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Companion Website

Thank you for picking up a copy of Deep Learning for Computer Vision with Python! To accompany
this book I have created a companion website which includes:
• Up-to-date installation instructions on how to configure your development environment
• Instructions on how to use the pre-configured Ubuntu VirtualBox virtual machine and

Amazon Machine Image (AMI)
• Supplementary material that I could not fit inside this book
Additionally, you can use the “Issues” feature inside the companion website to report any bugs,

typos, or problems you encounter when working through the book. I don’t expect many problems;
however, this is a brand new book so myself and other readers would appreciate reporting any
issues you run into. From there, I can keep the book updated and bug free.

To create your companion website account, just use this link:
http://pyimg.co/fnkxk
Take a second to create your account now so you’ll have access to the supplementary materials

as you work through the book.

http://pyimg.co/fnkxk




1. Introduction

“The secret of getting ahead is to get started.” – Mark Twain

Welcome to Deep Learning for Computer Vision with Python. This book is your guide to
mastering deep learning applied to practical, real-world computer vision problems utilizing the
Python programming language and the Keras + mxnet libraries. Inside this book, you’ll learn how
to apply deep learning to take-on projects such as image classification, object detection, training
networks on large-scale datasets, and much more.

Deep Learning for Computer Vision with Python strives to be the perfect balance between
theory taught in a classroom/textbook and the actual hands-on knowledge you’ll need to be
successful in the real world.

To accomplish this goal, you’ll learn in a practical, applied manner by training networks on
your own custom datasets and even competing in challenging state-of-the-art image classification
challenges and competitions. By the time you finish this book, you’ll be well equipped to apply
deep learning to your own projects. And with enough practice, I have no doubt that you’ll be able
to leverage your newly gained knowledge to find a job in the deep learning space, become a deep
learning for computer vision consultant/contractor, or even start your own computer vision-based
company that leverages deep learning.

So grab your highlighter. Find a comfortable spot. And let me help you on your journey to
deep learning mastery. Remember the most important step is the first one – to simply get started.

1.1 I Studied Deep Learning the Wrong Way . . . This Is the Right Way

I want to start this book by sharing a personal story with you:
Toward the end of my graduate school career (2013-2014), I started wrapping my head around

this whole "deep learning" thing due to a timing quirk. I was in a very unique situation. My
dissertation was (essentially) wrapped up. Each of my Ph.D. committee members had signed off on
it. However, due to university/department regulations, I still had an extra semester that I needed to
"hang around" for before I could officially defend my dissertation and graduate. This gap essentially
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left me with an entire semester (≈ 4 months) to kill – it was an excellent time to start studying
deep learning.

My first stop, as is true for most academics, was to read through all the recent publications
on deep learning. Due to my machine learning background, it didn’t take long to grasp the actual
theoretical foundations of deep learning.

However, I’m of the opinion that until you take your theoretical knowledge and implement
it, you haven’t actually learned anything yet. Transforming theory into implementation is a
very different process, as any computer scientist who has taken a data structures class before will
tell you: reading about red-black trees and then actually implementing them from scratch requires
two different skill sets.

And that’s exactly what my problem was.
After reading these deep learning publications, I was left scratching my head; I couldn’t take

what I learned from the papers and implement the actual algorithms, let alone reproduce the results.
Frustrated with my failed attempts at implementation, I spent hours searching on Google,

hunting for deep learning tutorials, only to come up empty-handed. Back then, there weren’t many
deep learning tutorials to be found.

Finally, I resorted to playing around with libraries and tools such as Caffe, Theano, and Torch,
blindly followed poorly written blog posts (with mixed results, to say the least).

I wanted to get started, but nothing had actually clicked yet – the deep learning lightbulb in my
head was stuck in the “off” position.

To be totally honest with you, it was a painful, emotionally trying semester. I could clearly see
the value of deep learning for computer vision, but I had nothing to show for my effort, except for a
stack of deep learning papers on my desk that I understood but struggled to implement.

During the last month of the semester, I finally found my way to deep learning success through
hundreds of trial-and-error experiments, countless late nights, and a lot of perseverance. In the long
run, those four months made a massive impact on my life, my research path, and how I understand
deep learning today. . .

. . . but I would not advise you to take the same path I did.
If you take anything from my personal experience, it should be this:

1. You don’t need a decade of theory to get started in deep learning.
2. You don’t need pages and pages of equations.
3. And you certainly don’t need a degree in computer science (although it can be helpful).
When I got started studying deep learning, I made the critical mistake of taking a deep dive into

the publications without ever resurfacing to try and implement what I studied. Don’t get me wrong
– theory is important. But if you don’t (or can’t) take your newly minted theoretical knowledge and
use apply it to build actual real-world applications, you’ll struggle to find your space in the deep
learning world.

Deep learning, and most other higher-level, specialized computer science subjects are recog-
nizing that theoretical knowledge is not enough – we need to be practitioners in our respective
fields as well. In fact, the concept of becoming a deep learning practitioner was my exact motiva-
tion in writing Deep Learning for Computer Vision with Python.

While there are:
1. Textbooks that will teach you the theoretical underpinnings of machine learning, neural

networks, and deep learning
2. And countless “cookbook”-style resources that will “show you in code”, but never relate the

code back to true theoretical knowledge. . .
. . . none of these books or resources will serve as the bridge between the other.
On one side of the bridge you have your textbooks, deeply rooted in theory and abstraction.

And on the other side, you have “show me in code” books that simply present examples to you,
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perhaps explaining the code, but never relating the code back to the underlying theory.
There is a fundamental disconnect between these two styles of learning, a gap that I want

to help fill so you can learn in a better, more efficient way.
I thought back to my graduate school days, to my feelings of frustration and irritation, to the

days when I even considered giving up. I channeled these feelings as I sat down to write this
book. The book you’re reading now is the book I wish I had when I first started studying deep
learning.

Inside the remainder of Deep Learning for Computer Vision with Python, you’ll find super
practical walkthroughs, hands-on tutorials (with lots of code), and a no-nonsense teaching
style that is guaranteed to cut through all the cruft and help you master deep learning for computer
vision.

Rest assured, you’re in good hands – this is the exact book that you’ve been looking for, and
I’m incredibly excited to be joining you on your deep learning for visual recognition journey.

1.2 Who This Book Is For

This book is for developers, researchers, and students who want to become proficient in deep
learning for computer vision and visual recognition.

1.2.1 Just Getting Started in Deep Learning?
Don’t worry. You won’t get bogged down by tons of theory and complex equations. We’ll start
off with the basics of machine learning and neural networks. You’ll learn in a fun, practical way
with lots of code. I’ll also provide you with references to seminal papers in the machine learning
literature that you can use to extend your knowledge once you feel like you have a solid foundation
to stand on.

The most important step you can take right now is to simply get started. Let me take care of the
teaching – regardless of your skill level, trust me, you will not get left behind. By the time you
finish the first few chapters of this book, you’ll be a neural network ninja and be able to graduate to
the more advanced content.

1.2.2 Already a Seasoned Deep Learning Practitioner?
This book isn’t just for beginners – there’s advanced content in here too. For each chapter in this
book, I provide a set of academic references you can use to further your knowledge. Many chapters
inside Deep Learning for Computer Vision with Python actually explain these academic concepts in
a manner that is easily understood and digested.

Best of all, the solutions and tactics I provide inside this book can be directly applied to
your current job and research. The time you’ll save by reading through Deep Learning for
Computer Vision with Python will more than pay for itself once you apply your knowledge to your
projects/research.

1.3 Book Organization

Since this book covers a huge amount of content, I’ve broken down the book into three vol-
umes called “bundles”. Each bundle sequentially builds on top of the other and includes all
chapters from the lower volumes. You can find a quick breakdown of the bundles below.

1.3.1 Volume #1: Starter Bundle
The Starter Bundle is a great fit if you’re taking your first steps toward deep learning for image
classification mastery.
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You’ll learn the basics of:
1. Machine learning
2. Neural Networks
3. Convolutional Neural Networks
4. How to work with your own custom datasets

1.3.2 Volume #2: Practitioner Bundle
The Practitioner Bundle builds on the Starter Bundle and is perfect if you want to study deep
learning in-depth, understand advanced techniques, and discover common best practices and rules
of thumb.

1.3.3 Volume #3: ImageNet Bundle
The ImageNet Bundle is the complete deep learning for computer vision experience. In this volume
of the book, I demonstrate how to train large-scale neural networks on the massive ImageNet dataset
as well as tackle real-world case studies, including age + gender prediction, vehicle make + model
identification, facial expression recognition, and much more.

1.3.4 Need to Upgrade Your Bundle?
If you would ever like to upgrade your bundle, all you have to do is send me a message and we can
get the upgrade taken care of ASAP:

http://www.pyimagesearch.com/contact/

1.4 Tools of the Trade: Python, Keras, and Mxnet

We’ll be utilizing the Python programming language for all examples in this book. Python is an
extremely easy language to learn. It has intuitive syntax. Is super powerful. And it’s the best
way to work with deep learning algorithms.

The primary deep learning library we’ll be using is Keras [1]. The Keras library is maintained
by the brilliant François Chollet, a deep learning researcher and engineer at Google. I have been
using Keras for years and can say that it’s hands-down my favorite deep learning package. As a
minimal, modular network library that can use either Theano or TensorFlow as a backend, you just
can’t beat Keras.

The second deep learning library we’ll be using is mxnet [2] (ImageNet Bundle only), a
lightweight, portable, and flexible deep learning library. The mxnet package provides bindings
to the Python programming language and specializes in distributed, multi-machine learning – the
ability to parallelize training across GPUs/devices/nodes is critical when training deep neural
network architectures on massive datasets (such as ImageNet).

Finally, we’ll also be using a few computer vision, image processing, and machine learning
libraries such as OpenCV, scikit-image, scikit-learn, etc.

Python, Keras, and mxnet are well-built tools that when combined tighter create a powerful deep
learning development environment that you can use to master deep learning for visual recognition.

1.4.1 What About TensorFlow?
TensorFlow [3] and Theano [4] are libraries for defining abstract, general-purpose computation
graphs. While they are used for deep learning, they are not deep learning frameworks and are in
fact used for a great many other applications than deep learning.

Keras, on the other hand, is a deep learning framework that provides a well-designed API
to facilitate building deep neural networks with ease. Under the hood, Keras uses either the

http://www.pyimagesearch.com/contact/
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TensorFlow or Theano computational backend, allowing it to take advantage of these powerful
computation engines.

Think of a computational backend as an engine that runs in your car. You can replace parts in
your engine, optimize others, or replace the engine entirely (provided the engine adheres to a set of
specifications of course). Utilizing Keras gives you portability across engines and the ability to
choose the best engine for your project.

Thinking of this at a different angle, using TensorFlow or Theano to build a deep neural network
would be akin to utilizing strictly NumPy to build a machine learning classifier.

Is it possible? Absolutely.
However, it’s more beneficial to use a library that is dedicated to machine learning, such as

scikit-learn [5], rather than reinvent the wheel with NumPy (and at the expense of an order of
magnitude more code).

In the same vein, Keras sits on top of TensorFlow or Theano, enjoying:
1. The benefits of a powerful underlying computation engine
2. An API that makes it easier for you to build your own deep learning networks
Furthermore, since Keras will be added to the core TensorFlow library at Google [6], we can

always integrate TensorFlow code directly into our Keras models if we so wish. In many ways, we
are getting the best of both worlds by using Keras.

1.4.2 Do I Need to Know OpenCV?

You do not need to know the OpenCV computer vision and image processing library [7] to be
successful when going through this book.

We only use OpenCV to facilitate basic image processing operations such as loading an image
from disk, displaying it to our screen, and a few other basic operations.

That said, a little bit of OpenCV experience goes a long way, so if you’re new to OpenCV
and computer vision, I highly recommend that you work through this book and my other publica-
tion, Practical Python and OpenCV [8] in tandem.

Remember, deep learning is only one facet of computer vision – there are a number of computer
vision techniques you should study to round out your knowledge.

1.5 Developing Our Own Deep Learning Toolset

One of the inspirations behind writing this book was to demonstrate using existing deep learning li-
braries to build our own custom Python-based toolset, enabling us to train our own deep learning
networks.

However, this book isn’t just any deep learning toolkit . . . this toolkit is the exact same one I
have developed and refined over the past few years doing deep learning research and development
of my own.

As we progress through this book, we’ll build components of this toolset one at a time. By the
end of Deep Learning for Computer Vision with Python, our toolset will be able to:

1. Load image datasets from disk, store them in memory, or write them to an optimized database
format.

2. Preprocess images such that they are suitable for training a Convolutional Neural Network.
3. Create a blueprint class that can be used to build our own custom implementations of

Convolutional Neural Networks.
4. Implement popular CNN architectures by hand, such as AlexNet, VGGNet, GoogLeNet,

ResNet, and SqueezeNet (and train them from scratch).
5. . . . and much more!

https://www.pyimagesearch.com/practical-python-opencv/
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1.6 Summary
We are living in a special time in machine learning, neural network, and deep learning history. Never
in the history of machine learning and neural networks have the available tools at our disposable
been so exceptional.

From a software perspective, we have libraries such as Keras and mxnet complete with Python
bindings, enabling us to rapidly construct deep learning architectures in a fraction of the time it
took us just years before.

Then, from a hardware view, general purpose GPUs are becoming increasingly cheaper while still
becoming more powerful. The advances in GPU technology alone have allowed anyone with a
modest budget to build even a simple gaming rig to conduct meaningful deep learning research.

Deep learning is an exciting field, and due to these powerful GPUs, modular libraries, and
unbridled, intelligent researchers, we’re seeing new publications that push the state-of-the-art
coming on a monthly basis.

You see, now is the time to undertake studying deep learning for computer vision.
Don’t miss out on this time in history – not only should you be a part of deep learning, but

those who capitalize early are sure to see immense returns on their investment of time, resources,
and creativity.

Enjoy this book. I’m excited to see where it takes you in this amazing field.



2. What Is Deep Learning?

“Deep learning methods are representation-learning methods with multiple levels
of representation, obtained by composing simple but nonlinear modules that each
transform the representation at one level (starting with the raw input) into a represen-
tation at a higher, slightly more abstract level. [. . . ] The key aspect of deep learning is
that these layers are not designed by human engineers: they are learned from data
using a general-purpose learning procedure” – Yann LeCun, Yoshua Bengio, and
Geoffrey Hinton, Nature 2015. [9]

Deep learning is a subfield of machine learning, which is, in turn, a subfield of artificial
intelligence (AI). For a graphical depiction of this relationship, please refer to Figure 2.1.

The central goal of AI is to provide a set of algorithms and techniques that can be used to
solve problems that humans perform intuitively and near automatically, but are otherwise very
challenging for computers. A great example of such a class of AI problems is interpreting and
understanding the contents of an image – this task is something that a human can do with little-to-no
effort, but it has proven to be extremely difficult for machines to accomplish.

While AI embodies a large, diverse set of work related to automatic machine reasoning (infer-
ence, planning, heuristics, etc.), the machine learning subfield tends to be specifically interested in
pattern recognition and learning from data.

Artificial Neural Networks (ANNs) are a class of machine learning algorithms that learn from
data and specialize in pattern recognition, inspired by the structure and function of the brain. As
we’ll find out, deep learning belongs to the family of ANN algorithms, and in most cases, the two
terms can be used interchangeably. In fact, you may be surprised to learn that the deep learning field
has been around for over 60 years, going by different names and incarnations based on research
trends, available hardware and datasets, and popular options of prominent researchers at the time.

In the remainder of this chapter, we’ll review a brief history of deep learning, discuss what
makes a neural network “deep”, and discover the concept of “hierarchical learning” and how it has
made deep learning one of the major success stories in modern day machine learning and computer
vision.
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Figure 2.1: A Venn diagram describing deep learning as a subfield of machine learning which is in
turn a subfield of artificial intelligence (Image inspired by Figure 1.4 of Goodfellow et al. [10]).

2.1 A Concise History of Neural Networks and Deep Learning

The history of neural networks and deep learning is a long, somewhat confusing one. It may
surprise you to know that “deep learning” has existed since the 1940s undergoing various name
changes, including cybernetics, connectionism, and the most familiar, Artificial Neural Networks
(ANNs).

While inspired by the human brain and how its neurons interact with each other, ANNs are
not meant to be realistic models of the brain. Instead, they are an inspiration, allowing us to draw
parallels between a very basic model of the brain and how we can mimic some of this behavior
through artificial neural networks. We’ll discuss ANNs and the relation to the brain in Chapter 10.

The first neural network model came from McCulloch and Pitts in 1943 [11]. This network
was a binary classifier, capable of recognizing two different categories based on some input. The
problem was that the weights used to determine the class label for a given input needed to be
manually tuned by a human – this type of model clearly does not scale well if a human operator is
required to intervene.

Then, in the 1950s the seminal Perceptron algorithm was published by Rosenblatt [12, 13] – this
model could automatically learn the weights required to classify an input (no human intervention
required). An example of the Perceptron architecture can be seen in Figure 2.2. In fact, this
automatic training procedure formed the basis of Stochastic Gradient Descent (SGD) which is still
used to train very deep neural networks today.

During this time period, Perceptron-based techniques were all the rage in the neural network
community. However, a 1969 publication by Minsky and Papert [14] effectively stagnated neural
network research for nearly a decade. Their work demonstrated that a Perceptron with a linear
activation function (regardless of depth) was merely a linear classifier, unable to solve nonlinear
problems. The canonical example of a nonlinear problem is the XOR dataset in Figure 2.3. Take a
second now to convince yourself that it is impossible to try a single line that can separate the blue
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Figure 2.2: An example of the simple Perceptron network architecture that accepts a number of
inputs, computes a weighted sum, and applies a step function to obtain the final prediction. We’ll
review the Perceptron in detail inside Chapter 10.

stars from the red circles.
Furthermore, the authors argued that (at the time) we did not have the computational resources

required to construct large, deep neural networks (in hindsight, they were absolutely correct). This
single paper alone almost killed neural network research.

Luckily, the backpropagation algorithm and the research by Werbos (1974) [15], Rumelhart
(1986) [16], and LeCun (1998) [17] were able to resuscitate neural networks from what could
have been an early demise. Their research in the backpropagation algorithm enabled multi-layer
feedforward neural networks to be trained (Figure 2.4).

Combined with nonlinear activation functions, researchers could now learn nonlinear functions
and solve the XOR problem, opening the gates to an entirely new area of research in neural networks.
Further research demonstrated that neural networks are universal approximators [18], capable of
approximating any continuous function (but placing no guarantee on whether or not the network
can actually learn the parameters required to represent a function).

The backpropagation algorithm is the cornerstone of modern day neural networks allowing us
to efficiently train neural networks and “teach” them to learn from their mistakes. But even so, at
this time, due to (1) slow computers (compared to modern day machines) and (2) lack of large,
labeled training sets, researchers were unable to (reliably) train neural networks that had more than
two hidden layers – it was simply computationally infeasible.

Today, the latest incarnation of neural networks as we know it is called deep learning. What
sets deep learning apart from its previous incarnations is that we have faster, specialized hardware
with more available training data. We can now train networks with many more hidden layers that
are capable of hierarchical learning where simple concepts are learned in the lower layers and more
abstract patterns in the higher layers of the network.

Perhaps the quintessential example of applied deep learning to feature learning is the Convo-



24 Chapter 2. What Is Deep Learning?

Figure 2.3: The XOR (E(X)clusive Or) dataset is an example of a nonlinear separable problem that
the Perceptron cannot solve. Take a second to convince yourself that it is impossible to draw a
single line that separates the blue stars from the red circles.

lutional Neural Network (LeCun 1988) [19] applied to handwritten character recognition which
automatically learns discriminating patterns (called “filters”) from images by sequentially stacking
layers on top of each other. Filters in lower levels of the network represent edges and corners,
while higher level layers use the edges and corners to learn more abstract concepts useful for
discriminating between image classes.

