

Advanced options v

CREATE DATASET CANCEL

Figure 6-2. Creating a new dataset in the BigQuery console.

Once the dataset is created, you can use the “View actions” button, as shown in
Figure 6-3, to create a BigQuery table. Select the dataset, click “View actions,” then
select “Create table”
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» [£] data_driven_ml % ¢ ﬂ
P  bigquery-public-data * Open
Openin »

Refresh contents -~

Get link 1E

Create table v

Share

Copy ID

Delete L
LAUNCH TH

Figure 6-3. The “View actions” and “Create table” buttons.

You will need to specify where you will load the data from, the file format, and the
name of the table to be created. These choices are summarized in Table 6-2.

Table 6-2. Summary of choices for creating a table

Field Value

(reate table from Google Cloud Storage
Select file from GCS bucket or use a URI pattern  low-code-ai-book/ccpp.csv
File format v

Table ccpp_raw

Schema Auto detect

Figure 6-4 shows the completed “Create table” window with all the required values
completed. In your case, the CSV has a header and all of the values are floating-point
numbers, so you can have BigQuery detect the schema from this information.
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Create table

Source

Create table from
[ Google Cloud Storage

Select file from GCS bucket or use a URI pattern *
[ low-code-ai-book/ccpp.csv

File format
{ csv

[ source Data Partitioning

Destination
[ Project *

maabel-sandbox-project

Dataset *
[ data_driven_ml

Table *
[ ccpp_raw

Unicode letters, marks, numbers, connectors, dashes or spaces allowed.

Table type
[ Native table

Schema
Auto detect

Figure 6-4. The “Create table” window with specified values.

» «

Leave the default values for “Table type,” “Table partitioning,” and “Clustering” Click
the Create Table button to start the load job and create the table for your raw data.
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Table partitioning is a method to break larger tables into “smaller
tables,” or partitions, that can be accessed separately via filters. Any
partitions that are not referenced in a query will not be read, lower-
ing the cost of the query and improving the performance. Likewise,
clustered tables in BigQuery are tables that have a user-defined
column sort order using clustered columns. Clustered tables can
improve query performance and reduce query costs by storing data
close in the sort order in the same physical location.

After the table is created, you can see the schema for the table by selecting the table
and selecting the Schema tab. You can also preview the data in the table by selecting
the Preview tab. Figures 6-5 and 6-6 show what you should see in the BigQuery
console for these steps.

Viewing all resources. Show starred SCHEMA DETAILS PREVIEW TABLE EXPLORER
resources only.
O Field name Type Mode Collation
w my project * §
D Temp FLOAT NULLABLE
v [£] data_driven_ml W ¢
| O Exhaust_Vacuum FLOAT NULLABLE
B ccpp_raw w
D Ambient_Pressure FLOAT NULLABLE
MORE RESULTS
D Rel_Humidity FLOAT NULLABLE
D Energy_Output FLOAT NULLABLE

Figure 6-5. Schema for the newly created ccpp_raw table.

H ccpp_raw Q QUERY ~ fl ASK QUESTION +2 SHARE 0 copy
SCHEMA DETAILS PREVIEW TABLE EXPLORER

Row Y Temp Y Exhaust_Va... Y Ambient_Pr... Y Rel_Humidity Y Energy_Out... Y
1 12.85 40.0 1015.89 68.85 463.74
2 10.12 - 40.0 1021.15 91.67 479.62
3 15.28 ‘ 40.0 1016.65 65.0 458.76
4 15.52 40.0 1017.0 66.27 454.14
5 10.45 ‘ 40.0 . 1019.01 . 89.01 . 465.43
6 9.05 . 40.0 . 1015.48 . 80.91 . 472.41
7 13.79 ‘ 40.0 . 1016.02 . 70.17 ' 461.16
2 A7Q . ANN . 1n1Q N1 . 21 22 . A2N 22

Figure 6-6. Preview of the ccpp_raw table.
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Exploring Data in BigQuery Using SQL

Now that the data is loaded into BigQuery, it is time to start exploring the data.
First check to see if there are any null values. The easiest way to do this is using the
IF function in BigQuery. The IF statement, IF(expr, true_result, else_result),
takes three arguments. The expr statement returns a Boolean value that determines
if it is the true_result or the else_result. As you may expect, if expr returns TRUE
then the true_result is returned, else the else_result is returned.

Using the Null function to check for null values

What if you wanted to see if the Temp column had any null values? You could use the
following statement: IF(Temp IS NULL, 1, 0). This will return 1 if Temp is NULL and
0 if Temp is not NULL. Run the following query, replacing your-project-1id with your
Google Cloud project ID, and look at the results:

SELECT
IF(Temp IS NULL, 1, 0) AS is_temp_null
FROM
‘your-project-id.data_driven_ml.ccpp_raw’

If you scroll through the results, you will find two 1s in our column of over 9,000
values. This approach works, but it’s not too efficient, is it (Figure 6-7)? Instead, let’s
take advantage of the fact that the choice of the true_result and else_result is 1
and 0 respectively.

JOB INFORMATION RESULTS

Row is_temp_null ~
# #~
722 0
723 0
724 1
725
726
727

728

o o o o

Figure 6-7. 1t is inefficient to scroll through the results to find two 1s in our column of
over 9,000 values.
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You can easily compute the number of null values by simply using the SUM()
function instead of scrolling through the list. Run the following query, replacing
your-project-id with your Google Cloud project ID, to compute the number of
nulls for every column:

SELECT
SUM(IF(Temp IS NULL, 1, 0)) AS no_temp_nulls,
SUM(IF(Exhaust_Vacuum IS NULL, 1, 0)) AS no_ev_nulls,
SUM(IF(Ambient_Pressure IS NULL, 1, 0)) AS no_ap_nulls,
SUM(IF(Relative_Humidity IS NULL, 1, 0)) AS no_rh_nulls,
SUM(IF(Energy_Production IS NULL, 1, 0)) AS no_ep_nulls
FROM
‘your-project-id.data_driven_ml.ccpp_raw’

After running this query, you should see that all columns except Ambient_Pressure
have null values. Compare your results to the results in Figure 6-8.

Query results

JOB INFORMATION RESULTS JSON EXECUTION DETAILS EXECUTION GRAPH

Row no_temp_nu... no_ev_nulls no_ap_nulls no_rh_nulls no_ep_nulls
7z p-nu-- 4 V 2 Z Z 2 7

1 2 2 0 1 2

Figure 6-8. Results from query counting null values. All columns except for
Ambient_Pressure have null values.

What should be done with the rows containing null values? The easiest approach
is to simply omit these rows. Another option, explored in Chapter 7, is to follow
an imputation strategy. Imputation is the process of replacing missing data with
substituted values, often done in such a way that the substituted values are realistic
within the specific context. In this case, you may not be an expert on CCPPs. In the
worst-case scenario, the rows containing null values will make up around 0.1% of the
data. For this reason, simply omitting those rows is a very reasonable strategy.

When would you want to impute instead of throwing out data? If you have a small
dataset or if the rows with missing values are a significant percentage of your dataset,
then throwing out the rows in question could greatly affect your model performance.
Another issue with removing data that is more subtle is around bias. Statistical bias
refers to a systematic difference in the distribution of your data versus the real
distribution of the data. If the null values show up for a specific subset of examples
(say, certain demographics in a marketing dataset), then removing the rows with
missing values will keep the model from learning important information.
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Using the Min and Max functions to determine acceptable data ranges

Next, check to be sure that all of the values are within the expected ranges. The easiest
way to do this quickly is by using the MIN and MAX functions. Like the SUM function,
MIN and MAX are examples of aggregate functions. An aggregate function is a function
that takes in a column, or subset of a column, and returns a single value. The MIN
and MAX functions return the minimum and maximum values respectively for the
column they are applied to. Go ahead and apply these functions to the Temp column
by running the following SQL query, once again replacing your-project-id with
your Google Cloud project ID:

SELECT
MIN(Temp) as min_temp,
MAX(Temp) as max_temp

FROM
‘your-project-id.data_driven_ml.ccpp_raw’

You should see that the minimum temperature is 1.81°C, and the maximum tem-
perature is 37.11°C (see Figure 6-9). The good news is that this range of values
corresponds to the range of values for temperature specified earlier. Go ahead and
use the same logic to check the range for the other columns. Try to write the query
yourself this time around, but the query is included below the figure in case you get
stuck.

Query results % SAVE
JOB INFORMATION RESULTS JSON EXECUTION DETAILS
Row P min_temp 4 max_temp 4

1 1.81 37.11

Figure 6-9. The results of the previous query computing the minimum and maximum
values of temperature in our dataset.

SELECT
MIN(Temp) as min_temp,
MAX(Temp) as max_temp,
MIN(Exhaust_Vacuum) as min_ev,
MAX(Exhaust_Vacuum) as max_ev,
MIN(Ambient_Pressure) as min_ap,
MAX(Ambient_Pressure) as max_ap,
MIN(Relative_Humidity) as min_rh,
MAX(Relative_Humidity) as max_rh,
MIN(Energy_Production) as min_ep,
MAX(Energy_Production) as max_ep

FROM
‘your-project-id.data_driven_ml.ccpp_raw’
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You can present the results in BigQuery in the JavaScript
Object Notation, or JSON, format. JSON is a programming lan-
guage-independent data format that is used in many different
web applications and products, including BigQuery, for exchanging
information. An advantage of the JSON format is that it is human-
readable and stored in text format, so it is easy to work with. An
example is shown in Figure 6-10.

Query results

JOB INFORMATION RESULTS JSON

[{
"min_temp": "1.81",
"max_temp": "37.11",

"min_ev": "25.36",
"max_ev": "81.56",
"min_ap": "@.0",

"max_ap": "1033.3",
"min_rh": "25.56",
"max_rh": "100.16",
"min_ep": "-1.0",

"max_ep": "495.76"

bl

Figure 6-10. The minimum and maximum values of all columns in the ccpp_raw table
presented in JSON format. Note the anomalous values.

If you look carefully, you will see a couple of suspicious values. The minimum
ambient pressure is 0.0, and the minimum energy production is —-1.0. Based on the
communicated range of values, and likely common sense, we know that neither of
these two values make sense. Likely, the —1.0 value is an example of a magic number.
Magic numbers are distinctive unique values that are meant to represent something
different than a standard meaning. Since -1.0 does not make sense as an energy
production value, this is likely a magic number to represent missing data. Likewise,
the value of 0.0 for the minimum ambient pressure is likely an example of a default
value. Default values are often present in applications as a way to record a value when
none are reported. This is used to avoid some issues that can arise with NULL values.

Knowing the ranges of expected values from the technical report, the easiest way to
ensure that you are avoiding these unrealistic values is to filter based on the expected
ranges. Note that this will also eliminate the NULL values that you detected earlier,
since those values will also not be inside of the ranges.
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Saving query results using a DDL statement in BigQuery

Before writing the query to filter out NULL and other unwanted values, it is important
to think through how the results of that query will be stored for use in training an ML
model. This can be done by executing a DDL statement in BigQuery. DDL stands for
data definition language and is a syntax for creating and modifying objects in datasets
such as tables. You will use the CREATE TABLE statement to create a new table. The
basic syntax for the CREATE TABLE statement in BigQuery is as follows:

CREATE TABLE
table_name

AS
query_statement

This query will create a new table with the name table_name and save the results of
the query_statement as this table. Note that with this statement, if the table already
exists, it will not be overwritten. If you want to do that, you would replace CREATE
TABLE with CREATE OR REPLACE TABLE.

Now that you know how to save the results of a query using a CREATE TABLE
statement, you can write the query to clean your raw power plant data and save the
data into a new table—say, ccpp_cleaned—for the purpose of training an ML model.

The query is straightforward, but it can be fairly verbose if written in terms of
inequalities. However, the operator BETWEEN can be leveraged to simplify the query.
To use BETWEEN, you specify a minimum and maximum value by writing the
following:

Field_name BETWEEN min_value AND max_value

If the value you are checking is in the range between min_value and max_value, the
statement will return TRUE; otherwise, the statement will return FALSE. For example,
here you are looking for Energy_Production values between 420.26 and 495.76. The
value of -1.0 that was discussed earlier is not in this range, so it will be filtered out.
In particular, we want to only keep values that match the ranges shared with us in the
technical report.

As before, try to write the query yourself and run it in BigQuery, but if you need help,
here it is:

CREATE TABLE
‘data_driven_ml.ccpp_cleaned’
AS
SELECT
*
FROM
‘your-project-id.data_driven_ml.ccpp_raw’
WHERE
Temp BETWEEN 1.81 AND 37.11 AND
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Ambient_Pressure BETWEEN 992.89 AND 1033.30 AND
Relative_Humidity BETWEEN 25.56 AND 100.16 AND
Exhaust_Vacuum BETWEEN 25.36 AND 81.56 AND
Energy_Production BETWEEN 420.26 AND 495.76

After executing the query, you can view the metadata for the new table we created
by going to your project name in the pane on the left side of the BigQuery Ul,
then clicking on the dataset name (data_driven_ml), and finally selecting the table

ccpp_cleaned. After opening a tab corresponding to the table, click on the Details tab
to see the table metadata (see Figure 6-11).

SCHEMA DETAILS PREVIEW LINEAGE DATA PROFILE
Table info

Table ID ma-low-code-ai.data_driven_ml.ccpp_cleaned

Created Aug 24,2023, 8:18:37PM UTC-4

Last modified Aug 24,2023, 8:18:37PM UTC-4

Table expiration NEVER

Data location us

Default collation

Default rounding mode ROUNDING_MODE_UNSPECIFIED
Case insensitive false

Description

Labels

Primary key(s)

Storage info @

Number of rows 9,576
Total logical bytes 374.06 KB
Active logical bytes 374.06 KB

Long term logical bytes 0B

PERSONAL HISTORY PROJECT HISTORY

Figure 6-11. Metadata for the newly created ccpp_cleaned table. Compare the number
of rows in this table to the number of rows in ccpp_raw to see how many rows were
removed.
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The newly created ccpp_cleaned table has 9,576 rows. If you follow the same process
for the original ccpp_raw table, you can see that it has 9,590 rows. So that means you
filtered out 14 rows from our dataset, or about 0.15% of all data. Very little data was
lost due to cleaning here! However, a few incorrect values, especially if they lead to
extreme outliers, can greatly harm model performance. So it is a good thing to go
through this process.

In the preceding example, you knew in advance that you wanted to
save the results of the query and used a DDL statement to create
the table immediately. What if the decision to save the results was
made after running a query? Do you need to rerun the query just
for the sake of saving the results into a table?

Fortunately, the answer is no. After a query is executed, you can
go to Save Results on the web console above the result, select
BigQuery Table, and then fill in the dataset and table names for the
table you want to create from these results.

What if you realize later on that you should have saved the
results—are you out of luck? When you execute a query in Big-
Query, the results are stored in a temporary table. This table will be
retained for 24 hours after the query has completed. To access the
temporary table, go to the Personal History tab on the bottom of
the console, click the job corresponding to the query you wish to
retrieve the results for, and then click “Temporary table” This table
can be queried like any other table, and the results can be saved as
mentioned.

Linear Regression Models

Now that you have cleaned the data, you are ready to start training the model, right?
Not quite. In earlier chapters you have relied on tools like AutoML that handled a
lot of the feature-selection process for you behind the scenes. Now it is up to you in
BigQuery ML. You will dive deeper into feature selection and engineering in the next
project, but for now you will focus on the model type you will use for this problem
and what criteria you will use for feature selection.

Before you go any further, take a step back and think a little bit more about the
problem at hand. The goal is to predict the energy production of a CCPP based on
the temperature, ambient pressure, relative humidity, and exhaust vacuum pressure,
as you can see in Figure 6-12.
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Features Label/Target

x1 = Temp

x2 = Ambient_Pressure
x3 = Relative_Humidity
x4 = Exhaust_Vacuum

Energy_Production

Figure 6-12. The goal is to predict energy production based on temperature, ambient
pressure, relative humidity, and exhaust vacuum pressure.

This is an example of a regression problem, since the goal is to predict a real number:
the energy production of the power plant in megawatts (MW). Though BigQuery ML
supports many different model types, often the best starting point is the simplest one,
a linear regression model, where you seek to find the line of best fit.

In Chapter 4, you saw a simplified example of linear regression. In this chapter, the
discussion will go a little deeper so that you better understand how the model works
(see Figure 6-13). This way, you will be better informed when selecting which of our
features we want to use in training an ML model later in the chapter.

Regression
o
'of‘
e -
’
o &
o -
eo-00 ©
L4
-
.- @
°o°®

Figure 6-13. A simple example of linear regression. The dots correspond to examples with
the x value being a feature and the y value being the label. The dotted line represents the
line of best fit.

Suppose you have some number of numeric features, 7, . . .,,, and you want to

—)
predict some real number y based on the feature values. Often, = is used as a
shorthand notation to represent the list of features xy, . . .,Z,. A linear regression
model is a function of the form:

__)
f(x):w0+w1><x1+...+wnxxn
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Where wp, wy, . . .,w, are also real numbers, they are called weights; wjy is often
called the bias of the model. Of course, you could choose any random weights you
want and get a function, but how good of a model would that be?

Recall that you used root mean squared error (RMSE) in Chapter 4 to evaluate your
regression models, and you can do the same here. Recall the definition of RMSE

before moving forward. Suppose your dataset D has N examples (E)(z), y(i))) that is,

for feature values ;:)(2), the corresponding label is y). The superscript (i) denotes that
we are looking at the 7th example in your dataset.

Given a model f (—;), the RMSE of the model is the expression:

L(f, D) = %\/ 5 ( f(?“’) _ y(z))z

where the sum is over all examples in the dataset D. The argument D is included here
as a reminder that the RMSE depends on the dataset that is being used to compute it,
just as much as the model that we are evaluating.

If you just choose some weights wy, . . ., Wy, then how do you know you have the
weights that give you the best model? Another way to phrase this question is that you
want to make the loss function, the RMSE L(f, D), as small as possible.

Recall that the goal of loss functions is to measure how well your
algorithm performs on your dataset. In other words, a loss function
is a method of evaluating how well your algorithm models your
dataset. If your predictions are totally off, your loss function will
output a higher number. If the predictions are pretty good, it will
output a lower number.

See Chapter 4 for a visual explanation of the loss function.

There are two commonly used approaches to determine the appropriate weights for
a linear regression model. The first is called the normal equation. Using a dataset
and the corresponding labels, solving the normal equation gives an exact analytical
solution to which weights give the best model for the features that have been selected.
Many analytics packages and products (including BigQuery) include this approach in
their toolkits.

If there is a nice method to always find the best weights, why is it not always
used? Well, there are a few reasons. The first is computational complexity, or how
much effort it is to compute. Technically speaking, we say that the computational

complexity of solving the normal equation is slightly less than O(n3). What does
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that actually mean? Suppose a dataset is increased from 1,000 to 10,000 examples,
or tenfold. The amount of work that would need to be done to solve the normal
equation would increase by roughly a factor of 10° = 1,000! You can see with larger
and larger datasets this quickly gets out of hand.

Another reason that is a little bit more mathematically subtle is that the computation
could involve very large numbers. Due to how arithmetic is handled on computers
(floating-point arithmetic), these large numbers could create an issue in solving
the normal equation. The technical term for this situation is that the system is
ill-conditioned.

Regardless of the situation, if you have a large number of examples or run into
issues solving the normal equation, there’s a second approach you can take called
gradient descent. We don’t cover that in detail here, but know that most (if not all) ML
frameworks have gradient descent and variations of it available for use to train your
models. To learn more about the basics of gradient descent, see the corresponding
section in the “Machine Learning Crash Course” by Google.

If you have a little background working with matrices, then the
normal equation is not too bad to describe once the notation is set
up. The derivation is not covered here, but it is a common topic in
calculus and linear algebra texts. For an example of the derivation
using techniques from calculus, see this blog post.

Feature Selection and Correlation

Now that the model type being used (linear regression) has been identified, it is
time to select the features to be used. Recall that there are four columns in your
prepared dataset in BigQuery that could be used to predict the energy production:
Temp, Ambient_Pressure, Relative_Humidity, and Exhaust_Vacuum. How do you
decide which of these features to use?

In general, when selecting features there are three basic guidelines that you can
follow:

o The feature should be related to the problem objective.
o The feature should be known at prediction time.

o The feature should be numeric, or can be transformed into a numeric value.

These are by no means the only considerations, and you will look at more consider-
ations throughout this chapter and later chapters, but they are a great place to get
started. The third condition is important due to the nature of a linear regression
model, and most other model types used in practice. When all is said and done,
an ML model is a mathematical function that takes numeric features as inputs and
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outputs some real number, which then is interpreted depending on the model objec-
tive. So, either having numeric features or being able to transform the chosen features
to numeric features is critical from the computational point of view.

Features with numeric values that do not have meaningful magni-
tudes need to be treated differently than those with meaningful
“1 magnitudes. Consider a feature that records the color of a car as a
, number, say 0 for red, 1 for blue, 2 for silver, etc. It does not make
sense to say that silver has twice the value as blue. You will see
techniques in later chapters, such as one-hot encoding, to properly
encode features of this type as numeric features with meaningful
magnitude.

Are your features related to the problem objective? Well, this can be a tricky question
to answer in general. You have to have some level of domain knowledge to be able
to address this question properly, and even then the answer can be rather subtle in
certain cases. There are a couple different ways to address this issue:

« You can leverage either your own or another expert’s domain expertise.

 You can use statistical methods such as correlation to understand the relationship
between a feature and an objective.

As for the first approach, for the sake of simplicity, assume that, in the report, domain
experts communicated that these features were indeed related to the objective. This
may be an unsatisfying answer, but often as an ML practitioner, you have to rely on
those who truly understand the domain to guide you toward possible features. This
should not dissuade you from trying to research the problem domains your models
address, though! As you work on more problems in a domain, you will learn more
about the domain and will be able to really gain an intuitive understanding of key
concepts in that domain. This intuition is another way of bringing human insight
to your models. This is not only a useful tool, but often a necessary component in
building robust models for your problems.

Now to the second approach. Yes, you know that all the features should relate to
the model objective, but how do you understand this relationship? When you are
building a model, this “how” is very important in understanding how to utilize and
transform your features. This process, often called feature engineering, tends to be
one of the most powerful tools you have in improving model performance beyond
improving the quality and quantity of your data.
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For linear models, one simple tool that you can use is called Pearson correla-
tion. Given two (numeric) variables, X and Y, the Pearson correlation coefficient,
Corr(X, Y), is a number between -1 and 1 that measures how close the relationship
between the two variables is to being linear. In particular, if the coefficient is exactly
1, then X and Y have a perfectly linear relationship. That is, Y = m x X + b for some
positive number m and b. If the coeftficient is exactly -1, it is the same idea, but now
m is negative. What about in between? The closer the absolute value of the coefficient
is to 0, the further away the variables are from having a linear relationship. There
are several methods available to determine the correlation between features. Some
examples of scatterplots with the corresponding correlation coefficients are shown in
Figure 6-14.

1

o

Figure 6-14. Examples of scatterplots and their corresponding Pearson correlation
coefficients; image from Wikipedia (CCO license).

The first method is to compute the correlation coefficient for each pair of variables.
For example, to compute the correlation coefficient in BigQuery between the Temp
column and the Exhaust_Vacuum columns, you can use the CORR function as shown in
the following query:

SELECT
CORR(Temp, Exhaust_Vacuum)

FROM
‘your-project-id.data_driven_ml.ccpp_cleaned’

You will see that the correlation coefficient between the Temp and Exhaust_Vacuum
is about 0.844. How should you interpret this? This says that there is a moderate
to strong (positive) linear relationship between the two features. From the physical
perspective, this makes sense, as pressure increases with an increase in temperature
(assuming all other variables are constant).

You could be a bit more efficient and do one column correlated to multiple columns
at once—but that will still take time to write the query. For example:

SELECT
CORR(Temp, Ambient_Pressure) AS corr_t_ap,
CORR(Temp, Relative_Humidity) AS corr_t_rh,
CORR(Temp, Exhaust_Vacuum) AS corr_t_ev

FROM
‘your-project-id.data_driven_ml.ccpp_cleaned’
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For a low number of columns, this is not an unreasonable approach. Here we have 5
columns including our label, so we would need to compute 10 correlation coefficients
total. This number grows quickly, though, with the number of columns. Of course,
you could go a step further and create more advanced queries with automation to
compute all of the correlation coefficients, but this approach is beyond the scope of
this book.

Google Colaboratory

Another method is to take advantage of Google Colaboratory, or Google Colab for
short, to create, plot, and visualize a correlation matrix. In later chapters, when
introducing ML packages in Python, you will use Colaboratory as an easy way to
run Python code without having to set up an environment in advance. For now,
you will see how to bring query results from BigQuery to Google Colab to perform
exploratory data analysis (EDA) using some basic Python.

The easiest way to load the data you want from BigQuery is to use built-in connectors
in Google Colab. BigQuery has a feature to create a templated notebook to load the
results of a query into the notebook environment. Now you will walk through the
steps of setting up this environment.

First, you need to run the query whose results you want to load into the notebook
environment. In this case, write and run a query that will return the entire cleaned
dataset. As before, here’s the query in case you need a little help:

SELECT

*

FROM
‘your-project-id.data_driven_ml.ccpp_cleaned’

Next, in the same window as the query you just ran, select Explore Data in the
console (under the Query Editor) and then Explore with Python notebook, as shown
in Figure 6-15.

% SAVE RESULTS ~ M EXPLORE DATA ~

Explore with Sheets 2
Analyze big data with a live connection in a familiar spreadsheet tool.

Explore with Looker Studio (2
Visualize results and create live dashboards from your data

Explore with Python notebook 2

Explore and visualize with Python.

Figure 6-15. The Explore with Python notebook option for exploring query results.
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When you select Explore with Python notebook, a templated notebook is created in
Google Colab that enables you to explore with visualizations or create descriptive
statistics using boilerplate Python. For creating visualizations, you simply add two
import statements to the first cell (Setup):

import matplotlib.pyplot as plt
import seaborn as sns

After these two lines, the first cell should look like the following:

# @title Setup

from google.colab import auth

from google.cloud import bigquery
from google.colab import data_table
import matplotlib.pyplot as plt
import seaborn as sns

project = 'your-project-id'

location = 'US'

client = bigquery.Client(project=project, location=location)
data_table.enable_dataframe_formatter()
auth.authenticate_user()

Now you are ready to run all of the cells that currently exist in the notebook. To do
so, click the cell and then click the Run Cell button on the left side of the cell. You can
also press Ctrl+Enter (or Cmd+Enter if you're using macOS X) to execute the cell. Go
through the cells one by one and run the cells in order. It is important to be sure to
run the cells in order and not skip cells to ensure that everything runs without issue.

The last cell is precoded to show descriptive statistics, such as results.describe().
Note that results is the DataFrame shown in Figure 6-16.
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° 1 # Running this code will read results from your previous job

job = client.get_job('bquxjob_5dfab9db_18a2ale39a2’)
results = job.to_dataframe()

results

index Temp Exhaust_Vacuum Ambient_Pressure
0 10.33 40.0 1021.35
1 15.28 40.0 1016.65
2 13.79 40.0 1016.02
3 11.77 40.0 1021.08
4 9.88 40.0 1021.4
5 12.85 40.0 1015.89
6 11.02 40.0 1015.75
7 10.12 40.0 1021.33

Figure 6-16. An example of the cell of a generated notebook to retrieve the results and
the first five rows of results. Only the first three columns are shown for the sake of

readability.

Now you can easily create a correlation matrix—an array of the different correlation
coefficients for every pair of features.

To create this matrix, create a new cell by clicking the + Code button above the
notebook and type in the code results.corr().round(2). The round method is used
to round the correlations to two decimal places for improved readability. Run the cell
as before and compare your results with those in Figure 6-17.

Temp
Exhaust_Vacuum
Ambient_Pressure
Relative_Humidity

Energy_Production

[5] 1 results.corr().round(2)

Temp Exhaust_Vacuum Ambient_Pressure Relative_Humidity Energy_Production

1.00

0.84

-0.95

-0.51

-0.41

1.00

0.10

0.52

-0.54

-0.31

-0.95

-0.87

0.52

0.39

1.00

Figure 6-17. The new code cell to compute the correlation matrix and the corresponding

results.
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The correlation matrix is easy to read. To find the correlation between two
features—say, Temp and Ambient_Pressure—go to the column for Temp and the row
for Ambient_Pressure (or vice versa) to find the value. In this case, that value is
-0.508 (rounded to the nearest thousandth). This means that there is a moderate
negative correlation between these two features, where decreasing the temperature
will increase the ambient pressure or vice versa.

You can also visualize this matrix with a heat map. To do so, type the following code
into a new cell and run the cell as before. Note that the two import statements you
added to the first cell of the notebook earlier are needed to run these lines of code.
The results are shown in Figure 6-18:

plt.figure(figsize=(10,6))
sns.heatmap(results.corr());

Exhaust_Vacuum -

Ambient_Pressure - 0.00
--0.25
Relative_Humidity
-—0.50

Energy_Production --0.75

Emp

Relative_Humidity -

Exhaust_Vacuum
Ambient_Pressure -

Energy_Production -

Figure 6-18. A correlation heat map for our features. Darker colors correspond to larger
negative correlations, and lighter colors to larger positive correlations.
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Work through the following knowledge check on the data you are given before
moving forward:

o Which features have a strong correlation to Energy_Production? Why?
o Which features have a weak correlation to Energy_Production? Why?

o Which features have a moderate correlation to Energy_Production? Why?

Collinearity or multicollinearity exists when two or more of the pre-
dictors in a regression model are moderately or highly correlated,
for example, meaning predictor variables are correlated with each
other, making it harder to determine the role each of the correlated
variables is playing. This means that, mathematically, the standard
errors are increased. Multicollinearity occurs when there are high
correlations among predictor variables, leading to unreliable and
unstable estimates of regression coefficients. Multicollinearity can
limit the research conclusions that can be drawn, especially when
using linear models such as linear regression.

Plotting Feature Relationships to the Label

Performing EDA to visualize the relationship between the features and the label is
also a great way to understand which features will be most useful for the model. You
can continue visualizing your data in the same Google Colab notebook you were
using before.

First, visualize the relationship between the Temp feature and the label, Energy_
Production, by adding the following code to a new cell and running the cell. Check
your results against the visualization in Figure 6-19:
ax = sns.regplot(
x='Temp', y='Energy_Production',

fit_reg=False, ci=None, truncate=True, data=results)
ax.figure.set_size_1inches(10,8)
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7 ° ax = sns.regplot(
x="Temp", y="Energy_Production”,

fit_reg=False, ci=None, truncate=True, data=results)
ax.figure.set_size_inches(10, 8)
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Figure 6-19. A scatterplot visualizing the relationship between Temp and Energy_Produc
tion. The relationship looks like a negative linear relationship.