In many applications, CNNs are now considered the most powerful image classifier and are
currently responsible for pushing the state-of-the-art forward in computer vision subfields that lever-
age machine learning. For a more thorough review of the history of neural networks and deep
learning, please refer to Goodfellow et al. [10] as well as this excellent blog post by Jason Brownlee
at Machine Learning Mastery [20].

2.2 Hierarchical Feature Learning

Machine learning algorithms (generally) fall into three camps – supervised, unsupervised, and
semi-supervised learning. We’ll discuss supervised and unsupervised learning in this chapter while
saving semi-supervised learning for a future discussion.

In the supervised case, a machine learning algorithm is given both a set of inputs and target
outputs. The algorithm then tries to learn patterns that can be used to automatically map input data
points to their correct target output. Supervised learning is similar to having a teacher watching you
take a test. Given your previous knowledge, you do your best to mark the correct answer on your
exam; however, if you are incorrect, your teacher guides you toward a better, more educated guess
the next time.

In an unsupervised case, machine learning algorithms try to automatically discover discrim-
inating features without any hints as to what the inputs are. In this scenario, our student tries to
group similar questions and answers together, even though the student does not know what the
correct answer is and the teacher is not there to provide them with the true answer. Unsupervised
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Figure 2.4: A multi-layer, feedforward network architecture with an input layer (3 nodes), two
hidden layers (2 nodes in the first layer and 3 nodes in the second layer), and an output layer (2
nodes).

learning is clearly a more challenging problem than supervised learning – by knowing the answers
(i.e., target outputs), we can more easily define discriminate patterns that can map input data to the
correct target classification.

In the context of machine learning applied to image classification, the goal of a machine learning
algorithm is to take these sets of images and identify patterns that can be used to discriminate
various image classes/objects from one another.

In the past, we used hand-engineered features to quantify the contents of an image – we
rarely used raw pixel intensities as inputs to our machine learning models, as is now common with
deep learning. For each image in our dataset, we performed feature extraction, or the process of
taking an input image, quantifying it according to some algorithm (called a feature extractor or
image descriptor), and returning a vector (i.e., a list of numbers) that aimed to quantify the contents
of an image. Figure 2.5 below depicts the process of quantifying an image containing prescription
pill medication via a series of blackbox color, texture, and shape image descriptors.

Our hand-engineered features attempted to encode texture (Local Binary Patterns [21], Haralick
texture [22]), shape (Hu Moments [23], Zernike Moments [24]), and color (color moments, color
histograms, color correlograms [25]).

Other methods such as keypoint detectors (FAST [26], Harris [27], DoG [28], to name a few)
and local invariant descriptors (SIFT [28], SURF [29], BRIEF [30], ORB [31], etc.) describe
salient (i.e., the most “interesting”) regions of an image.

Other methods such as Histogram of Oriented Gradients (HOG) [32] proved to be very good at
detecting objects in images when the viewpoint angle of our image did not vary dramatically from
what our classifier was trained on. An example of using the HOG + Linear SVM detector method
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Figure 2.5: Quantifying the contents of an image containing a prescription pill medication via a
series of blackbox color, texture, and shape image descriptors.

can be seen in Figure 2.6 where we detect the presence of stop signs in images.
For a while, research in object detection in images was guided by HOG and its variants,

including computationally expensive methods such as the Deformable Parts Model [34] and
Exemplar SVMs [35].

R For a more in-depth study of image descriptors, feature extraction, and the process it plays in
computer vision, be sure to refer to the PyImageSearch Gurus course [33].

In each of these situations, an algorithm was hand-defined to quantify and encode a particular
aspect of an image (i.e., shape, texture, color, etc.). Given an input image of pixels, we would apply
our hand-defined algorithm to the pixels, and in return receive a feature vector quantifying the
image contents – the image pixels themselves did not serve a purpose other than being inputs to our
feature extraction process. The feature vectors that resulted from feature extraction were what we
were truly interested in as they served as inputs to our machine learning models.

Deep learning, and specifically Convolutional Neural Networks, take a different approach.
Instead of hand-defining a set of rules and algorithms to extract features from an image, these
features are instead automatically learned from the training process.

Again, let’s return to the goal of machine learning: computers should be able to learn from
experience (i.e., examples) of the problem they are trying to solve.

Using deep learning, we try to understand the problem in terms of a hierarchy of concepts. Each
concept builds on top of the others. Concepts in the lower level layers of the network encode some
basic representation of the problem, whereas higher level layers use these basic layers to form more
abstract concepts. This hierarchical learning allows us to completely remove the hand-designed
feature extraction process and treat CNNs as end-to-end learners.

Given an image, we supply the pixel intensity values as inputs to the CNN. A series of hidden
layers are used to extract features from our input image. These hidden layers build upon each other
in a hierarchal fashion. At first, only edge-like regions are detected in the lower level layers of
the network. These edge regions are used to define corners (where edges intersect) and contours
(outlines of objects). Combining corners and contours can lead to abstract “object parts” in the next
layer.

Again, keep in mind that the types of concepts these filters are learning to detect are automat-
ically learned – there is no intervention by us in the learning process. Finally, output layer is

https://www.pyimagesearch.com/pyimagesearch-gurus/
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Figure 2.6: The HOG + Linear SVM object detection framework applied to detecting the location
of stop signs in images, as covered inside the PyImageSearch Gurus course [33].

used to classify the image and obtain the output class label – the output layer is either directly or
indirectly influenced by every other node in the network.

We can view this process as hierarchical learning: each layer in the network uses the output of
previous layers as “building blocks” to construct increasingly more abstract concepts. These
layers are learned automatically – there is no hand-crafted feature engineering taking place in our
network. Figure 2.7 compares classic image classification algorithms using hand-crafted features to
representation learning via deep learning and Convolutional Neural Networks.

One of the primary benefits of deep learning and Convolutional Neural Networks is that it
allows us to skip the feature extraction step and instead focus on process of training our network
to learn these filters. However, as we’ll find out later in this book, training a network to obtain
reasonable accuracy on a given image dataset isn’t always an easy task.

2.3 How "Deep" Is Deep?

To quote Jeff Dean from his 2016 talk, Deep Learning for Building Intelligent Computer Systems
[36]:

“When you hear the term deep learning, just think of a large, deep neural net.
Deep refers to the number of layers typically and so this kind of the popular term that’s
been adopted in the press.”

This is an excellent quote as it allows us to conceptualize deep learning as large neural networks
where layers build on top of each other, gradually increasing in depth. The problem is we still
don’t have a concrete answer to the question, “How many layers does a neural network need
to be considered deep?”

The short answer is there is no consensus amongst experts on the depth of a network to be
considered deep [10].

https://www.pyimagesearch.com/pyimagesearch-gurus/
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Figure 2.7: Left: Traditional process of taking an input set of images, applying hand-designed
feature extraction algorithms, followed by training a machine learning classifier on the features.
Right: Deep learning approach of stacking layers on top of each other that automatically learn
more complex, abstract, and discriminating features.

And now we need to look at the question of network type. By definition, a Convolutional
Neural Network (CNN) is a type of deep learning algorithm. But suppose we had a CNN with only
one convolutional layer – is a network that is shallow, but yet still belongs to a family of algorithms
inside the deep learning camp considered to be “deep”?

My personal opinion is that any network with greater than two hidden layers can be considered
“deep”. My reasoning is based on previous research in ANNs that were heavily handicapped by:

1. Our lack of large, labeled datasets available for training
2. Our computers being too slow to train large neural networks
3. Inadequate activation functions
Because of these problems, we could not easily train networks with more than two hidden layers

during the 1980s and 1990s (and prior, of course). In fact, Geoff Hinton supports this sentiment
in his 2016 talk, Deep Learning [37], where he discussed why the previous incarnations of deep
learning (ANNs) did not take off during the 1990s phase:

1. Our labeled datasets were thousands of times too small.
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2. Our computers were millions of times too slow.
3. We initialized the network weights in a stupid way.
4. We used the wrong type of nonlinearity activation function.
All of these reasons point to the fact that training networks with a depth larger than two hidden

layers were a futile, if not a computational, impossibility.
In the current incarnation we can see that the tides have changed. We now have:

1. Faster computers
2. Highly optimized hardware (i.e., GPUs)
3. Large, labeled datasets in the order of millions of images
4. A better understanding of weight initialization functions and what does/does not work
5. Superior activation functions and an understanding regarding why previous nonlinearity

functions stagnated research
Paraphrasing Andrew Ng from his 2013 talk, Deep Learning, Self-Taught Learning and Un-

supervised Feature Learning [38], we are now able to construct deeper neural networks and train
them with more data.

As the depth of the network increases, so does the classification accuracy. This behavior is
different from traditional machine learning algorithms (i.e., logistic regression, SVMs, decision
trees, etc.) where we reach a plateau in performance even as available training data increases. A
plot inspired by Andrew Ng’s 2015 talk, What data scientists should know about deep learning,
[39] can be seen in Figure 2.8, providing an example of this behavior.

Figure 2.8: As the amount of data available to deep learning algorithms increases, accuracy does as
well, substantially outperforming traditional feature extraction + machine learning approaches.

As the amount of training data increases, our neural network algorithms obtain higher classifi-
cation accuracy, whereas previous methods plateau at a certain point. Because of the relationship
between higher accuracy and more data, we tend to associate deep learning with large datasets as
well.

When working on your own deep learning applications, I suggest using the following rule of
thumb to determine if your given neural network is deep:

1. Are you using a specialized network architecture such as Convolutional Neural Networks,
Recurrent Neural Networks, or Long Short-Term Memory (LSTM) networks? If so, yes, you
are performing deep learning.

2. Does your network have a depth > 2? If yes, you are doing deep learning.
3. Does your network have a depth > 10? If so, you are performing very deep learning [40].
All that said, try not to get caught up in the buzzwords surrounding deep learning and what

is/is not deep learning. At the very core, deep learning has gone through a number of different
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incarnations over the past 60 years based on various schools of thought – but each of these
schools of thought centralize around artificial neural networks inspired by the structure and
function of the brain. Regardless of network depth, width, or specialized network architecture,
you’re still performing machine learning using artificial neural networks.

2.4 Summary
This chapter addressed the complicated question of “What is deep learning?”.

As we found out, deep learning has been around since the 1940s, going by different names and
incarnations based on various schools of thought and popular research trends at a given time. At
the very core, deep learning belongs to the family of Artificial Neural Networks (ANNs), a set of
algorithms that learn patterns inspired by the structure and function of the brain.

There is no consensus amongst experts on exactly what makes a neural network “deep”;
however, we know that:

1. Deep learning algorithms learn in a hierarchical fashion and therefore stack multiple layers
on top of each other to learn increasingly more abstract concepts.

2. A network should have > 2 layers to be considered “deep” (this is my anecdotal opinion
based on decades of neural network research).

3. A network with > 10 layers is considered very deep (although this number will change as
architectures such as ResNet have been successfully trained with over 100 layers).

If you feel a bit confused or even overwhelmed after reading this chapter, don’t worry – the
purpose here was simply to provide an extremely high-level overview of deep learning and what
exactly “deep” means.

This chapter also introduced a number of concepts and terms you may be unfamiliar with,
including pixels, edges, and corners – our next chapter will address these types of image basics
and give you a concrete foundation to stand on. We’ll then start to move into the fundamentals of
neural networks, allowing us to graduate to deep learning and Convolutional Neural Networks later
in this book. While this chapter was admittedly high-level, the rest of the chapters of this book will
be extremely hands-on, allowing you to master deep learning for computer vision concepts.



3. Image Fundamentals

Before we can start building our own image classifiers, we first need to understand what an image
is. We’ll start with the buildings blocks of an image – the pixel.

We’ll discuss exactly what a pixel is, how they are used to form an image, and how to access
pixels that are represented as NumPy arrays (as nearly all image processing libraries in Python do,
including OpenCV and scikit-image).

The chapter will conclude with a discussion on the aspect ratio of an image and the relation it
has when preparing our image dataset for training a neural network.

3.1 Pixels: The Building Blocks of Images
Pixels are the raw building blocks of an image. Every image consists of a set of pixels. There is no
finer granularity than the pixel.

Normally, a pixel is considered the “color” or the “intensity” of light that appears in a given
place in our image. If we think of an image as a grid, each square contains a single pixel. For
example, take a look at Figure 3.1.

The image in Figure 3.1 above has a resolution of 1,000×750, meaning that it is 1,000 pixels
wide and 750 pixels tall. We can conceptualize an image as a (multidimensional) matrix. In this
case, our matrix has 1,000 columns (the width) with 750 rows (the height). Overall, there are
1,000×750 = 750,000 total pixels in our image.

Most pixels are represented in two ways:
1. Grayscale/single channel
2. Color
In a grayscale image, each pixel is a scalar value between 0 and 255, where zero corresponds

to “black” and 255 being “white”. Values between 0 and 255 are varying shades of gray, where
values closer to 0 are darker and values closer to 255 are lighter. The grayscale gradient image in
Figure 3.2 demonstrates darker pixels on the left-hand side and progressively lighter pixels on the
right-hand side.

Color pixels; however, are normally represented in the RGB color space (other color spaces do
exist, but are outside the scope of this book and not relevant for deep learning).
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Figure 3.1: This image is 1,000 pixels wide and 750 pixels tall, for a total of 1,000×750= 750,000
total pixels.

Figure 3.2: Image gradient demonstrating pixel values going from black (0) to white (255).

R If you are interested in learning more about color spaces (and the fundamentals of computer
vision and image processing), please see Practical Python and OpenCV along with the
PyImageSearch Gurus course.

Pixels in the RGB color space are no longer a scalar value like in a grayscale/single channel
image – instead, the pixels are represented by a list of three values: one value for the Red component,
one for Green, and another for Blue. To define a color in the RGB color model, all we need to do is
define the amount of Red, Green, and Blue contained in a single pixel.

Each Red, Green, and Blue channel can have values defined in the range [0,255] for a total of
256 “shades”, where 0 indicates no representation and 255 demonstrates full representation. Given
that the pixel value only needs to be in the range [0,255], we normally use 8-bit unsigned integers
to represent the intensity.

As we’ll see once we build our first neural network, we’ll often preprocess our image by
performing mean subtraction or scaling, which will require us to convert the image to a floating
point data type. Keep this point in mind as the data types used by libraries loading images from
disk (such as OpenCV) will often need to be converted before we apply learning algorithms to the
images directly.

Given our three Red, Green, and Blue values, we can combine them into an RGB tuple in the
form (red, green, blue). This tuple represents a given color in the RGB color space. The
RGB color space is an example of an additive color space: the more of each color is added, the
brighter the pixel becomes and closer to white. We can visualize the RGB color space in Figure 3.3
(left). As you can see, adding red and green leads to yellow. Adding red and blue yields pink. And

https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/pyimagesearch-gurus/
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adding all three red, green, and blue together, we create white.

Figure 3.3: Left: The RGB color space is additive. The more red, green and blue you mix together,
the closer you get to white. Right: The RGB cube.

To make this example more concrete, let’s again consider the color “white” – we would fill each
of the red, green, and blue buckets up completely, like this: (255, 255, 255). Then, to create the
color black, we would empty each of the buckets out (0, 0, 0), as black is the absence of color.
To create a pure red color, we would fill up the red bucket (and only the red bucket) completely:
(255, 0, 0).

The RGB color space is also commonly visualized as a cube (Figure 3.3, right) Since an RGB
color is defined as a 3-valued tuple, which each value in the range [0,255] we can thus think of
the cube containing 256×256×256 = 16,777,216 possible colors, depending on how much Red,
Green, and Blue are placed into each bucket.

As an example, let’s consider how “much” red, green and blue we would need to create a single
color (Figure 3.4, top). Here we set R=252, G=198, B=188 to create a color tone similar to the
skin of a caucasian (perhaps useful when building an application to detect the amount of skin/flesh
in an image). As we can see, the Red component is heavily represented with the bucket almost filled.
Green and Blue are represented almost equally. Combining these colors in an additive manner, we
obtain a color tone similar to caucasian skin.

Figure 3.4: Top: An example of adding various Red, Green, and Blue color components together
to create a "caucasian flesh tone", perhaps useful in a skin detection program. Bottom: Creating
the specific shade of blue in the "PyImageSearch" logo by mixing various amounts of Red, Green,
and Blue.

Let’s try another example, this time setting R=22, G=159, B=230 to obtain the shade of blue
used in the PyImageSearch logo (Figure 3.4, bottom). Here Red is heavily under-represented with a
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value of 22 – the bucket is so empty that the Red value actually appears to be “black”. The Green
bucket is a little over 50% full while the Blue bucket is over 90% filled, clearly the dominant color
in the representation.

The primary drawbacks of the RGB color space include:
• Its additive nature makes it a bit unintuitive for humans to easily define shades of color

without using a “color picker” tool.
• It doesn’t mimic how humans perceive color.
Despite these drawbacks, nearly all images you’ll work with will be represented (at least

initially) in the RGB color space. For a full review of color models and color spaces, please refer to
the PyImageSearch Gurus course [33].

3.1.1 Forming an Image From Channels
As we now know, an RGB image is represented by three values, one for each of the Red, Green,
and Blue components, respectively. We can conceptualize an RGB image as consisting of three
independent matrices of width W and height H, one for each of the RGB components, as shown in
Figure 3.5. We can combine these three matrices to obtain a multi-dimensional array with shape
W ×H×D where D is the depth or number of channels (for the RGB color space, D=3):

Figure 3.5: Representing an image in the RGB color space where each channel is an independent
matrix, that when combined, forms the final image.

Keep in mind that the depth of an image is very different than the depth of a neural network
– this point will become clear when we start training our own Convolutional Neural Networks.
However, for the time being simply understand that the vast majority of the images you’ll be
working with are:
• Represented in the RGB color space by three channels, each channel in the range [0,255]. A

given pixel in an RGB image is a list of three integers: one value for Red, second for Green,
and a final value for Blue.
• Programmatically defined as a 3D NumPy multidimensional arrays with a width, height, and

depth.

3.2 The Image Coordinate System
As mentioned in Figure 3.1 earlier in this chapter, an image is represented as a grid of pixels. To
make this point more clear, imagine our grid as a piece of graph paper. Using this graph paper, the
origin point (0,0) corresponds to the upper-left corner of the image. As we move down and to the
right, both the x and y values increase.

Figure 3.6 provides a visual representation of this “graph paper” representation. Here we have
the letter “I” on a piece of our graph paper. We see that this is an 8×8 grid with a total of 64 pixels.

It’s important to note that we are counting from zero rather than one. The Python language is
zero indexed, meaning that we always start counting from zero. Keep this in mind as you’ll avoid a
lot of confusion later on (especially if you’re coming from a MATLAB environment).

https://www.pyimagesearch.com/pyimagesearch-gurus/
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Figure 3.6: The letter “I” placed on a piece of graph paper. Pixels are accessed by their (x,y)-
coordinates, where we go x columns to the right and y rows down, keeping in mind that Python is
zero-indexed.

As an example of zero-indexing, consider the pixel 4 columns to the right and 5 rows down is
indexed by the point (3,4), again keeping in mind that we are counting from zero rather than one.

3.2.1 Images as NumPy Arrays

Figure 3.7: Loading an image named example.png from disk and displaying it to our screen with
OpenCV.

Image processing libraries such as OpenCV and scikit-image represent RGB images as multi-
dimensional NumPy arrays with shape (height, width, depth). Readers who are using image
processing libraries for the first time are often confused by this representation – why does the
height come before the width when we normally think of an image in terms of width first then
height?

The answer is due to matrix notation.
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When defining the dimensions of matrix, we always write it as rows x columns. The number
of rows in an image is its height whereas the number of columns is the image’s width. The depth
will still remain the depth.

Therefore, while it may be slightly confusing to see the .shape of a NumPy array represented
as (height, width, depth), this representation actually makes intuitive sense when considering
how a matrix is constructed and annotated.