Now visualize the relationship between the Ambient_Pressure feature and the label,
Energy_Production. Try to write the code yourself first, but the solution follows in
case you need help. Check your results against the visualization in Figure 6-20:

ax = sns.regplot(
x="'Ambient_Pressure', y='Energy_Production’,
fit_reg=False, ci=None, truncate=True, data=results)
ax.figure.set_size_1inches(10,8)
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° ax = sns.regplot(
x="Ambient_Pressure", y="Energy_Production”,

fit_reg=False, ci=None, truncate=True, data=results)
ax.figure.set_size_inches(10, 8)
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Figure 6-20. A scatterplot visualizing the relationship between Ambient_Pressure and
Energy_Production. The relationship seems to be vaguely positive, but this is not as

clear as it was for the Temp feature.

Finally, repeat this process for both the Relative_Humidity and the Exhaust_Vacuum
features. As before, the solution code is visualized next, and you should compare your

results with the visualizations in Figures 6-21 and 6-22:

ax = sns.regplot(
x="Relative_Humidity', y='Energy_Production',
fit_reg=False, ci=None, truncate=True, data=results)
ax.figure.set_size_1inches(10,8)
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° ax = sns.regplot(
x="Relative_Humidity", y="Energy_Production”,

fit_reg=False, ci=None, truncate=True, data=results)
ax.figure.set_size_inches(10, 8)
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Figure 6-21. A scatterplot visualizing the relationship between Relative_Humidity and
Energy_Production. The relationship seems to be weakly positive, but it is not very
clear from this visualization.

ax = sns.regplot(
x="Vacuum_Pressure', y='Energy_Production',
fit_reg=False, ci=None, truncate=True, data=results)
ax.figure.set_size_1inches(10,8)
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° ax = sns.regplot(
x="Exhaust_Vacuum", y="Energy_Production",

fit_reg=False, ci=None, truncate=True, data=results)
ax.figure.set_size_inches(10, 8)
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Figure 6-22. A scatterplot visualizing the relationship between Vacuum_Pressure and
Energy_Production. The relationship seems to be a negative linear relationship.

To summarize, it appears that there is a strong “inverse” relationship between Temp
and Energy_Production—the lower the temperature, the higher the energy output.
If you refer to your previous correlation matrix in Figure 6-17, the correlation
between Temp and Energy_Production is —-0.948. This corresponds to what you see in
Figure 6-19 about expecting a negative linear relationship.

Recall that your goal is to predict energy production based on temperature, ambient
pressure, relative humidity, and exhaust vacuum pressure. Should you discard the
features with weak correlations? This would move you from a multivariate model to
a univariate model. In essence, you would have one feature (Temp) that you would
use to predict the label (Energy_Production). Would this model be generalizable? Is
there additional data you could collect to determine feature importance to energy
production? These are questions that you need to ask yourself when presented with
this scenario. Utilize Chapter 1’s business decision model to assist you.
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The CREATE MODEL Statement in BigQuery ML

In this section you will use BigQuery ML to create a linear regression model that uses
all of the features in your power plant dataset. As you will see, now that you have
prepared your data the process is very straightforward.

Using the CREATE MODEL statement

Return to the BigQuery console. Enter the following SQL statements in the BigQuery
Editor window to create a linear regression model:

CREATE OR REPLACE MODEL data_driven_ml.energy_production OPTIONS
(model_type='linear_reg',
input_label_cols=['Energy Production']) AS
SELECT
Temp,
Ambient_Pressure,
Relative_Humidity,
Exhaust_Vacuum,
Energy_Production
FROM
‘your-project-id.data_driven_ml.ccpp_cleaned’

A few things to note about the notation before executing the query. The CREATE OR
REPLACE MODEL statement will create a new ML model, or replace a model of the
same name, in the data_driven_ml dataset called energy_production. ML models in
BigQuery are objects in datasets like tables. Two options are specified for the CREATE
OR REPLACE MODEL statement. The first option, model_type, specifies the model type
(here linear regression using linear_reg). The second option, input_label_cols,
is where you specify the column that serves as your label. In this case, that is the
Energy_Production column.

Now run the query to train the model. It should only take a few minutes. Wait for the
model to finish training before moving to the next step.

View evaluation metrics of the trained model

You can see the model metrics in the console. After the model table is created, select
the Evaluation tab to see the evaluation metrics. An example of these evaluation
metrics is shown in Figure 6-23. Note that the metrics that you see may slightly differ
from the figure.
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energy_production

DETAILS TRAINING EVALUATION SCHEMA
Mean absolute error 3.7113

Mean squared error 22.1043

Mean squared log error 0.0001

Median absolute error 3.2571

R squared 0.9224

Figure 6-23. Evaluation metrics for the linear regression model predicting energy
production.

The ML.EVALUATE function also provides evaluation metrics. Run the following SQL
query to return the evaluation metrics for your model:
SELECT

*

FROM
ML.EVALUATE(MODEL data_driven_ml.energy_production)

The output in JSON format is shown in Figure 6-24.

JOB INFORMATION RESULTS JSON

L1

"mean_absolute_error": "3.7113473692389611",
"mean_squared_error": "22.104273334811865",
"mean_squared_log_error": "0.00010774964859580044",
"median_absolute_error": "3.2570829555570526",

"r2 score": "0.92241442470225254"
"explained_variance": "0.922648785468623"

Figure 6-24. Output of the ML . EVALUATE command. The explained_variance output is
the only output not included in the console.

As you can see, the output from the console and the ML.EVALUATE function are the
same—except for one additional output. The ML.EVALUATE function also provides a
metric called “explained variance” via the explained_variance column. Explained
variance can be thought of as an answer to the question, “How much of the variance
in the label does our model capture in its outputs?” We will not delve into the exact
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details here, but if the average label value and average predicted value are the same,
then we expect explained variance and the R* score to be the same. This is called an
unbiased estimator, and linear regression is such an example.

Why are those scores different here? Because you are not evaluating the model on
our training dataset! On the evaluation dataset, as long as the evaluation dataset
and training dataset are statistically similar, you only expect that these metrics are
close to each other. BigQuery ML automatically splits your dataset into training and
evaluation datasets when you train your model, but there are options for having more
control on how the data is split that are explored in Chapter 7.

Using the ML.PREDICT function to serve predictions

Now that you have trained your model and explored the evaluation metrics, what
is next? The ultimate goal of ML is to serve predictions for your use cases, not to
simply train the best model possible. Once you have a model whose performance
you are happy with in BigQuery ML, serving predictions with that model is very
straightforward using the ML.PREDICT function. Note that ML.PREDICT will only work
for predictions on data that is available to BigQuery for processing.

Suppose you want to know the power production during an hour where the tem-
perature is on average 27.45°C, the ambient pressure is 1,001.23 millibar, relative
humidity is 84%, and the exhaust vacuum pressure is 65.12 cm Hg. You could run the
following query to compute this prediction:

SELECT

*

FROM
ML.PREDICT(MODEL ‘your-project-id.data_driven_ml.energy_production’,

(
SELECT

27.45 AS Temp,

1001.23 AS Ambient_Pressure,
84 AS Relative_Humidity,
65.12 AS Exhaust_Vacuum) )

Note that the second SELECT statement includes the feature values for the predicted
energy production. It is a best practice to alias the columns using the AS keyword to
ensure that values are plugged in appropriately to the model. Note that if you include
extra columns that do not correspond to features, then they will simply be passed
through to the result. This can be useful when you want to include the predicted label
as a column in a result table, but also want to include columns that are not used in the
model.

Compare your results with the results in Figure 6-25, but note that the predicted
label from your model may slightly differ from what is presented here. The column
predicted_label contains the predicted energy production.
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Query results

JOB INFORMATION RESULTS JSON EXECUTION DETAILS EXECUTION GRAPH
Row predicted_label Temp Ambient_Pressure  Relative_Humidity =~ Exhaust_Vacuum
a a a ra ra a
1 433.35216099... 27.45 1001.23 84 65.12

Figure 6-25. The results of the ML . PREDICT function. The predicted energy production for
the given feature values was 433.35 MW.

The method that you did here is great for single predictions, but what if you wanted
to predict on a table of feature values instead? You can use the ML.PREDICT function
to serve predictions on tables just as well. You can replace the second SELECT state-
ment in the preceding example to specify a table as a result instead of a single row.
For example:

SELECT

*

FROM
ML.PREDICT(MODEL ‘your-project-id.data_driven_ml.energy_production’,

(

SELECT
Temp,
Ambient_Pressure,
Relative_Humidity,
Exhaust_Vacuum

FROM
‘your-project-id.some_dataset.some_table") )

Queries of this form turn BigQuery into a wonderful tool for batch predictions,
which is where you need predictions on a large number of instances at once.

Introducing Explainable Al

In the past decade, with the growth of deep learning and more complex models in
general, explainable AI (or XAI for short) has become a quickly growing field of
research. The goal of XAl is to describe a model’s behavior in human-understandable
terms. This understanding can be used in many different ways: improving the model’s
performance, understanding issues with the model, ensuring that the model avoids
certain biases for compliance or ethical reasons, and many other use cases. This
section gives a quick introduction in the context of working in BigQuery ML.

When discussing XAI, often one discusses either local or global explanations. Local
explanations focus on a single instance or maybe a small group of instances. You
can think of the goal here as being “Why did my model give this prediction for
this specific example?” Global predictions look at the model’s behavior as a whole
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over a certain dataset. For example, to answer the question, “Which features tend to
contribute the most to this model’s predictions?” you could use global explanations.

How do you compute these explanations? Most methods are used post hoc, that is,
after the model has been trained. These methods can be specific to certain model
types or agnostic to the model being used. In general, post hoc methods take a
specific dataset (say, your evaluation dataset) and use how the model behaves on this
dataset and perturbations to give explanations.

Some models are intrinsically explainable, such as linear regression models. In this
case, the explanations can be derived directly from the model itself without the need
to use a separate dataset. There is a trade-off, however. In general, the more complex
models are less intrinsically explainable. More complex model types, such as deep
neural networks used in most image and language models, are impossible to explain
from the model definition, and you must rely on post hoc methods.

You will see some of these methods along the way in this chapter and the following
chapters, but for a more careful dive into these concepts, Explainable Al for Practi-
tioners by Michael Munn and David Pitman (O’Reilly, 2022) is a great resource.

Explainable Alin BigQuery ML

While the ML.EVALUATE function provides evaluation metrics, BigQuery also offers a
function that provides a way to explain the model and the predictions it produces.
Global and local explanations available in BigQuery use Google Cloud’s Explainable
AT service. Explainable AI in BigQuery provides “feature attributions” that show
which input features are most important to your model overall and for specific
predictions. To compute global explanations, you will need to modify the CREATE
MODEL query and add one additional option enabling global explainability:

enable_global_explanation = TRUE

Global explainability returns the feature’s overall influence on the model, often
obtained by aggregating the feature attributions over the entire dataset. A higher
absolute value indicates the feature had a greater influence on the model’s predictions.

Local explanations can be computed without enabling global explanations. You will
see examples of both in what follows.

Modifying the CREATE MODEL statement

Copy the original CREATE OR REPLACE MODEL query into a new query window.
Modify the query by adding the statement enable_global_explain=TRUE as shown
here:

CREATE OR REPLACE MODEL data_driven_ml.energy_production: OPTIONS
(model_type="'1linear_reg',
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input_label_cols=['Energy_Production'],
enable_global_explain=TRUE) AS
SELECT
Temp,
Ambient_Pressure,
Relative_Humidity,
Exhaust_Vacuum,
Energy_Production
FROM
‘your-project-id.data_driven_ml.ccpp_cleaned’

Run this altered query to train a new version of the model with global explanations

enabled. This should only take a few minutes. Wait until the model has finished
training before moving on to the next step.

Using the ML.GLOBAL_EXPLAIN function

To see the explanations, you can create a basic “SELECT * FROM” SQL statement.
The difference here is the FROM statement. Rather than the FROM statement referenc-
ing the project ID, dataset, and table, the FROM statement is modified as shown in
the following code. The ML.GLOBAL_EXPLAIN function calls the model itself (in this
case, “energy_production”) to retrieve the results. Run the following query in the
BigQuery console to explore this for yourself:

SELECT

*

FROM
ML.GLOBAL_EXPLAIN(MODEL ‘data_driven_ml.energy_production’)

Figure 6-26 contains the query results and shows the features with the largest impor-
tance scores for your model overall. Based on the earlier analysis of features using

correlation, you would expect that the Temp feature would have the largest attribution
score, and this is confirmed here.

Feature Name Attribution
Temp 12.752
Exhaust_Vacuum 2.721

Relative_Humidity 1.947

Ambient_Pressure 0.297

Figure 6-26. ML . GLOBAL_EXPLAIN returns the global feature attributions obtained by
taking the mean absolute attribution that each feature receives for all the rows in the
evaluation dataset.
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Using the ML.EXPLAIN_PREDICT function to compute local explanations

Recall our earlier example: you wanted to know the power production during an
hour where the temperature is on average 27.45°C, the ambient pressure is 1,001.23
millibar, relative humidity is 84%, and the exhaust vacuum pressure is 65.12 cm Hg.
You used the ML_PREDICT function to predict that the energy production would be
433.35 MW for this hour. You expect that temperature will have the greatest impact
based on the global feature attributions for your model. However, global explanations
in general aggregate over an entire dataset—what about this example in particular?

You can replace the ML.PREDICT method with the ML.EXPLAIN_PREDICT method to
return the prediction with local feature attributions instead. Run the following query
to get feature attributions for the top three features. Note that your exact output may
differ from the output shown in Figure 6-27:

SELECT
*
FROM
ML.EXPLAIN_PREDICT(
MODEL “your-project-id.data_driven_ml.energy_production’,
(
SELECT
Temp,
Ambient_Pressure,
Relative_Humidity,
Exhaust_Vacuum
FROM
“your-project-id.data_driven_ml.ccpp_cleaned’),
STRUCT(3 AS top_k_features) )

Row y predicted_Energy_Pmductiun/ top_feature_attributions.feature y top_feature_attributio... attribution
‘¢ 2 2 J

1 450.02603470101332 Relative_Humidity -2.58330056860657
TEMP -1.7340407591690155
Ambient_Pressure 0.12177258362156519

Figure 6-27. The output of the ML . EXPLAIN_PREDICT function. In this case, the tempera-
ture had the largest (in magnitude) contribution to the output for this example.

There is a little syntax and some new columns in the output to explain. The addi-
tional argument for ML.EXPLAIN_PREDICT, STRUCT(3 AS top_k_features), restricts
the output for feature attributions to the top three features. The top_k_features
option is the option for doing so, and ML.EXPLAIN_PREDICT expects this information
to be passed in as a STRUCT. You can think of a STRUCT in SQL as a list of values (or
columns) with specific names and possibly different types.
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Now for the new columns. top_feature_attributions is itself a STRUCT with two
fields, feature and attribution. The field feature gives the corresponding feature
name, and attribution gives the attribution value for this instance. And there is
another new column: baseline_prediction_value. This value gives a baseline to
compare your instance to for the sake of getting local feature attributions. In the
case of linear regression models, this baseline is the average label value (energy
production) across the dataset.

How do you interpret the attribution values then? Note that the predicted label is less
than the baseline prediction, and the attributions are all negative. The temperature
value accounts for about 18.52 MW of decrease on average from the baseline value,
relative humidity about on average 2.16 MW, and ambient pressure on average 0.31
MW. Exhaust vacuum pressure is not included here since it was not in the top three,
but it had an even smaller contribution than ambient pressure for this example.
So, you see that, for this example, most of the deviation from the baseline energy
production was because of the temperature, with some minor contributions from the
other features.

Another option is to leverage explainability libraries in Jupyter Notebooks, such as
Google Colab notebooks. LIME and SHAP are two such popular Python libraries that
are commonly used across many different use cases. A full discussion is beyond the
scope of this book; we recommend this blog post and other explainable Al references
mentioned already for a deeper discussion and explicit examples.

The phrase “on average” in the previous paragraph may seem a
bit odd on first reading. BigQuery ML uses Shapley values to com-
pute attributions for linear models. Shapley values are a tool from
coalitional game theory that computes the average contribution of
feature values across different coalitions—different combinations
of the feature value you are interested in and some baseline feature
value. Though there is a more technical definition (see Interpretable
Machine Learning: A Guide For Making Black Box Models Explaina-
ble by Christoph Molnar [self-published, 2022], for example) for
linear models, these can be computed simply in terms of the weight
corresponding to that feature and the feature value itself for local
explanations.

Exercises

In “Feature Selection and Correlation” on page 163, you began gaining a better
understanding of the feature selection process and some techniques to use for feature
selection. However, you used all of the possible features for training your model in
the previous section. Some exercises for the reader:

182 | Chapter 6: Using BigQuery ML to Train a Linear Regression Model


https://oreil.ly/YdZ5x

1. Train new models using a subset of the features. Use what you learned about
correlations and collinearity to select your features.

2. Evaluate these new models. Which sets of features performed the best?

3. Use the discussed explainability functions to explore which features contributed
most to the models’ performance globally and locally. Are there any surprises?

Neural Networks in BigQuery ML

Now that you have trained linear regression models using BigQuery ML, it’s time
to look at another popular ML model type: neural networks. Neural networks have
become incredibly popular in the past decade due to the availability of additional
compute resources, new model architectures, and their flexibility to apply knowledge
from one problem to another in the form of transfer learning. This section offers a
quick introduction to neural networks and then shows how to build such a model in
BigQuery ML.

Brief Overview of Neural Networks

As in the case of linear regression models, neural networks are also mathematical
functions that take numeric feature values as inputs and output a prediction for the
label. Neural networks can be used for both regression and classification problems,
but in this section the focus will be on regression models.

To describe neural networks, let us reframe the description of linear regression in
visual terms. Recall for the problem of predicting energy production there were
four features: temperature, ambient pressure, relative humidity, and exhaust vacuum
pressure. For the sake of simplicity, label these as x1, ;, 73, and 4. A linear regression
model using these four features would have the following form:

__>
f(x) =Y = Wy + WL + Wy + W3T3 + Waly.

To visualize this as a network, draw a graph like Figure 6-28. Draw a vertex for each
of the four features and the output y. Draw arrows from the feature vertices to the
output vertex and label those edges with the weights wy, w,, ws, and wy, respectively.
Often, nothing is drawn for the bias wj in this representation.
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Figure 6-28. A visual representation of a linear regression model.

You have now visualized a linear regression model as a neural network! Before
writing any formulas for neural networks in general, we'll start out with a visual
representation of one that is not a linear regression model. Now, suppose you want to
combine the original features into new hidden features z; and 2;, where each of these
features is a linear combination of the original features, or what you may consider as
a weighted sum of the features. Technically, it is an expression of the form

Z1 = C+ T + Oy + C3T3 + C4y

where the c; are some real numbers. The hidden feature 2z, would have a similar
definition with different constants (say, d; instead of ¢;). Strictly speaking, the ¢y term
makes this something slightly different than a linear combination of the features on
their own, but if you include 1 as a constant feature, then the technical definition
does align with the usage here.

We call these hidden features together a hidden layer. They are hidden since you
do not see them in the input or the output of the model, but they play a role in
computing the output from the inputs. You can draw a visual representation in the
same manner as before, but now the feature vertices connect to the new hidden
features 21 and 2, and the hidden features connect to the output ¥, as in Figure 6-29.

Figure 6-29. A visual representation of a neural network with one hidden layer.
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This is an example of a neural network with one hidden layer. How do you determine
what these hidden features should be, though? That is, how do you find the best
values for the various ¢; and d;? There is no normal equation for neural networks, but
you can use gradient descent in the same way as before! Instead of trying different
combinations, you can treat the ¢; and d; just like the other weights before for your
linear regression model and train the model to find the best weights.

Activation Functions and Nonlinearity

There is still one piece of the neural network puzzle missing, however. To see what
this is, consider a simple math problem. Suppose f(z) =3+ 2x and g(z) = 1 + 5z.
What is g(f(x))? To compute a composition, take the output of the inner function
(here f(x)) and plug it into the second function:

g(f(x)) =g(3+2x) =1+53+2x) =16 + 10z

What was the point of this exercise? Note that f(z) and g(z) are linear functions of
the form mx + b for some m and b. The final answer g(f(z)) is also a linear function
of the same form (just with different 1 and b). This is not a coincidence! In general, a
composition of linear functions is always linear.

How does this relate back to neural networks? The hidden features z; and z, are
linear functions of 1,2y, 23, and x4 ¥ is a linear function of z; and 2. You can
think of your neural network as a composition of two linear functions. The first takes
(a1, 22, 13, 74) to (21, 2), and the second takes (z1, 23) to 3. Both functions are linear,
so the composition is also linear. We just found a more complicated way to write y as
a linear function of xy, Ty, T3, and 4!

So, are neural networks with hidden layers pointless? Not at all, but you need to
add in one more thing to make them interesting: a nonlinear activation function.
Activation functions are functions applied to the features in hidden layers before
passing along those values to the next layer. This is done so that the functions that
go from one layer to the next are no longer linear, and the model can learn more
interesting behavior. The most common activation function used for neural networks
(and the simplest) is the rectified linear unit function, or ReLU for short. ReLU is a
very simple function that takes in a single value and returns that value if it’s positive,
or returns 0 if it’s negative (see Figure 6-30).
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Figure 6-30. Graph of the ReLU activation function.

Activation functions will often be applied to the hidden layers but not the output
itself for regression problems. Now you have a definition of neural networks that
gives you something more than linear regression models. The resulting functions
with ReLU activation are still piecewise linear, but the fact that they are not linear
means that you can model more complicated functions. You can see a visual repre-
sentation of how these activation functions are added in Figure 6-31.

Figure 6-31. A visual representation of a neural network with one hidden layer and
activation function ReLU for the hidden layer. The boxes represent ReLU being applied
to the value of a hidden feature before being used to compute the final output.

In general, you can build a neural network with as many hidden layers as you
like. For example, if you have two hidden layers, you can conceptually think of
the neural network doing the following. After training, the model will have learned
hidden features for two different hidden layers. You can think of the features for the
first hidden layer as being learned from the original input features, and the hidden
features for the second hidden layer as being learned from the hidden features from
the first hidden layer. You cannot see this directly by looking at the model inputs
and outputs, of course, but it does correspond to how neural networks can build up
concepts from one layer to another and ultimately apply these to computing the final
output. See Figure 6-32 for a visual example of such a neural network.
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Figure 6-32. A visual representation of a neural network with two hidden layers. The
activation function ReLU is not visualized in this example.

Larger numbers of hidden layers give rise to more powerful models
but have more weights to optimize and thus take more data and
time to train. Smaller neural networks (fewer hidden layers) are
easier to train but may not be able to learn as complex relationships
compared with larger neural networks.

Training a Deep Neural Network in BigQuery ML

Now that you know a little bit about neural networks, it is time to train a neural
network in BigQuery ML. Training a deep neural network will give you a way to learn
critical nonlinear relationships between your input variables and the label, power
production. Fortunately, though the concepts are a bit more complicated, the SQL
syntax for doing this is just as simple as before, with some small differences. Write
and run the following query in the BigQuery console:

CREATE OR REPLACE MODEL data_driven_ml.energy_production_nn
OPTIONS
(model_type='dnn_regressor',
hidden_units=[32,16,8],
input_label_cols=["'Energy_Production']) AS
SELECT
Temp,
Ambient_Pressure,
Relative_Humidity,
Exhaust_Vacuum,
Energy_Production
FROM
‘your-project-id.data_driven_ml.ccpp_cleaned’

This model will take longer to train due to both the model being more complex and
the fact that BigQuery is exporting the data to Vertex Al to train a neural network
using Vertex Al training.
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There are some small changes to the SQL statement that should be addressed while
the model is training. First is the model type. dnn_regressor is the model type for
deep neural network regression models. The word deep here corresponds to the fact
that the neural network could have any number of hidden layers, that is, it could be
many layers deep. The other new argument is hidden_units. A hidden unit or neuron
is the more technical and commonly used term for what was called hidden features
earlier. The hidden_units option expects an array of integers, and in this case the
array [32,16,8] was given. This means that the neural network has three hidden
layers: the first hidden layer has 32 neurons, the second has 16 neurons, and the third
has 8 neurons. This would be a bit of a slog to draw out the visual representation
of, but hopefully you can understand what this could look like by analogy to earlier
diagrams.

Once your model is trained, go to your model and the Evaluation tab as you did for
the linear model and look at the evaluation metrics for your model. Your metrics may
differ from those that you see in Figure 6-33.

energy_production_nn

DETAILS TRAINING EVALUATION SCHEMA
Mean absolute error 3.8891

Mean squared error 25.2777

Mean squared log error 0.0001

Median absolute error 3.2863

R squared 0.9142

Figure 6-33. Trained neural network evaluation metrics.

The new neural network model did slightly worse than the linear regression model
based on mean squared error (and RMSE, since RMSE is the square root of mean
squared error). This is an example of overfitting (as shown in Figure 6-34). The model
that is overfitting can more accurately predict the labels for the data in the training set
(shown), but this comes at the cost of missing the overall quadratic trend in the data.
Models can also underfit. That is, the model is too simple and cannot learn trends in
the data. Figure 6-34 shows an example where a linear model was used, so the model
is not able to learn the quadratic trend in the data.
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Figure 6-34. Underfitting and overfitting models for a dataset.

When training ML models, you should compare the performance
on the training dataset and the evaluation dataset to ensure that
the model is not overfitting. You can approach this by altering the
model architecture, using early stopping or various other regulari-
zation techniques. Regularization is a blanket term of techniques
that combat overfitting in models. Chapter 8 discusses some of
these techniques in more detail for different frameworks, including
BigQuery ML.

Naturally, you may have come across a major question along the way. How do you
know you have the best number of hidden layers and neurons? You can try some
different lists for the hidden_units option and see what performs the best, but in
theory there are an infinite number of possibilities. The number of hidden layers,
neurons per layer, and which activation function is used are all examples of what
are called hyperparameters. Hyperparameters are different from parameters (such as
weights) in that they are set before the model is trained. Hyperparameters define
the model architecture, training process, and more, and parameters are what are
optimized during the training process to try to find the best model defined by
these hyperparameters. Chapter 8 explores different methods for finding the best
hyperparameters for your model in BigQuery ML, Vertex Al, and other popular ML
frameworks.
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Exercises

In “Feature Selection and Correlation” on page 163, you saw the feature selection
process and learned some techniques to use for feature selection. However, you used
all of the possible features for training your model in the previous section. Here are
some exercises to try:

1. Train another model using a larger neural network. You can either add addi-
tional neurons for each layer or additional layers. How did this affect mode
performance?

2. Train another model using a smaller neural network. You can either remove
neurons for each layer or remove layers. How did this affect model performance?

3. Use the discussed explainability functions to explore which features contributed
most to the model’s performance globally and locally. Are there any surprises?

Deep Dive: Using Cloud Shell to View
Your Cloud Storage File

Cloud Shell is a free service on Google Cloud that gives you terminal access to a small
virtual machine with the Google Cloud CLI (command-line interface) preinstalled.
This allows you to use the command line to interact with Google Cloud resources.
We can’t cover all of its capabilities in this book, but you will see a simple example of
how you can print off the first few lines of a text file stored in Google Cloud Storage
without having to download the file.

To access Cloud Shell, click the Activate Cloud Shell button in the top right corner
of the Google Cloud console UI (shown in Figure 6-35). It may take a little time to
provision the virtual machine.

qﬁ@

Figure 6-35. The Activate Cloud Shell button.

Every time you open Cloud Shell (see Figure 6-36), the underlying virtual machine
is different, but the persistent disk is not. What does that mean? It means that your
data in Cloud Shell will always be available, but anything that is installed by you will
have to be reinstalled whenever you reopen Cloud Shell. Since you will be using the
Google Cloud CLI here, this will not be an issue.
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CLOUD SHELL
Terminal cloud-training-demos X + ~

Welcome to Cloud Shell! Type "help" to get started.

Your Cloud Platform project in this session is set to cloud-training-demos.
Use “gcloud config set project [PROJECT ID]” to change to a different project.
stripling@cloudshell:~ (cloud-training-demos)$ I

Figure 6-36. The Cloud Shell terminal.

First, ensure that your project is active in Cloud Shell. If it is active, you should
see a terminal prompt similar to “your-login@cloudshell:~ (your-project-id)$”
If you do not see the project ID in the second part of the prompt, you will need
to set this. Fortunately, that is very easy to do using the Google Cloud CLI. Type
in the following command (replacing your-project-id with your project ID) and hit
Enter/Return:

gcloud config set project your-project-id

You should now see your project ID in the second part of the terminal prompt. You
can also check that the project ID is set successfully by running this command:

gcloud config list project

Now that you have activated the CLI using your project ID, you can look at the first
few lines of the CSV file together. Do this by running the following command:

gcloud storage cat -r 0-250 gs://low-code-ai-book/ccpp.csv

Unlike the previous commands, this one is likely not very obvious in purpose. gcloud
storage is the family of commands for interacting with Google Cloud Storage, and
you are executing the cat command. This command is short for concatenate, and it’s
used to read a file from Google Cloud Storage and write it to the standard terminal
output. The next part of the command, -r 0-250, specifies that you do not want
to read the entire file, but rather just the first 250 bytes. For this CSV file, this will
allow you to see the first few rows to just get a quick idea of what you are looking at.
Finally, you have the file Uniform Resource Identifier (URI) in Google Cloud Storage:
gs://low-code-ai-book/ccpp.csv
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The output of this command is the following:

Temp,Exhaust_Vacuum,Ambient_Pressure,Relative_Humidity,Energy_Production
14.96,41.76,1024.07,73.17,463.26

25.18,62.96,1020.04,59.08,444.37

5.11,39.4,1012.16,92.14,488.56

20.86,57.32,1010.24,76.64,446.48

10.82,37.5,1009.23,96.62,473.9

26.27,59.44

The last row was not completed, but that is OK! The goal here was to simply get an
idea of what you were looking at. Note that this CSV file has five columns: Temp,
Exhaust_Vacuum, Ambient_Pressure, Relative Humidity, and Energy_Production.
These correspond to the columns that were expected. At least in the first few rows,
nothing seems off about this data, but of course there is likely a lot more data in
this file than is shown now. How can you figure this out? There is a nice terminal
command, wc, that can count the number of lines in a file:

gcloud storage cat gs://low-code-ai-book/ccpp.csv | wc -1

The first part of the command is familiar: you are concatenating the CSV file from
Google Cloud Storage. You are not specifying how many bytes to read, so the entire
file will be read. But the last part of the command is new. This command is really two
different commands chained together using the pipe operator |. The pipe operator
takes the output from the first command and “pipes” it to the second command to
use as the input. In this case, the second command is the wc -1 command. This
command uses we (“word count”) to count the number of lines, words, and characters
in the CSV file. The -1 option is used to only print out the number of lines. In this
case, you see that the CSV file has 9,590 lines.