For example, let’s take a look at the OpenCV library and the cv2.imread function used to load
an image from disk and display its dimensions:

1 import cv2
2 image = cv2.imread("example.png")
3 print(image.shape)
4 cv2.imshow("Image", image)
5 cv2.waitKey(0)

Here we load an image named example.png from disk and display it to our screen, as the
screenshot from Figure 3.7 demonstrates. My terminal output follows:

$ python load_display.py
(248, 300, 3)

This image has a width of 300 pixels (the number of columns), a height of 248 pixels (the
number of rows), and a depth of 3 (the number of channels). To access an individual pixel value
from our image we use simple NumPy array indexing:

1 (b, g, r) = image[20, 100] # accesses pixel at x=100, y=20
2 (b, g, r) = image[75, 25] # accesses pixel at x=25, y=75
3 (b, g, r) = image[90, 85] # accesses pixel at x=85, y=90

Again, notice how the y value is passed in before the x value – this syntax may feel uncom-
fortable at first, but it is consistent with how we access values in a matrix: first we specify the row
number then the column number. From there, we are given a tuple representing the Red, Green,
and Blue components of the image.

3.2.2 RGB and BGR Ordering
It’s important to note that OpenCV stores RGB channels in reverse order. While we normally think
in terms of Red, Green, and Blue, OpenCV actually stores the pixel values in Blue, Green, Red
order.

Why does OpenCV do this? The answer is simply historical reasons. Early developers of the
OpenCV library chose the BGR color format because the BGR ordering was popular among camera
manufacturers and other software developers at the time [41].

Simply put – this BGR ordering was made for historical reasons and a choice that we now have
to live with. It’s a small caveat, but an important one to keep in mind when working with OpenCV.

3.3 Scaling and Aspect Ratios
Scaling, or simply resizing, is the process of increasing or decreasing the size of an image in terms
of width and height. When resizing an image, it’s important to keep in mind the aspect ratio, which
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Figure 3.8: Left: Original image. Top and Bottom: Resulting distorted images after resizing
without preserving the aspect ratio (i.e., the ratio of the width to the height of the image).

is the ratio of the width to the height of the image. Ignoring the aspect ratio can lead to images that
look compressed and distorted, as in Figure 3.8.

On the left, we have the original image. And on the top and bottom, we have two images that
have been distorted by not preserving the aspect ratio. The end result is that these images are
distorted, crunched, and squished. To prevent this behavior, we simply scale the width and height
of an image by equal amounts when resizing an image.

From a strictly aesthetic point of view, you almost always want to ensure the aspect ratio of the
image is maintained when resizing an image – but this guideline isn’t always the case for deep
learning. Most neural networks and Convolutional Neural Networks applied to the task of image
classification assume a fixed size input, meaning that the dimensions of all images you pass through
the network must be the same. Common choices for width and height image sizes inputted to
Convolutional Neural Networks include 32×32, 64×64, 224×224, 227×227, 256×256, and
299×299.

Let’s assume we are designing a network that will need to classify 224×224 images; however,
our dataset consists of images that are 312×234, 800×600, and 770×300, among other image
sizes – how are we supposed to preprocess these images? Do we simply ignore the aspect ratio
and deal with the distortion (Figure 3.9, bottom left)? Or do we devise another scheme to resize
the image, such as resizing the image along its shortest dimension and then taking the center crop
(Figure 3.9, bottom right)?

As we can see in in the bottom left, the aspect ratio of our image has been ignored, resulting
in an image that looks distorted and “crunched”. Then, in the bottom right, we see that the aspect
ratio of the image has been maintained, but at the expense of cropping out part of the image. This
could be especially detrimental to our image classification system if we accidentally crop part or all
of the object we wish to identify.

Which method is best? In short, it depends. For some datasets you can simply ignore the
aspect ratio and squish, distort, and compress your images prior to feeding them through your
network. On other datasets, it’s advantageous to preprocess them further by resizing along the
shortest dimension and then cropping the center.

We’ll be reviewing both of these methods (and how to implement them) in more detail later in
this book, but it’s important to introduce this topic now as we study the fundamentals of images
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Figure 3.9: Top: Our original input image. Bottom left: Resizing an image to 224×224 pixels
by ignoring the aspect ratio. Bottom right: Resizing an image 224×224 pixels by first resizing
along the shortest dimension and then taking the center crop.

and how they are represented.

3.4 Summary
This chapter reviewed the fundamental building blocks of an image – the pixel. We learned that
grayscale/single channel images are represented by a single scalar, the intensity/brightness of the
pixel. The most common color space is the RGB color space where each pixel in an image is
represented by a 3-tuple: one for each of the Red, Green, and Blue components, respectively.

We also learned that computer vision and image processing libraries in the Python programming
language leverage the powerful NumPy numerical processing library and thus represent images as
multi-dimensional NumPy arrays. These arrays have the shape (height, width, depth).

The height is specified first because the height is the number of rows in the matrix. The width
comes next, as it is the number of columns in the matrix. Finally, the depth controls the number of
channels in the image. In the RGB color space, the depth is fixed at depth=3.

Finally, we wrapped up this chapter by reviewing the aspect ratio of an image and the role
it will play when we resize images as inputs to our neural networks and Convolutional Neural
Networks. For a more detailed review of color spaces, the image coordinate system, resizing/aspect
ratios, and other basics of the OpenCV library, please refer to Practical Python and OpenCV [8]
and the PyImageSearch Gurus course [33].

https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/pyimagesearch-gurus/
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“A picture is worth a thousand words” – English idiom

We’ve heard this adage countless times in our lives. It simply means that a complex idea can be
conveyed in a single image. Whether examining the line chart of our stock portfolio investments,
looking at the spread of an upcoming football game, or simply taking in the art and brush strokes of
a painting master, we are constantly ingesting visual content, interpreting the meaning, and storing
the knowledge for later use.

However, for computers, interpreting the contents of an image is less trivial – all our computer
sees is a big matrix of numbers. It has no idea regarding the thoughts, knowledge, or meaning the
image is trying to convey.

In order to understand the contents of an image, we must apply image classification, which
is the task of using computer vision and machine learning algorithms to extract meaning from
an image. This action could be as simple as assigning a label to what the image contains, or as
advanced as interpreting the contents of an image and returning a human-readable sentence.

Image classification is a very large field of study, encompassing a wide variety of techniques –
and with the popularity of deep learning, it is continuing to grow.

Now is the time to ride the deep learning and image classification wave – those who
successfully do so will be handsomely rewarded.

Image classification and image understanding are currently (and will continue to be) the most
popular sub-field of computer vision for the next ten years. In the future, we’ll see companies
like Google, Microsoft, Baidu, and others quickly acquire successful image understanding startup
companies. We’ll see more and more consumer applications on our smartphones that can understand
and interpret the contents of an image. Even wars will likely be fought using unmanned aircrafts
that are automatically guided using computer vision algorithms.

Inside this chapter, I’ll provide a high-level overview of what image classification is, along with
the many challenges an image classification algorithm has to overcome. We’ll also review the three
different types of learning associated with image classification and machine learning.

Finally, we’ll wrap up this chapter by discussing the four steps of training a deep learning
network for image classification and how this four step pipeline compares to the traditional,
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hand-engineered feature extraction pipeline.

4.1 What Is Image Classification?

Image classification, at its very core, is the task of assigning a label to an image from a predefined
set of categories.

Practically, this means that our task is to analyze an input image and return a label that
categorizes the image. The label is always from a predefined set of possible categories.

For example, let’s assume that our set of possible categories includes:
categories = {cat, dog, panda}
Then we present the following image (Figure 4.1) to our classification system:

Figure 4.1: The goal of an image classification system is to take an input image and assign a label
based on a pre-defined set of categories.

Our goal here is to take this input image and assign a label to it from our categories set – in
this case, dog.

Our classification system could also assign multiple labels to the image via probabilities, such
as dog: 95%; cat: 4%; panda: 1%.

More formally, given our input image of W ×H pixels with three channels, Red, Green, and
Blue, respectively, our goal is to take the W ×H×3 = N pixel image and figure out how to correctly
classify the contents of the image.

4.1.1 A Note on Terminology

When performing machine learning and deep learning, we have a dataset we are trying to extract
knowledge from. Each example/item in the dataset (whether it be image data, text data, audio data,
etc.) is a data point. A dataset is therefore a collection of data points (Figure 4.2).

Our goal is to apply a machine learning and deep learning algorithms to discover underlying
patterns in the dataset, enabling us to correctly classify data points that our algorithm has not
encountered yet. Take the time now to familiarize yourself with this terminology:

1. In the context of image classification, our dataset is a collection of images.
2. Each image is, therefore, a data point.
I’ll be using the term image and data point interchangeably throughout the rest of this book, so

keep this in mind now.
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Figure 4.2: A dataset (outer rectangle) is a collection of data points (circles).

4.1.2 The Semantic Gap

Take a look at the two photos (top) in Figure 4.3. It should be fairly trivial for us to tell the difference
between the two photos – there is clearly a cat on the left and a dog on the right. But all a computer
sees is two big matrices of pixels (bottom).

Given that all a computer sees is a big matrix of pixels, we arrive at the problem of the semantic
gap. The semantic gap is the difference between how a human perceives the contents of an image
versus how an image can be represented in a way a computer can understand the process.

Again, a quick visual examination of the two photos above can reveal the difference between
the two species of an animal. But in reality, the computer has no idea there are animals in the image
to begin with. To make this point clear, take a look at Figure 4.4, containing a photo of a tranquil
beach.

We might describe the image as follows:

• Spatial: The sky is at the top of the image and the sand/ocean are at the bottom.
• Color: The sky is dark blue, the ocean water is a lighter blue than the sky, while the sand is

tan.
• Texture: The sky has a relatively uniform pattern, while the sand is very coarse.

How do we go about encoding all this information in a way that a computer can understand it?
The answer is to apply feature extraction to quantify the contents of an image. Feature extraction is
the process of taking an input image, applying an algorithm, and obtaining a feature vector (i.e., a
list of numbers) that quantifies our image.

To accomplish this process, we may consider applying hand-engineered features such as HOG,
LBPs, or other “traditional” approaches to image quantifying. Another method, and the one taken
by this book, is to apply deep learning to automatically learn a set of features that can be used to
quantify and ultimately label the contents of the image itself.

However, it’s not that simple. . . because once we start examining images in the real world, we
are faced with many, many challenges.
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Figure 4.3: Top: Our brains can clearly see the difference between an image that contains a cat and
an image that contains a dog. Bottom: However, all a computer "sees" is a big matrix of numbers.
The difference between how we perceive an image and how the image is represented (a matrix of
numbers) is called the semantic gap.

4.1.3 Challenges

If the semantic gap were not enough of a problem, we also have to handle factors of varia-
tion [10] in how an image or object appears. Figure 4.5 displays a visualization of a number of
these factors of variation.

To start, we have viewpoint variation, where an object can be oriented/rotated in multiple
dimensions with respect to how the object is photographed and captured. No matter the angle in
which we capture this Raspberry Pi, it’s still a Raspberry Pi.

We also have to account for scale variation as well. Have you ever ordered a tall, grande, or
venti cup of coffee from Starbucks? Technically they are all the same thing – a cup of coffee.
But they are all different sizes of a cup of coffee. Furthermore, that same venti coffee will look
dramatically different when it is photographed up close versus when it is captured from farther
away. Our image classification methods must be tolerable to these types of scale variations.

One of the hardest variations to account for is deformation. For those of you familiar with the
television series Gumby, we can see the main character in the image above. As the name of the TV
show suggests, this character is elastic, stretchable, and capable of contorting his body in many
different poses. We can look at these images of Gumby as a type of object deformation – all images
contain the Gumby character; however, they are all dramatically different from each other.

Our image classification should also be able to handle occlusions, where large parts of the
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Figure 4.4: When describing the contents of this image we may focus on words that the convey the
spatial layout, color, and texture – the same is true for computer vision algorithms.

object we want to classify are hidden from view in the image (Figure 4.5). On the left we have to
have a picture of a dog. And on the right we have a photo of the same dog, but notice how the dog
is resting underneath the covers, occluded from our view. The dog is still clearly in both images –
she’s just more visible in one image than the other. Image classification algorithms should still be
able to detect and label the presence of the dog in both images.

Just as challenging as the deformations and occlusions mentioned above, we also need to handle
the changes in illumination. Take a look at the coffee cup captured in standard and low lighting
(Figure 4.5). The image on the left was photographed with standard overhead lighting while the
image on the right was captured with very little lighting. We are still examining the same cup –
but based on the lighting conditions, the cup looks dramatically different (nice how the vertical
cardboard seam of the cup is clearly visible in the low lighting conditions, but not the standard
lighting).

Continuing on, we must also account for background clutter. Ever play a game of Where’s
Waldo? (Or Where’s Wally? for our international readers.) If so, then you know the goal of the
game is to find our favorite red-and-white, striped shirt friend. However, these puzzles are more
than just an entertaining children’s game – they are also the perfect representation of background
clutter. These images are incredibly “noisy” and have a lot going on in them. We are only interested
in one particular object in the image; however, due to all the “noise”, it’s not easy to pick out
Waldo/Wally. If it’s not easy for us to do, imagine how hard it is for a computer with no semantic
understanding of the image!

Finally, we have intra-class variation. The canonical example of intra-class variation in
computer vision is displaying the diversification of chairs. From comfy chairs that we use to curl up
and read a book, to chairs that line our kitchen table for family gatherings, to ultra-modern art deco
chairs found in prestigious homes, a chair is still a chair – and our image classification algorithms
must be able to categorize all these variations correctly.

Are you starting to feel a bit overwhelmed with the complexity of building an image classifier?
Unfortunately, it only gets worse – it’s not enough for our image classification system to be robust
to these variations independently, but our system must also handle multiple variations combined
together!

So how do we account for such an incredible number of variations in objects/images? In
general, we try to frame the problem as best we can. We make assumptions regarding the contents
of our images and to which variations we want to be tolerant. We also consider the scope of our
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Figure 4.5: When developing an image classification system, we need to be cognizant of how an
object can appear at varying viewpoints, lighting conditions, occlusions, scale, etc.

project – what is the end goal? And what are we trying to build?
Successful computer vision, image classification, and deep learning systems deployed to the

real-world make careful assumptions and considerations before a single line of code is ever written.
If you take too broad of an approach, such as “I want to classify and detect every single object

in my kitchen”, (where there could be hundreds of possible objects) then your classification system
is unlikely to perform well unless you have years of experience building image classifiers – and
even then, there is no guarantee to the success of the project.

But if you frame your problem and make it narrow in scope, such as “I want to recognize
just stoves and refrigerators”, then your system is much more likely to be accurate and functioning,
especially if this is your first time working with image classification and deep learning.

The key takeaway here is to always consider the scope of your image classifier. While
deep learning and Convolutional Neural Networks have demonstrated significant robustness and
classification power under a variety of challenges, you still should keep the scope of your project as
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tight and well-defined as possible.
Keep in mind that ImageNet [42], the de facto standard benchmark dataset for image classifica-

tion algorithms, consists of 1,000 objects that we encounter in our everyday lives – and this dataset
is still actively used by researchers trying to push the state-of-the-art for deep learning forward.

Deep learning is not magic. Instead, deep learning is like a scroll saw in your garage – powerful
and useful when wielded correctly, but hazardous if used without proper consideration. Throughout
the rest of this book, I will guide you on your deep learning journey and help point out when you
should reach for these power tools and when you should instead refer to a simpler approach (or
mention if a problem isn’t reasonable for image classification to solve).

4.2 Types of Learning

There are three types of learning that you are likely to encounter in your machine learning and
deep learning career: supervised learning, unsupervised learning, and semi-supervised learning.
This book focuses mostly on supervised learning in the context of deep learning. Nonetheless,
descriptions of all three types of learning are presented below.

4.2.1 Supervised Learning

Imagine this: you’ve just graduated from college with your Bachelors of Science in Computer
Science. You’re young. Broke. And looking for a job in the field – perhaps you even feel lost in
your job search.

But before you know it, a Google recruiter finds you on LinkedIn and offers you a position
working on their Gmail software. Are you going to take it? Most likely.

A few weeks later, you pull up to Google’s spectacular campus in Mountain View, California,
overwhelmed by the breathtaking landscape, the fleet of Teslas in the parking lot, and the almost
never-ending rows of gourmet food in the cafeteria.

You finally sit down at your desk in a wide-open workspace among hundreds of other em-
ployees. . . and then you find out your role in the company. You’ve been hired to create a piece of
software to automatically classify email as spam or not-spam.

How are going to accomplish this goal? Would a rule-based approach work? Could you write a
series of if/else statements that look for certain words and then determine if an email is spam
based on these rules? That might work. . . to a degree. But this approach would also be easily
defeated and near impossible to maintain.

Instead, what you really need is machine learning. You need a training set consisting of the
emails themselves along with their labels, in this case spam or not-spam. Given this data, you can
analyze the text (i.e., the distributions of words) in the email and utilize the spam/not-spam labels
to teach a machine learning classifier what words occur in a spam email and which do not – all
without having to manually create a long and complicated series of if/else statements.

This example of creating a spam filter system is an example of supervised learning. Supervised
learning is arguably the most well known and studied type of machine learning. Given our training
data, a model (or “classier”) is created through a training process where predictions are made on
the input data and then corrected when the predictions are wrong. This training process continues
until the model achieves some desired stopping criterion, such as a low error rate or a maximum
number of training iterations.

Common supervised learning algorithms include Logistic Regression, Support Vector Machines
(SVMs) [43, 44], Random Forests [45], and Artificial Neural Networks.

In the context of image classification, we assume our image dataset consists of the images
themselves along with their corresponding class label that we can use to teach our machine learning
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Label Rµ Gµ Bµ Rσ Gσ Bσ

Cat 57.61 41.36 123.44 158.33 149.86 93.33
Cat 120.23 121.59 181.43 145.58 69.13 116.91
Cat 124.15 193.35 65.77 23.63 193.74 162.70
Dog 100.28 163.82 104.81 19.62 117.07 21.11
Dog 177.43 22.31 149.49 197.41 18.99 187.78
Dog 149.73 87.17 187.97 50.27 87.15 36.65

Table 4.1: A table of data containing both the class labels (either dog or cat) and feature vectors
for each data point (the mean and standard deviation of each Red, Green, and Blue color channel,
respectively). This is an example of a supervised classification task.

classifier what each category “looks like”. If our classifier makes an incorrect prediction, we can
then apply methods to correct its mistake.

The differences between supervised, unsupervised, and semi-supervised learning can best be
understood by looking at the example in Table 4.1. The first column of our table is the label
associated with a particular image. The remaining six columns correspond to our feature vector for
each data point – here, we have chosen to quantify our image contents by computing the mean and
standard deviation for each RGB color channel, respectively.

Our supervised learning algorithm will make predictions on each of these feature vectors, and
if it makes an incorrect prediction, we’ll attempt to correct it by telling it what the correct label
actually is. This process will then continue until the desired stopping criterion has been met, such
as accuracy, number of iterations of the learning process, or simply an arbitrary amount of wall
time.

R To explain the differences between supervised, unsupervised, and semi-supervised learning,
I have chosen to use a feature-based approach (i.e., the mean and standard deviation of
the RGB color channels) to quantify the content of an image. When we start working with
Convolutional Neural Networks, we’ll actually skip the feature extraction step and use the raw
pixel intensities themselves. Since images can be large M×N matrices (and therefore cannot
fit nicely into this spreadsheet/table example), I have used the feature-extraction process to
help visualize the differences between types of learning.

4.2.2 Unsupervised Learning
In contrast to supervised learning, unsupervised learning (sometimes called self-taught learning)
has no labels associated with the input data and thus we cannot correct our model if it makes an
incorrect prediction.

Going back to the spreadsheet example, converting a supervised learning problem to an
unsupervised learning one is as simple as removing the “label” column (Table 4.2).

Unsupervised learning is sometimes considered the “holy grail” of machine learning and image
classification. When we consider the number of images on Flickr or the number of videos on
YouTube, we quickly realize there is a vast amount of unlabeled data available on the internet. If
we could get our algorithm to learn patterns from unlabeled data, then we wouldn’t have to spend
large amounts of time (and money) arduously labeling images for supervised tasks.