Summary

In this chapter you analyzed power plant production data using SQL and Python.
Using what you learned in your analysis, you built both linear regression and deep
neural network regressor models to predict power plant production using SQL in
BigQuery ML. Along the way, you explored new concepts around topics such as
explainability and some of the mathematics behind neural networks.

The focus of this book so far has been on no-code and low-code solutions, but there
may be situations where you need something more flexible. In the next chapter, you
will be introduced to custom code solutions in Python using scikit-learn and Keras.
Both libraries are very approachable and are a great place to start your exploration
into using Python for ML.
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CHAPTER 7
Training Custom ML Models in Python

In this chapter, you'll learn how to build classification models to predict customer churn
using two popular ML libraries available in Python, scikit-learn and Keras. First, you'll
explore and clean your data using Pandas. Then you’ll learn how to use scikit-learn
to prepare categorical features for training using one-hot encoding, train a logistic
regression model, understand model performance using evaluation metrics, and improve
model performance. You'll learn how to perform the same steps using Keras to build
a neural network classification model using the already prepared data. Along the way,
you'll learn more about performance metrics for classification models and how to better
understand a confusion matrix to better evaluate your classification models.

The dataset being used for this chapter, the IBM Telco Customer Churn dataset,
is a popular dataset for learning how to model customer churn. You should feel
encouraged to look at other examples of how to work with this dataset to grow your
knowledge after completing the exercises in this chapter.

The Business Use Case: Customer Churn Prediction

Your goal in this project will be to predict customer churn for a telecommunications
company. Customer churn is defined as the attrition rate for customers, or in other
words the rate of customers that choose to stop using services. Telecommunications
companies often sell their products at a monthly rate or via annual contracts, so churn
here will represent when a customer cancels their subscription or contract in the
following month.

The data is initially supplied in a CSV file, so you will need to spend some time loading
the data into Pandas before you can explore it and ultimately use it to create your ML
model using different frameworks. The dataset contains both numeric variables and cate-
gorical variables, where the variable takes on a value from a discrete set of possibilities.
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There are 21 columns in the dataset. Table 7-1 gives the column names, data types,
and some information about the possible values for these columns.

Table 7-1. Schema and field value information for the customer churn dataset

Column name Column type Notes about field values

customerID String Unigue value for every customer

gender String “male” or “female”

SeniorCitizen Integer 1 if customer is a senior citizen, 0 otherwise

Partner String Records if the customer has a partner (spouse or domestic partner) in the
household

Dependents String Records if the customer has dependents in the household or not

tenure Integer Number of months the customer has used the telco service

PhoneService String Records if the customer pays for phone service

MultipleLines String If the customer pays for phone service, do they pay for multiple phone lines?

InternetService  String What type of internet service does the customer pay for, if any?

OnlineSecurity String Does the customer pay for online security?

OnlineBackup String Does the customer pay for online backup?

DeviceProtection String Does the customer pay for device protection?

TechSupport String Does the customer pay for online tech support?

StreamingTV String Does the customer pay for streaming television?

StreamingMovies  String Does the customer pay for streaming movies?

Contract String Does the customer have a contract or do they pay month by month?

PaperlessBilling String Does the customer use paperless billing?

PaymentMethod String What payment method does the customer use?

MonthlyCharges Float Monthly charge for customer services

TotalCharges Float Total amount customer has paid over lifetime

Churn String Did the customer leave the telco service in the following month?

You will discover that many of the features can be consolidated or omitted for train-
ing your ML model. However, many of the features will need cleaning and further
transformation to prepare for the training process.

Choosing Among No-Code, Low-Code, or
Custom Code ML Solutions

Before exploring how to use custom training tools such as scikit-learn, Keras, or
other options that were discussed in Chapter 3, it is worth discussing when a custom
solution could and should be used over other options discussed in this book so far:
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No-code solutions

These are great in two cases in particular. The first is when you need to build an
ML model, but do not have any ML expertise. The goal of this book is to give you
a bit more insight into how to make the right decisions around your data for ML,
but no-code solutions often exist to simplify the decisions and lessen the need for
working with more complex solutions. Another place where no-code solutions
stand out is in rapid prototyping of models. Because no-code solutions, such as
AutoML solutions, manage steps like feature engineering and hyperparameter
tuning for the user, this can be an easy way to train a quick benchmark model.
Not only that, but as shown in Chapters 4 and 5, it is simple to deploy these
models using Vertex Al AutoML. In many cases, these no-code solutions can be
robust enough to use in production immediately. In practice, custom solutions
can outperform no-code solutions given enough time and effort, but incremental
gains in model performance can often be outweighed by the time saved in getting
no-code solutions into production.

Low-code solutions

These are great when you do need some customization and are working with
data that meets the constraints of the tool you are using. For example, if you
are working with structured data and the problem type you wish to solve is
supported by BigQuery ML, then BigQuery ML could be a great choice. The
advantage of a low-code solution in these cases is that less time needs to be spent
on building the model and more time can be spent experimenting with your
data and tuning your model. With many low-code solutions, the model can be
productionized either directly within the product or via model export and using
other tools like Vertex Al

Custom code solutions

These are by far the most flexible and are often leveraged by data scientists and
other AI practitioners who like to build their own custom models. Using ML
frameworks like TensorFlow, XGBoost, PyTorch, and scikit-learn, you can build
a model using any type of data and the objective of your choice. In some sense,
the sky’s the limit in terms of flexibility and deployment options. If you need a
custom transformation, you can build it. If you need to be able to deploy your
model as part of a web application, you can do it. Given the right data, expertise,
and enough time, you can achieve the best results using custom code solutions.
However, one of the trade-offs is that one needs to spend the time to learn the
various different tools and techniques for doing this.

Which should you prefer? There is no single correct answer for every possible use
case. Take into account the time you have to train, tune, and deploy the model.
Also consider the dataset and the problem objective. Does the no-code or low-code
solution support your use case? If not, then a custom code solution may be the only
option. Finally, take into account your own expertise. If you know SQL very well but
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are new to Python, then something like BigQuery ML may be the best choice if it
supports the problem you are attempting to solve.

This book does not aim to make you into an expert at using various different custom
code ML frameworks. However, the book does take the approach that exposure to
these tools and some basic knowledge can go a long way toward solving problems
and collaborating with data scientists and ML engineers. If you are not familiar with
Python, then Bill Lubanovic’s Introducing Python (O’Reilly, 2019) is a great resource
for getting started. Additionally, if you want to dive deeper into the ML frameworks
introduced in this chapter, Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow (2nd edition) by Aurélien Géron (O’Reilly, 2022) is a wonderful resource
that is referenced by data scientists and ML engineers in practice.

Exploring the Dataset Using Pandas, Matplotlib,
and Seaborn

Before you begin learning about scikit-learn and Keras, you should follow the work-
flow discussed in earlier chapters around understanding and preparing data for ML.
Though you have used Google Colab briefly in earlier chapters to load the data from
BigQuery into a DataFrame and do some basic visualization, you have not gone
through the data preparation and model training process completely in the Jupyter
Notebook environment.

This section revisits how to load data into a Google Colab notebook using Pandas.
Once the data is loaded into a DataFrame, you will explore, clean, and transform the
data before creating the datasets that you will use to train your ML model. As you
have seen in previous chapters, much of the work goes not into training the model
but into understanding and preparing the training data.

All of the code in this section, including some additional examples, is included in a
Jupyter notebook in the low-code-ai repo on GitHub.

Loading Data into a Pandas DataFrame in a Google Colab Notebook

First, go to https://colab.research.google.com and open a new notebook, following the
process discussed in Chapter 2. You may rename this notebook to a more meaningful
name by clicking the name as shown in Figure 7-1 and replacing the current name
with a new name, say, Customer_Churn_Model.ipynb.
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Figure 7-1. Renaming the Google Colab notebook to a more meaningful name.

Now type the following code into the first code block to import the packages needed
to analyze and visualize the customer churn dataset:

import as

import as

import as

import as

import

import as
You saw some of these packages before in Chapter 2 when first exploring the use
of Colab notebooks, but some of these will be new to you here. The line import
sklearn imports scikit-learn, a popular ML framework. Scikit-learn was first released
in 2007 and was built on top of other Python libraries such as NumPy and SciPy. It
is meant to be an easy-to-use framework for building ML models, including linear
models, tree-based models, and support vector machines. The next line, import
tensorflow as tf, imports TensorFlow. TensorFlow is a high-performance numeri-
cal computation library that was designed with the training and deployment of deep
neural networks in mind. TensorFlow includes Keras, a library meant to ease the
development of deep neural networks and the corresponding data transformations.
You will be using Keras later in the chapter to train a neural network model.

Now execute the cell containing the import statements to import the packages. To do
this, click the Run Cell button on the left side of the cell as shown in Figure 7-2, or
press Shift + Enter to run the cell.
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import-tensorflow-as-tf

© 1 import-matplotlib.pyplot-as-plt
2 import-numpy-as-np
3 import-pandas-as-pd
4  import.seaborn-as-sn
5 import-sklearn
6
7

Figure 7-2. The Run Cell button is seen at the top left of the cell as shown here.

You can quickly check that the import statements have executed successfully by
checking the versions of the packages. Every package includes a special attribute,
__version__, which returns the version of the package. Type the following code
into a new cell, and execute the cell to check your version of the scikit-learn and
TensorFlow packages:

print("scikit-learn version:", sklearn.__version__)
print("TensorFlow version:", tf.__version__)

You should see the versions printed as shown in Figure 7-3. Note that your exact
version numbers will depend on when you are walking through this exercise.

° 1 print("scikit-learn:version:", -sklearn.__version__)
2 print("TensorFlow version:", -tf.__version__)

scikit-learn version: 1.0.2
TensorFlow version: 2.9.2

Figure 7-3. Printing the versions of scikit-learn and TensorFlow to ensure they were
imported properly.

Now you are ready to import your data. Recall that the dataset is stored in the CSV
format, so you will need to download that data, upload it to your notebook, and then
import into a Pandas DataFrame, correct? Actually, that is not the case. A very nice
feature of Pandas is that you can directly import a CSV file into a DataFrame from a
location on the internet without having to download the file first. To do this, type in
the following code into a new cell and execute the cell:

file_loc = 'https://storage.googleapis.com/low-code-ai-book/churn_dataset.csv'
df_raw = pd.read_csv(file_loc)
In general, it is a good idea to look at the first few rows of the DataFrame. Use
df_raw.head() to explore the first few rows of the DataFrame. You can quickly scroll

through the columns of the data and see at a glance that it seems like the types
correspond to what was expected. An example of a few of the columns is shown
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in Table 7-2. Looking at the first few rows is a great quick first step, but of course this
dataset is more than just a few rows and there could be some problems lurking where
you cannot see them.

Table 7-2. A few columns of the first five rows of the DataFrame df_raw printed using the
head() method

Streaming Streaming Contract Paperless Payment Monthly Total Churn
TV Movies Billing Method Charges Charges
No No Month- Yes Electronic 29.85 29.85 No
to-month check
No No One Year |No Mailed 56.95 1889.5 | No
check
No No Month- Yes Mailed 53.85 108.15 | Yes
to-Month check
No No One year | No Bank 42.30 1840.75 | No
transfer
(automatic)
No No Month- Yes Electronic 70.70 151.65 | Yes
to-month check

Understanding and Cleaning the Customer Churn Dataset

Now that the data has been loaded into the DataFrame df_raw, you can begin to
explore and understand it. The immediate goal is to get an idea of where there could
be issues with the data so that you may resolve those issues before moving forward.
However, you should also be keeping an eye out for the overall distribution and
other properties of the columns of your DataFrame since this will be important when
transforming the data later.

Checking and converting data types

First you will check that the data types inferred by Pandas match up with what was
expected from Table 7-1. Why is this useful? It can be an easy way to check for
mistyped data, which can often come from issues with the data itself. For example,
what if there is a string value in a column of integers? Pandas will import this column
as a string column because integers can be cast as strings, but not vice versa in most
cases. To check the data types for your DataFrame, type df_raw.dtypes into a new
cell and execute the cell.

Note there are no parentheses after dtypes. This is because dtypes is not a function
but rather a property of the Pandas DataFrame df_raw. Anything that was not a
floating-point number or an integer was imported as an object in the DataFrame.
This is normal behavior for a Pandas DataFrame. If you look through the output
more carefully, though, almost every column matches the expected type, except
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for the TotalCharges column. You can see the output for the last few columns in
Table 7-3 and confirm that you see the same thing in your notebook environment.

Table 7-3. The data types for the last six columns of the df_raw DataFrame (note that the
TotalCharges column is not a float64 as expected)

Contract object

PaperlessBilling object

PaymentMethod object
MonthlyCharges float64
TotalCharges object

Churn object

This is a good sign that there is something different about the TotalCharges column
than expected. Before moving forward, you should explore this column and under-
stand what is happening. Recall that you can work with a single column of a Pandas
DataFrame using the syntax df['ColumnName'], where df is the DataFrame name
and ColumnName is the column’s name.

Begin by getting some high-level statistics about the TotalCharges column using the
describe() method. Try to do this without looking at the provided code first, but if
you need it, the code is right here:

df_raw[ 'TotalCharges'].describe()

Your output should be the same as the output in Figure 7-4. Since TotalCharges is
being treated as a categorical variable (in this case as a string), you only see the count
of elements, the number of unique values, the top value in terms of frequency, and
the number of times that value appears.

v ° 1 df_raw['TotalCharges'].describe()

count 7043
unique 6531
top

freq 11

Name: TotalCharges, dtype: object

Figure 7-4. Summary statistics of the TotalCharges column. Note that the most fre-
quent value is a string with a single space.
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In this case you can see the issue almost immediately. The top value is either a
blank or empty string, and it appears 11 times. This is likely why Pandas treated the
TotalCharges as an unexpected data type and led you to discover an issue with the
data.

When you have missing data, you can ask, “What should be there?” To try to
understand this, look at the corresponding rows of data in the DataFrame and see
if there is a pattern for which rows are missing. To do that, you will create a mask
and apply it to the DataFrame. The mask will be a simple statement that returns true
or false depending on the input value. In this case, your mask will be of the form
mask=(df.raw[ 'TotalCharges']==" "). The == operator checks to see if the value of
the TotalCharges column is equal to the string with a single space. If the value is a
string with a single space, the operator returns true; otherwise it returns false. Type
the following code into a new cell and execute the cell:

mask = (df_raw['TotalCharges']==" ")

df_raw[mask].head()
The output of the cell is shown in Table 7-4. Now explore the results of this cell.
Do you notice anything that may explain why the TotalCharges column is blank for
these customers? Look at the tenure column and notice that the value is 0 for each of
these customers.

Table 7-4. The first few columns and rows of the DataFrame df_raw whose value for the
TotalCharges columnis ' '

customerID gender SeniorCitizen Partner Dependents tenure PhoneService

4472-LVYGI Female 0 Yes Yes 0 No
3115-CZMZD Male 0 No Yes 0 Yes
5709-LVOEQ Female © Yes Yes 0 Yes
4367-NUYAO Male 0 Yes Yes 0 Yes
1371-DWPAZ Female © Yes Yes 0 No

If the tenure is 0, then this is the first month for these customers with the telco, and
they have not been charged yet. This explains why there is no value for TotalCharges
for these customers. Now verify this hypothesis by using a different mask to check the
rows with tenure equal to 0. Try to write the code for this cell on your own, but the
solution follows in case you need any help:

mask = (df_raw['tenure']==0)

df_raw[mask][['tenure', 'TotalCharges']]
Note that in the code above, you specify a list of columns ['tenure','Total
Charges']. Since you were looking purely at the relationship between tenure and
TotalCharges, this will make the results easier to parse. All 11 rows with Total
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Charges equal to ' have the value 0 for the tenure column. So, indeed, the
relationship was as expected. You now know that these odd string values correspond
to zero TotalCharges and can replace the string values with the float 0.0. The easiest
way to do this is to use the df.replace() method. The syntax for this function can
take a little bit to parse, so first type the following code into a new cell and execute
that cell to see the results:

df_1 = df_raw.replace({'TotalCharges': {' ': 0.0}})

mask = (df_raw['tenure']==0)

df_1[mask][['tenure','TotalCharges']]
Your results should be the same as the results in Table 7-5. You can now see that the
string values for TotalCharges from before have now been replaced by the float value
0.0.

Table 7-5. The TotalCharges column has been replaced with the value 0.0 for the rows where
the value of tenure is 0

tenure TotalCharges

488 0 0.0
753 0 0.0
936 0 0.0
1082 0 0.0
1340 © 0.0
3331 0 0.0
3826 0 0.0
4380 0 0.0
5218 © 0.0
6670 0 0.0
6754 0 0.0

With these results in mind, it becomes easier to understand the syntax used in the
first line of code, df_raw.replace({'TotalCharges': {' ': 0.0}}). The method
takes a Python data structure known as a dictionary. Dictionaries are unordered lists
of pairs where the first element of each pair is the name of a value, and the second
element of each pair is the value itself. In this case, the first element is TotalCharges,
the name of the column where you want to replace values. The second element is a
dictionary itself, {' ':0.0}. The first element of this pair is the value you want to
replace, and the second element of the pair is the new value youd like to insert.

Before you explore the summary statistics for the TotalCharges column and the
other numeric columns, be sure Pandas knows that TotalCharges is a column of
float values. To do so, type the following code into a new cell and execute that cell:
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df_2 = df_1.astype({'TotalCharges':'float64'})

df_2.dtypes
Note that the astype() method uses similar arguments to the replace() method.
The input is a dictionary where the first element of each pair is the column whose
data type will be changed, and the second argument (here, float64) is the new data
type for that column. Your output from the cell should be similar to what is shown in
Table 7-6.

Table 7-6. The datatypes of the last four columns of the new DataFrame df_2 portrayed in
vertical orientation (the rest of the columns are omitted in this figure)

PaymentMethod object

MonthlyCharges float64

TotalCharges float64

Churn object

Exploring summary statistics

Now that you have solved the datatype issue you encountered, look at the summary
statistics of the numeric columns. You saw how to do this back in Chapter 2, so try to
do this without looking at the code first, though the code is below in case you need
any help, and the results are in Table 7-7:

df_2.describe()

Table 7-7. Summary statistics for the numeric columns in the customer churn dataset

SeniorCitizen tenure MonthlyCharges TotalCharges

(I 7043 7043 7043 7043

LEELI 0.162147 32.371149 64.761692 2279.734304

(3 0.368612 24.559481 30.090047 2266.79447

min [ 0 18.25 0

25% K 9 35.5 398.55

50% Ko 29 70.35 1394.55

75% K 55 89.85 3786.6

max [t 72 118.75 8684.8

At a glance, looking at the results in Table 7-7, there are no odd values or anything
amiss except for maybe SeniorCitizen. Recall that SeniorCitizen has the value of
either 0 or 1. The average (mean) value for the SeniorCitizen column, 0.162..., then
represents the percentage of customers that are senior citizens. Though the feature
may be better thought of as a categorical variable, the fact that it is a binary 0 or 1
means that summary statistics like the mean can still give useful information.
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Speaking of categorical features, how can you explore summary statistics for these
features? The describe() method by default only shows numeric features. You can
have it include statistics for categorical features by using the optional keyword argu-
ment include='object'. This specifies that you want to include only columns of
type object, which is the default data type for all non-numeric columns in Pandas.
Include this optional argument in the describe() method in a new cell and execute
the cell. The code is included here in case you need help:

df_2.describe(include="object")

You will now see the statistics for the categorical features. These summary statistics
are more simplistic since you are working with discrete values instead of numeric
values. You can see the number of rows with non-null values or the count, the
number of unique values, the most frequent value (or one of the most frequent values
in case of a tie), and the frequency of that value.

For example, consider the customerID column. This column has the same number of
unique values as it does rows. Another way to interpret this information is that every
single value in this column is unique. You can additionally see that by looking at the
frequency at which the top value appears.

Explore the summary statistics and see what else you notice. Here is a collection
of some observations that will be helpful moving forward but are by no means a
complete list of the useful information available from these results:

o The gender and Partner columns are fairly well balanced between two different
values.

« A large majority of customers have phone service, but almost half of those
customers do not have multiple lines.

o Many of the columns have three different possible values. Though you have
information about the top class, you do not know the distribution of different
values at this time.

o The label for our dataset, Churn, is somewhat unbalanced with about a 5:2 ratio
of No to Yes values.

o All columns, including the numeric columns, have 7,043 elements. There could
be other missing values similar to what you discovered for TotalCharges, but
there are not any null values.
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Exploring combinations of categorical columns

As you saw in Chapter 6, looking at interactions between the different features can
often help you understand which features are most important and how they interact.
However, for that project, all of your features were numeric. In this project, most
of your features are instead categorical. You will explore a method of understanding
feature interactions in this case by looking at the distribution of different feature
value combinations across multiple columns.

First look at the PhoneService and MultipleLines columns. Common sense dictates
that a customer cannot have multiple phone lines if they do not have phone service.
You can confirm that this is true in the dataset by using the value_counts() method.
The value_counts() method takes a list of columns in your DataFrame as an argu-
ment and returns the count of unique value combinations. Type the following code
into a new cell and execute that cell to return the unique value combinations across
the PhoneService and MultipleLines columns:

df_2.value_counts([ 'PhoneService', 'MultipleLines'])

Your results should be the same as the following results. Note that MultipleLines
has three different values, No, Yes, and No phone service. Unsurprisingly, No phone
service only occurs when the PhoneService feature has value No. This means that
the MultipleLines feature contains all of the information of the PhoneService fea-
ture. PhoneService is redundant, and you will remove this feature from your training
dataset later.

PhoneService MultipleLines

Yes No 3390
Yes 2971
No No phone service 682

Are other features in your dataset “correlated” in a similar fashion? Unsurprisingly,
this is indeed the case. As an exercise, write code in a new cell to explore the relation-
ship between the InternetService, OnlineSecurity, OnlineBackup, StreamingTV,
and StreamingMovies.

Once again you have some redundancy between feature values, but it’s not as clear
in this case. When the value of InternetService is No, the value of all of the other
columns is No internet service. However there are two different internet types,
Fiber optic and DSL, and the picture is not as clear in those cases whether there is
redundancy or not. Though you did not include the columns here, the DeviceProtec
tion and TechSupport columns have the same relationship with InternetService.
You should explore this on your own as well. You will consider how to take this
information into consideration in the next section when transforming features.
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Beyond looking at counts of specific value combinations, there
exist techniques for understanding the correlation between differ-
ent values of categorical features. Two such examples are the chi-
square test and Cramer’s V coefficient. The chi-square test checks
for the independence of a dependent and independent categorical
variable, while Cramers V coefficient determines the strength of
that relationship, similar to the Pearson correlation coefficient for
numeric variables. For more details, you can reference almost any
statistics book, such as Statistics in a Nutshell by Sarah Boslaugh
(O'Reilly, 2012).

You should also explore the relationship between the categorical features and the label
Churn. For example, consider the Contract feature. There are three possible values
for this feature: Month-to-month, One year, and Two year. What does your intuition
say about this feature and how it relates to Churn? You should reasonably expect that
longer contract periods lead to churn being less likely, at least if the customer is not at
the end of the contract period. You can use the value_counts() method as before to
look at this relationship, but often it is easier to visually understand relationships than
look at a table of values. To visualize this, write the following code into a new cell and
execute that cell:

(df_2.groupby('Contract')['Churn'].value_counts(normalize=True)
.unstack('Churn")
.plot.bar(stacked=True))

This is actually one very long line of code to be parsed. The parentheses at the
beginning and end tell Python to treat this as one line of code rather than three
separate lines. First the groupby() function is used to group the values by different
Contract values. You want to look at how Churn relates, so you select the Churn col-
umn and then apply the value_counts function. Note the additional normalize=True
argument, which will replace the value counts for each pair with a percentage rather
than a number. The advantage of this is that you can see within each value of
Contract what percentage of customers churned versus those that did not instead of
comparing counts across uneven groups. The unstack() function is used to format
the table into a more human-readable format before you use built-in Pandas plotting
capabilities to plot the data. In this case, Figure 7-5 uses a stacked bar chart to visually
compare the different values for Contract quickly.

You see that there is a higher percentage of customer churn for month-to-month
contracts versus one-year or two-year contracts. From the visualization, you see that
more than 40% of customers on a month-to-month contract canceled their service
versus around 15% on a one-year contract and less than 5% on a two-year contract.
This means that the contract type almost certainly will be a useful feature moving
forward.
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Figure 7-5. Visualization of the proportion of customers that left the telco versus those
that did not based on the contract type.

As an exercise, go through this sort of analysis for your other categorical features.
Note which features have different percentages of churn across the different values
and those that are more or less the same. This will be helpful in choosing features
later.

When executing similar blocks of code in Python multiple times, it can be more effi-
cient to create a function to execute instead. For example, you can create a function to
create the distribution chart above by using the following code:

def plot_cat_feature_dist(feature_name):
(df_2.groupby(feature_name)['Churn'].value_counts(normalize=True)
.unstack('Churn')
.plot.bar(stacked=True))

def is the keyword in Python for defining a function, the function name is
plot_cat_feature_dist, and feature_name is the input variable. This way,

plot_cat_feature_dist('Contract') will generate the same graph as in Figure 7-5.
You can then use this function for all of your categorical variables instead.
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Here are some observations you should have made while exploring your categorical
features:

o The churn rate was about double for senior citizens versus non-senior citizens.

o The values for the gender, StreamingTV, and StreamingMovies features do not
seem to make a difference in the churn rate.

o The larger the household, the lower the churn rate. In other words, having a
partner or dependents in the household lowers the churn rate.

o For those with a phone line, having multiple lines increases the churn rate.

o The InternetService feature affects churn rate. Fiber optic internet service has a
much higher churn rate than DSL. Those without internet service have the lowest
churn rate.

o Internet add-ons (like OnlineSecurity and DeviceProtection) decrease the
churn rate.

« PaperlessBilling increases the churn rate. Most values of PaymentMethod are
the same except for Electronic Check, which has a much higher churn rate than
the others.

Did you notice anything else? Be sure to make a note of these observations for later.

Exploring interactions between numeric and categorical columns

Before moving on to finally thinking through how you will transform your features,
you should also explore the relationship between the numeric features and the label.
Remember that SeniorCitizen is really a categorical column since the two values
represent two discrete classes. The numeric columns that are left are tenure, Monthly
Charges, and TotalCharges. The columns would have a simple relationship if a cus-
tomer had paid the same amount every month. That is, tenure x MonthlyCharges =
TotalCharges. You saw this explicitly in the case where tenure was 0 before.

How often is this true? Intuitively, and maybe from experience, the monthly charges
tend to change over time. This can be due to promotional pricing ending, but
also due to things like changing the services you are paying for. You can check
this intuition using Pandas functions. Write the following code into a new cell and
execute that cell to see the summary statistics of a new column comparing tenure x
MonthlyCharges and TotalCharges:

df_2['AvgMonthlyCharge'] = df_2['TotalCharges']/df_2['tenure']

df_2['DiffCharges'] = df_2['MonthlyCharges']-df_2['AvgMonthlyCharge']
df_2['DiffCharges'].describe()
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Note that you are creating two new columns in your DataFrame df_2. The AvgMonth
lyCharge column captures the average monthly charge over the customer’s tenure,
and the DiffCharges column captures the difference between the average monthly
charge and the current monthly charge. The results are shown below:

count 7032.000000

mean -0.001215

std 2.616165

min  -18.900000

25% -1.160179

50% 0.000000

75% 1.147775

max 19.125000

Name: DiffCharges, dtype: float64

A few observations you should make from these summary statistics: first, note that
the count is 11 lower than the total number of rows. Why is this? Recall that you have
11 rows with zero tenure. In Pandas, if you divide by zero, the value is recorded as
NaN instead of throwing an error. Otherwise, note that the distribution seems fairly
symmetric. The mean value is almost zero, the median value is 0, and min and max
values are close to being opposites of one another.

One way to remove the NaN values is to use the replace() method instead for the
undefined values. Use the following code in a new cell to perform this task:

df_2[ 'AvgMonthlyCharge'] = (df_2['TotalCharges'].div(df_2['tenure'])

.replace(np.nan,0))

df_2['DiffCharges'] = df_2['MonthlyCharges']-df_2['AvgMonthlyCharge']

df_2['DiffCharges'].describe()
The choice of replacing a null value with a zero value is an example of an imputation
strategy. The process of imputation is the process of replacing unknown values with
substituted values that are reasonable for the problem at hand. Because you want to
look at the difference between monthly charges and average monthly charges, saying
that “there is no difference” is a reasonable approach to avoid having to throw out
possibly useful data. Without imputation here, you would lose all rows with zero
tenure, so your model would not be able to accurately predict these cases. With large
enough datasets, if the missing data does not focus on a single group, often a strategy
of omitting that data will be taken. This was the approach taken in Chapter 6.

How does the value of the DiffCharges relate to the Churn column? The method
you used to understand the relationship between categorical columns does not quite
work here since DiffCharges is numeric. But you could bucketize the values of
the DiffCharges column and use the approach that was used before. The idea of
bucketization is to break a numeric column into value ranges called buckets. The
numeric feature becomes a categorical feature by asking, “Which bucket does this
value belong to?” In Pandas, you use the cut() function to define buckets for a
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numeric column. You can either provide the number of buckets to use, or specify a
list of cutoff points. To bucketize the DiffCharges column and explore its effect on
Churn, type the following code into a new cell and execute that cell:
df_2['DiffBuckets'] = pd.cut(df_2['DiffCharges'], bins=5)
plot_cat_feature_dist('DiffBuckets"')
The resulting graph (in Figure 7-6) shows that the larger the difference (either
positive or negative) between MonthlyCharges and AvgMonthlyCharge, the higher
the churn rate for the corresponding range of values. As an exercise, explore with
different numbers of bins and see what patterns you notice.
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Figure 7-6. The churn rate for each bucket of the D1ffCharges column.

Notice that the churn rate for each bucket does not follow a nice linear trend. That
is, the churn rate goes down before it goes back up later, depending on how far away
the bucket is from the center. In cases such as this, treating bucket membership as a
categorical variable can be more advantageous for ML than keeping the feature as a
numeric feature.
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You can also explore the numeric features without any manipulation. For example,
let’s explore the relationship between MonthlyCharges and Churn by using the follow-
ing code. The relationship is visualized in Figure 7-7:

df_2[ 'MonthlyBuckets'] = pd.cut(df_2[ 'MonthlyCharges'], bins=3)
plot_cat_feature_dist('MonthlyBuckets"')
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Figure 7-7. Customer churn per bucket for MonthlyCharges. The churn rate increases
as the monthly charges increase, with the highest churn rate being for charges between
85.25and 118.75.

In Figure 7-7, you can see that the churn rate tends to increase as the MonthlyCharges
value increases. This implies that the MonthlyCharges column will be useful for
predicting churn.

Exploring the Dataset Using Pandas, Matplotlib, and Seaborn | 211



Finding the right number of buckets to use for numeric columns

can be tricky. Too few buckets and you may miss important pat-

| terns, but too many buckets and the patterns may become very

\ noisy and even misleading. Figure 7-8 shows an example for when
too many buckets leads to a noisy pattern where it is hard to gain
insights. Also note that the range of values for each bucket is fairly
small, so you are capturing a smaller number of customers per
bucket.
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Figure 7-8. Customer churn per bucket for MonthlyCharges with too many buckets.
The pattern is lost in the noise, and it is hard to understand the relationship from this
visualization.

As an exercise, perform this analysis yourself for the tenure and TotalCharges
columns. You should see that as tenure and TotalCharges increase, the churn rate
decreases. It makes sense that both columns have a similar relationship with churn
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since longer tenures should lead to a larger amount of charges paid over the tenure.
Using code from previous chapters, check the correlation between these two features
to see that they are indeed highly correlated, with a correlation of about 0.82.

Transforming Features Using Pandas and Scikit-Learn

At this point, you have explored the different columns in your dataset, how they
interact with each other, and specifically how they interact with the label. You will
now prepare that data for use in custom models. First you will select the columns
to use for training your ML model. After that, you will transform those features into
forms more amenable to training. Recall that your features must be numeric with
meaningful magnitudes. You will take this into account when selecting the features
for this project.

Feature selection

The previous section explored the interaction between the different features in the
customer churn dataset with the customer churn column Churn. You saw that a few
features were either not predictive—that is, the different values did not affect the
churn rate—or were redundant with respect to other features. You should make a
copy of your DataFrame df_2 and then remove the columns you will not be using
for training the model. Why make a copy? If you remove the columns from df_2,
then you may have to go back through the code for creating that DataFrame to be
able to access that data again. Though not explicitly stated, this is why the DataFrame
df_2 was created instead of altering the original DataFrame df_raw. By removing the
columns in a copy of the DataFrame, you leave the original data accessible in case you
have to access it again.

You discovered that the gender, StreamingTV, and StreamingMovies columns were
not predictive of the label Churn in the previous section. Additionally, you found that
the PhoneLine feature was redundant and included in the MultiplelLines feature,
so you will want to remove that as well to avoid problems related to collinearity.
In Chapter 6, you learned that collinearity occurs when there are high correlations
among predictor variables, leading to unreliable and unstable estimates of regression
coefficients. These problems are magnified when using a linear model above more
complex model types. One approach to combat this is to only use one column from a
set of collinear columns.

The easiest way to drop columns in a Pandas DataFrame is to use the drop()
function. Type the following code into a new cell and execute it to make a copy of the
Pandas DataFrame and to drop the columns you no longer need:
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df_2.copy()
= df_3.drop(columns=[ 'gender', 'StreamingTV',
'StreamingMovies', 'PhoneService'])

a
-+

w
I

df_3.columns

The line df_3.columns is included to check to see which columns remain. The exact
output will differ based on your previous explorations, but as an example you may see
an output like the following:

Index(['customerID', 'SeniorCitizen', 'Partner', 'Dependents',

'tenure', 'MultipleLines', 'InternetService', 'OnlineSecurity',

'OnlineBackup', 'DeviceProtection', 'TechSupport', 'Contract',

'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges',

'TotalCharges', 'Churn', 'AvgMonthlyCharge', 'DiffCharges’,

'DiffBuckets', 'MonthlyBuckets', 'TenureBuckets,

'TotalBuckets'], dtype='object")
For the DataFrame columns shown here, AvgMonthlyCharge, DiffCharges, DiffBuck
ets, MonthlyBuckets, TotalBuckets, and TenureBuckets were added. You saw that
the DiffBuckets feature would be a helpful feature and that the tenure feature
was highly related to the TotalCharges feature. To prevent problems in terms of
collinearity, remove the TotalCharges feature and all of the additional added features
except for DiffBuckets. The code needed to do this may differ from the following
code, depending on the exploration you performed:

df_3 =df_3.drop(columns=['TotalCharges','AvgMonthlyCharge',
'DiffCharges', 'MonthlyBuckets',
'TenureBuckets', 'TotalBuckets'])

Finally, what about the customerID column? This column is too granular to be of
any use in a predictive model. Why is this? Remember that the customerID column
uniquely identifies every row. You risk the model learning to associate the value
of this feature to the value of Churn in a direct relationship, especially given the
transformations that will follow. This is great for your training dataset, but once your
model sees a new value for customerID for the first time, it will not be able to use that
value in a meaningful way. For that reason, it is best to drop this column for training
your model. As an exercise, write the code to drop the customerID column into a new
cell and execute that cell to drop the column. Here’s the solution code, but do your
best to complete this task without looking at it:

df_3 = df_3.drop(columns=["'customerID'])
df_3.dtypes

In the end, you end up with 15 feature columns and 1 label, Churn. The output of the
final df _3.dtypes line is included here for reference:

SeniorCitizen int64
Partner object
Dependents object
tenure int64
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MultipleLines object

InternetService object
OnlineSecurity object
OnlineBackup object
DeviceProtection object
TechSupport object
Contract object
PaperlessBilling object
PaymentMethod object
MonthlyCharges float64
Churn object
DiffBuckets category

DiffBuckets is a category column, rather than an object. This is because the
bucketization process includes additional information, the intervals representing the
buckets.

Encoding categorical features using scikit-learn

Before beginning the training process, you need to encode your categorical features
as numeric features. SeniorCitizen is a great example of how this could be done.
Instead of Yes and No values, the values are encoded as 1 or 0 respectively. In essence,
this is what you will be doing for your features moving forward using scikit-learn.

First, note that many of your categorical features are binary features. Partner, Depend
ents, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, and Paper
lessBilling are all binary features. Note that for OnlineSecurity, OnlineBackup,
DeviceProtection, and TechSupport, this is not strictly true, but the No internet
service value is already captured by InternetService. Before encoding your fea-
tures, replace all instances of No internet service values in different columns with
the value No. You can do this by using the following code:

df_prep = df_3.replace('No internet service', 'No')
df_prep[['OnlineSecurity', 'OnlineBackup',
'DeviceProtection', 'TechSupport']].nunique()

The nunique() method computes the number of unique values per column. You
should see in the output for this cell there are two unique values for the OnlineSecur
ity, OnlineBackup, DeviceProtection, and TechSupport corresponding to No and
Yes. You will keep this DataFrame, df_prep, as one that you can come back to later
for any additional feature engineering.

Now you are ready to perform one-hot encoding. One-hot encoding is a process of
transforming a categorical feature with independent values to a numeric representa-
tion. This representation is a list of integers, with one integer for each possible feature
value. For example, the InternetService feature has three possible values: No, DSL,
and Fiber Optic. The one-hot encoding of these values would be [1,0,0],[0,1,0],
and [0,0,1] respectively. Another way to think of this is that we have created a new
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feature column for every feature value. That is, the first column asks, “Is the value
of InternetService equal to No?” If so, the value is 1, and if not, the value is 0. The
other two columns correspond to the same question, but for values of DSL and Fiber
Optic respectively. With this way of thinking of one-hot encoding, often a feature
like Partner with only two values No and Yes will be encoded as 0 and 1 respectively
instead of [1,0] and [0,1].

Scikit-learn includes a preprocessing library with transformers specifically for this
purpose for your features and labels. For transforming categorical features into
one-hot encoded features, you will use the OneHotEncoder class in scikit-learn. The
following code is an example of how to one-hot encode the categorical columns you
are working with in this example:

from import OneHotEncoder

numeric_columns = ['SeniorCitizen', 'tenure', 'MonthlyCharges']

categorical_columns = ['Partner', 'Dependents', 'MultiplelLines',
'InternetService', 'OnlineSecurity’,
'OnlineBackup', 'DeviceProtection’,
'TechSupport', 'Contract’', 'PaperlessBilling',
'PaymentMethod', 'DiffBuckets']

X_num = df_prep[numeric_columns]
X_cat = df_prep[categorical_columns]

ohe = OneHotEncoder(drop='1if_binary')

X_cat_trans = ohe.fit_transform(X_cat)
It is worth understanding this code line-by-line before moving forward. First you
import the OneHotEncoder class from scikit-learn via from sklearn.preprocessing
import OneHotEncoder. Next you separate the columns into numeric and categorical
columns. Since SeniorCitizen has already been encoded, you can simply include it
in the numeric columns. After that, the next two lines of code split the DataFrame
into two separate DataFrames: X_num for the numeric features and X_cat for the
categorial features.

Finally, you are ready to use scikit-learn’s OneHotEncoder. First you create the one-
hot encoder via the line ohe = OneHotEncoder(drop='if_binary'). The argument
drop="1if_binary' will replace a binary feature value with either 0 or 1 rather than
returning the full one-hot encoding.

The final line is where the actual transformation occurs. The fit_transform function
does two different things. The fit part of fit_transform refers to the OneHotEncoder
learning the different values for the different features and the assignment of the
one-hot encoded values. This will be important since you may want to reverse the
process at times and go back to the original values. For example, after making a
prediction, you want to see what payment method the customer was using. You can

216 | Chapter7: Training Custom ML Models in Python



use the inverse_transform() method of OneHotEncoder to transform the numeric
input after encoding back to the original input. For example, consider the following
two lines of code run in separate cells:

X_cat_trans.toarray()[0]
ohe.inverse_transform(X_cat_trans.toarray())[0]

The first line returns this output:

[t+., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1.,
0., 0., 0., 1., 0., 0., 0.]

The second line returns this output:

Partner Yes
Dependents No
MultipleLines No phone service
InternetService DSL
OnlineSecurity No
OnlineBackup Yes
DeviceProtection No
TechSupport No
Contract Month-to-month
PaperlessBilling Yes
PaymentMethod Electronic check
DiffBuckets (-3.69, 3.915]

Once the OneHotEncoder has been fit to the data, you can move back and
forth between the original values and the encoded values using transform() and
inverse_transform().

Finally, you need to combine the numeric features and the encoded categorical fea-
tures back into a single object. The one-hot encoded categorical features are returned
as a NumPy array, so you will need to convert the Pandas DataFrame to a NumPy
array and concatenate the arrays into a single array. Additionally, you will need to
create a NumPy array for the label Churn. To do this, execute the following code in a
new cell:

X = np.concatenate((X_num.values,X_cat_trans.toarray()), axis=1)

y = df_prep['Churn'].values
The concatenate() function in NumPy takes two arrays and returns a single array.
X_num is a Pandas DataFrame, but the actual values of the Pandas DataFrame are
stored as a NumPy array. You can access this array by looking at the values property
of the DataFrame. X_cat_trans is a special type of NumPy array called a sparse array.
Sparse arrays, arrays where most of the entries are 0, can be nice since there are a lot
of clever optimizations that can be used to store them more efficiently. However, you
need the actual corresponding array. You can use the toarray() method to access
that. Finally, you want to concatenate the DataFrames “horizontally,” where you are
combining the columns side by side, so you need to specify the additional argument
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axis=1. Similarly, axis=0 would correspond to stacking the arrays “vertically;” that is,
appending one list of rows to the other.

Generalization and data splitting

After all the work preparing your dataset, you are finally ready to start training your
model, correct? Not quite. You need to perform the training-test data split to ensure
that you can properly evaluate your model.

Scikit-learn has a nice helper function for doing this, called train_test_split, in the
model_selection module. Though splitting your dataset for training and evaluation
is something that you have to manage yourself in scikit-learn and other custom
training frameworks, most (if not all) frameworks have tools in place to make the
process easier.

To split your dataset into training and test datasets, execute the following code in a
new cell:

from import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.20,
random_state=113)

X_train.shape

The first line imports the train_test_split function from the model_selection
library in scikit-learn. The second line is where the splitting occurs. train_test_split
takes in a list of arrays that you are splitting (here, your X and y) and the test_size to
specify the size of the training dataset as a percentage. You can optionally also provide
a random_state so anyone else who executes this code will get the same rows in the
training and test datasets. Finally, you can see the final size of the training dataset with
X_train.shape. This is an array of shape (5634, 29). That is, there are 5,634 examples
in the training dataset with 29 features after one-hot encoding. This means that the test
dataset has 1,409 examples.

Building a Logistic Regression Model Using Scikit-Learn

With prepared training and test datasets in hand, you are ready to begin training
your ML model. This section covers the basics of the model type you will be training,
logistic regression, and how to begin training models in scikit-learn. After that, you
will learn about different ways to evaluate and improve your classification model.
Finally, you will be introduced to pipelines in scikit-learn, a way to consolidate
the different transformations you are performing on your dataset and the training
algorithm you want to use.
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Logistic Regression

The goal of a logistic regression model is to predict membership in one of two
discrete classes. For the sake of simplicity, denote these two classes as y = 1 and y = 0.
You will often think of one of the classes as the “positive” class and the other as the
“negative” class. Like linear regression, the inputs are a list of numeric values, but
the output is the predicted probability of the positive class given the list of features

Z. You may see this probability denoted as P(y =1 |?) In the case that y = 1, you

want this probability to be as close to 1 as possible, whereas for y = 0, you want this
probability to be as close to 0 as possible.

How is this probability calculated? Recall that for linear regression you used the

model f(z) = wy+wyx; + . .. +w,z, for some weights wy, . . ., w,. For logistic
regression, the equation is similar:
- 1
o) =

At first glance, this formula may seem scary, but it is worth parsing. g(z) is the
composition of two functions: the so-called logit f(z) and the sigmoid (or logistic)
function:

o(t) = ——

1+ exp(-t)

The sigmoid function (and its variations) shows up in many different fields, including
ecology, chemistry, economics, statistics, and of course ML. The sigmoid function has
some nice properties that make it appealing for classification models. First, its values
range between 0 and 1, allowing for the outputs to be interpreted as a probability.
In technical terms, this is an example of a cumulative distribution function since
the values are always increasing as the independent variable increases. Second, the
derivative (rate of change at any given instant) of the function is easy to compute.
This is important for the sake of gradient descent, making training such a model a
very reasonable process. A graph of the logistic function can be seen in Figure 7-9.
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Figure 7-9. A graph of the logistic function. Note the range of values is between 0 and 1.

Recall, when training a linear regression model, that the goal you used was to mini-
mize the mean squared error. For logistic regression, you use a different loss function
known as the cross-entropy. The cross-entropy loss function is defined as follows:

10.D) = 1510 o))y + tog (1 - o(2))01 - 9)

Here, the sum is over all examples in the dataset D. The argument D is included
here as a reminder that the cross-entropy depends on the dataset that is being used
to compute it, just as much as the model that you are evaluating. Either y or 1 -y
will be zero, so only one of the terms in the sum for each example will be nonzero.
The corresponding term log (g(?)) or log (1 - g(?)) will be what contributes to the

loss function. If the model is 100% confident about what ends up being the correct
answer, then this term will be zero. If not, then the value contributed to the loss
function increases exponentially as the confidence decreases.

Here’s a concrete example: suppose that g(?) = 0.6 and y = 1. In other words, the
model gives a 60% chance of the label being 1. How does this contribute to the

loss function? Well, for this single term, the only contribution is from log (g(?))
log(0.6) is about equal to -0.222. In the computation of the loss function itself, the
sign is ultimately swapped due to the minus sign out in front. However, if g(?) =04
instead, then log(0.4) is about equal to —0.398. The further the predicted probability

—>
g(x ) is away from 1 in this case, the larger the contribution to the loss function.
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Cross-entropy first arose as a concept in an area of study known
as information theory. Roughly speaking, cross-entropy measures
the amount of information needed to represent an event when you
assume one probability distribution, but the actual probability dis-
tribution is different. In the case of logistic regression, the assumed
probability distribution is from the output of the model, and the
actual distribution is given by our labels.

Training and Evaluating a Model in Scikit-Learn

You have prepared your data and have identified a model type, logistic regression,
that you want to train to predict customer churn. Now you are ready to train your
first model using scikit-learn. The process for creating and training a model is very
straightforward in scikit-learn. First, you create the model of the type you want to
train, and then you train the model. To build and train a logistic regression model,
type the following code into a new cell and execute that cell:

from import LogisticRegression
cls = LogisticRegression()

cls.fit(X_tratin, y_train)
After executing the cell, you will likely see the following, or a similar, message:

Jusr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:814:
ConvergenceWarning: 1bfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
LogisticRegression()
What went wrong? By default, scikit-learn will perform gradient descent to try to
find the best weights for the model for a certain number of iterations. An iteration in
this context means computing gradient descent over the entire dataset. The training
process will terminate once the improvement in our loss function, cross-entropy,
becomes very small (by default, 107*) between iterations. In your case, your model
never hit that threshold. In practice, this means that there is still room for the model
to improve by training for longer.

What would cause such an issue, though? There are a few different reasons, but
one of the most basic issues has to do with feature ranges. If the ranges of values
for feature ranges differ greatly, gradient descent tends to take more iterations to
converge to the best solution.
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One way to think about this is to consider an analogy of rolling a ball down from the
edge of a bowl. First, suppose that you have a bowl that is perfectly round, meaning
the top is a perfect circle. If you place a ball on the edge of the bowl and give it a little
nudge, it immediately rolls down to the bottom point of the bowl. What about if the
bowl has more of an oval or oblong shape? If you give the ball a nudge, it may not
roll straight toward the center, but oscillate back and forth along the way. In essence,
this is exactly what is happening with gradient descent. The curvature, how far away
the “bowl!” is from being perfectly flat, affects the behavior of gradient descent. When
the curvature is a constant—for example, when the bowl is perfectly round—then
we have the nice behavior discussed previously. However, when the curvature is not
constant, as in the situation where the feature values have different scales, we risk the
wobbling behavior discussed before.

How do you address this issue? One approach is to simply train the model for more
iterations. You can easily do this in scikit-learn by providing your own value for the
optional max_iter argument. This is a fine approach for smaller datasets, but once
you start working with larger and larger ones, this is no longer feasible. A better way
of approaching this problem is to rescale the features to a standard range, say between
0 and 1. In scikit-learn, you can use the MinMaxScaler () transformer to do just that.
Type the following code into a new cell and execute it to rescale your training dataset
and then train a new logistic regression model:

from import MinMaxScaler

scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)

cls = LogisticRegression()

cls.fit(X_train_scaled, y_train)

This time your model should have converged successfully. Instead of having to spend
more computing time for the model to converge, you were able to simply rescale the
data to make the training process more efficient. This is a best practice in general for
training ML models, and not just when using scikit-learn or when training a logistic
regression model.

Now that your model has been trained, the next step is to evaluate it. In scikit-learn,
you can use the score method of the trained model to do this with your testing data-
set. The output of the score method is the mean accuracy of the model on the test
dataset expressed as a decimal. Execute a new cell with the code cls.score(X_test,
y_test) to compute the accuracy of your trained model on the test dataset.

The accuracy of your model is likely around 48%, though it may slightly vary depend-
ing on random states. This does not seem like a good model, as likely you could
get slightly better results from a random coin flip. However, you may have noticed
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an issue with the approach here. Before training the model, you scaled the training
features to be between 0 and 1. But you did not perform the same transformations on
the testing dataset. Since the model was trained expecting a different range of values
than was presented for evaluation, the model performed poorly. This is a textbook
example of training-serving skew.

You want to perform the same scaling on the test dataset as you did on the training
dataset. You used the fit_transform() method so the MinMaxScaler() could learn
the minimum and maximum value for each feature and scale the values to a range of
0 to 1 based on that. You do not want to refit the transformer, but you can use the
same transformer to transform the testing dataset to prepare for evaluation. Do this
by using the following code and then compare the difference in performance:

X_test_scaled = scaler.transform(X_test)

cls.score(X_test_scaled, y_test)

The accuracy of your model should now be around 80%. This is much better than the
accuracy you received before when not scaling the evaluation dataset. The important
takeaway from this example is that you must perform the same transformations at
training and evaluation time to be sure you are receiving accurate results. This is true
at prediction time as well. It is important to document the transformations you are
performing on your data and leverage tools like pipelines in scikit-learn to ensure
that these transformations are being applied consistently.

Classification Evaluation Metrics

Accuracy is a simple and easy-to-understand metric that is commonly used for classi-
fication models. However, there are some possible issues with solely using accuracy as
a metric. Your model has an accuracy of around 80%, but a model that just predicts
that there is no customer churn has an accuracy of about 73.5%. Eighty percent is
better than 73.5%, but the model that predicts no churn would have a significantly
lower business value compared to a different model that may have higher business
value. If your goal was to predict customer churn and try to prevent customers
from leaving, then the “no churn” model will never give any actionable insights and
effectively has no value.

As you learned in Chapter 5, you can use metrics like recall and precision together
with accuracy to get a clearer picture of your model’s performance. To review, recall
can be thought of as the true positive rate. In this example of customer churn, the
recall represents the percentage of customers who canceled their account that the
model correctly predicts. Precision can be thought of as the positive predictive power
of the model. In the case of the customer churn problem, precision represents the
percentage of the predicted customers canceling their account that indeed do cancel
their account. If your goal is to proactively contact customers who may cancel their
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accounts, then recall would be a very important metric to consider. You would likely
be willing to sacrifice a little bit of accuracy or precision to improve recall. Of course,
this is still something you want to balance as there is a resource cost to contacting
customers who were not planning to cancel.

Take the example of a model that predicts no customer churn. The recall in this
model is 0 because none of the customers that canceled their accounts are correctly
identified. However, you would expect that the recall is higher for the model that you
trained.

Remember that the confusion matrix breaks down the predictions into a table based

on the predicted class and the actual class. A reminder of this is shown in Table 7-8.

Table 7-8. Confusion matrix for a general problem

Predicted positives Predicted negatives

Actual positives  True positives (TP)  False negatives (FN)
Actual negatives False positives (FP)  True negatives (TN)

The confusion matrix for the model you trained is easy to compute using scikit-learn.
To do so, you can use the confusion_matrix function from the sklearn.metrics
library. Type the following code into a new cell and execute it to compute the
confusion matrix for your model:

from import confusion_matrix
y_pred = cls.predict(X_test_scaled)

confusion_matrix(y_test, y_pred, labels=['Yes',6'No'])

confusion_matrix takes three arguments as used here. The first argument is the
actual labels from your testing dataset, y_test. The second is the predicted labels
from your model. To compute these predictions, you use the predict method for
your model, passing in the transformed test inputs X_test_scaled. The last argu-
ment is optional, but useful. The labels argument expects a list of label values, here
'Yes' and 'No'. This determines the order of the labels in the confusion matrix. Your
confusion matrix should look similar to the following:

array([[187, 185],
[ 98, 93911

What does this mean? Of the examples in your test dataset, 187 + 185 = 372 cus-
tomers canceled their service, and 98 + 939 = 1,037 customers kept their service.
Your model correctly predicted that 187 customers would cancel (true positives)
and missed 185 customers who canceled (false negatives). Your model also correctly
predicted that 939 customers would keep their service (true negatives) but predicted
that 98 customers who kept their service would cancel instead (false positives).
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From this, you can compute precision and recall in two different ways. You can
compute them by definition, using the information from the confusion matrix, or
you can leverage the precision_score and recall_score functions in scikit-learn.
Use the following code to follow the second approach to compute the precision and
recall for your model:

from import precision_score, recall_score

print("Precision:", precision_score(y_test, y_pred,
labels=['Yes','No'], pos_label='Yes'))

print("Recall:", recall_score(y_test, y pred,
labels=["'Yes','No'], pos_label='Yes'))

A few notes about that code before exploring the results. The first three argu-
ments are the same as for the confusion_matrix function before. Note that the
labels argument is required for precision_score and recall_score if you are not
using indexed labels (such as 0 and 1). You also included an additional argument,
pos_label, which defines the “positive class” Since recall and precision are metrics
pertaining to a “positive class,” you need to define which class should be treated as
such. Your results should be similar to the following:

Precision:0.656140350877193

Recall:0.5026881720430108
In other words, of the customers your model predicted would cancel their account,
65.6% of those customers actually did cancel. On the other hand, your model only
captured 50.3% of those customers who actually did cancel. There is still room for
improvement in your model, but you can clearly see that this model brings more
business value than a model that cannot detect any churn.

Serving Predictions with a Trained Model in Scikit-Learn

In the previous section, you saw how to serve predictions using the predict method
so you could evaluate your model using various different metrics. One issue you
encountered naturally in this process was training-serving skew, where in your case
the data at prediction time was not transformed yet and you received inaccurate
results. Training-serving skew can arise in different fashions.

Another common problem is that the format of the incoming data for predictions
may be different than the data used for training. In this case, your training data was in
the CSV format, but maybe the incoming data for predictions is in the JSON format,
a common data interchange format used in web applications.

Building a Logistic Regression Model Using Scikit-Learn | 225



When thinking about how to serve predictions in your models, it is important to
think back through all of the transformations you have done. It can be convenient
to include these into a single function and include that function with your model at
prediction time.

Here are the steps you took to transform your data:

1. Cleaned the data to ensure that TotalCharges was a float.
2. Created a new DiffBuckets feature.

3. Dropped the CustomerID, gender, StreamingTV, StreamingMovies, PhoneSer
vice, and other intermediate columns.

4. One-hot encoded your categorical features.

5. Scaled your numeric features to a range of 0 to 1.

You would need to perform the same steps when serving predictions. Now you will
gather all of the preprocessing code into a single function so you can easily apply it
to new data coming in. Suppose you want to predict whether a specific customer will
cancel their account at the end of the month. The data has been given to you in the
JSON format:

{"customerID": "7520-HQWJU", "gender": "Female", "SeniorCitizen": 0,
"Partner": "Yes", "Dependents": "Yes", "tenure": 66, "PhoneService": "Yes",
"MultipleLines": "Yes", "InternetService": "DSL", "OnlineSecurity": "Yes",
"OnlineBackup": "Yes", "DeviceProtection": "Yes", "TechSupport": "No",
"StreamingTV": "No", "StreamingMovies": "No", "Contract": "Month-to-month",
"PaperlessBilling": "Yes", "PaymentMethod": "Bank transfer (automatic)",
"MonthlyCharges": 67.45, "TotalCharges": "4508.65"}

You will need to parse this data, perform the transformations listed previously, and
serve a prediction with your trained model. To parse the data, you can use the built-in
json package in Python. This package has a useful function, json.loads(), that loads
JSON data into a Python dictionary. From there you will be able to easily transform

the data. Type in the following code, or copy and paste the code from the solution
notebook, and execute the cell:

import json

example = json.loads("""{"customerID": "7090-HPOJU", "gender": "Female",

"SeniorCitizen": 0, "Partner": "Yes", "Dependents": "Yes", "tenure": 66,
"PhoneService": "Yes", "MultipleLines": "Yes", "InternetService": "DSL",
"OnlineSecurity": "Yes", "OnlineBackup": "Yes", "DeviceProtection": "Yes",
"TechSupport": "No", "StreamingTV": "No", "StreamingMovies": "No",

"Contract": "Month-to-month", "PaperlessBilling": "Yes",
"PaymentMethod": "Bank transfer (automatic)", "MonthlyCharges": 67.45,
"TotalCharges": "4508.65"}""")

ex_df = pd.DataFrame([example])
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ex_df['TotalCharges'] = ex_df['TotalCharges'].astype('float64')

ex_df = ex_df.drop(columns=['customerID', 'gender’',
'StreamingTV', 'StreamingMovies',
'PhoneService'])

ex_df['AvgMonthlyCharge'] = ex_df['TotalCharges']/ex_df['tenure']
ex_df['DiffCharges'] = ex_df['MonthlyCharges']-ex_df['AvgMonthlyCharge']
ex_df['DiffBuckets'] = pd.cut(ex_df['DiffCharges'],

bins=[-18.938,-11.295,-3.69,3.915,11.52,19.125])
ex_df.pop('DiffCharges')

numeric_columns = ['SeniorCitizen', 'tenure', 'MonthlyCharges']

categorical_columns = ['Partner', 'Dependents', 'MultiplelLines',
"InternetService', 'OnlineSecurity', 'OnlineBackup"',
'DeviceProtection', 'TechSupport', 'Contract’,
'PaperlessBilling', 'PaymentMethod', 'DiffBuckets']

df_prep[numeric_columns]
df_prep[categorical_columns]

X_num
X_cat

X_cat_trans = ohe.transform(X_cat)

X = np.concatenate((X_num.values,X_cat_trans.toarray()), axis=1)
X_scaled = scaler.transform(X)

cls.predict(X)

At first glance, this may seem like a lot of code, but almost everything here is
something you have worked through before. The first part may be the part that is the
most different from before. There you are loading the JSON data using json.loads()
as a dictionary. Since many of your transformations were performed in a Pandas
DataFrame, it is convenient to load the incoming data into a Pandas DataFrame
as well. After that, you ensure TotalCharges is of type float64, and you drop the
columns you do not need for your model. Next you create the DiffBuckets feature.
Note that for the pd.cut() function, you specify the endpoints for the bins rather
than the number of bins. The cut points are data-dependent, and you want to ensure
youre using the same buckets as you did at training time. Finally, you will separate
out the categorical columns to perform one-hot encoding and min-max scaling
before serving the prediction.

In this case, you will see that this customer is not expected to cancel her account. If
you wanted to make this code easier to run, you could create a function to execute
this code. Here is an example of what that would look like:

def custom_predict_routine(example):
# Insert the code from above, indented once
return cls.predict(X)
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You should only use the fit_transform method for transformers
like OneHotEncoder and MinMaxScaler at training time. At predic-
tion time, use the transform method instead to ensure that you

\ are transforming your features in a consistent manner to how they
were transformed at training time.

Often you will be serving predictions from a different environment than where you
trained the model. You will need to not just transport the model files, but any of the
preprocessing code and transformers. You can store objects, like your trained model
cls, using packages like joblib. The dump method in joblib serializes the Python object
and saves the object to disk, where it can be reloaded using the load method. For
example:

import
joblib.dump(cls, 'filename.joblib")

cls = joblib.load('filename.joblib")

This can be used not just for the model, but for the transformers and other objects
being used.