Most unsupervised learning algorithms are most successful when we can learn the underlying
structure of a dataset and then, in turn, apply our learned features to a supervised learning problem
where there is too little labeled data to be of use.

Classic machine learning algorithms for unsupervised learning include Principle Component
Analysis (PCA) and k-means clustering. Specific to neural networks, we see Autoencoders, Self-
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Rµ Gµ Bµ Rσ Gσ Bσ

57.61 41.36 123.44 158.33 149.86 93.33
120.23 121.59 181.43 145.58 69.13 116.91
124.15 193.35 65.77 23.63 193.74 162.70
100.28 163.82 104.81 19.62 117.07 21.11
177.43 22.31 149.49 197.41 18.99 187.78
149.73 87.17 187.97 50.27 87.15 36.65

Table 4.2: Unsupervised learning algorithms attempt to learn underlying patterns in a dataset
without class labels. In this example we have removed the class label column, thus turning this task
into an unsupervised learning problem.

Label Rµ Gµ Bµ Rσ Gσ Bσ

Cat 57.61 41.36 123.44 158.33 149.86 93.33
? 120.23 121.59 181.43 145.58 69.13 116.91
? 124.15 193.35 65.77 23.63 193.74 162.70
Dog 100.28 163.82 104.81 19.62 117.07 21.11
? 177.43 22.31 149.49 197.41 18.99 187.78
Dog 149.73 87.17 187.97 50.27 87.15 36.65

Table 4.3: When performing semi-supervised learning we only have the labels for a subset of the
images/feature vectors and must try to label the other data points to utilize them as extra training
data.

Organizing Maps (SOMs), and Adaptive Resonance Theory applied to unsupervised learning.
Unsupervised learning is an extremely active area of research and one that has yet to be solved. We
do not focus on unsupervised learning in this book.

4.2.3 Semi-supervised Learning
So, what happens if we only have some of the labels associated with our data and no labels for the
other? Is there a way we can apply some hybrid of supervised and unsupervised learning and still
be able to classify each of the data points? It turns out the answer is yes – we just need to apply
semi-supervised learning.

Going back to our spreadsheet example, let’s say we only have labels for a small fraction of our
input data (Table 4.3). Our semi-supervised learning algorithm would take the known pieces of data,
analyze them, and try to label each of the unlabeled data points for use as additional training data.
This process can repeat for many iterations as the semi-supervised algorithm learns the “structure”
of the data to make more accurate predictions and generate more reliable training data.

Semi-supervised learning is especially useful in computer vision where it is often time-
consuming, tedious, and expensive (at least in terms of man-hours) to label each and every single
image in our training set. In cases where we simply do not have the time or resources to label each
individual image, we can label only a tiny fraction of our data and utilize semi-supervised learning
to label and classify the rest of the images.

Semi-supervised learning algorithms often trade smaller labeled input datasets for some tolera-
ble reduction in classification accuracy. Normally, the more accurately-labeled training a supervised
learning algorithm has, the more accurate predictions it can make (this is especially true for deep
learning algorithms).

As the amount of training data decreases, accuracy inevitably suffers. Semi-supervised learning
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takes this relationship between accuracy and amount of data into account and attempts to keep
classification accuracy within tolerable limits while dramatically reducing the amount of training
data required to build a model – the end result is an accurate classifier (but normally not as
accurate as a supervised classifier) with less effort and training data. Popular choices for semi-
supervised learning include label spreading [46], label propagation [47], ladder networks [48], and
co-learning/co-training [49].

Again, we’ll primarily be focusing on supervised learning inside this book, as both unsupervised
and semi-supervised learning in the context of deep learning for computer vision are still very
active research topics without clear guidelines on which methods to use.

4.3 The Deep Learning Classification Pipeline
Based on our previous two sections on image classification and types of learning algorithms, you
might be starting to feel a bit steamrolled with new terms, considerations, and what looks to be an
insurmountable amount of variation in building an image classifier, but the truth is that building an
image classifier is fairly straightforward, once you understand the process.

In this section we’ll review an important shift in mindset you need to take on when working
with machine learning. From there I’ll review the four steps of building a deep learning-based
image classifier as well as compare and contrast traditional feature-based machine learning versus
end-to-end deep learning.

4.3.1 A Shift in Mindset
Before we get into anything complicated, let’s start off with something that we’re all (most likely)
familiar with: the Fibonacci sequence.

The Fibonacci sequence is a series of numbers where the next number of the sequence is found
by summing the two integers before it. For example, given the sequence 0, 1, 1, the next number
is found by adding 1 + 1 = 2. Similarly, given 0, 1, 1, 2, the next integer in the sequence is 1
+ 2 = 3.

Following that pattern, the first handful of numbers in the sequence are as follows:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
Of course, we can also define this pattern in an (extremely unoptimized) Python function using

recursion:

1 >>> def fib(n):
2 ... if n == 0:
3 ... return 0
4 ... elif n == 1:
5 ... return 1
6 ... else:
7 ... return fib(n-1) + fib(n-2)
8 ...
9 >>>

Using this code, we can compute the n-th number in the sequence by supplying a value of n to
the fib function. For example, let’s compute the 7th number in the Fibonacci sequence:

9 >>> fib(7)
10 13

And the 13th number:
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11 >>> fib(13)
12 233

And finally the 35th number:

13 >>> fib(35)
14 9227465

As you can see, the Fibonacci sequence is straightforward and is an example of a family of
functions that:

1. Accepts an input, returns an output.
2. The process is well defined.
3. The output is easily verifiable for correctness.
4. Lends itself well to code coverage and test suites.
In general, you’ve probably written thousands upon thousands of procedural functions like

these in your life. Whether you’re computing a Fibonacci sequence, pulling data from a database,
or calculating the mean and standard deviation from a list of numbers, these functions are all well
defined and easily verifiable for correctness.

Unfortunately, this is not the case for deep learning and image classification!
Recall from Section 4.1.2 where we looked at the pictures of a cat and a dog, replicated in

Figure 4.6 for convenience. Now, imagine trying to write a procedural function that can not only tell
the difference between these two photos, but any photo of a cat and a dog. How would you go about
accomplishing this task? Would you check individual pixel values at various (x,y)-coordinates?
Write hundreds of if/else statements? And how would you maintain and verify the correctness
of such as massive rule-based system? The short answer is: you don’t.

Figure 4.6: How might you go about writing a piece of software to recognize the difference between
dogs and cats in images? Would you inspect individual pixel values? Take a rule-based approach?
Try to write (and maintain) hundreds of if/else statements?

Unlike coding up an algorithm to compute the Fibonacci sequence or sort a list of numbers,
it’s not intuitive or obvious how to create an algorithm to tell the difference between pictures of
cats and dogs. Therefore, instead of trying to construct a rule-based system to describe what each
category “looks like”, we can instead take a data driven approach by supplying examples of what
each category looks like and then teach our algorithm to recognize the difference between the
categories using these examples.

We call these examples our training dataset of labeled images, where each data point in our
training dataset consists of:

1. An image
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2. The label/category (i.e., dog, cat, panda, etc.) of the image
Again, it’s important that each of these images have labels associated with them because our

supervised learning algorithm will need to see these labels to “teach itself” how to recognize each
category. Keeping this in mind, let’s go ahead and work through the four steps to constructing a
deep learning model.

4.3.2 Step #1: Gather Your Dataset
The first component of building a deep learning network is to gather our initial dataset. We need
the images themselves as well as the labels associated with each image. These labels should come
from a finite set of categories, such as: categories = dog, cat, panda.

Furthermore, the number of images for each category should be approximately uniform (i.e.,
the same number of examples per category). If we have twice the number of cat images than dog
images, and five times the number of panda images than cat images, then our classifier will become
naturally biased to overfitting into these heavily-represented categories.

Class imbalance is a common problem in machine learning and there exist a number of ways
to overcome it. We’ll discuss some of these methods later in this book, but keep in mind the
best method to avoid learning problems due to class imbalance is to simply avoid class imbalance
entirely.

4.3.3 Step #2: Split Your Dataset
Now that we have our initial dataset, we need to split it into two parts:

1. A training set
2. A testing set
A training set is used by our classifier to “learn” what each category looks like by making

predictions on the input data and then correct itself when predictions are wrong. After the classifier
has been trained, we can evaluate the performing on a testing set.

It’s extremely important that the training set and testing set are independent of each other
and do not overlap! If you use your testing set as part of your training data, then your classifier
has an unfair advantage since it has already seen the testing examples before and “learned” from
them. Instead, you must keep this testing set entirely separate from your training process and use it
only to evaluate your network.

Common split sizes for training and testing sets include 66.6%33.3%, 75%/25%, and 90%/10%,
respectively. (Figure 4.7):

Figure 4.7: Examples of common training and testing data splits.

These data splits make sense, but what if you have parameters to tune? Neural networks have
a number of knobs and levers (ex., learning rate, decay, regularization, etc.) that need to be tuned
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and dialed to obtain optimal performance. We’ll call these types of parameters hyperparameters,
and it’s critical that they get set properly.

In practice, we need to test a bunch of these hyperparameters and identify the set of parameters
that works the best. You might be tempted to use your testing data to tweak these values, but again,
this is a major no-no! The test set is only used in evaluating the performance of your network.

Instead, you should create a third data split called the validation set. This set of the data
(normally) comes from the training data and is used as “fake test data” so we can tune our
hyperparameters. Only after have we determined the hyperparameter values using the validation set
do we move on to collecting final accuracy results in the testing data.

We normally allocate roughly 10-20% of the training data for validation. If splitting your
data into chunks sounds complicated, it’s actually not. As we’ll see in our next chapter, it’s quite
simple and can be accomplished with only a single line of code thanks to the scikit-learn library.

4.3.4 Step #3: Train Your Network

Given our training set of images, we can now train our network. The goal here is for our network to
learn how to recognize each of the categories in our labeled data. When the model makes a mistake,
it learns from this mistake and improves itself.

So, how does the actual “learning” work? In general, we apply a form of gradient descent, as
discussed in Chapter 9. The remainder of this book is dedicated to demonstrating how to train
neural networks from scratch, so we’ll defer a detailed discussion of the training process until then.

4.3.5 Step #4: Evaluate

Last, we need to evaluate our trained network. For each of the images in our testing set, we present
them to the network and ask it to predict what it thinks the label of the image is. We then tabulate
the predictions of the model for an image in the testing set.

Finally, these model predictions are compared to the ground-truth labels from our testing set.
The ground-truth labels represent what the image category actually is. From there, we can compute
the number of predictions our classifier got correct and compute aggregate reports such as precision,
recall, and f-measure, which are used to quantify the performance of our network as a whole.

4.3.6 Feature-based Learning versus Deep Learning for Image Classification

In the traditional, feature-based approach to image classification, there is actually a step inserted
between Step #2 and Step #3 – this step is feature extraction. During this phase, we apply hand-
engineered algorithms such as HOG [32], LBPs [21], etc. to quantify the contents of an image
based on a particular component of the image we want to encode (i.e., shape, color, texture). Given
these features, we then proceed to train our classifier and evaluate it.

When building Convolutional Neural Networks, we can actually skip the feature extraction
step. The reason for this is because CNNs are end-to-end models. We present the raw input data
(pixels) to the network. The network then learns filters inside its hidden layers that can be used to
discriminate amongst object classes. The output of the network is then a probability distribution
over class labels.

One of the exciting aspects of using CNNs is that we no longer need to fuss over hand-
engineered features – we can let our network learn the features instead. However, this tradeoff does
come at a cost. Training CNNs can be a non-trivial process, so be prepared to spend considerable
time familiarizing yourself with the experience and running many experiments to determine what
does and does not work.
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4.3.7 What Happens When my Predictions Are Incorrect?
Inevitably, you will train a deep learning network on your training set, evaluate it on your test
set (finding that it obtains high accuracy), and then apply it to images that are outside both your
training and testing set – only to find that the network performs poorly.

This problem is called generalization, the ability for a network to generalize and correctly
predict the class label of an image that does not exist as part of its training or testing data.

The ability for a network to generalize is quite literally the most important aspect of deep
learning research – if we can train networks that can generalize to outside datasets without re-
training or fine-tuning, we’ll make great strides in machine learning, enabling networks to be
re-used in a variety of domains. The ability of a network to generalize will be discussed many times
in this book, but I wanted to bring up the topic now since you will inevitably run into generalization
issues, especially as you learn the ropes of deep learning.

Instead of becoming frustrated with your model not correctly classifying an image, consider the
set of factors of variation mentioned above. Does your training dataset accurately reflect examples
of these factors of variation? If not, you’ll need to gather more training data (and read the rest of
this book to learn other techniques to combat generalization).

4.4 Summary
Inside this chapter we learned what image classification is and why it’s such a challenging task for
computers to perform well on (even though humans do it intuitively with seemingly no effort). We
then discussed the three main types of machine learning, supervised learning, unsupervised learning,
semi-supervised learning – this book primarily focuses on supervised learning where we have
both the training examples and the class labels associated with them. Semi-supervised learning and
unsupervised learning are both open areas of research for deep learning (and in machine learning in
general).

Finally, we reviewed the four steps in the deep learning classification pipeline. These steps
including gathering your dataset, splitting your data into training, testing, and validation steps,
training your network, and finally evaluating your model.

Unlike traditional feature-based approaches which require us to utilize hand-crafted algorithms
to extract features from an image, image classification models, such as Convolutional Neural
Networks, are end-to-end classifiers which internally learn features that can be used to discriminate
amongst image classes.
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At this point we have accustomed ourselves to the fundamentals of the image classification pipeline
– but before we dive into any code looking at actually how to take a dataset and build an image
classifier, let’s first review datasets that you’ll see inside Deep Learning for Computer Vision with
Python.

Some of these datasets are essentially “solved”, enabling us to obtain extremely high-accuracy
classifiers (> 95% accuracy) with little effort. Other datasets represent categories of computer
vision and deep learning problems are still open research topics today and are far from solved.
Finally, a few of the datasets are part of image classification competitions and challenges (e.x.,
Kaggle Dogs vs. Cats and cs231n Tiny ImageNet 200).

It’s important to review these datasets now so that we have a high-level understanding of the
challenges we can expect when working with them in later chapters.

5.1 MNIST

Figure 5.1: A sample of the MNIST dataset. The goal of this dataset is to correctly classify the
handwritten digits, 0−9.

The MNIST (“NIST” stands for National Institute of Standards and Technology while the “M”
stands for “modified” as the data has been preprocessed to reduce any burden on computer vision
processing and focus solely on the task of digit recognition) dataset is one of the most well studied
datasets in the computer vision and machine learning literature.

The goal of this dataset is to correctly classify the handwritten digits 0− 9. In many cases,
this dataset is a benchmark, a standard to which machine learning algorithms are ranked. In fact,
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MNIST is so well studied that Geoffrey Hinton described the dataset as “the drosophila of machine
learning” [10] (a drosophila is a genus of fruit fly), comparing how budding biology researchers
use these fruit flies as they are easily cultured en masse, have a short generation time, and mutations
are easily obtained.

In the same vein, the MNIST dataset is simple dataset for early deep learning practitioners
to get their “first taste” of training a neural network without too much effort (it’s very easy to
obtain > 97% classification accuracy) – training a neural network model on MNIST is very much
the “Hello, World” equivalent in machine learning.

MNIST itself consists of 60,000 training images and 10,000 testing images. Each feature vector
is 784-dim, corresponding to the 28×28 grayscale pixel intensities of the image. These grayscale
pixel intensities are unsigned integers, falling into the range [0,255]. All digits are placed on a black
background with the foreground being white and shades of gray. Given these raw pixel intensities,
our goal is to train a neural network to correctly classify the digits.

We’ll be primarily using this dataset in the early chapters of the Starter Bundle to help us “get
our feet wet” and learn the ropes of neural networks.

5.2 Animals: Dogs, Cats, and Pandas

Figure 5.2: A sample of the 3-class animals dataset consisting of 1,000 images per dog, cat, and
panda class respectively for a total of 3,000 images.

The purpose of this dataset is to correctly classify an image as contain a dog, cat, or panda.
Containing only 3,000 images, the Animals dataset is meant to be another “introductory” dataset
that we can quickly train a deep learning model on either our CPU or GPU and obtain reasonable
accuracy.

In Chapter 10 we’ll use this dataset to demonstrate how using the pixels of an image as a feature
vector does not translate to a high-quality machine learning model unless we employ the usage of a
Convolutional Neural Network (CNN).
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Images for this dataset were gathered by sampling the Kaggle Dogs vs. Cats images along with
the ImageNet dataset for panda examples. The Animals dataset is primarily used in the Starter
Bundle only.

5.3 CIFAR-10

Figure 5.3: Example images from the ten class CIFAR-10 dataset.

Just like MNIST, CIFAR-10 is considered another standard benchmark dataset for image
classification in the computer vision and machine learning literature. CIFAR-10 consists of 60,000
32×32×3 (RGB) images resulting in a feature vector dimensionality of 3072.

As the name suggests, CIFAR-10 consists of 10 classes, including: airplanes, automobiles,
birds, cats, deer, dogs, frogs, horses, ships, and trucks.

While it’s quite easy to train a model that obtains > 97% classification accuracy on MNIST, it’s
substantially harder obtain such a model for CIFAR-10 (and it’s bigger brother, CIFAR-100) [50].

The challenge comes from the dramatic variance in how objects appear. For example, we can
no longer assume that an image containing a green pixel at a given (x,y)-coordinate is a frog. This
pixel could be part of the background of a forest that contains a deer. Or, the pixel could simply be
the color of a green truck.

These assumptions are a stark contrast to the MNIST dataset where the network can learn as-
sumptions regarding the spatial distribution of pixel intensities. For example, the spatial distribution
of foreground pixels of the number 1 is substantially different than a 0 or 5.

While being a small dataset, CIFAR-10 is still regularly used to benchmark new CNN architec-
tures. We’ll be using CIFAR-10 in both the Starter Bundle and the Practitioner Bundle.

5.4 SMILES
As the name suggests, the SMILES dataset [51] consists of images of faces that are either smiling or
not smiling. In total, there are 13,165 grayscale images in the dataset, with each image having a
size of 64×64.

Images in this dataset are tightly cropped around the face allowing us to devise machine
learning algorithms that focus solely on the task of smile recognition. Decoupling computer vision
preprocessing from machine learning (especially for benchmark datasets) is a common trend you’ll
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Figure 5.4: Top: Examples of "smiling" faces. Bottom: Samples of "not smiling" faces. We will
later train a Convolutional Neural Network to recognize between smiling and not smiling faces in
real-time video streams.

see when reviewing popular benchmark datasets. In some cases, it’s unfair to assume that a machine
learning researcher has enough exposure to computer vision to properly preprocess a dataset of
images prior to applying their own machine learning algorithms.

That said, this trend is quickly changing, and any practitioner interested in applying machine
learning to computer vision problems is assumed to have at least a rudimentary background in
computer vision. This trend will continue in the future, so if you plan on studying deep learning
for computer vision in any depth, definitely be sure to supplement your education with a bit of
computer vision, even if it’s just the fundamentals.

If you find that you need to improve your computer vision skills, take a look at Practical Python
and OpenCV [8].

5.5 Kaggle: Dogs vs. Cats

The Dogs vs. Cats challenge is part of a Kaggle competition to devise a learning algorithm that can
correctly classify an image as containing a dog or a cat. A total of 25,000 images are provided to
train your algorithm with varying image resolutions. A sample of the dataset can be seen in Figure
5.5.

How you decide to preprocess your images can lead to varying performance levels, again
demonstrating that a background in computer vision and image processing basics will go a long
way when studying deep learning.

We’ll be using this dataset in the Practitioner Bundle when I demonstrate how to claim a top-25
position on the Kaggle Dogs vs. Cats leaderboard using the AlexNet architecture.

5.6 Flowers-17

The Flowers-17 dataset is a 17 category dataset with 80 images per class curated by Nilsback et al.
[52]. The goal of this dataset is to correctly predict the species of flower for a given input image. A
sample of the Flowers-17 dataset can be seen in Figure 5.6.

Flowers-17 can be considered a challenging dataset due to the dramatic changes in scale, view-
point angles, background clutter, varying lighting conditions, and intra-class variation. Furthermore,
with only 80 images per class, it becomes challenging for deep learning models to learn a rep-
resentation for each class without overfitting. As a general rule of thumb, it’s advisable to have
1,000-5,000 example images per class when training a deep neural network [10].

https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/practical-python-opencv/
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Figure 5.5: Samples from the Kaggle Dogs vs. Cats competition. The goal of this 2-class challenge
is to correctly identify a given input image as containing a "dog" or "cat".

We will study the Flowers-17 dataset inside the Practitioner Bundle and explore methods to
improve classification using transfer learning methods such as feature extraction and fine-tuning.

5.7 CALTECH-101
Introduced by Fei-Fei et al. [53] in 2004, the CALTECH-101 dataset is a popular benchmark dataset
for object detection. Typically used for object detection (i.e., predicting the (x,y)-coordinates of
the bounding box for a particular object in an image), we can use CALTECH-101 to study deep
learning algorithms as well.

The dataset of 8,677 images includes 101 categories spanning a diverse range of objects,
including elephants, bicycles, soccer balls, and even human brains, just to name a few. The
CALTECH-101 dataset exhibits heavy class imbalances (meaning that there are more example
images for some categories than others), making it interesting to study from a class imbalance
perspective.

Previous approaches to classifying images to CALTECH-101 obtained accuracies in the range
of 35-65% [54, 55, 56]. However, as I’ll demonstrate in the Practitioner Bundle, it’s easy for us to
leverage deep learning for image classification to obtain over 99% classification accuracy.

5.8 Tiny ImageNet 200
Stanford’s excellent cs231n: Convolutional Neural Networks for Visual Recognition class [57] has
put together an image classification challenge for students similar to the ImageNet challenge, but
smaller in scope. There are a total of 200 image classes in this dataset with 500 images for training,
50 images for validation, and 50 images for testing per class. Each image has been preprocessed
and cropped to 64×64×3 pixels making it easier for students to focus on deep learning techniques
rather than computer vision preprocessing functions.
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Figure 5.6: A sample of five (out of the seventeen total) classes in the Flowers-17 dataset where
each class represents a specific flower species.

However, as we’ll find in the Practitioner Bundle, the preprocessing steps applied by Karpathy
and Johnson actually make the problem a bit harder as some of the important, discriminating
information is cropped out during the preprocessing task. That said, I’ll be demonstrating how to
train the VGGNet, GoogLenet, and ResNet architectures on this dataset and claim a top position on
the leaderboard.

5.9 Adience
The Adience dataset, constructed by Eidinger et al. 2014 [58], is used to facilitate the study of age
and gender recognition. A total of 26,580 images are included in the dataset with ages ranging
from 0-60. The goal of this dataset is to correctly predict both the age and gender of the subject in
the image. We’ll discuss the Adience dataset further (and build our own age and gender recognition
systems) inside the ImageNet Bundle. You can see a sample of the Adience dataset in Figure 5.7.

5.10 ImageNet
Within the computer vision and deep learning communities, you might run into a bit of contextual
confusion regarding what ImageNet is and isn’t.

5.10.1 What Is ImageNet?
ImageNet is actually a project aimed at labeling and categorizing images into almost 22,000
categories based on a defined set of words and phrases.

At the time of this writing, there are over 14 million images in the ImageNet project. To
organize such a massive amount of data, ImageNet follows the WordNet hierarchy [59]. Each
meaningful word/phrase inside WordNet is called a “synonym set” or “synset” for short. Within the
ImageNet project, images are organized according to these synsets, with the goal being to have
1,000+ images per synset.

5.10.2 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
In the context of computer vision and deep learning, whenever you hear people talking about Ima-
geNet, they are very likely referring to the ImageNet Large Scale Visual Recognition Challenge [42],
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Figure 5.7: A sample of the Adience dataset for age and gender recognition. Age ranges span from
0-60+.

or simply ILSVRC for short.
The goal of the image classification track in this challenge is to train a model that can classify

an image into 1,000 separate categories using approximately 1.2 million images for training,
50,000 for validation, and 100,000 for testing. These 1,000 image categories represent object
classes that we encounter in our day-to-day lives, such as species of dogs, cats, various household
objects, vehicle types, and much more. You can find the full list of object categories in the ILSVRC
challenge here: http://pyimg.co/x1ler.

When it comes to image classification, the ImageNet challenge is the de facto standard for com-
puter vision classification algorithms – and the leaderboard for this challenge has been dominated by
Convolutional Neural Networks and deep learning techniques since 2012.

Inside the ImageNet Bundle I’ll be demonstrating how to train seminal network architectures
(AlexNet, SqueezeNet, VGGNet, GoogLeNet, ResNet) from scratch on this popular dataset,
allowing you to replicate the state-of-the-art results you see in the respective research papers.

5.11 Kaggle: Facial Expression Recognition Challenge

Another challenge put together by Kaggle, the goal of the Facial Expression Recognition Challenge
(FER) is to correctly identify the emotion a person is experiencing simply from a picture of their
face. A total of 35,888 images are provided in the FER challenge with the goal to label a given
facial expression into seven different categories:

1. Angry
2. Disgust (sometimes grouped in with “Fear” due to class imbalance)
3. Fear
4. Happy
5. Sad
6. Surprise

http://pyimg.co/x1ler
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Figure 5.8: A collage of ImageNet examples put together by Stanford University. This dataset is
massive with over 1.2 million images and 1,000 possible object categories. ImageNet is considered
the de facto standard for benchmarking image classification algorithms.

7. Neutral
I’ll be demonstrating how to use this dataset for emotion recognition inside the ImageNet

Bundle.

5.12 Indoor CVPR
The Indoor Scene Recognition dataset [60], as the name suggests, consists of a number of indoor
scenes, including stores, houses, leisure spaces, working areas, and public spaces. The goal of this
dataset is to correctly train a model that can recognize each of the areas. However, instead of using
this dataset for its original intended purpose, we’ll instead be using it inside the ImageNet Bundle
to automatically detect and correct image orientation.

5.13 Stanford Cars
Another dataset put together by Stanford, the Cars Dataset [61] consists of 16,185 images of 196
classes of cars. You can slice-and-dice this dataset any way you wish based on vehicle make,
model, or even manufacturer year. Even though there are relatively few images per class (with
heavily class imbalances), I’ll demonstrate how to use Convolutional Neural Networks to obtain
> 95% classification accuracy when labeling the make and model of a vehicle.

5.14 Summary
In this chapter, we reviewed the datasets you’ll encounter in the remainder of Deep Learning for
Computer Vision with Python. Some of these datasets are considered “toy” datasets, small sets of
images that we can use to learn the ropes of neural networks and deep learning. Other datasets
are popular due to historical reasons and serve as excellent benchmarks to evaluate new model
architectures. Finally, datasets such as ImageNet are still open-ended research topics and are used
to advance the state-of-the-art for deep learning.

Take the time to briefly familiarize yourself with these datasets now – I’ll be discussing each of
the datasets in detail when they are first introduced in their respective chapters.
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Figure 5.9: A sample of the facial expressions inside the Kaggle: Facial Expression Recognition
Challenge. We will train a CNN to recognize and identify each of these emotions. This CNN will
also be able to run in real-time on your CPU, enabling you to recognize emotions in video streams.

Figure 5.10: The Stanford Cars Dataset consists of 16,185 images with 196 vehicle make and
model classes. We’ll learn how obtain > 95% classification accuracy on this dataset inside the
ImageNet Bundle.





6. Configuring Your Development Environment

When it comes to learning a new technology (especially deep learning), configuring your devel-
opment environment tends to be half the battle. Between different operating systems, varying
dependency versions, and the actual libraries themselves, configuring your own deep learning
development environment can be quite the headache.

These issues are all further compounded by the speed in which deep learning libraries are
updated and released – new features push innovation, but also break previous versions. The CUDA
Toolkit, in particular, is a great example: on average there are 2-3 new releases of CUDA every
year.

With each new release brings optimizations, new features, and the ability to train neural
networks faster. But each release further complicates backward compatibility. This fast release
cycle implies that deep learning is not only dependent on how you configured your development
environment but when you configured it as well. Depending on the timeframe, your environment
may be obsolete!

Due to the rapidly changing nature of deep learning dependencies and libraries, I’ve decided to
move much of this chapter to the Companion Website (http://dl4cv.pyimagesearch.com/) so that
new, fresh tutorials will always be available for you to use.

You should use this chapter to help familiarize yourself with the various deep learning libraries
we’ll be using in this book, then follow instructions on the pages that link to those libraries from
this book.

6.1 Libraries and Packages
In order to become a successful deep learning practitioner, we need the right set of tools and
packages. This section details the programming language along with the primary libraries we’ll be
using to study deep learning for computer vision.

6.1.1 Python
We’ll be utilizing the Python programming language for all examples inside Deep Learning for
Computer Vision with Python. Python is an easy language to learn and is hands-down the best

http://dl4cv.pyimagesearch.com/
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way to work with deep learning algorithms. The simple, intuitive syntax allows you to focus on
learning the basics of deep learning, rather than spending hours fixing crazy compiler errors in
other languages.

6.1.2 Keras
To build and train our deep learning networks we’ll primarily be using the Keras library. Keras
supports both TensorFlow and Theano, making it super easy to build and train networks quickly.
Please refer to Section 6.2 for more information on TensorFlow and Theano compatibility with
Keras.

6.1.3 Mxnet
We’ll also be using mxnet, a deep learning library that specializes in distributed, multi-machine
learning. The ability to parallelize training across multiple GPUs/devices is critical when training
deep neural network architectures on massive image datasets (such as ImageNet).

R The mxnet library is only used in the ImageNet Bundle of this book.

6.1.4 OpenCV, scikit-image, scikit-learn, and more
Since this book focuses on applying deep learning to computer vision, we’ll be leveraging a few
extra libraries as well. You do not need to be an expert in these libraries or have prior experience
with them to be successful when using this book, but I do suggest familiarizing yourself with the
basics of OpenCV if you can. The first five chapters of Practical Python and OpenCV are more
than sufficient to understand the basics of the OpenCV library.

The main goal of OpenCV is real-time image processing. This library has been around since
1999, but it wasn’t until the 2.0 release in 2009 that we saw the incredible Python support which
included representing images as NumPy arrays.

OpenCV itself is written in C/C++, but Python bindings are provided when running the install.
OpenCV is hands down the de-facto standard when it comes to image processing, so we’ll make
use of it when loading images from disk, displaying them to our screen, and performing basic
image processing operations.

To complement OpenCV, we’ll also be using a tiny bit of scikit-image [62] (scikit-image.org),
a collection of algorithms for image processing.

Scikit-learn [5] (scikit-learn.org), is an open-source Python library for machine learning,
cross-validation, and visualization – this library complements Keras well and helps us from not
“reinventing the wheel”, especially when it comes to creating training/testing/validation splits and
validating the accuracy of our deep learning models.

6.2 Configuring Your Development Environment?

If you’re ready to configure your deep learning environment, just click the link below and follow
the provided instructions for your operating system and whether or not you will be using a GPU:

http://pyimg.co/k81c6

R If you have not already created your account on the companion website for Deep Learning
for Computer Vision with Python, please see the first few pages of this book (immediately
following the Table of Contents) for the registration link. From there, create your account and
you’ll be able to access the supplementary material.

https://www.pyimagesearch.com/practical-python-opencv/
http://scikit-image.org/
http://scikit-learn.org/stable/
http://pyimg.co/k81c6
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6.3 Preconfigured Virtual Machine

I realize that configuring your development environment can not only be a time consuming, tedious
task, but potentially a major barrier to entry if you’re new to Unix-based environments. Because
of this difficulty, your purchase of Deep Learning for Computer Vision with Python includes a
preconfigured Ubuntu VirtualBox virtual machine that ships with all the necessary deep learning
and computer vision libraries you’ll need to be successful when using this book preconfigured and
pre-installed.

Make sure you download the VirtualMachine.zip included with your bundle to have access
to this virtual machine. Instructions on how to setup and use your virtual machine can be found
inside the README.pdf included with your download of this book.

6.4 Cloud-based Instances

A major downside of the Ubuntu VM is that by the very definition of a virtual machine, a VM is not
allowed to access the physical components of your host machine (such as a GPU). When training
larger deep learning networks, having a GPU is extremely beneficial.

For those who wish to have access to a GPU when training their neural networks, I would
suggest either:

1. Configuring an Amazon EC2 instance with GPU support.
2. Signing up for a FloydHub account and configure your GPU instance in the cloud.
It’s important to note that each of these options charge based on the number of hours (EC2) or

seconds (FloydHub) that your instance is booted for. If you decide to go the “GPU in the cloud
route” be sure to compare prices and be conscious of your spending – there is nothing worse than
getting a large, unexpected bill for cloud usage.

If you choose to use a cloud-based instance then I would encourage you to use my pre-configured
Amazon Machine Instance (AMI). The AMI comes with all deep learning libraries you’ll need in
this book pre-configured and pre-installed.

To learn more about the AMI, please refer to Deep Learning for Computer Vision with Python
companion website.

6.5 How to Structure Your Projects

Now that you’ve had a chance to configure your development environment, take a second now and
download the .zip of the code and datasets associated with the Starter Bundle.

After you’ve downloaded the file, unarchive it, and you’ll see the following directory structure:

|--- sb_code
| |--- chapter07-first_image_classifier
| |--- chapter08-parameterized_learning
| |--- chapter09-optimization_methods
...
| |--- datasets

Each chapter (that includes accompanying code) has its own directory. Each directory then
includes:
• The source code for the chapter.
• The pyimagesearch library for deep learning that you’ll be creating as you follow along

with the book.
• Any additional files needed to run the respective examples.
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The datasets directory, as the name implies, contains all image datasets for the Starter Bundle.
As an example, let’s say I wanted to train my first image classifier. I would first change directory

into chapter07-first_image_classifier and then execute the knn.py script, pointing the
--dataset command line argument to the animals dataset:

$ cd ../chapter07-first_image_classifier/
$ python knn.py --dataset ../datasets/animals

This will instruct the knn.py script to train a simple k-Nearest Neighbor (k-NN) classifier on
the “animals” dataset (which is a subdirectory inside datasets), a small collection of dogs, cats,
and pandas in images.

If you are new to the command line and how to use command line arguments, I highly
recommend that you read up on command line arguments and how to use them before getting to
far in this book:

http://pyimg.co/vsapz
Becoming comfortable with the command line (and how to debug errors using the terminal) is

a very important skill for you to develop.
Finally, as a quick note, I wanted to mention that I prefer keeping my datasets separate from

my source code as it:
• Keeps my project structure neat and tidy
• Allows me to reuse datasets across multiple projects
I would encourage you to adopt a similar directory structure for your own projects.

6.6 Summary
When it comes to configuring your deep learning development environment, you have a number
of options. If you would prefer to work from your local machine, that’s totally reasonable, but
you will need to compile and install some dependencies first. If you are planning on using your
CUDA-compatible GPU on your local machine, a few extra install steps will be required as well.

For readers who are new to configuring their development environment or for readers who
simply want to skip the process altogether, be sure to take a look at the preconfigured Ubuntu
VirtualBox virtual machine included in the download of your Deep Learning for Computer Vision
with Python bundle.

If you would like to use a GPU but do not have one attached to your system, consider using
cloud-based instances such as Amazon EC2 or FloydHub. While these services do incur an hourly
charge for usage, they can save you money when compared to buying a GPU upfront.

Finally, please keep in mind that if you plan on doing any serious deep learning research or
development, consider using a Linux environment such as Ubuntu. While deep learning work can
absolutely be done on Windows (not recommended) or macOS (totally acceptable if you are just
getting started), nearly all production-level environments for deep learning leverage Linux-based
operating systems – keep this fact in mind when you are configuring your own deep learning
development environment.

http://pyimg.co/vsapz


7. Your First Image Classifier

Over the past few chapters we’ve spent a reasonable amount of time discussing image fundamentals,
types of learning, and even a four step pipeline we can follow when building our own image
classifiers. But we have yet to build an actual image classifier of our own.

That’s going to change in this chapter. We’ll start by building a few helper utilities to facilitate
preprocessing and loading images from disk. From there, we’ll discuss the k-Nearest Neighbors
(k-NN) classifier, your first exposure to using machine learning for image classification. In fact,
this algorithm is so simple that it doesn’t do any actual “learning” at all – yet it is still an important
algorithm to review so we can appreciate how neural networks learn from data in future chapters.

Finally, we’ll apply our k-NN algorithm to recognize various species of animals in images.

7.1 Working with Image Datasets

When working with image datasets, we first must consider the total size of the dataset in terms of
bytes. Is our dataset large enough to fit into the available RAM on our machine? Can we load the
dataset as if loading a large matrix or array? Or is the dataset so large that it exceeds our machine’s
memory, requiring us to “chunk” the dataset into segments and only load parts at a time?

The datasets inside the Starter Bundle are all small enough that we can load them into main
memory without having to worry about memory management; however, the much larger datasets
inside the Practitioner Bundle and ImageNet Bundle will require us to develop some clever methods
to efficiently handle loading images in a way that we can train an image classifier (without running
out of memory).

That said, you should always be cognizant of your dataset size before even starting to work with
image classification algorithms. As we’ll see throughout the rest of this chapter, taking the time to
organize, preprocess, and load your dataset is a critical aspect of building an image classifier.

7.1.1 Introducing the “Animals” Dataset

The “Animals” dataset is a simple example dataset I put together to demonstrate how to train image
classifiers using simple machine learning techniques as well as advanced deep learning algorithms.
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Figure 7.1: A sample of the 3-class animals dataset consisting of 1,000 images per dog, cat, and
panda class respectively for a total of 3,000 images.

Images inside the Animals dataset belong to three distinct classes: dogs, cats, and pandas,
with 1,000 example images per class. The dog and cat images were sampled from the Kaggle
Dogs vs. Cats challenge (http://pyimg.co/ogx37) while the panda images were sampled from the
ImageNet dataset [42].

Containing only 3,000 images, the Animals dataset can easily fit into the main memory of our
machines, which will make training our models much faster, without requiring us to write any
“overhead code” to manage a dataset that could not otherwise fit into memory. Best of all, a deep
learning model can quickly be trained on this dataset on either a CPU or GPU. Regardless of your
hardware setup, you can use this dataset to learn the basics of machine learning and deep learning.

Our goal in this chapter is to leverage the k-NN classifier to attempt to recognize each of these
species in an image using only the raw pixel intensities (i.e., no feature extraction is taking place).
As we’ll see, raw pixel intensities do not lend themselves well to the k-NN algorithm. Nonetheless,
this is an important benchmark experiment to run so we can appreciate why Convolutional Neural
Networks are able to obtain such high accuracy on raw pixel intensities while traditional machine
learning algorithms fail to do so.

7.1.2 The Start to Our Deep Learning Toolkit
As I mentioned in Section 1.5, we’ll be building our own custom deep learning toolkit throughout
the entirety of this book. We’ll start with basic helper functions and classes to preprocess images
and load small datasets, eventually building up to implementations of current state-of-the-art
Convolutional Neural Networks.

In fact, this is the exact same toolkit I use when performing deep learning experiments of my
own. This toolkit will be built piece by piece, chapter by chapter, allowing you to see the individual
components that make up the package, eventually becoming a full-fledged library that can be used
to rapidly build and train your own custom deep learning networks.