Pipelines in Scikit-Learn: An Introduction

This section dives into a more advanced topic known as pipelines in scikit-learn. Feel
free to treat this section as optional on a first reading and return later or as needed to
learn how to manage transformers in scikit-learn.

When combining the various different transformations into a single function, you
likely found the process to be a bit tedious. However, this is a very important step
to ensure that you are able to avoid training-serving skew. Scikit-learn includes a
construction known as a Pipeline to ease this process. A Pipeline in scikit-learn
contains a sequence of objects where all of the objects are transformers (like OneHot
Encoder) except for the final object, which is a model (like LinearRegression).

However, some of your processing code involved Pandas operations that did not
directly involve scikit-learn transformers. How do you include these into a scikit-
learn pipeline? You can use the FunctionTransformer() from scikit-learn in these
situations. The FunctionTransformer() takes a Python function as an argument
when defining the transformer. When you call fit_transform() or transform() on
that transformer, it simply applies the included function to the input and returns the
output of that function. This is a great way to include NumPy or Pandas processing
logic into your scikit-learn pipeline.
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What would the pipeline look like in your case? In essence, you did the following
steps:

Loaded the data into a Pandas DataFrame

Cleaned and prepared the data using Pandas functions

Split the categorical and numeric columns to be transformed separately

One-hot encoded the categorical features and recombined the features

ok » e

Performed min-max scaling on the dataset before training the model

The steps here are purposely reorganized slightly compared to the previous section
to make the transition to a scikit-learn Pipeline a little more seamless. The first
step (loading the DataFrame) would not change here. For the second and third
steps, you will use a FunctionTransformer(). For the fourth step, you will need two
transformers: the OneHotEncoder() you are familiar with from before and a new
transformer, the ColumnTransformer(). The ColumnTransformer() allows you to
apply different transformations on different columns. This is exactly what you need
for your use case. The OneHotEncoder() will be applied to the categorical columns,
and the MinMaxScaler () will be applied to the numeric columns.

First, combine the Pandas preprocessing logic into a single function:

def transform_fn(df):

df = df.replace({'TotalCharges': {' ': 0.0}})
df = df.astype({'TotalCharges':'float64'})

df[ 'AvgMonthlyCharge']= df['TotalCharges'].div(df['tenure'],
fill_values=0.0)

df['DiffCharges'] = df['MonthlyCharges']-df['AvgMonthlyCharge']

df['DiffBuckets']

pd.cut(df[ 'DiffCharges'], bins=5)

df = df.drop(columns=['AvgMonthlyCharge', 'gender','StreamingTV',
'StreamingMovies', 'PhoneService',
'customerID', 'DiffCharges'])

return df

Next, include code to specify the numeric and categorical columns:

numeric_columns = ['SeniorCitizen', 'tenure', 'MonthlyCharges']

categorical_columns = ['Partner', 'Dependents', 'MultiplelLines',
'InternetService', 'OnlineSecurity’,
'OnlineBackup', 'DeviceProtection',
'TechSupport', 'Contract’,
'PaperlessBilling', 'PaymentMethod’,
'DiffBuckets']
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Now define the transformers and the model you plan to use in your pipeline:

from import ColumnTransformer
from import FunctionTransformer

fn_transformer = FunctionTransformer(transform_fn)
col_transformer = ColumnTransformer(
[('ohe', OneHotEncoder(drop='if_binary'), categorical_columns),
('sca', MinMaxScaler(), numeric_columns)])
model = LogisticRegression()
A few notes about the preceding code. The import statements for the Function
Transformer and ColumnTransformer are shown in the first two lines. The Func
tionTransformer takes in a single argument: the Python function containing the
transformation logic. Since you want to include the function and not call the function,
you pass in transform_fn, not transform_fn(df). In Python, functions are objects,
so we can use them as inputs to other functions, as seen here. For the ColumnTrans
former, you pass in a list of ordered triples. The first element of each triple is a name
that you assign to the transformer, the second element is the transformer itself, and
the third element is the columns to be transformed.

Now, to define the Pipeline, use the following code:

from import Pipeline

pipe = Pipeline([('preproc', fn_transformer),
('col_trans', col_transformer),
('model', model)])

The Pipeline takes a list of ordered pairs. The first element of each pair is the name
of that object (transformer or model), and the second element is the transformer or
model itself. The final Pipeline is a nice way to package up all of the code, but is
there an advantage to doing so other than cleaner code?

The fit method of a Pipeline will call fit_transform on all of the transformers and
then the fit method on the model. The predict method will apply each transform-
er’s transform methods in order before calling predict on the model. In essence, you
can think of a Pipeline as a model with all of the transformations built in.

A final advantage of working with a Pipeline is portability. A Pipeline can be
exported using the pickle or joblib libraries after running the fit method. This
exported pipeline will not only contain the information of the trained model, it will
contain the fit transformers as well. This is a nice way to transfer both transforma-
tions and model to a different location to keep consistency for serving predictions.
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As an exercise, finish rewriting your model code to use a Pipeline, train the model
using the fit method, then evaluate your model to compute its accuracy, precision,
and recall.

Building a Neural Network Using Keras

You were able to build a logistic regression model using scikit-learn and train your
first ML model using custom code. In this section you will build another type of
model using Keras, a framework for easily building custom neural networks as part of
the larger TensorFlow software development kit (SDK).

Recall that a neural network consists of multiple layers, with each layer having some
number of neurons, and each neuron having a corresponding activation function.
In regression models, often the ReLU function is used as the activation function
for the hidden layers, and no activation function is used for the final output. For
classification models, the idea is very similar, but you need to convert the final output
into a probability for the positive class. In logistic regression you used the sigmoid
function to do this, and it will play the same role in neural networks for classification.

Introduction to Keras

TensorFlow was introduced in late 2015 as a free and open source SDK for develop-
ing ML models. The name TensorFlow refers to both tensors and the notion of a flow
or computation graph. A tensor is simply an array with some number of dimensions,
where the number of dimensions is called the rank of the tensor. For example, you
can think of a line of text as a rank 1 tensor of words or strings. A page of text would
be a rank 2 tensor since it is an array of lines. A book could be a rank 3 tensor,
and the analogy goes on. Tensors are a common data structure when working with
scientific computing and are used in many different contexts. The computation graph
is the set of directions that TensorFlow builds for the CPU (or GPU/TPU) to perform
the needed computations. Advantages of graph-based approaches to computation
include optimization techniques that can be applied behind the scenes and the ability
to easily split up that computation over multiple devices.

Though TensorFlow has all of these advantages, the original version of TensorFlow
was known to be difficult to learn due to the approach it took. Over time, new libra-
ries and functionalities were added to TensorFlow to make it easier to use and more
approachable for those new to the framework. In 2019, TensorFlow 2.0 was released
and introduced Keras as the high-level interface of choice for building, training, and
serving predictions with artificial neural networks. Keras was first developed as a
Python interface to create neural networks for Theano, a Python library defining,
optimizing, and efficiently evaluating mathematical expressions involving multidi-
mensional arrays. Keras was extended to include support for TensorFlow, and with
TensorFlow 2.0, Keras is now officially part of the TensorFlow framework. Keras is
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easy to use, and you will be able to use it to create a neural network with just a few
lines of code.

Training a Neural Network Classifier Using Keras

Since the data has already been prepared using scikit-learn and Pandas, you will
be able to quickly jump into training a new ML model. You will create TensorFlow
datasets using the Dataset API for your training and test datasets, then you will
define your neural network model, and finally you will train and evaluate your neural
network. You will be able to rework the custom function you wrote previously for
your scikit-learn model to serve predictions for your Keras model as well.

Before starting this process, a little additional preprocessing is needed. Using the
LogisticRegression model in scikit-learn, you can build a binary classification
model to predict two classes, Yes and No. In Keras, you must use numeric labels
1 and 0 instead of string labels as you used before. Luckily, scikit-learn includes a
LabelEncoder transformer for performing this task. Use the following code to encode
your labels Yes and No as 1 and 0 respectively:

from import LabelEncoder

le = LabelEncoder()
y_train_enc = le.fit_transform(y_train)
y_test_enc = le.transform(y_test)

le.inverse_transform([1])

In the output, you will see that Yes is being treated as the positive class, or 1. Note
that you can also ensure the order of the labels by fitting the transformer on the set
[“No”,”Yes”] instead and simply transforming y_trainandy_test.

With the labels properly encoded, now create the TensorFlow datasets. The
tf.data.Dataset API allows you to create data ingestion pipelines to stream data
in while training your model. Since data is streaming in one batch at a time, the data
can be distributed across multiple machines. This allows you to train large models on
possibly massive datasets across multiple different machines. In your case, the dataset
does fit into memory, but using this API makes it easier to change scale without
having to change your training code. The Dataset API is easy to use and is considered
a best practice when using TensorFlow and Keras.

The common pattern that is used with the tf.data.Dataset API is to first create
a source dataset from your input data. Here the source will be your NumPy arrays
that you created from your Pandas DataFrames. After that, you will perform any
transformations you want, using features like the map() or filter() functions. In
this case, those transformations have already been completed. The tf.data.Dataset
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API will handle sending batches of your data to the training loop and keep the
training process running seamlessly.

Since you are already working with NumPy arrays, you will be creating your Dataset
using the from_tensor_slices method. This method takes a NumPy array and treats
each “slice” as an example in your training dataset. For example, X_tratn is a rank 2
array or a matrix. from_tensor_slices will treat each row of that matrix as a separate
example. Additionally, you can pass in a pair of arrays, and Keras will treat the first as
examples and the second as labels, which is precisely what you want in this scenario.
To create your Dataset objects, use the following code:

import as
import as

train_dataset=(tf.data.Dataset.from_tensor_slices((X_train_scaled, y_train_enc))
.batch(128))

test_dataset=(tf.data.Dataset.from_tensor_slices((X_test_scaled, y_test_enc))
.batch(1))

The only portion of the code that may need some explanation is the batch() method.
Recall that Dataset objects send batches of data from your dataset to the training
loop. The batch() method defines the size of those batches. The exact right batch
size will depend on the dataset and the model type you are working with and often
takes a bit of tuning to get perfect. As a general rule of thumb, the larger your model
or example size, the smaller your batch size should be. However, the smaller the
batch size, the noisier the training process may be. In other words, gradient descent
will take a less direct path toward the optimal set of weights, so it could take more
compute time to converge to an optimal model. Batch size is a perfect example of a
hyperparameter that defines the model and model training process.

Now that the data is ready for training, you should create your model. Recall in
BigQuery ML you specified a list of integers. The number of elements in the list was
the number of hidden units, and the value of each integer is the number of neurons
in that hidden layer. You will use the same information in Keras, but in a slightly
different format. The keras.Sequential API allows you to give a list of the layers
you want in your model and then builds a model from that information. The layers
discussed in the previous chapter are what Keras calls Dense layers. Dense layers are
layers where all of the neurons from the previous layer connect to every neuron in the
next layer, forming the weighted sums you saw in Chapter 6. An example of a Dense
layer is shown here:

keras.layers.Dense(
units=64, input_shape=(28,), activation="relu",
name="1input_layer"
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There are four arguments shown in this example. First is the number of units. This is
simply the number of neurons in this layer. The second argument is the input_shape.
If you are defining the first layer in the model, you need to specify the shape of the
incoming examples. If this is not the first layer of the model, then you can omit
this argument, as Keras will receive this information from the previous layer. Recall
that after one-hot encoding, there were 28 distinct features. You can double-check
this by looking at the output of X_train.shape. The shape of X_train is (5634, 28).
There are 5,634 examples, and each has 28 feature values. The notation (28,) may
seem odd, but it is how Python represents a list of one element. In the case that the
incoming examples are higher dimensional (for example, with image data), then the
input_shape will be a list of many elements. The third argument is activation, for
defining the activation function. For a binary classification model, the final layer will
need 1 output and sigmoid as the activation function. For the hidden layers, the most
commonly used activation function is the ReLU (or rectified linear unit) function, as
discussed in Chapter 6. Finally, you can assign your own custom name to the layer
with the name argument.

Use the following code to define your neural network in Keras. This code will create a
neural network with three hidden layers of 64, 32, and 16 neurons respectively:

model = keras.Sequential(
[
keras.layers.Dense(
units=64, input_shape=(28,), activation="relu",
name="1input_layer"
)’
keras.layers.Dense(units=32, activation="relu",
name="hidden_1"),
keras.layers.Dense(units=16, activation="relu",
name="hidden_2"),
keras.layers.Dense(units=1, activation="sigmoid",
name="output"),

)

Now that the model has been defined, it needs to be compiled. This is the process
that translates the model into TensorFlow operations and configures the model for
training. Luckily, Keras handles all this with only a few inputs from you.

Use the following code to compile your model:

loss_fn = keras.losses.BinaryCrossentropy()

metrics = [tf.keras.metrics.BinaryAccuracy(),
tf.keras.metrics.Precision(),
tf.keras.metrics.Recall()]

model.compile(optimizer="adam", loss=loss_fn, metrics=metrics)
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keras.losses.BinaryCrossentropy() is Kerass implementation of the cross-
entropy loss function discussed earlier in this chapter. You also included three metrics
to be included for evaluating the performance of the model. BinaryAccuracy(),
Precision(), and Recall() are Kerass implementation of the accuracy, precision,
and recall metrics, respectively, that you used for your model created in scikit-learn.
When compiling the model using the compile() method, you include the loss func-
tion, any metrics you want to use, and the optimizer. A deep discussion of optimizers
is beyond the scope of this book, but the Adam optimizer is considered a good
default choice for training neural network models. In short, Adam takes the original
gradient descent algorithm and makes some changes to address some possible pitfalls
of using gradient descent. For a deeper discussion on optimizers, please see Hands-
On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron
(O'Reilly, 2022).

With the model now defined and compiled, the next step is to train it. In Keras, you
use the fit() method to train a compiled model. You need to specify the dataset you
want to use for training and evaluation, and you need to specify how long you wish to
train the model. The following code shows an example of this:

history = model.fit(
x=train_dataset,
epochs=20,
validation_data=test_dataset

)

The argument x corresponds to the training dataset. If you are not using a
tf.data.Dataset, then you will have to specify the labels separately in the argu-
ment y, but your train_dataset contains both the features and the labels. valida
tion_data is similar to the first argument x except it is specifically for the evaluation
dataset. This argument is optional, but it tends to be a good idea to monitor how the
metrics for training and evaluation evolve side by side. Finally, the middle argument,
epochs, is a measurement of how long the training process will last. In ML terms, an
epoch is an entire pass through your dataset for the sake of training. Recall that your
dataset is sending the data to the training loop in batches of 128, and your training
dataset has 5,634 examples. After 44 batches (or what are often called steps), you will
have gone through the entire dataset, and thus an epoch. The next epoch will then
begin as Keras goes back through the dataset once again.

How long should the model train for? There is no nice rule of thumb to rely on in
practice. However, there are a couple of signs you can look out for. First, if the model
is no longer improving from one epoch to another, that's a sign that the training
process has converged. A second sign is that the model is starting to perform worse
on the evaluation dataset. This is a sign that the model has begun overfitting and that
you want to stop training it, even if the performance continues to improve on the
training dataset.
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The fit() method also has an optional argument for callbacks. A callback is a
function that can perform actions at various stages of training—for example, saving
checkpoints of the model every epoch, or stopping training if model performance has
stalled or is getting worse on the evaluation dataset. The latter example is called early
stopping. Use the following code to train your model, using the keras.callbacks.
EarlyStopping() callback function to impose early stopping if needed:

early_stopping = keras.callbacks.EarlyStopping(patience=5,
restore_best_weights=True)

history = model.fit(
x=train_dataset,
epochs=100,
validation_data=test_dataset,
callbacks = [early_stopping]
)

The argument patience for keras.callbacks.EarlyStopping() specifies that you
want to wait for five epochs of stalled or worsening performance before stopping
the training process. The training process, due to various places where randomness
comes into play, can be noisy. You do not want to terminate training early due
to noisiness, so the patience argument is useful in preventing that. However, just
in case the model performance is getting worse during that waiting period, the
restore_best_weights argument being set to True will return the model back to its
best performance before terminating the training process. If you have not already,
run the code above to train your model. This will take a couple of minutes in Colab to
complete training.

While training the model, you will see metrics for every epoch of training. The first
few metrics are specific to the training dataset, and the second half is related to
the test datasets. You can also use the model.evaluate(x=test_dataset) method
to evaluate the model. This can be used for the test dataset or for other datasets,
depending on how you split your dataset for training and evaluation. Your output
from model.evaluate() should look similar to the following:

12/12 [ ] - 0s 6ms/step - loss: 0.4390
- binmary_accuracy: 0.7928 - precision: 0.6418 - recall: 0.4866

Good news, you have trained a successful ML model using Keras. Unfortunately, in
this case the neural network model had slightly lower accuracy, precision, and recall.
What does this mean? It doesn’t mean that a neural network model is automatically
worse, but it does mean that likely some further tuning and feature engineering will
be needed to improve the performance of this model.
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Building Custom ML Models on Vertex Al

You have successfully built, trained, and evaluated multiple ML models. You used
scikit-learn to train a logistic regression model and used Keras to train a neural
network classifier. In this case, the dataset you were using was fairly small, but in
practice you may want to train custom code models on large datasets. You saw
in Chapter 5 how to train a classification model using Vertex AI AutoML. In this
section, you will get a brief introduction to training custom code models using Vertex
AT Training. This section introduces you to more complex topics in Python, such as
creating packages. You will not dive into the fine details here, but you’ll see enough to
get you started.

Vertex Al allows you to train your model in a containerized environment on a cluster
of machines of your choice. Roughly speaking, you can think of a container as a
computer where the hardware and operating system are abstracted away so that a
developer can focus purely on the software they want to run. When using standard
ML frameworks, you can use prebuilt containers. Prebuilt containers are available
for scikit-learn, TensorFlow, XGBoost, and PyTorch. To use the Vertex Al Training
service in the Cloud Console, do the following steps:

1. Ensure that your dataset is available in Google Cloud Storage, BigQuery, or
Vertex Al managed datasets.

2. Gather the Python code into a single script.
3. Update your code to save results in a Google Cloud Storage bucket.

4. Create a source code distribution.

Fortunately, the first step has already been completed. The dataset is available already
in a public Google Cloud Storage bucket. The next step is to gather the Python code
into a single script. This code includes all of the code that has been used to load the
data into a Pandas DataFrame, prepare the data for training, and build and train an
ML model, and you will need to also add code to be sure that the model is saved
somewhere off of the Vertex Al resources being used to train the model.

Vertex Al provisions resources for a training job for just the dura-
tion of the job, and then those resources are torn down. This means
| you need to be sure to save anything locally that you do not want
\ to lose, but it also means that you only use the resources that you
need.
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Before moving forward, you will need to create a directory to hold the files you will
be creating for your Python package. To do this in Colab, run the following code in a
new cell:

Imkdir trainer

The exclamation point at the front of the code tells Colab to run this as a Linux
terminal command. The mkdir command creates a new directory, and you are calling
this new directory trainer.

The Python code from this chapter has been combined into a single file and is
available in the low-code-ai GitHub repo. You should try to build this file yourself as
well. You can do this in a notebook by using a special cell magic, %%writefile. The
%%writefile cell magic tells Colab to write the contents of the cell to a specified file
rather than execute the code in the cell. The format for the cell will be the following:

%%writefile trainer/trainer.py

<Your Python code to be written to trainer.py>

Before reading further, you should go ahead and either combine the code from
your notebook into a single cell to write out to trainer/trainer.py using the
%%writefile cell magic, or you should copy the solution at the link above. Note that
you do not need to include code for visualizations or where you were checking the
output. You should use the solution to check your work if you are combining the
Python code yourself into a single file.

When looking at the solution, the first thing you will notice is that all the import
statements have been moved to the top of the script. This is considered a Python best
practice, though if the import is done before the module being imported is used, it
will not be an issue. Toward the end of the file, print statements have been added
for printing out the various different metrics from the model. If you do not print the
results, they will be lost. Using print statements will allow you to find these metrics
later in the training logs.

Finally, in the last line of the Python script you will see the use of joblib.dump() to
write the model out to Google Cloud Storage. Note that the reference for Cloud Stor-
age is different here: 'gcs/<YOUR-BUCKET-NAME>/sklearn_model/'. Google Cloud
Storage buckets are mounted in Vertex Al Training using Cloud Storage FUSE and
are effectively treated like a file system. You will need to include your Cloud Storage
bucket name for the bucket you created in Chapter 4 or create a new bucket.

Now that the script has been written to trainer\trainer.py, the next step is to
create the other files in the package. An easy way to do this is using the %%writefile
cell magic. To have Python recognize a folder as a package, it needs an __init__.py
in the trainer directory. This file contains any initialization code for the package, but
this can be an empty file as well if no such code is needed. The other file you will
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need is a setup.py file. The objective of the setup.py file is to ensure that the package is
installed correctly on the machine(s) executing the training job and is a standard part
of a Python package. That all being said, when using the standard prebuilt container
for scikit-learn training on Vertex Al, most of this process is straightforward and
involves mostly boilerplate code. To create the __init__.py file in the trainer directory,
run the following code in a new cell:

%%writefile tratiner/__init__.py
#No initialization needed

The line #No initialization needed is an example of a comment in Python. The
# symbol denotes that Python should not parse the line, but is there for human
readability. Since there will be no initialization needed for your package, Python will
simply treat this __init__.py file as a blank file. To create your setup.py file, run the
following code in a new cell:

%%writefile setup.py
"""Using ‘setuptools’ to create a source distribution.

mun

from import find_packages, setup

setup(
name="churn_sklearn",
version="0.1",
packages=find_packages(),
include_package_data=True,
install_requires=['gcsfs'],
description="Training package for customer churn.",

)
The code here is mostly boilerplate code. Within the setup function you define
the package name, the version number, what packages should be installed as part
of the distribution, and the description of the package. The find_packages()
function automatically detects the packages in your directory for you. The

install_requires=['gcsfs'] argument ensures that the gcsfs package is installed
for using Cloud Storage FUSE.

All of the files are in place, so now you can create your package by executing the
following code in a new cell:

Ipython ./setup.py sdist --formats=gztar

The command is to execute the Python script ./setup.py with the sdist option.
This creates a Python source distribution with the compression format tar.gz. Your
files, with relevant folders expanded, should look like what is shown in Figure 7-10.
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{} ~ [ churn_sklearn.egg-info
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B dependency_links.txt
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B sample_data
i trainer
B —init_py
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B setup.py
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4

Figure 7-10. File structure after creating the source code distribution for your trainer
package.

The difficult part of the process has now been completed. Now you should move the
package to a location on Google Cloud Storage for use on Vertex Al The easiest way
to do this is to authorize Colab to access your Google Cloud account and then use the
gcloud storage tool. To authorize Colab to access your Google Cloud resources, run
the following code in a new cell and follow the prompts:

import
if "google.colab" in sys.modules:
from import auth

auth.authenticate_user()
After following the prompts, you can then move the file to the Cloud Storage bucket
of your choice. Run the following code in a new cell, replacing your -project-id with
your project ID and your -bucket-name with your bucket name:

!gcloud config set project your-project-name
!gcloud storage cp ./dist/churn_sklearn-0.1.tar.gz gs://your-bucket-name/
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Now everything is in place and youre ready to train your model. You will submit
your training job through the Cloud Console. Open a new browser window or tab
and go to console.cloud.google.com. After that, select Vertex Al on the left-hand side
menu, and then select Training. If you are having problems finding the Training
option, see Figure 7-11.

PINNED
GENERATIVE Al STUDIO
Compute Engine >
EE P g Overview
=
en Cloud Storage > Language
Vision
c Dataflow >
Speech
I=  Logging >
- DATA
Composer
hl v Feature Store
u Data Fusion > Datasets
. Labeling tasks
4 Vertex Al >
‘10 Spanner MODEL DEVELOPMENT
Training
API  APIs & Services >
Experiments
B Biling Metadata
© 1AM &Admin > DEPLOY AND USE
\%’ Marketplace Model Registry
Online prediction
@ Kubernetes Engine b

Batch predictions

Figure 7-11. Location of the Training option in Vertex AL
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After selecting the Training option, click Create to start creating your new training
job (see Figure 7-12). You have a few options to set before you can start the train-
ing process. The inputs on the different pages are shown in Figure 7-13 through
Figure 7-16, and the inputs are shown in Table 7-9. Any options not mentioned here
should be left as the default value. Once you have input all of the options on each
page, click Continue until the Start Training button is available to press.

Training CREATE

"1 TRAINING PIPELINES CUSTOM JOBS HYPERPARAMETER TUNING JOBS

Training pipelines are the primary model training workflow in Vertex Al. You can use
training pipelines to create an AutoML-trained model or a custom-trained model. For
custom-trained models, training pipelines orchestrate custom training jobs and
hyperparameter tuning with additional steps like adding a dataset or uploading the
model to Vertex Al for prediction serving. Learn More

e O H

Figure 7-12. Location of the Create button in the Vertex Al Training console.
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Dataset *
( No managed dataset v ©

Annotation set

- v @

Objective
Custom v

Please refer to the pricing guide for more details (and available deployment options) for
each method.

©  AutoML options are only available when you train with a managed dataset.

Model training method

O AutoML
Train high-quality models with minimal effort and machine learning expertise. Just specify
how long you want to train. Learn more

(O AutoML Edge

Train a model that can be exported for on-prem/on-device use. Typically has lower
accuracy. Learn more

(® Custom training (advanced)

Run your TensorFlow, scikit-learn, and XGBoost training applications in the cloud. Train with
one of Google Cloud's pre-built containers or use your own. Learn more

CONTINUE

Figure 7-13. Input on the Training Details page for your training job.
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(® Train new model
Creates a new model group and assigns the trained model as version 1

(O Train new version
Trains model as a version of an existing model

Name *

[ churn

‘ Description

‘v ADVANCED OPTIONS

CONTINUE

Figure 7-14. Input on the Model Details page for your training job.
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Select a pre-built container or build a custom container using ML frameworks (as well as
non-ML dependencies, libraries and binaries) that are not otherwise supported. Learn
more

(® Pre-built container
View the list of supported runtimes including TensorFlow and scikit-learn versions

(O Custom container
Build a custom Docker container. Must be stored in Container Registry

Model framework *
( scikit-learn v ’

Model framework version *
( 0.23 v ‘

Pre-built container settings

Before you begin, you need to package and upload your application code and
dependencies to a Cloud Storage bucket. Learn more

Package location (Cloud Storage path) 1 *
( gs:// michaelabel-demo/trainer-0.1.tar.gz BROWSE

Learn how to package and upload your application code and dependencies

-+ ADD PACKAGE

Python module *
( trainer.trainer

Figure 7-15. Input on the “Training container” page for your training job. Be sure to
replace the bucket with the bucket you are using.
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Model training pricing is based on the length of time spent training, machine types, and
any accelerators used. Learn more

Region
( us-central1 (lowa) - ©

Compute settings
Select the type of virtual machine to use for your worker pool. You can add up to 4 worker pools.

To learn about compute costs and how to map your ML framework's roles to specific worker
pools, consult the documentation

Worker pool 0 (chief)

( Machine type *

n1-standard-4, 4 vCPUs, 15 GiB memory v ‘
Worker count
1
Disk type

( SSD v ’
Disk size

( 100 GB ‘

vV ADD MORE WORKER POOLS (OPTIONAL)

CONTINUE

Figure 7-16. Input on the Compute and Pricing page. Be sure to choose a location close
to your bucket.

Table 7-9. Inputs for your training job in Vertex Al Training

Training Method page

Dataset No managed dataset
Model training method  Custom training (advanced)
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Model Details page

Radio buttons Train new model
Model name churn

Radio buttons Pre-built container
Model framework scikit-learn

Model framework version  0.23

Package location gs://your-bucket-name/trainer-0.1.tar.gz
Python module trainer.trainer

Region Choose a region close to your bucket location
Machine type n1-standard-4

The training pipeline that Vertex AI will create takes around three minutes to run.
Once it has finished, you can see the logs by going back to the Vertex Al link and then
Training. Once on that page, click Custom Jobs and then click “churn-custom-job”
(see Figure 7-17). Once on the page for the custom job, you will see a table of
information. At the bottom of that table, click the link for “View logs” If you scroll
down, you will then see the printout of the metrics from the training job. An example

of the metrics shown in logs is displayed in Figure 7-18.

Training CREATE

TRAINING PIPELINES CUSTOM JOBS HYPERPARAMETER TUNING JOBS

Custom jobs specify how Vertex Al runs your custom training code, including worker
pools, machine types, and settings related to your Python training application and
custom container. Custom jobs are only used by custom-trained models and not AutoML
models. Learn More

Region
{ us-central1 (lowa) v 0

= Filter Enter a property name

churn-custom-job 4895039648193052672 @ Finished Custom job 30 sec

Name ID Status Job type Duration @

Figure 7-17. The Custom Jobs page with the finished custom job churn-custon- job.
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> i 2023-02-14 19:42:57.125 EST workerpool@-8 Recall: 0.5675
> i 2023-02-14 19:42:57.125 EST workerpool®-0 Precision: 0.6676470588235294
> i 2023-02-14 19:42:57.124 EST workerpool®-8 Accuracy: 0.7967306325515281

Figure 7-18. Metrics from the custom training job.

You have successfully trained a model using scikit-learn on Vertex Al Of course,
this process likely feels like overkill given the amount of time it took to set up
and the amount of data you were working with. For working with smaller datasets,
working locally or in a Colab notebook is a reasonable approach. But, as datasets
become larger and larger, eventually it becomes more advantageous to take advantage
of larger pools of resources. In Vertex Al, the same basic process will work when
working with ever-growing datasets. Now your model is stored as a .joblib file and
ready to load wherever needed for serving predictions.

As an exercise, go through this same process with the Keras model. A few hints:

» Be sure to use a prebuilt container for TensorFlow. You can check the version
being used in your Colab notebook by running the command tf.__version__.

o The TensorFlow prebuilt images include the sklearn package, so you can easily
reuse your preprocessing code.

o Instead of using joblib.dump() to save the model, TensorFlow models include a
built-in method, save(). Use model.save() to store your model in Google Cloud
Storage.

Finally, for those who went through the optional section on pipelines in scikit-learn,
package up the code for the Pipeline version of the model code and submit that for
training to Vertex Al Training.

For further resources, see the official Vertex AI Custom Training documentation.