Let’s go ahead and start defining the project structure of our toolkit:

http://pyimg.co/ogx37
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|--- pyimagesearch

As you can see, we have a single module named pyimagesearch. All code that we develop
will exist inside the pyimagesearch module. For the purposes of this chapter, we’ll need to define
two submodules:

|--- pyimagesearch
| |--- __init__.py
| |--- datasets
| | |--- __init__.py
| | |--- simpledatasetloader.py
| |--- preprocessing
| | |--- __init__.py
| | |--- simplepreprocessor.py

The datasets submodule will start our implementation of a class named SimpleDatasetLoader.
We’ll be using this class to load small image datasets from disk (that can fit into main memory), op-
tionally preprocess each image in the dataset according to a set of functions, and then return
the:

1. Images (i.e., raw pixel intensities)
2. Class label associated with each image
We then have the preprocessing submodule. As we’ll see in later chapters, there are a

number of preprocessing methods we can apply to our dataset of images to boost classification
accuracy, including mean subtraction, sampling random patches, or simply resizing the image to a
fixed size. In this case, our SimplePreprocessor class will do the latter – load an image from
disk and resized it to a fixed size, ignoring aspect ratio. In the next two sections we’ll implement
SimplePreprocessor and SimpleDatasetLoader by hand.

R While we will be reviewing the entire pyimagesearch module for deep learning in this
book, I have purposely left explanations of the __init__.py files as an exercise to the reader.
These files simply contain shortcut imports and are not relevant to understanding the deep
learning and machine learning techniques applied to image classification. If you are new to
the Python programming language, I would suggest brushing up on the basics of package
imports [63] (http://pyimg.co/7w238).

7.1.3 A Basic Image Preprocessor
Machine learning algorithms such as k-NN, SVMs, and even Convolutional Neural Networks
require all images in a dataset to have a fixed feature vector size. In the case of images, this
requirement implies that our images must be preprocessed and scaled to have identical widths and
heights.

There are a number of ways to accomplish this resizing and scaling, ranging from more advanced
methods that respect the aspect ratio of the original image to the scaled image to simple methods that
ignore the aspect ratio and simply squash the width and height to the required dimensions. Exactly
which method you should use really depends on the complexity of your factors of variation (Section
4.1.3) – in some cases, ignoring the aspect ratio works just fine; in other cases, you’ll want to
preserve the aspect ratio.

In this chapter, we’ll start with the basic solution: building an image preprocessor that resizes
the image, ignoring the aspect ratio. Open up simplepreprocessor.py and then insert the
following code:

http://pyimg.co/7w238
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1 # import the necessary packages
2 import cv2
3

4 class SimplePreprocessor:
5 def __init__(self, width, height, inter=cv2.INTER_AREA):
6 # store the target image width, height, and interpolation
7 # method used when resizing
8 self.width = width
9 self.height = height

10 self.inter = inter
11

12 def preprocess(self, image):
13 # resize the image to a fixed size, ignoring the aspect
14 # ratio
15 return cv2.resize(image, (self.width, self.height),
16 interpolation=self.inter)

Line 2 imports our only required package, our OpenCV bindings. We then define the constructor
to the SimpleProcessor class on Line 5. The constructor requires two arguments, followed by a
third optional one, each detailed below:
• width: The target width of our input image after resizing.
• height: The target height of our input image after resizing.
• inter: An optional parameter used to control which interpolation algorithm is used when

resizing.
The preprocess function is defined on Line 12 requiring a single argument – the input image

that we want to preprocess.
Lines 15 and 16 preprocess the image by resizing it to a fixed size of width and height which

we then return to the calling function.
Again, this preprocessor is by definition very basic – all we are doing is accepting an input

image, resizing it to a fixed dimension, and then returning it. However, when combined with
the image dataset loader in the next section, this preprocessor will allow us to quickly load and
preprocess a dataset from disk, enabling us to briskly move through our image classification pipeline
and move onto more important aspects, such as training our actual classifier.

7.1.4 Building an Image Loader
Now that our SimplePreprocessor is defined, let’s move on to the SimpleDatasetLoader:

1 # import the necessary packages
2 import numpy as np
3 import cv2
4 import os
5

6 class SimpleDatasetLoader:
7 def __init__(self, preprocessors=None):
8 # store the image preprocessor
9 self.preprocessors = preprocessors

10

11 # if the preprocessors are None, initialize them as an
12 # empty list
13 if self.preprocessors is None:
14 self.preprocessors = []
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Lines 2-4 import our required Python packages: NumPy for numerical processing, cv2 for our
OpenCV bindings, and os so we can extract the names of subdirectories in image paths.

Line 7 defines the constructor to SimpleDatasetLoader where we can optionally pass in a
list of image preprocessors (such as SimpleProcessor) that can be sequentially applied to a given
input image.

Specifying these preprocessors as a list rather than a single value is important – there will be
times where we first need to resize an image to a fixed size, then perform some sort of scaling (such
as mean subtraction), followed by converting the image array to a format suitable for Keras. Each
of these preprocessors can be implemented independently, allowing us to apply them sequentially
to an image in an efficient manner.

We can then move on to the load method, the core of the SimpleDatasetLoader:

16 def load(self, imagePaths, verbose=-1):
17 # initialize the list of features and labels
18 data = []
19 labels = []
20

21 # loop over the input images
22 for (i, imagePath) in enumerate(imagePaths):
23 # load the image and extract the class label assuming
24 # that our path has the following format:
25 # /path/to/dataset/{class}/{image}.jpg
26 image = cv2.imread(imagePath)
27 label = imagePath.split(os.path.sep)[-2]

Our load method requires a single parameter – imagePaths, which is a list specifying the
file paths to the images in our dataset residing on disk. We can also supply a value for verbose.
This “verbosity level” can be used to print updates to a console, allowing us to monitor how many
images the SimpleDatasetLoader has processed.

Lines 18 and 19 initialize our data list (i.e., the images themselves) along with labels, the
list of class labels for our images.

On Line 22 we start looping over each of the input images. For each of these images, we load
it from disk (Line 26) and extract the class label based on the file path (Line 27). We make the
assumption that our datasets are organized on disk according to the following directory structure:

/dataset_name/class/image.jpg

The dataset_name can be whatever the name of the dataset is, in this case animals. The
class should be the name of the class label. For our example, class is either dog, cat, or panda.
Finally, image.jpg is the name of the actual image itself.

Based on this hierarchical directory structure, we can keep our datasets neat and organized. It
is thus safe to assume that all images inside the dog subdirectory are examples of dogs. Similarly,
we assume that all images in the panda directory contain examples of pandas.

Nearly every dataset that we review inside Deep Learning for Computer Vision with Python will
follow this hierarchical directory design structure – I strongly encourage you to do the same for
your own projects as well.

Now that our image is loaded from disk, we can preprocess it (if necessary):

29 # check to see if our preprocessors are not None
30 if self.preprocessors is not None:
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31 # loop over the preprocessors and apply each to
32 # the image
33 for p in self.preprocessors:
34 image = p.preprocess(image)
35

36 # treat our processed image as a "feature vector"
37 # by updating the data list followed by the labels
38 data.append(image)
39 labels.append(label)

Line 30 makes a quick check to ensure that our preprocessors is not None. If the check
passes, we loop over each of the preprocessors on Line 33 and sequentially apply them to the
image on Line 34 – this action allows us to form a chain of preprocessors that can be applied to
every image in a dataset.

Once the image has been preprocessed, we update the data and label lists, respectively (Lines
39 and 39).

Our last code block simply handles printing updates to our console and then returning a 2-tuple
of the data and labels to the calling function:

41 # show an update every ‘verbose‘ images
42 if verbose > 0 and i > 0 and (i + 1) % verbose == 0:
43 print("[INFO] processed {}/{}".format(i + 1,
44 len(imagePaths)))
45

46 # return a tuple of the data and labels
47 return (np.array(data), np.array(labels))

As you can see, our dataset loader is simple by design; however, it affords us the ability to
apply any number of image processors to every image in our dataset with ease. The only caveat of
this dataset loader is that it assumes that all images in the dataset can fit into main memory at once.

For datasets that are too large to fit into your system’s RAM, we’ll need to design a more
complex dataset loader – I cover these more advanced dataset loaders inside the Practitioner Bundle.
Now that we understand how to (1) preprocess an image and (2) load a collection of images from
disk, we can now move on to the image classification stage.

7.2 k-NN: A Simple Classifier

The k-Nearest Neighbor classifier is by far the most simple machine learning and image classi-
fication algorithm. In fact, it’s so simple that it doesn’t actually “learn” anything. Instead, this
algorithm directly relies on the distance between feature vectors (which in our case, are the raw
RGB pixel intensities of the images).

Simply put, the k-NN algorithm classifies unknown data points by finding the most common
class among the k closest examples. Each data point in the k closest data points casts a vote, and the
category with the highest number of votes wins. Or, in plain English: “Tell me who your neighbors
are, and I’ll tell you who you are” [64], as Figure 7.2 demonstrates.

In order for the k-NN algorithm to work, it makes the primary assumption that images with
similar visual contents lie close together in an n-dimensional space. Here, we can see three
categories of images, denoted as dogs, cats, and pandas, respectively. In this pretend example
we have plotted the "fluffiness" of the animal’s coat along the x−axis and the "lightness" of the
coat along the y-axis. Each of the animal data points are grouped relatively close together in our
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Figure 7.2: Given our dataset of dogs, cats, pandas, how might we classify the image outlined in
red?

n-dimensional space. This implies that the distance between two cat images is much smaller than
the distance between a cat and a dog.

However, in order to apply the k-NN classifier, we first need to select a distance metric or
similarity function. A common choice includes the Euclidean distance (often called the L2-
distance):

d(p,q) =

√
N

∑
i=1

(qi− pi)2 (7.1)

However, other distance metrics such as the Manhattan/city block (often called the L1-distance)
can be used as well:

d(p,q) =
N

∑
i=1
|qi− pi| (7.2)

In reality, you can use whichever distance metric/similarity function that most suits your data
(and gives you the best classification results). However, for the remainder of this lesson, we’ll be
using the most popular distance metric: the Euclidean distance.
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7.2.1 A Worked k-NN Example
At this point, we understand the principles of the k-NN algorithm. We know that it relies on the
distance between feature vectors/images to make a classification. And we know that it requires a
distance/similarity function to compute these distances.

But how do we actually make a classification? To answer this question, let’s look at Figure 7.3.
Here we have a dataset of three types of animals – dogs, cats, and pandas – and we have plotted
them according to their fluffiness and lightness of their coat.

We have also inserted an "unknown animal" that we are trying to classify using only a single
neighbor (i.e., k = 1). In this case, the nearest animal to the input image is a dog data point; thus
our input image should be classified as dog.

Figure 7.3: In this example we have inserted an unknown image (highlighted in red) into the
dataset and then used the distance between the unknown animal and dataset of animals to make the
classification.

Let’s try another “unknown animal”, this time using k = 3 (Figure 7.4). We have found two
cats and one panda in the top three results. Since the cat category has the largest number of votes,
we’ll classify our input image as cat.

We can keep performing this process for varying values of k, but no matter how large or small
k becomes, the principle remains the same – the category with the largest number of votes in the
k closest training points wins and is used as the label for the input data point.

R In the event if a tie, the k-NN algorithm chooses one of the tied class labels at random.
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Figure 7.4: Classifying another animal, only this time we used k = 3 rather than just k = 1. Since
there are two cat images closer to the input image than the single panda image, we’ll label this
input input image as cat.

7.2.2 k-NN Hyperparameters
There are two clear hyperparameters that we are concerned with when running the k-NN algorithm.
The first is obvious: the value of k. What is the optimal value of k? If it’s too small (such as k = 1),
then we gain efficiency but become susceptible to noise and outlier data points. However, if k is too
large, then we are at risk of over-smoothing our classification results and increasing bias.

The second parameter we should consider is the actual distance metric. Is the Euclidean distance
the best choice? What about the Manhattan distance?

In the next section, we’ll train our k-NN classifier on the Animals dataset and evaluate the
model on our testing set. I would encourage you to play around with different values of k along
with varying distance metrics, noting how performance changes.

For an exhaustive review of how to tune k-NN hyperparameters, please refer to Lesson 4.3
inside the PyImageSearch Gurus course [33].

7.2.3 Implementing k-NN
The goal of this section is to train a k-NN classifier on the raw pixel intensities of the Animals
dataset and use it to classify unknown animal images. We’ll be using our four step pipeline to train
classifiers from Section 4.3.2:
• Step #1 – Gather Our Dataset: The Animals datasets consists of 3,000 images with 1,000

images per dog, cat, and panda class, respectively. Each image is represented in the RGB

https://www.pyimagesearch.com/pyimagesearch-gurus/
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color space. We will preprocess each image by resizing it to 32× 32 pixels. Taking into
account the three RGB channels, the resized image dimensions imply that each image in the
dataset is represented by 32×32×3 = 3,072 integers.
• Step #2 – Split the Dataset: For this simple example, we’ll be using two splits of the data.

One split for training, and the other for testing. We will leave out the validation set for
hyperparameter tuning and leave this as an exercise to the reader.
• Step #3 – Train the Classifier: Our k-NN classifier will be trained on the raw pixel intensi-

ties of the images in the training set.
• Step #4 – Evaluate: Once our k-NN classifier is trained, we can evaluate performance on

the test set.
Let’s go ahead and get started. Open up a new file, name it knn.py, and insert the following

code:

1 # import the necessary packages
2 from sklearn.neighbors import KNeighborsClassifier
3 from sklearn.preprocessing import LabelEncoder
4 from sklearn.model_selection import train_test_split
5 from sklearn.metrics import classification_report
6 from pyimagesearch.preprocessing import SimplePreprocessor
7 from pyimagesearch.datasets import SimpleDatasetLoader
8 from imutils import paths
9 import argparse

Lines 2-9 import our required Python packages. The most important ones to take note of are:
• Line 2: The KNeighborsClassifier is our implementation of the k-NN algorithm, pro-

vided by the scikit-learn library.
• Line 3: LabelEncoder, a helper utility to convert labels represented as strings to integers

where there is one unique integer per class label (a common practice when applying machine
learning).
• Line 4: We’ll import the train_test_split function, which is a handy convenience

function used to help us create our training and testing splits.
• Line 5: The classification_report function is another utility function that is used to

help us evaluate the performance of our classifier and print a nicely formatted table of results
to our console.

You can also see our implementations of the SimplePreprocessor and SimpleDatasetLoader
imported on Lines 6 and Line 7, respectively.

Next, let’s parse our command line arguments:

11 # construct the argument parse and parse the arguments
12 ap = argparse.ArgumentParser()
13 ap.add_argument("-d", "--dataset", required=True,
14 help="path to input dataset")
15 ap.add_argument("-k", "--neighbors", type=int, default=1,
16 help="# of nearest neighbors for classification")
17 ap.add_argument("-j", "--jobs", type=int, default=-1,
18 help="# of jobs for k-NN distance (-1 uses all available cores)")
19 args = vars(ap.parse_args())

Our script requires one command line argument, followed by two optional ones, each reviewed
below:
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• --dataset: The path to where our input image dataset resides on disk.
• --neighbors: Optional, the number of neighbors k to apply when using the k-NN algorithm.
• --jobs: Optional, the number of concurrent jobs to run when computing the distance

between an input data point and the training set. A value of -1 will use all available cores on
the processor.

Now that our command line arguments are parsed, we can grab the file paths of the images in
our dataset, followed by loading and preprocessing them (Step #1 in the classification pipeline):

21 # grab the list of images that we’ll be describing
22 print("[INFO] loading images...")
23 imagePaths = list(paths.list_images(args["dataset"]))
24

25 # initialize the image preprocessor, load the dataset from disk,
26 # and reshape the data matrix
27 sp = SimplePreprocessor(32, 32)
28 sdl = SimpleDatasetLoader(preprocessors=[sp])
29 (data, labels) = sdl.load(imagePaths, verbose=500)
30 data = data.reshape((data.shape[0], 3072))
31

32 # show some information on memory consumption of the images
33 print("[INFO] features matrix: {:.1f}MB".format(
34 data.nbytes / (1024 * 1000.0)))

Line 23 grabs the file paths to all images in our dataset. We then initialize our SimplePreprocessor
used to resize each image to 32×32 pixels on Line 27.

The SimpleDatasetLoader is initialized on Line 28, supplying our instantiated SimplePreprocessor
as an argument (implying that sp will be applied to every image in the dataset).

A call to .load on Line 29 loads our actual image dataset from disk. This method returns a
2-tuple of our data (each image resized to 32×32 pixels) along with the labels for each image.

After loading our images from disk, the data NumPy array has a .shape of (3000, 32, 32,
3), indicating there are 3,000 images in the dataset, each 32×32 pixels with 3 channels.

However, in order to apply the k-NN algorithm, we need to “flatten” our images from a 3D
representation to a single list of pixel intensities. We accomplish this, Line 30 calls the .reshape
method on the data NumPy array, flattening the 32× 32× 3 images into an array with shape
(3000, 3072). The actual image data hasn’t changed at all – the images are simply represented as
a list of 3,000 entries, each of 3,072-dim (32×32×3 = 3,072).

To demonstrate how much memory it takes to store these 3,000 images in memory, Lines
33 and 34 compute the number of bytes the array consumes and then converts the number to
megabytes).

Next, let’s building our training and testing splits (Step #2 in our pipeline):

36 # encode the labels as integers
37 le = LabelEncoder()
38 labels = le.fit_transform(labels)
39

40 # partition the data into training and testing splits using 75% of
41 # the data for training and the remaining 25% for testing
42 (trainX, testX, trainY, testY) = train_test_split(data, labels,
43 test_size=0.25, random_state=42)
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Lines 37 and 38 convert our labels (represented as strings) to integers where we have one
unique integer per class. This conversion allows us to map the cat class to the integer 0, the
dog class to integer 1, and the panda class to integer 2. Many machine learning algorithms assume
that the class labels are encoded as integers, so it’s important that we get in the habit of performing
this step.

Computing our training and testing splits is handled by the train_test_split function on
Lines 42 and 43. Here we partition our data and labels into two unique sets: 75% of the data
for training and 25% for testing.

It is common to use the variable X to refer to a dataset that contains the data points we’ll use
for training and testing while y refers to the class labels (you’ll learn more about this in Chapter
8 on parameterized learning). Therefore, we use the variables trainX and testX to refer to the
training and testing examples, respectively. The variables trainY and testY are our training and
testing labels. You will see these common notations throughout this book and in other machine
learning books, courses, and tutorials that you may read.

Finally, we are able to create our k-NN classifier and evaluate it (Steps #3 and #4 in the image
classification pipeline):

45 # train and evaluate a k-NN classifier on the raw pixel intensities
46 print("[INFO] evaluating k-NN classifier...")
47 model = KNeighborsClassifier(n_neighbors=args["neighbors"],
48 n_jobs=args["jobs"])
49 model.fit(trainX, trainY)
50 print(classification_report(testY, model.predict(testX),
51 target_names=le.classes_))

Lines 47 and 48 initialize the KNeighborsClassifier class. A call to the .fit method on
Line 49 “trains” the classifier, although there is no actual “learning” going on here – the k-NN
model is simply storing the trainX and trainY data internally so it can create predictions on the
testing set by computing the distance between the input data and the trainX data.

Lines 50 and 51 evaluate our classifier by using the classification_report function. Here
we need to supply the testY class labels, the predicted class labels from our model, and optionally
the names of the class labels (i.e., “dog”, “cat”, “panda”).

7.2.4 k-NN Results
To run our k-NN classifier, execute the following command:

$ python knn.py --dataset ../datasets/animals

You should then see the following output similar to the following:

[INFO] loading images...
[INFO] processed 500/3000
[INFO] processed 1000/3000
[INFO] processed 1500/3000
[INFO] processed 2000/3000
[INFO] processed 2500/3000
[INFO] processed 3000/3000
[INFO] features matrix: 9.0MB
[INFO] evaluating k-NN classifier...
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precision recall f1-score support

cats 0.39 0.49 0.43 239
dogs 0.36 0.47 0.41 249

panda 0.79 0.36 0.50 262

avg / total 0.52 0.44 0.45 750

Notice how our feature matrix only consumes 9MB of memory for 3,000 images, each of size
32×32×3 – this dataset can easily be stored in memory on modern machines without a problem.

Evaluating our classifier, we see that we obtained 52% accuracy – this accuracy isn’t bad for a
classifier that doesn’t do any true “learning” at all, given that the probability of randomly guessing
the correct answer is 1/3.

However, it is interesting to inspect the accuracy for each of the class labels. The “panda” class
was correctly classified 79% of the time, likely due to the fact that pandas are largely black and
white and thus these images lie closer together in our 3,072-dim space.

Dogs and cats obtain substantially lower classification accuracy at 39% and 36%, respectively.
These results can be attributed to the fact that dogs and cats can have very similar shades of fur
coats and the color of their coats cannot be used to discriminate between them. Background noise
(such as grass in a backyard, the color of a couch an animal is resting on, etc.) can also “confuse”
the k-NN algorithm as its unable to learn any discriminating patterns between these species. This
confusion is one of the primary drawbacks of the k-NN algorithm: while it’s simple, it is also
unable to learn from the data.

Our next chapter will discuss the concept of parameterized learning where we can actually
learn patterns from the images themselves rather than assuming images with similar contents will
group together in an n-dimensional space.

7.2.5 Pros and Cons of k-NN
One main advantage of the k-NN algorithm is that it’s extremely simple to implement and understand.
Furthermore, the classifier takes absolutely no time to train, since all we need to do is store our data
points for the purpose of later computing distances to them and obtaining our final classification.

However, we pay for this simplicity at classification time. Classifying a new testing point
requires a comparison to every single data point in our training data, which scales O(N), making
working with larger datasets computationally prohibitive.

We can combat this time cost by using Approximate Nearest Neighbor (ANN) algorithms
(such as kd-trees [65], FLANN [66], random projections [67, 68, 69], etc.); however, using these
algorithms require that we trade space/time complexity for the “correctness” of our nearest neighbor
algorithm since we are performing an approximation. That said, in many cases, it is well worth the
effort and small loss in accuracy to use the k-NN algorithm. This behavior is in contrast to most
machine learning algorithms (and all neural networks), where we spend a large amount of time
upfront training our model to obtain high accuracy, and, in turn, have very fast classifications at
testing time.

Finally, the k-NN algorithm is more suited for low-dimensional feature spaces (which images
are not). Distances in high-dimensional feature spaces are often unintuitive, which you can read
more about in Pedro Domingo’s excellent paper [70].

It’s also important to note that the k-NN algorithm doesn’t actually “learn” anything – the
algorithm is not able to make itself smarter if it makes mistakes; it’s simply relying on distances in
an n-dimensional space to make the classification.

Given these cons, why bother even studying the k-NN algorithm? The reason is that the
algorithm is simple. It’s easy to understand. And most importantly, it gives us a baseline that we
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can use to compare neural networks and Convolutional Neural Networks to as we progress through
the rest of this book.

7.3 Summary
In this chapter, we learned how to build a simple image processor and load an image dataset into
memory. We then discussed the k-Nearest Neighbor classifier, or k-NN for short.

The k-NN algorithm classifies unknown data points by comparing the unknown data point to
each data point in the training set. The comparison is done using a distance function or similarity
metric. Then, from the most k similar examples in the training set, we accumulate the number of
“votes” for each label. The category with the highest number of votes “wins” and is chosen as the
overall classification.

While simple and intuitive, the k-NN algorithm has a number of drawbacks. The first is that it
doesn’t actually “learn” anything – if the algorithm makes a mistake, it has no way to “correct” and
“improve” itself for later classifications. Secondly, without specialized data structures, the k-NN
algorithm scales linearly with the number of data points, making it not only practically challenging
to use in high dimensions, but theoretically questionable in terms of its usage [70].

Now that we have obtained a baseline for image classification using the k-NN algorithm, we
can move on the parameterized learning, the foundation on which all deep learning and neural
networks are built on. Using parameterized learning, we can actually learn from our input data and
discover underlying patterns. This process will enable us to build high accuracy image classifiers
that blow the performance of k-NN out of the water.



8. Parameterized Learning

In our previous chapter we learned about the k-NN classifier – a machine learning model so simple
that it doesn’t do any actual “learning” at all. We simply have to store the training data inside
the model, and then predictions are made at test time by comparing the testing data points to
our training data.

We’ve already discussed many of the pros and cons of k-NN, but in the context of large-scale
datasets and deep learning, the most prohibitive aspect of k-NN is the data itself. While training
may be simple, testing is quite slow, with the bottleneck being the distance computation between
vectors. Computing the distances between training and testing points scales linearly with the
number of points in our dataset, making the method impractical when our datasets become quite
large. And while we can apply Approximate Nearest Neighbor methods such as ANN [71], FLANN
[66], or Annoy [72], to speed up the search, that still doesn’t alleviate the problem that k-NN cannot
function without maintaining a replica of data inside the instantiation (or at least have a pointer to
training set on disk, etc.)

To see why storing an exact replica of the training data inside the model is an issue, consider
training a k-NN model and then deploying it to a customer base of 100, 1,000, or even 1,000,000
users. If your training set is only a few megabytes, this may not be a problem – but if your training
set is measured in gigabytes to terabytes (as is the case for many datasets that we apply deep
learning to), you have a real problem on your hands.

Consider the training set of the ImageNet dataset [42] which includes over 1.2 million images.
If we trained a k-NN model on this dataset and then tried to deploy it to a set of users, we would
need these users to download the k-NN model which internally represents replicas of the 1.2
million images. Depending on how you compress and store the data, this model could measure in
hundreds of gigabytes to terabytes in storage costs and network overhead. Not only is this a waste
of resources, its also not optimal for constructing a machine learning model.

Instead, a more desirable approach would be to define a machine learning model that can learn
patterns from our input data during training time (requiring us to spend more time on the training
process), but have the benefit of being defined by a small number of parameters that can easily be
used to represent the model, regardless of training size. This type of machine learning is called
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parameterized learning, which is defined as:

“A learning model that summarizes data with a set of parameters of fixed size
(independent of the number of training examples) is called a parametric model. No
matter how much data you throw at the parametric model, it won’t change its mind
about how many parameters it needs.” – Russell and Norvig (2009) [73]

In this chapter, we’ll review the concept of parameterized learning and discuss how to implement
a simple linear classifier. As we’ll see later in this book, parameterized learning is the cornerstone
of modern day machine learning and deep learning algorithms.

R Much of this chapter was inspired by Andrej Karpathy’s excellent Linear Classification notes
inside Stanford’s cs231n class [74]. A big thank you to Karpathy and the rest of the cs231n
teaching assistants for putting together such accessible notes.

8.1 An Introduction to Linear Classification

The first half of this chapter focuses on the fundamental theory and mathematics surrounding linear
classification – and in general, parameterized classification algorithms that learn patterns from
their training data. From there, I provide an actual linear classification implementation and example
in Python so we can see how these types of algorithms work in code.

8.1.1 Four Components of Parameterized Learning
I’ve used the word “parameterized” a few times now, but what exactly does it mean?

Simply put: parameterization is the process of defining the necessary parameters of a
given model. In the task of machine learning, parameterization involves defining a problem in
terms of four key components: data, a scoring function, a loss function, and weights and biases.
We’ll review each of these below.

Data
This component is our input data that we are going to learn from. This data includes both the data
points (i.e., raw pixel intensities from images, extracted features, etc.) and their associated class
labels. Typically we denote our data in terms of a multi-dimensional design matrix [10].

Each row in the design matrix represents a data point while each column (which itself could be
a multi-dimensional array) of the matrix corresponds to a different feature. For example, consider
a dataset of 100 images in the RGB color space, each image sized 32× 32 pixels. The design
matrix for this dataset would be X ⊆ R100×(32×32×3) where Xi defines the i-th image in R. Using
this notation, X1 is the first image, X2 the second image, and so on.

Along with the design matrix, we also define a vector y where yi provides the class label for the
i-th example in the dataset.

Scoring Function
The scoring function accepts our data as an input and maps the data to class labels. For instance,
given our set of input images, the scoring function takes these data points, applies some function
f (our scoring function), and then returns the predicted class labels, similar to the pseudocode
below:

INPUT_IMAGES => F(INPUT_IMAGES) => OUTPUT_CLASS_LABELS
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Loss Function

A loss function quantifies how well our predicted class labels agree with our ground-truth labels.
The higher level of agreement between these two sets of labels, the lower our loss (and higher our
classification accuracy, at least on the training set).

Our goal when training a machine learning model is to minimize the loss function, thereby
increasing our classification accuracy.

Weights and Biases

The weight matrix, typically denoted as W and the bias vector b are called the weights or
parameters of our classifier that we’ll actually be optimizing. Based on the output of our scoring
function and loss function, we’ll be tweaking and fiddling with the values of the weights and biases
to increase classification accuracy.

Depending on your model type, there may exist many more parameters, but at the most basic
level, these are the four building blocks of parameterized learning that you’ll commonly encounter.
Once we’ve defined these four key components, we can then apply optimization methods that allow
us to find a set of parametersW and b that minimize our loss function with respect to our scoring
function (while increasing classification accuracy on our data).

Next, let’s look at how these components can work together to build a linear classifier, trans-
forming the input data into actual predictions.

8.1.2 Linear Classification: From Images to Labels

In this section, we are going to look at a more mathematical motivation of the parameterized model
approach to machine learning.

To start, we need our data. Let’s assume that our training dataset is denoted as xi where each
image has an associated class label yi. We’ll assume that i = 1, ...,N and yi = 1, ...,K, implying
that we have N data points of dimensionality D, separated into K unique categories.

To make this idea more concrete, consider our “Animals” dataset from Chapter 7. In this dataset,
we have N = 3,000 total images. Each image is 32× 32 pixels, represented in the RGB color
space (i.e,. three channels per image). We can represent each image as D = 32×32×3 = 3,072
distinct values. Finally, we know there are a total of K = 3 class labels: one for the dog, cat, and
panda classes, respectively.

Given these variables, we must now define a scoring function f that maps the images to the
class label scores. One method to accomplish this scoring is via a simple linear mapping:

f (xi,W,b) =Wxi +b (8.1)

Let’s assume that each xi is represented as a single column vector with shape [D×1] (in this
example we would flatten the 32×32×3 image into a list of 3,072 integers). Our weight matrix
W would then have a shape of [K×D] (the number of class labels by the dimensionality of the
input images). Finally b, the bias vector would be of size [K×1]. The bias vector allows us to
shift and translate our scoring function in one direction or another without actually influencing our
weight matrixW . The bias parameter is often critical for successful learning.

Going back to the Animals dataset example, each xi is represented by a list of 3,072 pixel
values, so xi, therefore, has the shape [3,072× 1]. The weight matrix W will have a shape of
[3×3,072] and finally the bias vector b will be of size [3×1].

Figure 8.1 follows an illustration of the linear classification scoring function f . On the left, we
have our original input image, represented as a 32×32×3 image. We then flatten this image into a
list of 3,072 pixel intensities by taking the 3D array and reshaping it into a 1D list.
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Figure 8.1: Illustrating the dot product of the weight matrix W and feature vector x, followed
by the addition of the bias term. Figure inspired by Karpathy’s example in Stanford University’s
cs231n course [57].

Our weight matrixW contains three rows (one for each class label) and 3,072 columns (one
for each of the pixels in the image). After taking the dot product betweenW and xi, we add in the
bias vector b – the result is our actual scoring function. Our scoring function yields three values
on the right: the scores associated with the dog, cat, and panda labels, respectively.

R Readers who are unfamiliar with taking dot products should read this quick and concise
tutorial: http://pyimg.co/fgcvp. For readers interested in studying linear algebra in depth, I
highly recommend working through Coding the Matrix Linear Algebra through Applications
to Computer Science by Philip N. Klein [75].

Looking at the above figure and equation, you can convince yourself that the input xi and yi are
fixed and not something we can modify. Sure, we can obtain different xis by applying various
transformations to the input image – but once we pass the image into the scoring function, these
values do not change. In fact, the only parameters that we have any control over (in terms of
parameterized learning) are our weight matrixW and our bias vector b. Therefore, our goal is to
utilize both our scoring function and loss function to optimize (i.e., modify in a systematic way) the
weight and bias vectors such that our classification accuracy increases.

Exactly how we optimize the weight matrix depends on our loss function, but typically involves
some form of gradient descent. We’ll be reviewing loss functions later in this chapter. Optimization
methods such as gradient descent (and its variants) will be discussed in Chapter 9. However, for the
time being, simply understand that given a scoring function, we will also define a loss function that
tells us how “good” our predictions are on the input data.

8.1.3 Advantages of Parameterized Learning and Linear Classification
There are two primary advantages to utilizing parameterized learning:

1. Once we are done training our model, we can discard the input data and keep only the
weight matrixW and the bias vector b. This substantially reduces the size of our model
since we need to store two sets of vectors (versus the entire training set).

2. Classifying new test data is fast. In order to perform a classification, all we need to do is
take the dot product of W and xi, follow by adding in the bias b (i.e., apply our scoring

http://pyimg.co/fgcvp
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function). Doing it this way is significantly faster than needing to compare each testing point
to every training example, as in the k-NN algorithm.

8.1.4 A Simple Linear Classifier With Python
Now that we’ve reviewed the concept of parameterized learning and linear classification, let’s
implement a very simple linear classifier using Python.

The purpose of this example is not to demonstrate how we train a model from start to finish
(we’ll be covering that in a later chapter as we still have some ground to cover before we’re ready
to train a model from scratch), but to simply show how we would initialize a weight matrix W ,
bias vector b, and then use these parameters to classify an image via a simple dot product.

Let’s go ahead and get this example started. Our goal here is to write a Python script that will
correctly classify Figure 8.2 as “dog”.

Figure 8.2: Our example input image that we are going to classifier with a simple linear classifier.

To see how we can accomplish this classification, open a new file, name it linear_example.py,
and insert the following code:

1 # import the necessary packages
2 import numpy as np
3 import cv2
4

5 # initialize the class labels and set the seed of the pseudorandom
6 # number generator so we can reproduce our results
7 labels = ["dog", "cat", "panda"]
8 np.random.seed(1)

Lines 2 and 3 import our required Python packages. We’ll use NumPy for our numerical
processing and OpenCV to load our example image from disk.

Line 7 initializes the list of target class labels for the “Animals” dataset while Line 8 sets the
pseudorandom number generator for NumPy, ensuring that we can reproduce the results of this
experiment.

Next, let’s initialize our weight matrix and bias vector:

10 # randomly initialize our weight matrix and bias vector -- in a
11 # *real* training and classification task, these parameters would
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12 # be *learned* by our model, but for the sake of this example,
13 # let’s use random values
14 W = np.random.randn(3, 3072)
15 b = np.random.randn(3)

Line 14 initializes the weight matrix W with random values from a uniform distribution, sampled
over the range [0,1]. This weight matrix has 3 rows (one for each of the class labels) and 3072
columns (one for each of the pixels in our 32×32×3 image).

We then initialize the bias vector on Line 15 – this vector is also randomly filled with values
uniformly sampled over the distribution [0,1]. Our bias vector has 3 rows (corresponding to the
number of class labels) along with one column.

If we were training this linear classifier from scratch we would need to learn the values of W
and b through an optimization process. However, since we have not reached the optimization stage
of training a model, I have initialized the pseudorandom number generator with a value 1 to ensure
the random values give us the “correct” classification (I tested random initialization values ahead of
time to determine which value gives us the correct classification). For the time being, simply treat
the weight matrix W and the bias vector b as "black box arrays" that are optimized in a magical way
– we’ll pull back the curtain and reveal how these parameters are learned in the next chapter.

Now that our weight matrix and bias vector are initialized, let’s load our example image from
disk:

17 # load our example image, resize it, and then flatten it into our
18 # "feature vector" representation
19 orig = cv2.imread("beagle.png")
20 image = cv2.resize(orig, (32, 32)).flatten()

Line 19 loads our image from disk via cv2.imread. We then resize the image to 32×32 pixels
(ignoring the aspect ratio) on Line 20 – our image is now represented as a (32, 32, 3) NumPy
array, which we flatten into 3,072-dim vector.

The next step is to compute the output class label scores by applying our scoring function:

22 # compute the output scores by taking the dot product between the
23 # weight matrix and image pixels, followed by adding in the bias
24 scores = W.dot(image) + b

Line 24 is the scoring function itself – it’s simply the dot product between the weight matrix W
and the input image pixel intensities, followed by adding in the bias b.

Finally, our last code block handles writing the scoring function values for each of the class
labels to our terminal, then displaying the result to our screen:

26 # loop over the scores + labels and display them
27 for (label, score) in zip(labels, scores):
28 print("[INFO] {}: {:.2f}".format(label, score))
29

30 # draw the label with the highest score on the image as our
31 # prediction
32 cv2.putText(orig, "Label: {}".format(labels[np.argmax(scores)]),
33 (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
34
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35 # display our input image
36 cv2.imshow("Image", orig)
37 cv2.waitKey(0)

To execute our example, just issue the following command:

$ python linear_example.py
[INFO] dog: 7963.93
[INFO] cat: -2930.99
[INFO] panda: 3362.47

Notice how the dog class has the largest scoring function value, which implies that the “dog”
class would be chosen as the prediction by our classifier. In fact, we can see the text dog correctly
drawn on our input image (Figure 8.2) in Figure 8.3.

Figure 8.3: In this example, our linear classifier was correctly able to label the input image as dog;
however, keep in mind that this is a worked example. Later in this book you’ll learn how to train
our weights and biases to automatically make these predictions.

Again, keep in mind that this was a worked example. I purposely set the random state of our
Python script to generate W and b values that would lead to the correct classification (you can change
the pseudorandom seed value on Line 8 to see for yourself how different random initializations
will produce different output predictions).

In practice, you would never initialize your W and b values and assume they would give you the
correct classification without some sort of learning process. Instead, when training our own machine
learning models from scratch we would need to optimize and learn W and b via an optimization
algorithm, such as gradient descent.

We’ll cover optimization and gradient descent in the next chapter, but in the meantime, simply
take the time to ensure you understand Line 24 and how a linear classifier makes a classification
by taking the dot product between a weight matrix and an input data point, followed by adding in
the bias. Our entire model can therefore be defined via two values: the weight matrix and the bias
vector. This representation is not only compact but also quite powerful when we train machine
learning models from scratch.
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8.2 The Role of Loss Functions
In our last section we discussed the concept of parameterized learning. This type of learning allows
us to take sets of input data and class labels, and actually learn a function that maps the input to the
output predictions by defining a set of parameters and optimizing over them.

But in order to actually “learn” the mapping from the input data to class labels via our scoring
function, we need to discuss two important concepts:

1. Loss functions
2. Optimization methods
The rest of this chapter is dedicated to common loss functions you’ll encounter when building

neural networks and deep learning networks. Chapter 9 of the Starter Bundle is dedicated entirely
to basic optimization methods while Chapter 7 of the Practitioner Bundle discusses more advanced
optimization methods.

Again, this chapter is meant to be a brief review of loss functions and their role in parameterized
learning. A thorough discussion of loss functions is outside the scope of this book and I would
highly recommend Andrew Ng’s Coursera course [76], Witten et al. [77], Harrington [78], and
Marsland [79] if you would like to complement this chapter with more mathematically rigorous
derivations.

8.2.1 What Are Loss Functions?

Figure 8.4: The training losses for two separate models trained on the CIFAR-10 dataset are plotted
over time. Our loss function quantifies how “good” or “bad” of a job a given model is doing at
classifying data points from the dataset. Model #1 achieves considerably lower loss than Model #2.

At the most basic level, a loss function quantifies how “good” or “bad” a given predictor is at
classifying the input data points in a dataset. A visualization of loss functions plotted over time
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for two separate models trained on the CIFAR-10 dataset is shown in Figure 8.4. The smaller
the loss, the better a job the classifier is at modeling the relationship between the input data and
output class labels (although there is a point where we can overfit our model – by modeling the
training data too closely, our model loses the ability to generalize, a phenomenon we’ll discuss in
detail in Chapter 17). Conversely, the larger our loss, the more work needs to be done to increase
classification accuracy.