Summary

In this chapter you learned how to build a custom code model to predict customer
churn for a telco company. You explored two of the most popular ML frameworks
in scikit-learn and TensorFlow and built simple classification models in each. You
then learned how to train your model using the Vertex Al Training service on Google
Cloud. All the topics you covered in this chapter are simply the tip of the iceberg
and hopefully serve as a stepping stone into deeper knowledge about ML. In the
next chapter, you will see how to improve your models using techniques such as
hyperparameter tuning in BigQuery ML and using custom code in Vertex Al
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CHAPTER 8
Improving Custom Model Performance

In Chapters 6 and 7, you learned how to prepare data and build custom models
using SQL, BigQuery ML, and Python using scikit-learn and Keras. You will revisit
those tools in this chapter with an eye toward additional feature engineering and
hyperparameter tuning. In contrast to previous chapters, you will start with prepared
data and an already trained model and work to improve from there. If you are con-
fused when exploring the code for the previously built models or the user interface
for BigQuery, please revisit the discussions in Chapters 6 and 7.

The Business Use Case: Used Car Auction Prices

Your goal in this project will be to improve the performance of an ML model trained
to predict the auction price of used cars. The initial model is a linear regression
model built in scikit-learn and does not quite meet your business goals. You will
ultimately explore using tools in scikit-learn, Keras, and BigQuery ML to improve
your model performance via feature engineering and hyperparameter tuning.

The dataset used for training the linear regression model has been supplied to you
as CSV files. These datasets have been cleaned (missing and incorrect values have
been remedied appropriately), and the code that was used to build the scikit-learn
linear regression model has also been provided. Your teammate who trained the
linear regression model has shared some notes with you on model performance and
their initial explorations into using Keras for training the ML model. Your colleague
has also shared the data split that they used to train and evaluate their model. They
created a separate test dataset that has not been used yet that you will be able to use to
validate your final model performance. Your task will be to explore the use of feature
engineering to improve the feature set for the model and to leverage hyperparameter
tuning to ensure that the best model architecture is being used. You will see how to
perform these tasks in scikit-learn, Keras, and BigQuery ML.
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In the wholesale car sales industry, one of the leading indicators of wholesale prices
is the Manheim Market Report (MMR). MMR pricing calculations are based on
over 10 million sales transactions for the previous 13 months. In your dataset, you
have access to pricing calculations for the car sales that have been shared when the
data was initially pulled. However, you are not certain if you will have access to this
information in the future. For that reason, you have been asked to avoid using this
feature in your explorations. The business goal that has been shared with you is to
have an RMSE in the sales price of $2,000 or less without using the MMR feature.
You will start by using the notebook provided by your colleague to load the data and
replicate the model training they performed.

There are 13 columns in the dataset. Table 8-1 gives the column names, data types,
and some information about the possible values for these columns.

Table 8-1. Schema and field value information for the car sales dataset

Column name Column type Notes about field values

year Integer Year vehicle was manufactured

make String Brand of the vehicle

model String Specific version or variation of a vehicle make
trim String Specific version or variation of a vehicle model
body String Body style of vehicle (e.g., sedan)
transmission String Automatic or manual transmission

state String State in which the car will be sold
condition Float Condition of the car as rated from 0 to 5
odometer Integer Odometer reading at time of sale

color String Vehicle color

interior String Interior color

mmr Float Manheim Market Report pricing
sellingprice Float Actual selling price for vehicle (label)

Model Improvement in Scikit-Learn

In this section you will work to improve the linear regression model in scikit-learn
that was shared with you by your teammate. You will first quickly explore the data,
the preprocessing pipeline, and the model itself in scikit-learn. Then you will explore
the features more carefully and see how you can improve the model performance
using both new and familiar feature engineering techniques. Finally, you will leverage
hyperparameter tuning to ensure that you are optimally creating the new features for
your specific problem.
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Loading the Notebook with the Preexisting Model

First, go to https://colab.research.google.com. You will load a notebook from the low-code-
ai repository directly rather than create a new notebook. Click the GitHub button and
type in the URL for the low-code-ai GitHub repo, https://github.com/maabel0712/low-
code-ai, under the prompt “Enter a GitHub URL or search by organization or user.”
Figure 8-1 shows what it should look like.

Examples Recent Google Drive GitHub Upload
Enter a GitHub URL or search by organization or user |:| Include private repos
https://github.com/maabel0712/low-code-ai Q
Repository: [ Branch: [

maabel0712/low-code-ai v mainv
Path

Figure 8-1. Connecting to GitHub in Google Colab to open a notebook directly.

Hit Enter (or click the magnifying glass) to search the repo for notebooks. Scroll
down until you see chapter_8/sklearn_model.ipynb and click the “Open notebook
in new tab” button on the far right. This will open up the sklearn_model.ipynb
notebook in a new browser tab.

The code for loading the vehicle auction sales data, preparing the data for training,
training the ML model, and evaluating the ML model is already included in the
notebook. In this chapter, you will not go through this code in the level of detail
that you did in Chapter 7, but you will spend some time reviewing the code before
beginning the process of model improvement.

Loading the Datasets and the Training-Validation-Test Data Split

First, execute the cell to load the training, validation, and test datasets into corre-
sponding DataFrames:

'wget -q https://storage.googleapis.com/low-code-ati-book/car_prices_train.csv
'wget -q https://storage.googleapis.com/low-code-ai-book/car_prices_valid.csv
'wget -q https://storage.googleapis.com/low-code-ai-book/car_prices_test.csv

import as

train_df = pd.read_csv('./car_prices_train.csv')
valid_df = pd.read_csv('./car_prices_valid.csv')
test_df = pd.read_csv('./car_prices_test.csv')
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This code should be mostly familiar from previous chapters, but the wget bash
command may be new to you. wget simply downloads the file at the given URL
into the local file directory. The -q flag suppresses the logs from the wget command.
When loading the data into DataFrames, note that the file location starts with . /.
The . is a shorthand for “the current working directory;” which is where the wget
command will download the three files you specified.

After loading the datasets into their respective DataFrames, quickly ensure that the
data is what you expect by using the head() method on each DataFrame. The first
few columns of output from the train_df.head() method are shown below:

Unnamed: 0 year make model trim body
0 0 2012 Infiniti G Sedan G37 Journey g sedan
1 1 2012 Chevrolet Cruze LS Sedan
2 2 2005 Jeep Wrangler X Suv
3 3 2011 Kia Sorento SX Suv
4 4 2002 Volkswagen New Beetle GLS Hatchback

The very first column is the index in your DataFrame train_df, but where is the
second column, Unnamed: 0, coming from? This column is an unnamed column in the
CSV files that you are loading to create your DataFrames, and it was not mentioned
in Table 8-1. Most likely this was the index from a previous DataFrame that got
carried over by mistake and not an important feature. You will see in the next section
that your colleague dropped this column as part of preprocessing the data.

Note that you could also use Pandas to read directly from the
file location in Google Cloud Storage as you did in Chapter 7.
The advantage of using the wget command is that you will now
have your own local copy of the data. Which approach is the
most advantageous depends on your workflow and how you are
manipulating the data.

Before moving forward, recall that in the previous chapters you used two datasets,
a training dataset and a test dataset, for evaluating the model after training. Now
there are three datasets: a training dataset, a validation (or evaluation) dataset, and a
test dataset. Why are there three datasets? The training dataset is of course used for
training the model, and the validation dataset is used for evaluating the model. In this
project, you are going to be comparing many different models to each other. You will
use the training dataset to train each model and then evaluate the models using the
validation dataset. The “final model” will be the model whose performance was the
best on the validation dataset. However, the final model you choose may be biased
toward the validation dataset since you specifically choose the model that performed
the best on the validation dataset.
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The role of the test dataset is to have a final independent dataset to verify the final
model’s performance. If the final model has similar performance on the test dataset
as it does to the validation data, then that model is ready to use. In the case that the
model has significantly worse performance on the test dataset, then you know you
have a problem before you take the model and use it in your workloads.

One way to help avoid this scenario is to ensure that your training, validation, and
test datasets have similar data distributions. As an exercise, explore the datasets using
the describe(include="'all') method and see that the three datasets have similar
distributions up to a few outliers.

Exploring the Scikit-Learn Linear Regression Model

Now go to the next cell in the notebook. This cell contains the code to prepare the
data, train the ML model, and evaluate the model all using scikit-learn. There will not
be a careful walkthrough of all the code in this section, as the concept of a scikit-learn
pipeline was covered in Chapter 7. However, a quick overview with some additional
notes will be discussed along the way. First consider the data processing portion of
code after the import statements:

y_train = train_df['sellingprice']
X_train = train_df.drop('sellingprice', axis=1)

def drop_columns(df, columns):
return df.drop(columns, axis=1)

preproc_cols = FunctionTransformer(drop_columns,
kw_args={"columns":['Unnamed: 0', 'mmr']})

numeric_columns = ['year', 'condition', 'odometer']
categorical_columns = ['make', 'model', 'trim', 'body',
"transmission', 'state', 'color', 'interior']

col_transformer = ColumnTransformer(

[

('ohe', OneHotEncoder(drop='if_binary',
handle_unknown="'1infrequent_if_exist'),
categorical_columns),

('minmax', MinMaxScaler(), numeric_columns)

1
)
First, you are splitting the DataFrame into a separate column of labels (selling
price) and the rest of the feature columns as a single DataFrame. Then, you are
dropping the Unnamed: 0 and mmr columns of your training, validation, and test
datasets. This is being done by defining a function drop_columns and applying that
function using a FunctionTransformer. Note that there’s a new parameter in defining

the FunctionTransformer. The kw_args parameter takes in values for arguments in
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the chosen function beyond the first. For preproc_cols, the first argument is the
DataFrame we wish to drop columns from, and that will be provided in the pipeline.
The second parameter is the list of columns we wish to drop, and that will be passed
in as the corresponding value of a dictionary for the key columns.

The Unnamed: 0 column may seem odd, but as discussed before this is likely an
artifact of how the data was shuffled using the Pandas DataFrame method sample(),
which kept the original index as a new column. Within the context of your problem,
this column has no relation to the target and has been discarded. The mmr column
is unsurprisingly highly correlated with the target sellingprice, but given that you
have been instructed to avoid using that feature, it is being dropped as well.

Otherwise, the rest of the preceding code will seem familiar “Pipelines in Scikit-
Learn: An Introduction” on page 228 in Chapter 7. You are splitting the columns
into numeric columns and categorical columns (numeric_columns and categorical_
columns, respectively) and then using a ColumnTransformer() to apply different
transformations to the different sets of columns. The OneHotEncoder () will be used
for the categorical columns, and a MinMaxScaler() will be used for the numeric
columns.

Now consider the rest of the code in the cell where you define the model and the
pipeline:

model = LinearRegression()

pipeline = Pipeline(steps=[('preproc_cols' , preproc_cols),
('col_transformer', col_transformer),
('model', model)])

pipeline.fit(X_train, y_train)

The model that is being used here is a linear regression model. You are also using
a Pipeline object to define the preprocessing and the model together as a sequence
of steps. First the preproc_cols FunctionTransformer() will be applied to the
DataFrame, then col_transformer ColumnTransformer() will be used to apply the
appropriate transformation to columns depending on their type. Finally, the linear
regression model will be trained as the last part of the pipeline when pipeline.fit
is called. The last line fits the transformers and trains the model together. The fit
transformers are stored as part of the pipeline at prediction time. After training the
model, you will see a graphical representation of the pipeline, as shown in Figure 8-2.
If you wish, you can expand this to see more details and confirm that they align with
your expectations from the code.
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FunctionTransformer (func=<function drop_columns at 0x7f52d9087790>,‘
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Figure 8-2. Graphical representation of the scikit-learn Pipeline used to train your
model.

Now that the model has been trained in your notebook environment, you can evalu-
ate the model. Recall that when using scikit-learn pipelines, you can use the score()
method in the same way you would for any model object. You can also import other
metrics such as RMSE and MAE. Run the following code in the following cell to look
at evaluation metrics for your model:

import
from import mean_squared_error, mean_absolute_error
y_valid = valid_df['sellingprice']

X_valid = valid_df.drop('sellingprice', axis=1)

print('R2:', pipeline.score(X_valid, y_valid))
print('RMSE:"',math.sqrt(mean_squared_error(y_valid, pipeline.predict(X_valid))))
print('MAE:', mean_absolute_error(y_valid, pipeline.predict(X_valid)))

You will see that the R? score is about 0.876. This means that, roughly speaking, your
features describe 87.6% of the variability in the label. You will also see that the RMSE
is about 3,384.60 and the MAE is about 2,044.26. Recall that your business goal was
to have an RMSE of less than $2,000. As expected, based on the communication from
your colleague, the model does not meet those needs, but now you have everything
ready to work on improving the model.

In general, when collaborating across a team, you want to avoid
any randomness from splitting and the training process when
comparing results. Otherwise, you may be misled by comparing

different model results being trained in different environments. In
this case, the actual data split was shared with you rather than
the code. This is often preferable since a random shuffle and split
will often be used. You can set a random seed to make that split
deterministic or save the corresponding training, validation, and
test datasets, as was done here. Additionally, this is something to
consider when initializing and training models as well.
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Feature Engineering and Improving the Preprocessing Pipeline

Often, well-chosen and carefully created features, even with simple model architec-
tures, can lead to very strong results. Just simply making your model more compli-
cated is not always the right approach. More complex models will need more data to
successfully train the model and take more compute power to train and ultimately
tune the hyperparameters. Even looking for easy fixes, such as looking out for strange
values and removing unrelated features, can lead to significant model improvement.

Looking for easy improvements

Your colleague did a careful analysis of the original dataset and communicated to
you that they removed all null values and columns (such as the VIN) that were
in a one-to-one relationship with the label. Now it is a good idea to explore the
dataset to see if anything else could be improved. To do this, run the command
train_df.describe() in your notebook environment in a new cell if you have not
already done so. A sample of the expected output is shown in Table 8-2.

Table 8-2. Partial output of train_df.describe()

condition odometer sellingprice
(I 385000.000000 385000.000000 385000.000000 385000.000000 385000.000000
LEEDLI 2010.120177 3.339402 67732.957974 13695.356558 13544.324018
3L 3.879672 1.117698 52521.619238 9525.243974 9599.953488
LI 1990.000000 -1.000000 1.000000 25.000000 1.000000
A2 2008.000000 2.700000 28494.000000 7200.000000 7000.000000
FO/9 2012.000000 3.600000 52122.000000 12200.000000 12100.000000
£V 2013.000000 4.,200000 98188.000000 18150.000000 18000.000000
LEVG 2015.000000 5.000000 999999.000000 182000.000000 183000.000000

Recall that you are dropping the Unnamed: 0 and the mmr columns in the preprocess-
ing pipeline, so you do not need to worry about those columns in your analysis.
Nothing seems out of place in the year column at a glance; the model year of the
cars range between 1990 and 2015, with the data distribution skewed toward newer
cars. You should notice something odd about the condition column. You have a
minimum value of -1.0 in the condition column. This likely means that a magic
number slipped by your colleague. When analyzing many columns across a dataset, it
is easy to sometimes miss something simple like this. This is a good reason an extra
pair of eyes is always valuable.

Since condition is a floating-point number, we cannot easily just treat -1.0 as a
separate value without doing some transformation. You have a few options. If you
expect that the selling price has a linear relationship with the condition value, then
you could create a new feature condition_recorded as a binary @ or 1 value and
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replace instances of -1.0 with 0.0 so that those values are treated differently than
normal condition values. However, as you may have experienced with other rating
systems, often the effect of ratings is not linear. An easy way to address this is to
bucketize the values and then one-hot encode the corresponding bucket membership.
This way, the case of no rating will be treated entirely differently than cases of other
ratings (say, between 2 and 3), and you can tune the number of buckets to see which
gives your model the best performance.

To take the second approach, create a new cell in the notebook and add the following
code, but do not run the code yet:

import as

from import (OneHotEncoder, MinMaxScaler,
FunctionTransformer,
KBinsDiscretizer)

from import ColumnTransformer

from import LinearRegression

from import Pipeline

y_train = train_df['sellingprice']
X_train = train_df.drop('sellingprice', axis=1)

def preproc_cols(df, drop_cols):
return df.drop(drop_cols, axis=1)

drop_cols = FunctionTransformer(preproc_cols,
kw_args={"drop_cols":['Unnamed: 0', 'mmr']})

ohe = OneHotEncoder(drop='1if_binary', handle_unknown="'infrequent_if_exist')

minmax = MinMaxScaler()

bucket_cond = KBinsDiscretizer(n_bins=10, encode='onehot', strategy='uniform')
This code is mostly the same as what was shared with you before, but take the
time to spot a few changes. The KBinsDiscretizer transformer has been added; this
transformer is the tool in scikit-learn that can be used to bucketize data. Note that the
transformers are now defined on separate lines rather than in the ColumnTransformer
as before. This is done for increased readability, but also for modularity, the ability to
split up code more easily as you continue to improve your model.

In the last of these lines is where the KBinsDiscretizer is defined. The n_bins argu-
ment is set to 10 for 10 different buckets, the encode argument tells the transformer
to perform one-hot encoding, and the strategy, uniform, tells the transformer to
split the buckets evenly. This way, -1.0 will be in its own bucket separate from the
other ranges. Finish defining the pipeline using the following code, and run the cell to
train your new model:

numeric_columns = ['year', 'odometer']
categorical_columns = ['make', 'model', 'trim', 'body',
"transmission', 'state', 'color', 'interior']

Model Improvement in Scikit-Learn | 257



col_transformer = ColumnTransformer(
[('ohe', ohe, categorical_columns),
('minmax', minmax, numeric_columns),
('bucket_cond', bucket_cond, ['condition'])])

pipeline = Pipeline(steps=[('drop_cols' , drop_cols),
('col_transformer', col_transformer),
('model', model)])

pipeline.fit(X_train, y_train)
You can evaluate the new model by executing the code you used before in a new cell:

print('R2:", pipeline.score(X_valid, y_valid))
print('RMSE:",math.sqrt(mean_squared_error(y_valid, pipeline.predict(X_valid))))
print('MAE:', mean_absolute_error(y_valid, pipeline.predict(X_valid)))
The change did lead to a small increase in the performance of the model. The RMSE
dropped from about 3,384.60 to 3,313.63. Though it is a small improvement in this
case, in many cases catching issues like this can lead to a large improvement in the
model performance.

As you were evaluating the model, you likely noticed a warning message in the
results:

UserWarning: Found unknown categories in columns [2, 3] during transform.

These unknown categories will be encoded as all zeros
What does this warning actually mean? Here columns 2 and 3 correspond to trim
and body. This warning means that there are values for these columns in the vali-
dation dataset that are not in the training dataset. Checking for skew between the
datasets, such as different values appearing in the training and validation datasets, is
an important step of understanding your data in preparation for training. However, it
is very possible that an issue you were not expecting could appear while training and
evaluating models, so it is useful to know what to look out for.

You can quickly check, using the following code, how many values for the trim
column appear exactly once:

(train_df.trim.value_counts()==1).sum()

You will see that there are 124 values that are unique in the training dataset for the
trim column. Likewise, in the validation dataset you can see there are 273 values that
are unique. It seems as if your colleague may have caught on to this and addressed it
in their OneHotEncoder definition. They included the handle_unknown="1infrequent_
if_exist' parameter and value. handle_unknown defines the behavior that is followed
when an unknown value appears at prediction time, and the 'infrequent_if_exist'
value will assign unknown features to an infrequent category if it exists. To create

258 | Chapter 8: Improving Custom Model Performance



an “infrequent” category, you can set the min_frequency argument. This again is
something that can be tuned.

Setting the min_frequency too high will mean that many categories will have the
same contribution to output of the model, lowering the usefulness of the feature. On
the other hand, if the min_frequency is set too low, then you can run across the issue
of having a large number of features that only appear once or the issue you have
already seen where it is difficult to get a proper distribution of feature values between
datasets.

Set the min_frequency to 1 and then rerun the training code to see if there is any
difference in performance. You will see that the performance only changed very
slightly this time. In essence, you said that you treat all categories that appear less
than 1 time (or 0 times) in the training set as the same. It may make sense to increase
the min_frequency so that you treat all infrequent variables as the same category, the
infrequent category. You will explore this later when performing hyperparameter
tuning.

Feature crosses

Consider the model and trim features for a moment. Often you think of these features
together rather than separately, correct? When you say “I bought a Honda CR-V;” that
does not completely describe the car. There can be many different trims or packages
for the car. For a 2023 Honda CR-V, for example, three of the trims are “LX,” “EX,
and “EX-L” It is entirely possible that the same names can be used across different
vehicles as well. For example, the 2023 Honda Pilot also has the “LX” and “EX-L”
trims. Therefore, the value of the trim variable also does not tell the entire story
either. You need the value of both features to be able to identify the vehicle.

However, in your model, you treat model and trim as completely separate variables.
Recall, when using one-hot encoding you create a binary feature for each feature
value, and a linear regression model will assign a weight to each of these binary fea-
tures. The trim value of LX will have its own weight associated with it, independent
of the value of the model variable since you are using one-hot encoding. That is, the
trim feature value of “LX” will be treated the same regardless if the model is “Pilot” or
“CR-V” It makes sense to still consider the make feature separately since certain makes
tend to be more expensive than others.

How do you capture both feature values as a pair? One way of approaching this is
by using something known as a feature cross. A feature cross is a synthetic feature
formed by concatenating two or more features. One way to intuitively think about
this is that you are considering the value of both variables at the same time, rather
than separately.
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How does this work for categorical features? Recall that the feature value correspond-
ing to one-hot encoding is a binary 0 or 1. The idea of a feature cross in this case
would be that the crossed feature value would be 1 if the pair of features have the
corresponding values, but 0 otherwise. For example, take “CR-V LX” as the model
and trim. The value for the “CR-V” feature (under one-hot encoding) would be 1,
and the value for the “LX” feature would be 1. So the value for the “CR-V LX” feature
for the feature cross of model and trim would be 1. However, the value for the “Pilot
LX” feature would be 0 since the “Pilot” feature has a value of 0 in this example.

This seems like a simple feature to create and use, and when you used AutoML in
Chapters 4 and 5 it created these sorts of features (and more) for you in its process
of finding the best model for your dataset. However, feature crosses can be extremely
powerful features even in simple linear regression models. Can you think of other
pairs of features that may benefit from using a feature cross?

To see this in action, first replace the code for the preproc_cols function with the
following:

def preproc_cols(df, drop_cols):

df[ 'model_trim'] = df['model'] + df['trim']
df[ 'model_trim'] = df['model_trim'].str.lower()

df['color_interior'] = df['color'] + df['interior']
df['color_interior'] = df['color_interior'].str.lower()

return df.drop(drop_cols, axis=1)

Consider the first two lines of this function. You are creating a new column,
model_trim, in your DataFrame. This new column is formed by concatenating the
value of the model and the trim column. So, the value of the model_trim column
will depend on both the model and the trim of the car. The second line converts
the corresponding string into all lowercase. This is a good practice to ensure that
random differences in capitalization do not lead to different feature values. color and
interior are another good example of features that have a relationship that can be
represented well by a feature cross, so the third and fourth line implement the same
ideas.

Finally, you need to be sure that the new feature cross columns are being one-hot

encoded just as the other categorical variables; to do this, update the list categori

cal_columns with the new feature names. Your final list should look like this:

categorical_columns = ['make', 'model', 'trim', 'model_trim', 'body',

"transmission', 'state', 'color', 'interior',
'color_interior']

Now execute the model code with the preceding changes and reevaluate the perfor-

mance of the model. The complete code is available in the solution notebook if you
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get stuck. You should see that the RMSE is now about 3,122.14. By adding feature
crosses, you were able to decrease the RMSE by about 2% and get even closer to your
ultimate goal.

As an exercise, before moving on to the next section, explore other features that could
be bucketized and crossed with other features. As a goal, see if you can get the RMSE
for your model under 3,000 before moving on to the next section.

Hyperparameter Tuning

In the previous section you included new and useful features to lower the RMSE
for your model. You may not have quite reached your goal of $2,000 RMSE yet, but
you have made good progress. The next process that you will explore is known as
hyperparameter tuning. Recall that a hyperparameter is a variable that is not updated
during training but defines things such as the model architecture (such as number
of hidden layers or neurons per hidden layer for neural networks), how features are
engineered (such as how many buckets), and how the training process is executed
(such as the learning rate or batch size). When you bucketized the condition feature,
you selected a number of buckets. But how do you know what the optimal number of
buckets would be? The process of hyperparameter tuning aims to answer these sorts
of questions for you.

Hyperparameter tuning strategies

There are three main strategies that are commonly used for hyperparameter tuning:
grid search, random search, and Bayesian search. For all three, the first step is the
same. First you select a range of candidate values for the hyperparameters you wish
to tune. You can choose a range of values or a discrete set of values depending on
the hyperparameter you want to tune. For example, if you want to tune the optimizer
learning rate, you could set a range such as [0, 1] for the candidate range. In your
case, you bucketized the condition feature and set 6 as the number of buckets. This
was really an arbitrary choice, and there may be a better choice. For example, you
could set the candidate range between 5 and 15.

If you choose too low a number of buckets, you are treating large ranges of condition
values the same in the model. For example, with two buckets, all condition values
between 3.0 and 5.0 could be in the same bucket. On the other hand, if you have too
many buckets, then you risk overfitting, as you will have a small number of examples
per bucket that could be memorized by the model. With all of this in mind, 5 to 15
seems like a reasonable candidate range.

Once you have set the candidate ranges for the hyperparameters you wish to tune,
the next step is to choose a tuning method. The grid search method is very simply a
“try everything and see what works the best” approach. For example, suppose you are
tuning for two hyperparameters. The first has 4 candidate values and the second has 3
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candidate values, so there are 12 combinations of hyperparameters to check. A visual
representation of this is shown in Figure 8-3.

STO© o o o
£
g—— 0O 0 O O
£fTo0o o o o
—t—t—t>
Hyperparameter 1

Figure 8-3. Visual representation of the grid search method with two hyperparameters
tuned.

To select the best set of hyperparameters, you train a model for each set of hyper-
parameters using the training dataset and evaluate the models using the validation
dataset. In this case, you know for sure that you have the best hyperparameters (in the
candidate ranges) since you tried every possible value.

The downside of the grid search method should be apparent at this point. If you
want to work with a couple of hyperparameters each with a small range of candidate
values, then there are a reasonable number of models to train. However, if you want
to tune a large number of hyperparameters with a large number of candidate values
each, then this can quickly become infeasible. For example, if you have four hyper-
parameters to tune with 10 candidate values each, then there are 10,000 candidate
models to train.

There are two alternate approaches that are often used. The random search approach
is a partial search strategy that randomly selects some preset number of the candidate
models. Those models are trained and compared. The advantage of this approach is
that you can control how much time and effort is taken in searching through the set
of candidate models, but the downside is that you may miss the best model in the
search space because you got unlucky in the random selection process.

The third approach is Bayesian search or optimization, which is a more intelligent
approach to a partial search. The full details of the approach are beyond the scope
of this book, but the core idea is fairly simple. You randomly train a small number
of the candidate models as a starting point. Based on the evaluation metrics of those
initial models, the Bayesian optimization algorithm chooses the next set of candidate
models in the search space. These are the candidates, based on the earlier models,
that are expected to have the best evaluation metrics. This process continues for some
number of steps that are set up front. The next set of candidate models are chosen
based on the previous candidates’ performance. Though this has the same downside
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as random search in terms of not exhausting the search space, the upside is that the
search is a “more intelligent” search than random search.

Hyperparameter tuning in scikit-learn

In scikit-learn, both the grid search and random search strategies are easy to imple-
ment. In the remainder of this section, you will implement a variant of the grid search
strategy to find a better set of hyperparameters for your model. First, add a couple
of new transformers to bucketize the odometer and year columns, and remove the
list of numeric columns since those will now be bucketized as categorical columns.
Also, include the new KBinsDiscretizer transforms in the ColumnTransformer. For
convenience, the corresponding code is included here:

bucket_cond = KBinsDiscretizer(n_bins=10, encode='onehot',
strategy="uniform')

bucket_odo = KBinsDiscretizer(n_bins=10, encode='onehot',
strategy="'quantile")

bucket_year = KBinsDiscretizer(n_bins=10, encode='onehot',
strategy="uniform')

categorical_columns = ['make', 'model', 'trim', 'model_trim', 'body',
"transmission', 'state', 'color', 'interior',
'color_interior']

col_transformer = ColumnTransformer(

[('ohe', ohe, categorical_columns),

('minmax', minmax, numeric_columns),

('bucket_cond', bucket_cond, ['condition']),

('bucket_odo', bucket_odo, ['odometer']),

('bucket_year', bucket_year, ['year'])]

)
You will tune the following four hyperparameters: the number of buckets for the
odometer, condition, and the year columns, and the minimum frequency for the
OneHotEncoder transformer for a feature to not be encoded as infrequent. In scikit-
learn, you need to define the candidate ranges as a dictionary of values. Since you are
using a pipeline for your model and transformations, the syntax may look a little
odd at first glance. The code for this case is the following:

grid_params = {'col_transformer__bucket_cond__n_bins': range(8,13),
'col_transformer__bucket_odo__n_bins': range(8,13),
'col_transformer__bucket_year__n_bins': range(8,13),
'col_transformer__ohe__min_frequency': range(1,6)

}
The dictionary has pairs of the form 'hyperparameter_name' : candidate_range.
The hyperparameter range may look odd here at first glance, but it is not
too bad to parse. For example, the first hyperparameter has the name col_trans
former__bucket_cond__n_bins. This corresponds to the n_bins value for the
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bucket_cond transformer, which is part of the col_transformer. The corresponding
candidate range is a list of possible values for the n_bins parameter of bucket_cond.
range(8,13) is a convenient syntax for the list [8,9,10,11,12]. Note that the second
endpoint 13 is not included in the list. For the min_frequency hyperparameter, the
candidate range is range(1,6).

Now that the candidate ranges have been defined, you need to define the strategy and
then train the corresponding models—in this case, 625 candidate models with the
different choices of hyperparameters that you have defined. This is not an excessively
large number of models to train, but it will likely take at least an hour or so to fully
train them all. Scikit-learn offers a variant of the grid search strategy known as a
halving grid search.

To perform a halving grid search, first train all candidate models, but only for a small
portion of the training data. Based on the evaluation of those models, you keep some
portion of the candidate model pool. The name implies that you keep half, but you
can reduce the number of models more aggressively if you wish. After you remove
models from the candidate pool, you then train the remaining candidate models
using more of the training data. You repeat the overall process until you have chosen
the best candidate model.

It is entirely possible that models that perform well on a subset of the data will not
perform as well on the entire dataset and be eliminated in later rounds of the process.
Additionally, it’s possible that a model that performed poorly on a small subset of the
dataset would have actually performed very well on the entire training dataset. That
candidate model could be discarded before you see the improvement in the model
using more data. In general, any method you use other than grid search has some
risk along these lines, but halving grid search tends to be more effective than random
search in finding the best candidate model.

To implement halving grid search in scikit-learn takes just a few lines of code:

from import enable_halving_search_cv
from import HalvingGridSearchCv

grid_search = HalvingGridSearchCV(pipeline, grid_paranms,
cv=3, verbose=1,
scoring='neg_root_mean_squared_error')
At the time of writing, the halving grid search strategy is experimental in scikit-learn,
so it has to be enabled with the first line. The second line imports the HalvingGrid
SearchCV class for performing halving grid search. The third line is where we create
the object that will be performing the halving grid search. The first argument is the
model or pipeline that you wish to use and the second argument is the grid_params
dictionary you defined earlier. The keyword argument cv refers to a resampling
method known as cross-validation. Briefly, cv corresponds to the number of trials
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per candidate model using different splits of the training dataset into a smaller
training set and evaluation dataset. Higher cv values will lead to more precise
evaluation metrics but take more time to process. The verbose argument takes an
integer from 0 to 3. The higher the number, the more information will be output
during the tuning process. Finally, you have to set the metric that you are trying to
optimize in the tuning process. Since we are trying to optimize RMSE, we use the
neg_root_mean_squared_error score.

You may wonder why we use the negative root mean squared
error for the scoring argument. In statistical modeling, a score
function should increase when a model improves. On the other
hand, a loss function should decrease when the model improves.
Hyperparameter tuning methods in scikit-learn are set to use score
functions. Fortunately, we can get a score function by taking the
negative RMSE instead.

Now you are ready to perform hyperparameter tuning. Add the following code
after the definition of the grid_search object, and execute the code cell to perform
hyperparameter tuning to find the best candidate model:

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)
The second line that was added will print the hyperparameters for the best candidate
model. The hyperparameter tuning process will take 35-40 minutes in Google Colab.
You should see a similar result to the following, though the exact output may differ
based on randomness in the sampling process:

{'col_transformer__bucket_cond__n_bins': 11,
'col_transformer__bucket_odo__n_bins': 12,
'col_transformer__bucket_year__n_bins': 11,
'col_transformer__ohe__min_frequency': 1}

You can check the best model’s performance on our validation dataset so you can

compare performance with the earlier models. Execute the following code in a new
cell to output the evaluation metrics (RMSE) for the best model from the grid search:

# Load validation dataset in case it is not currently loaded
y_valid = valid_df['sellingprice']
X_valid = valid_df.drop('sellingprice', axis=1)

print('RMSE: ", math.sqrt(mean_squared_error(y_valid,
grid_search.predict(X_valid))))

Note that when you call the predict() method on the grid_search method, it calls
the predict() method on the best model from the grid search. The RMSE on the best

model was 2,915.02. Compared with where you started, with an RMSE over 3,300,
this is a significant improvement using both feature engineering and hyperparameter
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tuning. As an exercise, continue experimenting to see if you can find new features
and tune any new hyperparameters that come up to see if you can improve the model
further.

Finally, once you believe you have the best model that you can get, you should
evaluate the model on the testing dataset. However, in this chapter, you will still
explore new model architectures using Keras, so you should hold off for now on
performing this step.

Model Improvement in Keras

This section explores different neural network model architectures for your car auc-
tion selling price problem using Keras. You will not go back through the feature selec-
tion and engineering conversation from before, but you will be introduced to Keras
preprocessing layers as an analogue to the transformers you used in scikit-learn.
After re-creating the feature engineering part of the scikit-learn pipeline, you will
learn how to perform hyperparameter tuning using the Keras Tuner package and the
Bayesian optimization method discussed in the previous section.

Introduction to Preprocessing Layers in Keras

Keras preprocessing layers allow for you to easily build your data preprocessing
functions into the model function in the same way that you created a pipeline in
scikit-learn. You saw in Chapter 7 and the previous section how convenient it was to
include the preprocessing logic into the model itself. Though you did not export the
model in the previous section, you can easily export the entire trained pipeline using
the joblib library as you did in Chapter 7.

Think back through the transformations you performed on the dataset in the previ-
ous section. You one-hot encoded the categorical features, bucketized the numeric
features, and created feature crosses. Before starting to build the model in Keras, it is
good to understand the preprocessing layers that you will be using.

The Discretization layer is used in Keras to bucketize numerical features just as
the KBinsDiscretizer transformer was used in scikit-learn. You can provide the
endpoints of the buckets or use the adapt() method to have Keras choose the
endpoints based on the data and a specified number of bins. When using the adapt()
method, you must specify the dataset that you wish to use. The range of values in this
dataset is what will be used to choose the bucket boundaries. Typically, you should
use your training dataset or a representative sample of your training dataset for the
adapt() method.
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The result of the adapt() method is a list of boundary points
corresponding to the number of bins you chose. The left-most
boundary point is actually the right endpoint for a bin and the
right-most boundary point is actually the left endpoint for another
bin.

For example, if you set the number of bins to be four and receive
the boundary points [0.0, 1.0, 2.0] then the actual bins are
(-inf, 0.0),[0.0, 1.0),[1.0, 2.0),and [2.0, +inf).In other
words, all values less than 0 will belong to the first bin and all
values greater than 2.0 will belong to the last bin.

Another preprocessing layer that corresponds to the transformations being done in
scikit-learn is the StringLookup layer. The StringLookup layer is used to encode cate-
gorical columns with string values. You can encode the values in different manners,
but you will use one-hot encoding for your model. Another option is to encode the
columns as integers and then perform one-hot encoding, or other possible transfor-
mations, in later layers.

Finally, you also performed feature crossing when preprocessing your features in
scikit-learn. In scikit-learn, this was a somewhat manual process: you concatenated
the strings corresponding to the values for each feature, then one-hot encoded the
concatenated values. In Keras, there is a preprocessing layer that handles feature
crosses, known as the HashedCrossing layer. The HashedCrossing layer takes two
categorical features and creates the feature cross for you.

There are many more useful preprocessing layers to explore. For details about addi-
tional layers, see the “Working with Preprocessing Layers” guide in the TensorFlow
documentation.

Creating the Dataset and Preprocessing Layers for Your Model

Now you will re-create the preprocessing pipeline that you created in scikit-learn so
you can explore new model architectures in Keras.

Return to https://colab.research.google.com. Open a new notebook and name the note-
book keras_model.ipynb. You will be adding code to this notebook throughout the
next few sections, but if you are stuck, there is a solution notebook in the chapter8
directory also called keras_model.ipynb.

First, import the training and validation datasets into DataFrames as you did before
with scikit-learn. Also split the datasets into a DataFrame of features and series of
labels. If you need help doing so, here is the solution code:
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import as

'wget -q https://storage.googleapis.com/low-code-ati-book/car_prices_train.csv
'wget -q https://storage.googleapis.com/low-code-ai-book/car_prices_valid.csv
lwget -q https://storage.googleapis.com/low-code-ai-book/car_prices_test.csv

train_df = pd.read_csv('./car_prices_train.csv')
y_train = train_df['sellingprice']
X_train = train_df.drop('sellingprice', axis=1)

valid_df = pd.read_csv('./car_prices_valid.csv')
y_valid = valid_df['sellingprice']
X_valid = valid_df.drop('sellingprice', axis=1)

You will need to prepare the input features in Keras. When using different prepro-
cessing layers on different features, you cannot use the Sequential API that you
leveraged in Chapter 7 to build a neural network in Keras. The alternative API, the
Functional API, is very similar to use with a slightly different syntax. To use the
Functional API, you need to start by creating an Input for each input feature. First,
copy the following code to a new cell in your notebook and execute the cell:

import as

from import (StringLookup, HashedCrossing,
Discretization, Concatenate)

cat_cols = ['make', 'model', 'trim', 'body', 'transmission', 'state',
'color', 'interior']
num_cols = ['odometer', 'year', 'condition']

inputs = {}

for col in cat_cols:
inputs[col] = tf.keras.Input(shape=(1,), name=col,
dtype = tf.string)

for col in num_cols:
inputs[col] = tf.keras.Input(shape=(1,), name=col, dtype = tf.int64)
Before moving forward, take a moment to parse this code. First you import the
preprocessing layers you will be leveraging in later steps. Then you split the list of
columns into numeric and categorical columns (num_cols and cat_cols respectively)
as you did in scikit-learn. Then you create an empty dictionary for the Input layers.
You then create an Input for each feature. The for col in cat_cols statement
means that the following code will be executed for every column in the cat_cols list.
tf.keras.Input is the full name for Input layers. The first argument, shape, states
that for each example, each feature will be just a single value. You set the name of
each Input to the corresponding column name in cat_cols. Finally, you set the data
type (dtype) to tf.string, which is the implementation of the string data type in
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TensorFlow. The concepts are the same for the num_cols column except that the data
type is set to tf.int64, TensorFlow’s implementation of 64-bit integers.

Now that the Input layers have been created, you are ready to create the preprocess-
ing layers. First, one-hot encode each categorical column using the following code:
preproc_layers = {}
for col in cat_cols:
layer = StringlLookup(output_mode='one_hot")
layer.adapt(X_train[col])
preproc_layers[col] = layer(inputs[col])
First you create an empty dictionary to hold the layers you will use for preprocessing.
Then you create a StringLookup layer for every categorical column, and then you set
the output_mode to 'one_hot' so that the output is one-hot encoded. You then use
the adapt() method on the corresponding column in the training dataset to learn
the vocabulary for one-hot encoding. Note that if an unknown value appears when
transforming data in the model, it will be assigned an unknown value '[UNK]'. The
behavior of how unknown values are treated can be set. Finally, you specify the input
for the column at training and prediction time and store that in the dictionary pre
proc_layers. You should reference the documentation for StringLookup for more
details.

Next up are the Discretization layers for bucketizing your numeric columns. Use
the following code to create the Discretization preprocessing layers:

for col in num_cols:
layer = Discretization(num_bins=10,
output_mode="'one_hot")

layer.adapt(X_train[col])

preproc_layers[col] = layer(inputs[col])
The idea here is similar to before, where for each numeric column you create a
Discretization layer. Each layer (for now) will split the data into 10 buckets and
then one-hot encode the bucket membership. Finally, you use the adapt() method to
fit the bucketization to the individual columns.

The last type of feature engineering you performed with your scikit-learn model was
feature crossed. Now, re-create these features using HashedCrossing layers using the
following code:

model_trim=tf.keras.layers.HashedCrossing(num_bins=1000, output_mode='one_hot")(
(inputs['model'], inputs['trim']))

color_int=tf.keras.layers.HashedCrossing(num_bins=400, output_mode='one_hot"')(
(inputs['color'], inputs['interior']))

preproc_layers[ 'model_trim'] = model_trim
preproc_layers['color_int'] = color_int
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Note that the HashedCrossing column is slightly different from performing a feature
cross as we did in scikit-learn. A hashing function is a special type of function that
takes a string input and returns an integer in return. The output is deterministic—
that is, you always get the same output integer when inputting the same string, but
the outputs are distributed in such a way it is nearly impossible to predict. The
HashedCrossing column takes the output of the hashing function and uses that to
choose a bin to place the corresponding element into. For the model_trim layer, there
are 1,000 bins, and for the color_interior layer, there are 400 bins.

Where do these numbers come from? Well, there are over one million different
model and trim combinations possible from the values that come up in our dataset.
Likewise, there are about 300 combinations of color and interior values that are pos-
sible. Since the distribution of values is effectively random, possibly multiple values
could end up in the same bin. Overestimating the number of bins helps to lower
the likelihood of that scenario. There is a trade-off, though: each bin corresponds
to a feature in your model, and this corresponds to multiple weights depending on
how many neurons there are in the first hidden layer. This trade-off is the reason
that we chose 1,000 bins for the model_trim feature rather than including over one
million bins. This trade-off also makes the number of bins a great candidate for
hyperparameter tuning.

Building a Neural Network Model

Now that you have created the preprocessing layers, it is time to put everything
together. The first thing you should do is concatenate all of the preprocessing layers
into a single layer for input into the neural network. Use the following code to
perform this task:

Concatenate()(preproc_layers.values())
tf.reshape(prepared_layer, [-1,3903])

prepared_layer
prepared_layer

This code is fairly straightforward: you create a Concatenate layer and then give it a
list of input layers. Since you have been creating all of your preprocessing layers in a
dictionary, you simply need to extract the values of the dictionary. prepared_layer
is a length 3903 tensor, taking into account all of the possible feature values for the
one-hot encoded and bucketized features. The second line reshapes prepared_layer
into a rank 2 tensor, which is expected in the Functional API for the next layer.

With all of your inputs as a single layer, the rest of the process of building a model
is more or less the same as in Chapter 7. There is a minor difference with the
Functional API in Keras, but this is easier to explain after seeing the code:
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hid_1 = tf.keras.layers.Dense(16, activation='relu')(prepared_layer)
hid_2 = tf.keras.layers.Dense(16, activation='relu')(hid_1)
output = tf.keras.layers.Dense(1)(hid_2)

model = tf.keras.Model(inputs=inputs, outputs=output)

The first line creates a new layer, hid_1, which is a dense layer with 16 neurons
and ReLU activation. In the Functional API, you have to specify an input for each
layer just as you would for a function. In this case, this will be the prepared_layer
from before. Next, you define a second layer, hid_2, with the same parameters as
the first hidden layer, but with hid_1 as the input layer. Finally, you define the
output layer, output, as a dense layer with a single output neuron and no activation
function. Recall that for regression models, your output should be a single number,
the predicted value.

You need to now create the Model object. You do this by using tf.keras.Model and
specifying the inputs for the model (inputs that you defined earlier) and the output
for the model (the output layer). From here, the process is the same as it was in
Chapter 7, with a few minor differences. Use the following code to compile and train
the model:

model.compile(optimizer="adam', loss='mse')

train_ds = tf.data.Dataset.from_tensor_slices(
(dict(X_train), y_train)).batch(100)

valid_ds = tf.data.Dataset.from_tensor_slices(
(dict(X_valid), y_valid)).batch(1000)

history = model.fit(
x=train_ds,
epochs=25,
verbose=1,
validation_data=valid_ds

)
First you compile the model, setting the optimizer to be the Adam optimizer and the
loss function to be the mean squared error, or MSE. Next you create the tf.Datasets
for training and validation from the corresponding DataFrames. You set the batch
size to 100 for training and 1000 for validation. To train the model, you use the fit()
method as before.

Your model performance may vary slightly depending on the randomness involved
with initializing and training a neural network, but you should see an MSE of around
$10,719,103 after training completes, which translates to an RMSE of $3,274. The
performance is similar to your model’s performance in scikit-learn before hyperpara-
meter tuning. Note that your MSE may differ due to randomness in how the neural
network was initialized. The choice of neural network architecture was arbitrary,
though, so there is likely still further room for improvement.
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Hyperparameter Tuning in Keras

Now that you have a working model in Keras, it is time to work on improving it.
When building Keras models, you can use the Keras Tuner package to easily perform
hyperparameter tuning.

Google Colab does not include the Keras Tuner package by default, but it is easy to
install. pip (a recursive acronym for Pip Installs Packages) is a package-management
tool for Python to install and manage packages. The pip install command will
allow you to download and install packages from the Python Package Index or PyPI.
Run the following command in a new cell to install the Keras Tuner package:

Ipip install -q keras-tuner

pip is a command-line tool, so as before you use the ! line magic to run the line as
a bash command. The -q flag suppresses most of the output from the install to avoid
cluttering up the notebook environment. Now that Keras Tuner is installed, you can
start to alter your model code to prepare it for hyperparameter tuning.

When using Keras Tuner you need to create a function (which you will call
build_model) that takes hyperparameters as inputs and returns your compiled
model. For every candidate model, this function will be executed with different
hyperparameters to create the model for training. As you noticed earlier, it takes a
few minutes to perform the adapt() method for all of your preprocessing layers, so
ideally you will have this code outside of the build_model function. Use the following
code to create the build_model function for Keras Tuner:

import as
from import partial

def _build_model_fn(hp, prepared_layer):
units_1 = hp.Int('units_1', min_value=8, max_value=64, step=4)

units_2 = hp.Int('units_2', min_value=4, max_value=64, step=4)
units_3 = hp.Int('units_3', min_value=4, max_value=32, step=2)

hid_1 = tf.keras.layers.Dense(units_1,
activation="relu')(prepared_layer)
hid_2 = tf.keras.layers.Dense(units_2, activation='relu')(hid_1)
hid_3 = tf.keras.layers.Dense(units_3, activation='relu')(hid_2)
output = tf.keras.layers.Dense(1l, activation='linear')(hid_3)
model = tf.keras.Model(inputs=inputs, outputs=output)
model.compile(optimizer="'adam', loss='mse')

return model

build_model = partial(_build_model_fn, prepared_layer=prepared_layer)
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First you import the keras_tuner package and the partial function, both of which
will be used later. Next you define an “intermediate” function: _build_model_fn.
The underscore at the front of the function name is a Python convention that this
is a function that is not meant to be used directly. Note that this function has two
arguments, hp and prepared_layer. The hp argument will be provided by Keras
Tuner, and the prepared_layer argument will correspond to the layer of the same
name you created earlier.

The line units_1 = hp.Int('units_1', min_value=8, max_value=64, step=4) is
an example of how to define a hyperparameter using Keras Tuner. hp.Int defines an
integer-valued hyperparameter. You can also define floating-point hyperparameters
(hp.Float), Boolean hyperparameters (hp.Boolean), or choose from a list of possible
values (hp.Choice). For more details, see the Keras Tuner documentation.

In the case of integer hyperparameters, you set a minimum value, a maximum value,
and a step size. So in this case, the possible values would be 8, 12, 16, 20, ..., 64. In the
preceding code, you create three hyperparameters: units_1, units_2, and units_3.
Next you define the three hidden layers for your model. Note that for each hidden
layer, the number of neurons is replaced with the hp.Int objects that were defined.
Otherwise, the process is similar to the code you used for building and compiling a
model. The _build_model_fn function returns the compiled model as the output.

The build_model function needs to take only hp as an argument for use with Keras
Tuner. This is where the partial function comes into play. The partial function
allows you to create a new function from an old function, but with certain fixed
arguments already plugged into the original function. partial(_build_model_fn,
prepared_layer=prepared_layer) takes the function _build_model_fn and creates
a new function where your prepared_layer layer is always plugged in for the corre-
sponding argument.

Now that the build_model function has been created, next create the tuner that will
manage the hyperparameter tuning process. Use the following code to create the
tuner object and perform the hyperparameter search:

tuner = kt.BayesianOptimization(
build_model,
objective=kt.Objective("val_loss", direction="min"),
max_trials=20)

tuner.search(
x=train_ds,
epochs=5,
verbose=1,
validation_data=valid_ds)
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The tuner is an example of a Tuner in Keras Tuner using Bayesian optimization to
optimize hyperparameters. You create an Objective to define the goal of the tuning
process. In this case, you want to minimize the loss (MSE) of the validation dataset,
so you set val_loss as the goal and direction as min to specify that you wish
to minimize the val_loss. You also set a maximum number of trials or candidate
models to be trained.

To perform the tuning process, you use the search() method on tuner. You specify
the training dataset, the number of epochs to train the candidate models for, the
verbosity (how much detail you want from 0 to 3), and the validation dataset. Note
that the number of epochs is fairly small here since you are training many models.
Often, but not always, you can understand which models will perform better after
only a few epochs of training, without having to train them until convergence. Your
output and results should look similar to those in Figure 8-4.

[12] tuner = kt.BayesianOptimization(
build_model,
objective=kt.Objective("val_loss", direction="min"),

max_trials=20)

tuner.search(
x=train_ds,
epochs=5,
verbose=1,
10 validation_data=valid_ds)

1
2
<
4
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9

Trial 20 Complete [0Gh O3m 04s]
val_loss: 6105608.5

Figure 8-4. An example of the output from the hyperparameter tuning process using
Keras Tuner.

Your exact results will vary depending on some randomness in the process, but
likely your results will have the best model’s val_loss around $6,000,000, which
corresponds to an RMSE of $2,470. This is an improvement over the previous model’s
results, even after only five epochs. You should now train this best candidate model
for longer to see if you can get even better results. To do this, you need to be able to
retrieve the best hyperparameters. Execute the following code in a new cell to find the
hyperparameters from the best candidate model:

best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]

print('units_1:', best_hps.get('units_1"))

print('units_2:', best_hps.get('units_2"))

print('units_3:', best_hps.get('units_3"))
The best hyperparameters found once again can vary from run to run due to ran-
domness in the process. For the run being discussed in this chapter, the best values
for units_1, units_2, and units_3 were 52, 64, and 32 respectively.
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To make things easier, Keras Tuner includes the tuner.hypermodel.build() method
where we can provide the best hyperparameters, and it will pass those values to the
build_model method to re-create our best candidate model. Use the following code
to do just that, create an early stopping callback, and train the best model until the
val_loss stops improving:

best_model = tuner.hypermodel.build(best_hps)

early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss',
patience=5)

history = best_model.fit(
x=train_ds,
epochs=1000,
verbose=1,
callbacks = [early_stopping],
validation_data=valid_ds

)

After training the model, the validation RMSE has decreased even further, to under
2,000. You finally have a model that meets your initial goals! As an exercise, imple-
ment hyperparameter tuning for other hyperparameters such as the number of bins
for the HashedCrossing layers.

However, we chose the model based on performance on the validation dataset, so
we could have happened to choose a model that was just simply biased toward that
dataset. This is where the test dataset comes in. The test dataset has not been used at
any point during the model training process, so it is the closest thing that we have to
data “in the wild” or that your model would see in production.

Since we have chosen our final model, we can use the test dataset as a final verifica-
tion of performance. To do so, use the following code:

test_df = pd.read_csv('./car_prices_test.csv')
y_test = test_df['sellingprice']
X_test = test_df.drop('sellingprice', axis=1)
test_ds = tf.data.Dataset.from_tensor_slices(
(dict(X_test), y_test)).batch(1000)

best_model.evaluate(test_ds)

How did your model perform on the test dataset? If the performance was similar,
then you are in great shape and ready to pass the model along to be deployed.
Otherwise, you may need to recombine the datasets, do a new training-validation-test
data split, and start the process over from the beginning. In the process of doing
so, be sure to ensure that your training, validation, and test datasets have similar
distributions of examples. In practice, different distributions in the different datasets
is a very common reason to see a large drop in performance when evaluating on the
test dataset.
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Having to start over can be frustrating, but once the independence of the test dataset
is compromised by using it to make a decision, this is the best approach if you need to
continue to improve your model performance.

Hyperparameter Tuning in BigQuery ML

In this section you will revisit the model you created in scikit-learn and Keras in
BigQuery ML. You will load the car auction price datasets you were using before
into BigQuery, explore feature engineering in BigQuery ML, and train a neural
network model. Finally, you will learn how to perform hyperparameter tuning in
BigQuery ML.

You will not be doing a full review of the concepts of BigQuery and BigQuery ML
again in this chapter, so please reference Chapter 6 for additional details on certain
tasks being performed in this chapter.

Loading and Transforming Car Auction Data

First go to the Google Cloud Console and navigate to BigQuery (either using the side
menu or the search bar). In the Explorer to the right of your project ID, click the
View Actions button, which is represented by three vertical dots to the right of your
project ID. Then click “Create dataset” A reminder of the location of these items in
the UT is shown in Figure 8-5.

@)  Explorer +ADD K @ Untitled ~ X
@ Untitled
. [ Q, Type to search o ]
1
Q Viewing workspace resources.
SHOW STARRED ONLY
-
o
» ma-low-code-ai ¥ ¢
® ‘ Create dataset
& Refresh contents
D

Figure 8-5. The location of the View Actions button and “Create dataset” action in the
BigQuery UL
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Create a new dataset, car_sales_prices, in the US region. Once the dataset is cre-
ated, you can use the View Actions button beside your dataset to create a BigQuery
table. Select the dataset, click “View actions,” then select “Create table” Create three
tables, with one for each of the three datasets, using the information in Table 8-3.
Note that you will need to replace the <dataset> part of the “Select file from GCS
bucket or use a URI pattern” and “Table” fields with train, valid, and test for the
three different datasets.

Table 8-3. Options for the three tables to be created

Field Value

(reate table from Google Cloud Storage

Select file from GCS bucket or use a URI pattern  low-code-ai-book/car_prices_<dataset>.csv
File format v

Table car_prices_<dataset>

Schema Auto detect

Before beginning to build the model, you need to replicate the transformations that
you performed in scikit-learn and Keras. First, recall that you performed one-hot
encoding on the categorical columns. Remember that in BigQuery ML, all string-
valued columns are automatically one-hot encoded, so there will be nothing you need
to do for those columns.

What about the numeric columns that you bucketized? BigQuery ML provides two
functions for bucketizing numeric features. First is the ML.BUCKETIZE function, which
takes in two arguments. The first argument is the column you wish to bucketize, and
the second is a list of bucket endpoints which you provide. Note that you need to
know what buckets you wish to use up front.

There is also the ML.QUANTILE_BUCKETIZE function. This function also takes two
arguments. The first argument is again the column you wish to bucketize, but the
second column will now be the number of buckets you wish to split the data into.
ML.QUANTILE_BUCKETIZE will split the data into quantile-based buckets based on the
number of buckets you specify. For example, if you specify four buckets, the first
quartile (25% of data) will be placed into the first bucket, the second quartile into the
second bucket, and so on. The actual output of these functions will be of the form
bin_n for data placed into bucket n, and then BigQuery ML will one-hot encode this
column just like any other string column.
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The final transformation you performed was a feature cross. The function that
implements feature crosses in BigQuery ML is the ML.FEATURE_CROSS function. This
function takes in a STRUCT of feature columns and returns feature crosses of those
columns. If you provide just a pair of columns, then it will return the feature cross of
those two columns. If you provide three columns, then you will receive three feature
crosses, one for each possible pair.

The syntax for ML.FEATURE_CROSS may seem a little odd at first:
ML.FEATURE_CROSS(STRUCT(columnl,column2))

The STRUCT keyword is needed to create a STRUCT, which is an ordered list of columns
possibly of different types. Without this keyword, you will receive an error from this
line of code.

Now you are ready to preprocess your data. Write and execute the following SQL
query in the BigQuery console to perform the desired transformations:

SELECT
* EXCEPT (int64_field_0, mmr, odometer, year, condition),
ML.QUANTILE_BUCKETIZE(odometer, 10) OVER() AS odo_bucket,
ML.QUANTILE_BUCKETIZE(year, 10) OVER() AS year_bucket,
ML.QUANTILE_BUCKETIZE(condition, 10) OVER() AS cond_bucket,
ML.FEATURE_CROSS(STRUCT(make,model)) AS make_model,
ML.FEATURE_CROSS(STRUCT(color,interior)) AS color_interior

FROM
‘car_sales_prices.car_prices_train’

LIMIT 10

The SELECT * EXCEPT(...) statement returns all columns in the table except for the
ones listed. Here int64_field_0 is the name for the Unnamed: 0 column from before.
You want to also remove the mmr column since you were not going to be able to use
it for training. Finally, you did not use the numeric values for odometer, year, and

condition before, as you had bucketized those features, so you will not return those
features in the results.

Next, you bucketize the odometer, year, and condition columns using ML.QUAN
TILE_BUCKETIZE and 10 buckets. The OVER() clause at the end allows you to split
up the data into different sets (based on the inside of the OVER statement) and
then bucketize into quantiles. Here, you simply bucketize into quantiles without any
additional splitting.

Finally, you implement the feature crosses with ML.FEATURE_CROSS. For this example,
you have the LIMIT 10 statement, so you can look at just the first few rows of data.
An example of what the results could look like is shown in Table 8-4.
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Table 8-4. The output from the preprocessing queries for the ML.QUANTILE_BUCKETIZE and
ML .FEATURE_CROSS tmnsformations

odo_bucket year_bucket cond_bucket make_model color_interior
bin_10 bin_1 bin_1 Nissan_300ZX red_red

bin_7 bin_1 bin_1 Chevrolet_Corvette red_-

bin_10 bin_1 bin_2 Lexus_LS 400 silver_silver
bin_10 bin_1 bin_4 Jeep_Cherokee white_gray
bin_9 bin_1 bin_2 Mazda_MX-5 Miata red_blue
bin_10 bin_1 bin_2 Honda_Accord blue_—

Note that for the bucketized columns, the output is bin_n as expected. Also, the out-
put for the feature cross columns has the form valuel_value2. These concatenated
values will be one-hot encoded by BigQuery ML, taking a very similar approach to
what you did in scikit-learn earlier in the chapter.

Training a Linear Regression Model and Using the TRANSFORM Clause

Now you are ready to train a linear regression model using the preceding query you
wrote for preprocessing the data. Note that if you transform the data using that query,
save the results, and then train the model using the new table, everything works just
fine. However, you must perform the same transformations at prediction time. This
becomes very tricky when you do not know exactly how the one-hot encoding was
done nor do you have the bucket endpoints for the bucketization.

BigQuery ML provides the TRANSFORM clause to enable you to build these transfor-
mations into the model. The overall structure of the CREATE MODEL statement is as
follows:

CREATE OR REPLACE MODEL ‘dataset.model_name’
TRANSFORM (<transformation_sql>)

OPTIONS (<model_options>)

AS SELECT ..

The <transformation_sql> is the SELECT part of the preceding query where you
specified the columns you wanted to use and the transformations on those columns.
Write and execute the following SQL statement to train a linear regression model
using your transformations in a TRANSFORM clause:

CREATE OR REPLACE MODEL

‘car_sales_prices.linear_car_model’

TRANSFORM (
* EXCEPT (int64_field_0, mmr, odometer, year, condition),
ML.QUANTILE_BUCKETIZE(odometer, 10) OVER() AS odo_bucket,
ML.QUANTILE_BUCKETIZE(year, 10) OVER() AS year_bucket,
ML.QUANTILE_BUCKETIZE(condition, 10) OVER() AS cond_bucket,
ML.FEATURE_CROSS(STRUCT(make,model)) AS make_model,
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ML.FEATURE_CROSS(STRUCT(color,interior)) AS color_1interior)
OPTIONS (
model_type='1l1inear_reg',
input_label_cols=['sellingprice'],
data_split_method="'NO_SPLIT') AS
SELECT

*

FROM
“car_sales_prices.car_prices_train’;

This query should seem mostly familiar from what you did before in Chapter 6 up
to a few changes. First, the TRANSFORM clause is included to build the transformation
logic into the model so that it can be referenced at inference time. When you call
ML.PREDICT to serve predictions, the TRANSFORM clause will be executed on the input
table before being passed to the model for predictions. This means that things like the
bucket endpoints will be included in the model itself now. In scikit-learn and Keras,
you used pipelines and preprocessing layers, respectively, to manage this process.

The other thing that you may have noticed is that there is a new option. The
data_split_method option dictates how the data will be split for training and valida-
tion. Since you already have a separate validation dataset, the NO_SPLIT option is
employed to use the entire training dataset for training. You can evaluate your trained
model using your validation dataset using the following SQL statement:

SELECT SQRT(mean_squared_error)
FROM ML.EVALUATE(MODEL ‘car_sales_prices.linear_car_model"’,
(SELECT * FROM “car_sales_prices.car_prices_valid'))

Since you used the RMSE for evaluation before, you will use it again here for consis-
tency. Your RMSE here could be fairly high, and possibly over $8,000. You can check
the RMSE for the training set as well by running the following query:

SELECT SQRT(mean_squared_error)
FROM ML.EVALUATE(MODEL ‘car_sales_prices.linear_car_model"’,
(SELECT * FROM “car_sales_prices.car_prices_train’))

The RMSE on the training dataset will be closer to $3,000 and what you expected
from your scikit-learn model before. This is a classic example of overfitting, but
where is this coming from? The feature crosses involve a very large number of
possible values, thus leading to a very large number of features for the model. You
can compute the number of features coming from the feature crosses by running the
following query:

SELECT
COUNT(ML.FEATURE_CROSS(STRUCT(color,interior))) +
COUNT (ML .FEATURE_CROSS(STRUCT (make,model)))

FROM
‘car_sales_prices.car_prices_train’
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You will see that there are 770,000 different feature values from the feature crosses.
Such a large number of features compared to the number of examples can lead
to overfitting very easily. In the next section, you will learn how regularization
techniques can address overfitting with large numbers of features.

Finally, you can predict using your model in the same way as before in Chapter 6:

SELECT *
FROM ML.PREDICT(MODEL ‘car_sales_prices.linear_car_model’,
(SELECT * FROM “car_sales_prices.car_prices_valid'))

You can train a deep neural network regression model in a very similar manner by
simply changing the options, as you can see in the following SQL statement:

CREATE OR REPLACE MODEL
‘car_sales_prices.dnn_car_model’
TRANSFORM (
* EXCEPT (int64_field_0, mmr, odometer, year, condition),
ML.QUANTILE_BUCKETIZE(odometer, 10) OVER() AS odo_bucket,
ML.QUANTILE_BUCKETIZE(year, 10) OVER() AS year_bucket,
ML.QUANTILE_BUCKETIZE(condition, 10) OVER() AS cond_bucket,
ML.FEATURE_CROSS(STRUCT(make,model)) AS make_model,
ML.FEATURE_CROSS(STRUCT(color,interior)) AS color_1interior)
OPTIONS (
model_type='dnn_regressor',
hidden_units=[64, 32, 16],
input_label_cols=['sellingprice'],
data_split_method="NO_SPLIT') AS
SELECT

*

FROM
‘car_sales_prices.car_prices_train’;

Configure a Hyperparameter Tuning Job in BigQuery ML

Once you have written the code to train a model, then you only need to make a few
small alterations to begin hyperparameter tuning. First you will need to include a
new option, num_trials. This option sets the number of different models that will be
trained during the hyperparameter tuning process. You can optionally also set a value
for the num_parallel_trials option. This will allow you to run multiple trials in
parallel at the same time. The total number of resources used to train all the models
will be the same, but being able to run multiple models in parallel will make it take
less time overall. However, there is a trade-off when using Bayesian optimization as
implemented in BigQuery ML and Vertex Al in general. The more parallel trials you
run, the fewer iterations you go through until you get to the maximum number of
trials, and in general Bayesian optimization learns from each iteration.

Hyperparameter Tuning in BigQuery ML | 281



After setting the num_trials option, the next step is to set up your hyperparame-
ters. In BigQuery ML, only certain hyperparameters can be tuned. For deep neural
network (DNN) models, you can tune the batch_size, dropout, hidden_units,
learn_rate, optimizer, 11_reg, 12_reg, and activation_fn. You will focus on drop
out, 11_reg, and hidden_units here, but you should explore other hyperparameters
as an exercise.

Regularization

You are familiar with hidden_units from earlier examples. But what about dropout
and 11_reg? Dropout is a type of regularization technique. In general, regularization
techniques are used to reduce the risk of overfitting for a model. Overfitting occurs
when the model performs much better on the training dataset than evaluation data-
sets. This often happens because the model “memorizes” the dataset and starts to miss
the general patterns that are needed to perform well on other datasets. One main way
of reducing this risk of overfitting is to lower the model’s complexity.

L1 and L2 regularization are commonly the first regularization techniques that ML
practitioners learn about. Suppose you have a loss function L(x, D). Recall that the
goal of the training process is to minimize this loss function. The idea of L1/L2
regularization is to add an additional term to the loss function to force the learning
algorithm to balance minimizing the original loss function and the new “penalty
term.” Let W, represent the sum of the squares of all of the weights in your model.
For L2 regularization, the new loss function looks like the following:

Lreg(x> D) = L(z, D) + \* W,.

The rough idea is that for a model to become more complex, the values of the weights
need to become larger to have more of an effect on the outcome. This new loss
function balances the original loss function and the “complexity” of the model as
measured by W,. A is known as the regularization rate , which controls how much
the original loss function is weighed against the complexity of the model. The higher
the value of ), the more complexity is punished in the training process. Similarly
for L1 regularization, the term W, is replaced by the sum of the absolute values of
all of the weights 1. These types of regularization can be used together in what is
known as elastic net regularization. The corresponding loss function for elastic net
regularization is as follows:

Lep(x, D) = L(x, D) + Ny x W1+ X x W,

Note that \; and )\, are different constants controlling the influence of L1 and L2
regularization separately.
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You now know what the definitions of L1 and L2 regularization are, but what effect
do they actually have on the model? The mathematics behind this is beyond the scope
of this book, though is not too complex, and the ultimate effects are easy to describe.
L2 regularization tends to try to push weights to smaller values. L1 regularization
tends to push weights that are not influential on the model’s performance to zero.
This can be very valuable when you have a large number of sparse features. An
example of this scenario is when you are creating feature crosses of two features with
a large number of values. This is exactly the scenario you encountered in the linear
regression model trained in BigQuery ML. In general, when using feature crosses, it
is usually a good idea to include L1 regularization. The regularization parameter(s)
control how aggressive the push on the values of the weights are during the training
process.

Dropout is a different kind of regularization in the sense that it is applied to the
model itself during the training process and not to the loss function. The idea of
dropout on neural networks is that a certain percentage of neurons are “turned off”
for each batch of data. By turned off here we mean that the corresponding weighted
sums for certain neurons in hidden layers are set to zero for that specific batch of
data. The goal of using a technique like dropout is to hinder the model’s complexity
during training time. This keeps the model from becoming too complex while still
letting the model learn more about the data. However, during prediction time, no
dropout is used so that you have full access to the model’s power.

Over the past decade, researchers have found that using dropout
at prediction time as well can be beneficial.! This can be used as a
way to represent a model’s uncertainty for both classification and
regression tasks and to make a model’s predictions nondeterministic.

Using hyperparameter tuning in the CREATE MODEL statement

Now that you understand a little bit about regularization, it is time to set up hyper-
parameter tuning in BigQuery ML. First consider the following SQL statement:

CREATE OR REPLACE MODEL

‘car_sales_prices.dnn_hp_car_model’

TRANSFORM (
* EXCEPT (int64_field_0, mmr, odometer, year, condition),
ML.QUANTILE_BUCKETIZE(odometer, 10) OVER() AS odo_bucket,
ML.QUANTILE_BUCKETIZE(year, 10) OVER() AS year_bucket,
ML.QUANTILE_BUCKETIZE(condition, 10) OVER() AS cond_bucket,
ML.FEATURE_CROSS(STRUCT(make,model)) AS make_model,
ML.FEATURE_CROSS(STRUCT(color,interior)) AS color_interior)

1 For example, see Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning” (Proceedings of the 33rd International Conference on Machine Learning, 2016).
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OPTIONS (

model_type='dnn_regressor',

optimizer="adagrad',

hidden_units=hparam_candidates([STRUCT([64,32,16]),
STRUCT([32,16]),
STRUCT([32]) D),

11_reg=hparam_range(0,1),

dropout=hparam_range(0,0.8),

input_label_cols=['sellingprice'],

num_trials = 10,

hparam_tuning_objectives=[ 'mean_squared_error'])

AS SELECT

*

FROM
“car_sales_prices.car_prices_train’;

The statement for creating a hyperparameter tuning job is very similar to what you
used before, with some key differences for the sake of hyperparameter tuning. First,
notice the hidden_units option. Instead of just having a single list of hidden units,
instead there is the hparam_candidates function. This function takes a list of structs
with the corresponding hyperparameter tuning values and passes them along to the
model during the tuning process. Here you are having the model decide the best
architecture between three possibilities. The first is a neural network with 64 neurons
in the first hidden layer, 32 in the second layer, and 16 in the third layer. The second
option has two hidden layers with 32 and 16 neurons each, respectively. Finally, the
last option has a single hidden layer with 32 neurons. Also, you are searching for the
best 11_reg and dropout by using an hparam_range. hparam_range is used to find
the best value in a range of floating-point values. For example, here the range for
dropout is between 0 and 0.8 for the percentage of neurons in hidden layers affected
by dropout at training time.

Finally, there are a couple of new options that need to be set before begin-
ning the training. First, the num_trials, which was mentioned before, and the
hparam_tuning_objectives. You want to optimize the RMSE, so set the hparam_
tuning_objectives to be mean_squared_error. Go ahead, if you have not already,
and start the tuning process. This tuning process will take around an hour to
complete.

In the query for the hyperparameter tuning job, you have to specify
the optimizer being used with the optimizer='adagrad' option.
The default optimizer, adam, does not support L1 regularization.
For more details, please see the BigQuery ML documentation for
creating DNN models.
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Once the training process has completed, you can explore the trial results and chosen
hyperparameters by executing the following query:
SELECT

*

FROM
ML.TRIAL_INFO(MODEL ‘car_sales_prices.dnn_hp_car_model")
ORDER BY
hparam_tuning_evaluation_metrics.mean_squared_error ASC

An example of what your output should look like is shown in Table 8-5.

Table 8-5. The results of the trial info query for the five best trials—note the chosen
hyperparameters and trial metrics (the exact values in your output will differ from what
is shown here; some column names were condensed for readability)

trial_id 11_reg hidden_units dropout mean_squared_error
10 1.0 64 0.0 194784591.6

32
16
8 0.00031591034078693391 | 64 0.0 213445602.34905455
32
16
9 1.0 64 0.25599690406708309 | 218611976.60226983
32
16

If you use ML.PREDICT with car_sales_prices.dnn_hp_car_model as the model of
choice, BigQuery will automatically use the best trial by default:

SELECT *
FROM ML.PREDICT(MODEL ‘car_sales_prices.dnn_hp_car_model",
(SELECT * FROM ‘car_sales_prices.car_prices_valid'))

Options for Hyperparameter Tuning Large Models

The frameworks and techniques discussed in this chapter are wonderful for datasets
and models that are not too large. However, using scikit-learn and Keras on local
machines or Colab notebooks for very large datasets and models could take a long time,
or even be impossible due to memory and processing constraints. Training and tuning
large models is an art of its own, and there are tools available on public cloud providers
to make this much easier. This book does not do a deep dive into these products, as
they tend to be much more involved from the custom code development point of view,
but simply lists some options and references for those who are interested.
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Vertex Al Training and Tuning

In Chapter 7 you saw how you could package up a Python module for training a
scikit-learn model and submit it to Vertex AI Training. The same could be done for
the scikit-learn or Keras code in this chapter for hyperparameter tuning.

Vertex Al also offers a hyperparameter tuning service as part of Vertex Al Training.
This uses the cloudml-hypertune Python to report metrics to Vertex Al from various
different trials, which can be executed in different clusters using Vertex Al Training.
Like Keras Tuner, Vertex Al uses Bayesian optimization to find the best hyperparame-
ters for your model.

For more details on how to use this service, please see the Vertex AI documentation.

Automatic Model Tuning with Amazon SageMaker

Amazon SageMaker includes an automatic model tuning service (SageMaker AMT)
for performing hyperparameter tuning. You can use SageMaker AMT with built-in
algorithms, custom algorithms, or SageMaker prebuilt containers for ML frameworks
such as scikit-learn, TensorFlow, and PyTorch.

For more details, see the SageMaker AMT documentation.

Azure Machine Learning

Azure Machine Learning includes hyperparameter tuning as part of the Python client
library and command-line interface. Like the other options mentioned, you can
provide your own custom model written in the framework of your choice, make the
hyperparameters for the model arguments for a function creating the model, specify
the hyperparameter search space, and specify a job configuration to submit to run a
hyperparameter sweep job on Azure Machine Learning. For more information, see
the Azure Machine Learning documentation.

Summary

In this chapter, you took a custom code model built by a colleague and improved it
using feature engineering and hyperparameter tuning. You leveraged new transform-
ers in scikit-learn and performed a grid search to hyperparameter tune the original
linear regression model. You learned how to perform the same feature engineering
in Keras using preprocessing layers and perform hyperparameter tuning using Keras
Tuner for your neural network model in Keras. Finally, you learned how to perform
these same tasks in BigQuery ML using SQL.
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This chapter and the previous chapter on custom code models hopefully have given
you a taste of what is available for building ML models. No-code and low-code
solutions are at the very least a great starting point and very well may get you to your
goal without having to write custom code. But you do not need to be a data scientist
to explore with custom code, nor does it involve writing hundreds and hundreds of
lines of code.

In the next and final chapter, you will learn about some next steps you can take if
you want to go deeper into ML. You have already developed a very powerful toolkit
throughout this book, but the field is ever growing, and a lot of the new tools and
developments are available to more than just researchers in the field.
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CHAPTER 9
Next Steps in Your Al Journey

Throughout the course of this book, you have learned how data can drive decision
making in your business with an enterprise ML workflow, how to understand your
data with an eye toward building ML models, and what tools are available for build-
ing ML models. You have discovered how to use AutoML to train your regression
and classification models, how to create custom low-code models using SQL in Big-
Query ML, how to create custom code models using the scikit-learn and TensorFlow
framework, and then finally how to improve your custom model performance with
further feature engineering and hyperparameter tuning. Hopefully, you have found
this journey to be equally enlightening and enjoyable. For many, that should be more
than enough to enable you to infuse ML into your problem-solving processes.

For others, this is only the beginning of a longer journey into ML and Al This
chapter explores where to go next. You will learn about other important topics in
data science and ML operations (or MLOps). You will also be pointed toward many
wonderful resources to grow your knowledge beyond this book.

Going Deeper into Data Science

There is no universally agreed-upon definition for data science or a data scientist.
A decent approximation of such a definition could be that data science is the disci-
pline that uses various tools from other disciplines to extract insights from datasets.
These various tools come from other areas such as mathematics, statistics, computer
science, and occasionally different areas depending on the problem at hand.

All of the datasets that you worked with in this book have been structured datasets—
datasets with a well-defined schema. Most business problems involve structured data,
and you picked up a wonderful skill set for exploring structured data. However,
unstructured datasets are becoming increasingly important as ML becomes more
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mature as a discipline. Recall from Chapter 2 that unstructured data includes images,
videos, sound files, and text. A large amount of research over the past decade has
gone into various aspects of ML for unstructured data.

A type of AI that has become increasingly important recently is generative A, refer-
ring to models that generate various types of data such as images, videos, and so
on. Recently, generative Al has become a very popular and fast-growing field, with
image generation models such as Midjourney and Craiyon, and chatbots (contextual
text generation) such as ChatGPT and Bard. Additionally, generative Al capabilities
are being included in many commercial products such as Bing (ChatGPT), Google
Search (Search Generative Experience), and Amazon CodeWhisperer.

The more complex models become, the harder they are to easily understand. For
example, when you learned about linear regression in Chapter 6, you saw that the
weights of the model gave a clear understanding of the importance of the individual
features. For even a neural network with only one hidden layer, there is no longer an
easy-to-describe connection between the weights of the model and the importance of
the features being used. This becomes even more difficult with the very large models
that are used for problems with unstructured data and generative models.

This section dives a little deeper into various resources and offers additional
resources to explore these topics if you so choose.

Working with Unstructured Data

Unstructured data is defined as data without a schema. Some classic examples were
mentioned before, such as images and text. Recall that ML models are ultimately
mathematical functions that take numeric inputs and have numeric outputs, which
you then interpret. How do you interpret an image or a sentence as numeric input?

Working with image data

For images, the story is simpler than you may expect. Every image is represented as
an array of pixel values. For example, consider the pixelated image of a handwritten
digit in Figure 9-1. The image on the left is a low-resolution version of the handwrit-
ten digit 2. That image consists of a 12 x 12 grid of blocks known as pixels. The
pixel values for this grayscale image range between 0 and 255. 0 represents black,
255 represents white, and values in between represent different values of gray. In the
second image, you can see the actual pixel values for the image as an array.
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Figure 9-1. A low-resolution grayscale image of a handwritten 2 and the corresponding
pixel values.

For color images, the idea is very similar. Color images consist of three channels:
red, green, and blue. For each pixel, there is a value between 0 and 255 for each of
these channels. The values for these channels together are usually called RGB values.
For example, white is represented by [255,255,255] and yellow is represented by
[255,255,0]. There are a lot of simple tools, such as the one at RapidTables, that
allow you to explore different colors and see their RGB values.

Now that you understand images as either two-dimensional (black-and-white
images) or three-dimensional arrays (color images) of numeric values, you may now
have an inkling of how you might use these values in ML. These are your numeric
inputs for your image models.

The “hello world” example for image classification is the problem of handwritten
digit recognition using what is known as the MNIST (Modified National Institute
of Standards and Technology) dataset. This is a dataset of 60,000 training images
and 10,000 test images that are well balanced between the 10 handwritten digits (0
through 9). These images are 28 x 28 grayscale images. You can see an example of one
of these images in Figure 9-2.
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Figure 9-2. An example of a handwritten 7 in the MNIST dataset.

Classifying each image as the corresponding number is an example of a multiclass
classification problem. We did not explore beyond two classes in the examples in this
book, but the rough idea is similar. The model will predict a probability for each
digit, and the most likely digit will be taken as the predicted label. You can use linear
classification and neural network classifiers in a similar manner to what you used in
Chapter 7, but there are also additional tools, such as convolutional layers, that are
very useful when working with image data. These additional tools are beyond the
scope of this book, but here are a couple of useful resources for those who want to
learn more:

+ Kaggle competition and tutorials for working with the MNIST dataset

o Google’s ML Crash Course on Image Classification

Working with text data

Another common type of unstructured data that you may encounter in your ML
models is text data. For example, what if you wanted to use comments in reviews to
understand why your customers gave certain positive or negative ratings? You need to
have a method to turn text data into numeric data.

The simplest way of performing this task is to use one-hot encoding like you have
already done for categorical data in previous problems. For example, you could have
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the vocabulary ['red', 'blue', 'green']. If you have the word 'blue', then the
corresponding value would be [0,1,0].

This can become tricky very quickly, however. If every different word has a different
corresponding value, then you can end up with a very high-dimensional feature.
Certain words will appear rarely, or not at all, in the training set, so the model may
struggle to learn the meaning of those words.

One strategy is to use n-grams instead of individual words. n-grams are continuous
sequences of n words. For example, in the sentence The cow jumped over the moon,
the 2-grams (or bigrams) are ['The cow','cow jumped', 'jumped over', 'over
the', 'the moon']. For spam detection, 3-grams and 4-grams tend to be more
useful features than individual words. Intuitively we can see this in an explicit exam-
ple. A spam email may have a sentence like "You have won the lottery and are
now rich!" as part of the body. 1-grams and 2-grams will look at fragments of the
sentence that are too granular to capture context, except for "now rich!", which
could tip off a person or model that the email is spam. For example, "won" ,"the",
and "lottery" are missing context individually needed to confirm the email is spam.
On the other hand, the 3-gram "won the lottery" would throw up an immediate
red flag for most people looking out for spam emails.

Another strategy is to use word embeddings. A word embedding is a representation of
a word in some number of dimensions to try to capture its meaning and relationship
to other words. For example, the word king could be represented as [0.5, 0.7].
Ideally, a word embedding will place words that are similar close to each other. For
example, as shown in Figure 9-3, the embedding for dog and puppy will be close to
each other, as will cat and kitten.
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Figure 9-3. An example two-dimensional word embedding of “dog” “puppy,” “cat,” and
“kitten”

Also note that the distance and direction between the pair “dog” and “puppy” and the
pair “cat” and “kitten” are very similar. With a word embedding, you would expect a
similar relationship between any animal and their babies (say, “sheep” and “lamb”).
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Word embeddings are models in their own right and are often trained within the
context of a specific problem. More generally, different preprocessing models and
tools exist for converting words and sentence fragments into numeric inputs. BERT
(Bidirectional Encoder Representations from Transformers) preprocessing is a popu-
lar way of converting text input into numeric input for input into your model.

To learn more about working with text in ML models, here are a few useful resources:

o Word embeddings in Keras/TensorFlow
« Preprocessing data in TensorFlow using BERT
» Working with text data in scikit-learn

o Yelp review dataset: A great dataset for working with text data to predict review
scores

Generative Al

The classification models we have discussed so far in this book were discriminative
models. Discriminative models have the goal of predicting which class an instance
belongs to. For example, predicting whether a transaction is fraudulent or legitimate.
Generative models are in some sense the inverse problem. The model generates the
instance from the label instead. For example, given the label “a cat playing a banjo,” an
image of a cat playing a banjo is generated.

There are free tools, such as craiyon.com, which can be used to have fun playing
around with these sorts of models. An example of this is shown in Figure 9-4.

Figure 9-4. An image generated using the prompt “a cat playing a banjo.” This image was
generated using craiyon.com.
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Generative Al has become a major topic of discussion recently due to its use in
chatbots. ChatGPT and Bard are two such examples of generative Al being used
for chatbots. Underlying these products are large language models, or LLMs. The
term LLM is a bit vague, but it is used for language models trained on large datasets
with massive amounts of parameters. For example, GPT-3.5, the original model
underlying ChatGPT, had more than 175 billion parameters and a corpus of over a
half trillion tokens.

There are a lot of interesting conversations about the role of generative Al in society
and how we as a society should be interacting with it. A deep conversation about the
ethics of responsible use of generative Al is beyond the scope and purpose of this
book, but these are important conversations moving forward.

If you're interested in learning more about generative Al, ChatGPT 101 on Coursera
is a great resource to explore the use and implications of this new technology.

Explainable Al

Chapters 4 and 5 introduced feature attributions for your models, and Chapter 6
introduced the field of explainable AI, or XAl in general for structured data. Many
XAI techniques also exist for unstructured data such as images and text data.

XAI techniques can be broken down into intrinsic and post hoc techniques. Intrinsic
techniques leverage the structure of the model to give explanations for predictions.
Certain types of models, such as linear models and decision trees, are intrinsically
explainable. For linear models, explored in detail in Chapters 6 and 7, the weights
give the relative importance of the features.

Post hoc techniques, on the other hand, use the model’s predictions to understand
its behavior. These techniques are applied after a model has been trained, and often
they are trained on part of the evaluation dataset. Post hoc techniques can be broken
down into two main categories: local and global techniques. Local techniques focus
on a single instance and attempt to explain why a specific prediction was made
for that specific instance. Global techniques focus on the model’s behavior over an
entire dataset. In general, local techniques can be turned into global techniques by
aggregating the results of a local technique over the dataset.

Both local and global techniques can be further broken down into model-agnostic
and model-specific techniques. Model-agnostic techniques tend to alter the data and
understand how it changes the predictions being made. A great example of this is
the feature attributions that you saw in Chapters 4 and 5 when using AutoML. How
are these feature attributions computed? They are computed using a technique called
permutation feature importance, or PFL. PFI is computed in the following manner:
first compute the loss of the model for the dataset you want to use. Next compute
the loss again when you permute the first column of data in place. That is, you
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permute the first column while leaving the other columns alone (see Table 9-1).
The difference between the loss on the original dataset and the dataset with the first
column permuted gives a “score” for the importance of the first feature.

Table 9-1. Permuting a column in place; in this example, Column A is the column being
permuted

ColumnA ColumnB Column C

1 4 7
2 5 8
3 6 9
3 4 7
1 5 8
2 6 9

Repeat this process for every column. The PFI for a column is the normalized score
received from this process. Normalized here means that the scores are rescaled so that
all of the normalized scores add up to one. PFI is easy to interpret and to compute
in practice, but it does depend on some randomness due to the permutation. Often,
when using PFI, you will compute the score for a column with multiple different
permutations and average it out to try to minimize the effect of randomness.

The other type of technique is a model-specific technique. For example, directional
feature importances/contributions are specific to tree-based models like decision trees,
random forests, and gradient-boosted trees. On the other hand, a popular technique
for neural networks is the technique of integrated gradients. Integrated gradients take
advantage of the fact that neural networks are differentiable models. Differentiability
is an important mathematical property that is also leveraged when minimizing loss
functions using the gradient descent algorithm. The exact mathematics is beyond the
scope of this book, but the idea is fairly straightforward.

Take the example of an image classification model. Suppose you have trained a model
to classify images based on their main subject. Your model takes in a picture of a
fireboat and correctly predicts that the image was of a fireboat. But why did it make
this prediction? Roughly speaking, the integrated gradients method looks at how the
predictions change as you change the features and accumulate those changes for
each individual feature. For image models, those features are the individual pixel
values. For integrated gradients, you define a starting point or a baseline. In image
models, that baseline is often a completely black image, though other baseline images
(such as a completely white image or random noise) can be used depending on the
circumstance. You start off with the predicted probability of the label for fireboat
for the purely black image and then brighten up the pixels proportionally until you
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get the original image in steps. For each step, you compute how much the predicted
probability of fireboat has changed based on the pixel values. This can be done by
computing the gradient, a mathematical tool for understanding the rate of change of
an output based on many inputs. Finally, you accumulate (or integrate) these rates
of change for every pixel. The pixels with the highest accumulated rates of change
correspond to the most important pixels for the prediction. In Figures 9-5 and 9-6,
you can see this interpolation of images and the corresponding pixel importances
using integrated gradients.

..“ //
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Figure 9-5. The baseline image on the left with the original image of the fireboat on the
right. The middle image is an interpolation between the two.

Figure 9-6. The image of the fireboat; the most important pixels, as identified by integra-
ted gradients, are brighter. Note that integrated gradients highlight the streams of water
from the boat as the explanation of why this is a picture of a fireboat.
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To learn more about XAlI, Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable by Christoph Molnar is a wonderful resource.

ML Operations

In Chapter 7 you trained an ML model for predicting customer churn and were able
to serve predictions in your notebook environment. However, this is only one step in
the journey to an ML model being put into production. As you saw, there was work
to be done to ensure that the data was ready for training. But this does not take into
account the underlying compute infrastructure needed for both training and serving
models, managing and optimizing the consumption of resources being used, thinking
about how to make your model usable for consumers, and how to monitor that
model over time. Figure 9-7 shows the relative effort involved in ML code compared
with the other aspects of productionizing ML models.

Data Machine
verification resource Monitoring

management
Data . Serving
collection Analysis tools infrastructure
Feature
extraction

.

Figure 9-7. The hidden complexities of making ML models usable.

Configuration

ML operations, or MLOps, is the discipline of managing all of the different tasks
beyond the model itself. This includes managing the infrastructure, deciding how
the model is deployed and accessed, and monitoring and updating the model as
appropriate.

MLOps is usually the responsibility of ML engineers, data engineers, and data sci-
entists to manage. However, even if you are not in one of these roles, having a
high-level understanding of the various concerns in using ML models in production
is very valuable. As someone building models, you can share good notes on what
tools and data sources you are using, what data preprocessing needs to be done,
and what features the model expects at prediction time. Doing things like including
the preprocessing logic in the model itself, using something like transformers in
scikit-learn or preprocessing layers in Keras, can make the deployment of training
and prediction pipelines easier for engineers if the model is going into production.
At most companies, there will not be a single person doing everything, so good
communication is key.
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For more details on topics around MLOps, see the following resources:

o Introduction to MLOps
« MLOps: Continuous Delivery and Automation Pipelines in Machine Learning

o Designing Machine Learning Systems by Chip Huyen (O’Reilly, 2022)

Continuous Training and Evaluation

In Chapter 5, you trained a model using AutoML to classify transactions as either
fraudulent or legitimate. Your model performed well on the dataset that was pro-
vided, but after the model was being used in production for a few months, your
company’s support teams shared that they were getting more reports of fraudulent
transactions after the fact from customers. Your model did not flag many of these
fraudulent transactions though. What happened?

Over time, different types of drift can occur and affect the performance of your
model. For example, there could be a new type of fraudulent transaction that was not
present in your original training dataset. Your model would likely not pick up on this.
This would be an example of data drift, a change in the underlying data distribution.

Another type of drift, called concept drift, can occur. Concept drift is where the
relationship between the features and the labels change over time. A great example of
this is in demand forecasting for retail. Shopping trends change over time, and the
exact same product will sell differently at different times depending on the current
trends. The product did not change, but the relationship between the product and the
sales has changed.

Continuous training is the process of retraining the model automatically based on
some criterion. Most often, this criterion will depend on either time or model perfor-
mance. For example, you may want to retrain the model weekly, or you may want
to retrain the model when a certain percentage of fraudulent transactions are being
missed and reported by customers. For most models being used in production, this is
a very common and important practice.

Continuous evaluation is often an important component in deciding when to retrain
a model and is an important part of monitoring your model’s performance. As the
model is predicting results on new data, a sample of the new data is labeled. Often
domain experts determine these labels. The model is then evaluated on this data
against the new labels. If the performance of the model wanes over time, then that
could be a sign that there has been some sort of drift and it may be time to retrain the
model.
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If you are part of the intended audience for this book, then likely you will be working
with others when thinking about these concerns. However, even if it is not your
responsibility, it is important to be aware of the concerns and tools that others
are working with. This allows you to make more informed decisions in your own
approach to make their job easier and to make you a better collaborator.

Summary

You have been on quite the ML journey working through this book! The hope is
that you now feel comfortable thinking about how to turn your questions into ML
projects and feel ready to start building models using the tools you used in this book.
You can employ different resources and go in many directions from here, and you
should feel empowered to follow those into topics of your interest. ML and Al is a
rapidly growing field whose demand has exponentially grown over the past decade
and likely will continue to do so in the years to come.
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