To improve our classification accuracy, we need to tune the parameters of our weight matrix
W or bias vector b. Exactly how we go about updating these parameters is an optimization
problem, which we’ll be covering in the next chapter. For the time being, simply understand that a
loss function can be used to quantify how well our scoring function is doing at classifying input
data points.

Ideally, our loss should decrease over time as we tune our model parameters. As Figure 8.4
demonstrates, Model #1’s loss starts slightly higher than Model #2, but then decreases rapidly and
continues to stay low when trained on the CIFAR-10 dataset. Conversely, the loss for Model #2
decreases initially but quickly stagnates. In this specific example, Model #1 is achieving lower
overall loss and is likely a more desirable model to be used on classifying other images from the
CIFAR-10 dataset. I say "likely" because there is a chance that Model #1 has overfit to the training
data. We’ll cover this concept of overfitting and how to spot it in Chapter 17.

8.2.2 Multi-class SVM Loss
Multi-class SVM Loss (as the name suggests) is inspired by (Linear) Support Vector Machines
(SVMs) [43] which uses a scoring function f to map our data points to numerical scores for each
class labels. This function f is a simple learning mapping:

f (xi,W,b) =Wxi +b (8.2)

Now that we have our scoring function, we need to determine how “good” or “bad” this function
is (given the weight matrixW and bias vector b) at making predictions. To make this determination,
we need a loss function.

Recall that when creating a machine learning model we have a design matrixX , where each
row inX contains a data point we wish to classify. In the context of image classification, each row
in X is an image and we seek to correctly label this image. We can access the i-th image inside
X via the syntax xi.

Similarly, we also have a vector y which contains our class labels for eachX . These y values
are our ground-truth labels and what we hope our scoring function will correctly predict. Just like
we can access a given image as xi, we can access the associated class label via yi.

As a matter of simplicity, let’s abbreviate our scoring function as s:

s = f (xi,W ) (8.3)

Which implies that we can obtain the predicted score of the j-th class via the i-th data point:

s j = f (xi,W ) j (8.4)

Using this syntax, we can put it all together, obtaining the hinge loss function:

Li = ∑
j 6=yi

max(0,s j− syi +1) (8.5)
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R Nearly all loss functions include a regularization term. I am skipping this idea for now as
we’ll review regularization in Chapter 9 once we better understand loss functions.

Looking at the hinge loss equation above, you might be confused at what it’s actually doing.
Essentially, the hinge loss function is summing across all incorrect classes (i 6= j) and comparing
the output of our scoring function s returned for the j-th class label (the incorrect class) and the yi-th
class (the correct class). We apply the max operation to clamp values at zero, which is important to
ensure we do not sum negative values.

A given xi is classified correctly when the loss Li = 0 (I’ll provide a numerical example in the
following section). To derive the loss across our entire training set, we simply take the mean over
each individual Li:

L =
1
N

N

∑
i=1

Li (8.6)

Another related loss function you may encounter is the squared hinge loss:

Li = ∑
j 6=yi

max(0,s j− syi +1)2 (8.7)

The squared term penalizes our loss more heavily by squaring the output, which leads to
quadratic growth in loss in a prediction that is incorrect (versus a linear growth).

As for which loss function you should use, that is entirely dependent on your dataset. It’s
typical to see the standard hinge loss function used more, but on some datasets the squared variation
may obtain better accuracy. Overall, this is a hyperparameter that you should consider tuning.

A Multi-class SVM Loss Example
Now that we’ve taken a look at the mathematics behind hinge loss, let’s examine a worked example.
We’ll again be using the “Animals” dataset which aims to classify a given image as containing a
cat, dog, or panda. To start, take a look at Figure 8.5 where I have included three training examples
from the three classes of the “Animals” dataset.

Given some arbitrary weight matrix W and bias vector b, the output scores of f (x,W ) =
Wx+b are displayed in the body of the matrix. The larger the scores are, the more confident our
scoring function is regarding the prediction.

Let’s start by computing the loss Li for the “dog” class:

1 >>> max(0, 1.33 - 4.26 + 1) + max(0, -1.01 - 4.26 + 1)
2 0

Notice how our equation here includes two terms – the difference between the predicted dog
score and both the cat and panda score. Also observe how the loss for “dog” is zero – this implies
that the dog was correctly predicted. A quick investigation of Image #1 from Figure 8.5 above
demonstrates this result to be true: the “dog” score is greater than both the “cat” and “panda” scores.

Similarly, we can compute the hinge loss for Image #2, this one containing a cat:

3 >>> max(0, 3.76 - (-1.20) + 1) + max(0, -3.81 - (-1.20) + 1)
4 5.96
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Figure 8.5: At the top of the figure we have three input images: one for each of the dog, cat, and
panda class, respectively. The body of the table contains the scoring function outputs for each of
the classes. We will use the scoring function to derive the total loss for each input image.

In this case, our loss function is greater than zero, indicating that our prediction is incorrect.
Looking at our scoring function, we see that our model predicts dog as the proposed label with a
score of 3.76 (as this is the label with the highest score). We know that this label is incorrect – and
in Chapter 9 we’ll learn how to automatically tune our weights to correct these predictions.

Finally, let’s compute the hinge loss for the panda example:

5 >>> max(0, -2.37 - (-2.27) + 1) + max(0, 1.03 - (-2.27) + 1)
6 5.199999999999999

Again, our loss is non-zero, so we know we have an incorrect prediction. Looking at our scoring
function, our model has incorrectly labeled this image as “cat” when it should be “panda”.

We can then obtain the total loss over the three examples by taking the average:

7 >>> (0.0 + 5.96 + 5.2) / 3.0
8 3.72

Therefore, given our three training examples our overall hinge loss is 3.72 for the parameters
W and b.

Also take note that our loss was zero for only one of the three input images, implying that two
of our predictions were incorrect. In our next chapter we’ll learn how to optimizeW and b to make
better predictions by using the loss function to help drive and steer us in the right direction.

8.2.3 Cross-entropy Loss and Softmax Classifiers
While hinge loss is quite popular, you’re much more likely to run into cross-entropy loss and
Softmax classifiers in the context of deep learning and convolutional neural networks.

Why is this? Simply put:
Softmax classifiers give you probabilities for each class label while hinge loss gives you the

margin.
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It’s much easier for us as humans to interpret probabilities rather than margin scores. Fur-
thermore, for datasets such as ImageNet, we often look at the rank-5 accuracy of Convolutional
Neural Networks (where we check to see if the ground-truth label is in the top-5 predicted labels
returned by a network for a given input image). Seeing if (1) the true class label exists in the top-5
predictions and (2) the probability associated with each label is a nice property.

Understanding Cross-entropy Loss
The Softmax classifier is a generalization of the binary form of Logistic Regression. Just like in
hinge loss or squared hinge loss, our mapping function f is defined such that it takes an input set of
data xi and maps them to output class labels via dot product of the data xi and weight matrix W
(omitting the bias term for brevity):

f (xi,W ) =Wxi (8.8)

However, unlike hinge loss, we can interpret these scores as unnormalized log probabilities for
each class label, which amounts to swapping out the hinge loss function with cross-entropy loss:

Li =−log(esyi/∑
j

es j) (8.9)

So, how did I arrive here? Let’s break the function apart and take a look. To start, our loss
function should minimize the negative log likelihood of the correct class:

Li =−logP(Y = yi|X = xi) (8.10)

The probability statement can be interpreted as:

P(Y = k|X = xi) = esyi/∑
j

es j (8.11)

Where we use our standard scoring function form:

s = f (xi,W ) (8.12)

As a whole, this yields our final loss function for a single data point, just like above:

Li =−log(esyi/∑
j

es j) (8.13)

Take note that your logarithm here is actually base e (natural logarithm) since we are taking the
inverse of the exponentiation over e earlier. The actual exponentiation and normalization via the
sum of exponents is our Softmax function. The negative log yields our actual cross-entropy loss.

Just as in hinge loss and squared hinge loss, computing the cross-entropy loss over an entire
dataset is done by taking the average:

L =
1
N

N

∑
i=1

Li (8.14)

Again, I’m purposely omitting the regularization term from our loss function. We’ll return to
regularization, explain what it is, how to use it, and why it’s critical to neural networks and deep
learning in Chapter 9. If the equations above seem scary, don’t worry – we’re about to work through
numerical examples in the next section to ensure you understand how cross-entropy loss works.
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A Worked Softmax Example

Figure 8.6: First Table: To compute our cross-entropy loss, let’s start with the output of the scoring
function. Second Table: Exponentiating the output values from the scoring function gives us
our unnormalized probabilities. Third Table: To obtain the actual probabilities, we divide each
individual unnormalized probabilities by the sum of all unnormalized probabilities. Fourth Table:
Taking the negative natural logarithm of the probability for the correct ground-truth yields the final
loss for the data point.

To demonstrate cross-entropy loss in action, consider Figure 8.6. Our goal is to classify whether
the image above contains a dog, cat, or panda. Clearly, we can see that the image is a “panda” –
but what does our Softmax classifier think? To find out, we’ll need to work through each of the four
tables in the figure.

The first table includes the output of our scoring function f for each of the three classes,
respectively. These values are our unnormalized log probabilities for the three classes. Let’s
exponentiate the output of the scoring function (es, where s is our score function value), yielding
our unnormalized probabilities (second table).

The next step is to take the denominator, sum the exponents, and divide by the sum, thereby
yielding the actual probabilities associated with each class label (third table). Notice how the
probabilities sum to one. Finally, we can take the negative natural logarithm, −ln(p), where p is
the normalized probability, yielding our final loss (the fourth and final table).
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In this case, our Softmax classifier would correctly report the image as panda with 93.93%
confidence. We can then repeat this process for all images in our training set, take the average, and
obtain the overall cross-entropy loss for the training set. This process allows us to quantify how
good or bad a set of parameters are performing on our training set.

R I used a random number generator to obtain the score function values for this particular
example. These values are simply used to demonstrate how the calculations of the Softmax
classifier/cross-entropy loss function are performed. In reality, these values would not be
randomly generated – they would instead be the output of your scoring function f based on
your parametersW and b. We’ll see how all the components of parameterized learning fit
together in our next chapter, but for the time being, we are working with example numbers to
demonstrate how loss functions work.

8.3 Summary
In this chapter, we reviewed four components of parameterized learning:

1. Data
2. Scoring function
3. Loss function
4. Weights and biases
In the context of image classification, our input data is our dataset of images. The scoring

function produces predictions for a given input image. The loss function then quantifies how good
or bad a set of predictions are over the dataset. Finally, the weight matrix and bias vectors are what
enable us to actually “learn” from the input data – these parameters will be tweaked and tuned via
optimization methods in an attempt to obtain higher classification accuracy.

We then reviewed two popular loss functions: hinge loss and cross-entropy loss. While hinge
loss is used in many machine learning applications (such as SVMs), I can almost guarantee with
absolutely certainty that you’ll see cross-entropy loss with more frequency primarily due to the
fact that Softmax classifiers output probabilities rather than margins. Probabilities are much easier
for us as humans to interpret, so this fact is a particularly nice quality of cross-entropy loss and
Softmax classifiers. For more information on loss hinge loss and cross-entropy loss, please refer to
Stanford University’s cs231n course [57, 74].

In our next chapter we’ll review optimization methods that are used to tune our weight matrix
and bias vector. Optimization methods allow our algorithms to actually learn from our input data
by updating the weight matrix and bias vector based on the output of our scoring and loss functions.
Using these techniques we can take incremental steps towards parameter values that obtain lower
loss and higher accuracy. Optimization methods are the cornerstone of modern day neural networks
and deep learning, and without them, we would be unable to learn patterns from our input data, so
be sure to pay attention to the upcoming chapter.



9. Optimization Methods and Regularization

“Nearly all of deep learning is powered by one very important algorithm: Stochas-
tic Gradient Descent (SGD)” – Goodfellow et al. [10]

At this point we have a strong understanding of the concept of parameterized learning. Over
the past few chapters, we have discussed the concept of parameterized learning and how this type
of learning enables us to define a scoring function that maps our input data to output class labels.

This scoring function is defined in terms of two important parameters; specifically, our weight
matrix W and our bias vector b. Our scoring function accepts these parameters as inputs and
returns a prediction for each input data point xi.

We have also discussed two common loss functions: Multi-class SVM loss and cross-entropy
loss. Loss functions, at the most basic level, are used to quantify how “good” or “bad” a given
predictor (i.e., a set of parameters) is at classifying the input data points in our data.

Given these building blocks, we can now move on to the most important aspect of machine
learning, neural networks, and deep learning – optimization. Optimization algorithms are the
engines that power neural networks and enable them to learn patterns from data. Throughout this
discussion, we’ve learned that obtaining a high accuracy classifier is dependent on finding a set of
weightsW and b such that our data points are correctly classified.

But how do we go about finding and obtaining a weight matrixW and bias vector b that
obtains high classification accuracy? Do we randomly initialize them, evaluate, and repeat over
and over again, hoping that at some point we land on a set of parameters that obtains reasonable
classification? We could – but given that modern deep learning networks have parameters that
number in the tens of millions, it may take us a long time to blindly stumble upon a reasonable set
of parameters.

Instead of relying on pure randomness, we need to define an optimization algorithm that allows
us to literally improveW and b. In this chapter, we’ll be looking at the most common algorithm
used to train neural networks and deep learning models – gradient descent. Gradient descent has
many variants (which we’ll also touch on), but, in each case, the idea is the same: iteratively
evaluate your parameters, compute your loss, then take a small step in the direction that will
minimize your loss.
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9.1 Gradient Descent

The gradient descent algorithm has two primary flavors:
1. The standard “vanilla” implementation.
2. The optimized “stochastic” version that is more commonly used.
In this section we’ll be reviewing the basic vanilla implementation to form a baseline for our

understanding. After we understand the basics of gradient descent, we’ll move on to the stochastic
version. We’ll then review some of the “bells and whistles” that we can add on to gradient descent,
including momentum, and Nesterov acceleration.

9.1.1 The Loss Landscape and Optimization Surface
The gradient descent method is an iterative optimization algorithm that operates over a loss
landscape (also called an optimization surface). The canonical gradient descent example is to
visualize our weights along the x-axis and then the loss for a given set of weights along the y-axis
(Figure 9.1, left):

Figure 9.1: Left: The “naive loss” visualized as a 2D plot. Right: A more realistic loss landscape
can be visualized as a bowl that exists in multiple dimensions. Our goal is to apply gradient descent
to navigate to the bottom of this bowl (where there is low loss).

As we can see, our loss landscape has many peaks and valleys based on which values our
parameters take on. Each peak is a local maximum that represents very high regions of loss –
the local maximum with the largest loss across the entire loss landscape is the global maximum.
Similarly, we also have local minimum which represents many small regions of loss.

The local minimum with the smallest loss across the loss landscape is our global minimum. In
an ideal world, we would like to find this global minimum, ensuring our parameters take on the
most optimal possible values.

So that raises the question: “If we want to reach a global minimum, why not just directly jump
to it? It’s clearly visible on the plot?”

Therein lies the problem – the loss landscape is invisible to us. We don’t actually know what it
looks like. If we’re an optimization algorithm, we would be blindly placed somewhere on the plot,
having no idea what the landscape in front of us looks like, and we would have to navigate our way
to a loss minimum without accidentally climbing to the top of a local maximum.

Personally, I’ve never liked this visualization of the loss landscape – it’s too simple, and it often
leads readers to think that gradient descent (and its variants) will eventually find either a local or
global minimum. This statement isn’t true, especially for complex problems – and I’ll explain why
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later in this chapter. Instead, let’s look at a different visualization of the loss landscape that I believe
does a better job depicting the problem. Here we have a bowl, similar to the one you may eat cereal
or soup out of (Figure 9.1, right).

The surface of our bowl is the loss landscape, which is a plot of the loss function. The
difference between our loss landscape and your cereal bowl is that your cereal bowl only exists in
three dimensions, while your loss landscape exists in many dimension, perhaps tens, hundreds, or
thousands of dimensions.

Each position along the surface of the bowl corresponds to a particular loss value given a set of
parametersW (weight matrix) and b (bias vector). Our goal is to try different values ofW and b,
evaluate their loss, and then take a step towards more optimal values that (ideally) have lower loss.

9.1.2 The “Gradient” in Gradient Descent
To make our explanation of gradient descent a little more intuitive, let’s pretend that we have a
robot – let’s name him Chad (Figure 9.2, left). When performing gradient descent, we randomly
drop Chad somewhere on our loss landscape (Figure 9.2, right).

Figure 9.2: Left: Our robot, Chad. Right: It’s Chad’s job to navigate our loss landscape and
descend to the bottom of the basin. Unfortunately, the only sensor Chad can use to control his
navigation is a special function, called a loss function, L. This function must guide him to an area
of lower loss.

It’s now Chad’s job to navigate to the bottom of the basin (where there is minimum loss). Seems
easy enough right? All Chad has to do is orient himself such that he’s facing “downhill” and ride
the slope until he reaches the bottom of the bowl.

But here’s the problem: Chad isn’t a very smart robot. Chad has only one sensor – this sensor
allows him to take his parametersW and b and then compute a loss function L. Therefore, Chad is
able to compute his relative position on the loss landscape, but he has absolutely no idea in which
direction he should take a step to move himself closer to the bottom of the basin.

What is Chad to do? The answer is to apply gradient descent. All Chad needs to do is follow
the slope of the gradient W . We can compute the gradient W across all dimensions using the
following equation:

d f (x)
dx

= lim
h→0

f (x+h)− f (x)
h

(9.1)

In > 1 dimensions, our gradient becomes a vector of partial derivatives. The problem with this
equation is that:
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1. It’s an approximation to the gradient.
2. It’s painfully slow.
In practice, we use the analytic gradient instead. The method is exact and fast, but extremely

challenging to implement due to partial derivatives and multi-variable calculus. Full derivation of
the multivariable calculus used to justify gradient descent is outside the scope of this book. If you
are interested in learning more about numeric and analytic gradients, I would suggest this lecture
by Zibulevsky [80], Andrew Ng’s cs229 machine learning notes [81], as well as the cs231n notes
[82].

For the sake of this discussion, simply internalize what gradient descent is: attempting to
optimize our parameters for low loss and high classification accuracy via an iterative process of
taking a step in the direction that minimizes loss.

9.1.3 Treat It Like a Convex Problem (Even if It’s Not)
Using the a bowl in Figure 9.1 (right) as a visualization of the loss landscape also allows us to draw
an important conclusion in modern day neural networks – we are treating the loss landscape as
a convex problem, even if it’s not. If some function F is convex, then all local minima are also
global minima. This idea fits the visualization of the bowl nicely. Our optimization algorithm
simply has to strap on a pair of skis at the top of the bowl, then slowly ride down the gradient until
we reach the bottom.

The issue is that nearly all problems we apply neural networks and deep learning algorithms to
are not neat, convex functions. Instead, inside this bowl we’ll find spike-like peaks, valleys that are
more akin to canyons, steep dropoffs, and even slots where loss drops dramatically only to sharply
rise again.

Given the non-convex nature of our datasets, why do we apply gradient descent? The answer is
simple: because it does a good enough job. To quote Goodfellow et al. [10]:

“[An] optimization algorithm may not be guaranteed to arrive at even a local
minimum in a reasonable amount of time, but it often finds a very low value of the
[loss] function quickly enough to be useful.”

We can set the high expectation of finding a local/global minimum when training a deep learning
network, but this expectation rarely aligns with reality. Instead, we end up finding a region of low
loss – this area may not even be a local minimum, but in practice, it turns out that this is good
enough.

9.1.4 The Bias Trick
Before we move on to implementing gradient descent, I want to take the time to discuss a technique
called the “bias trick”, a method of combining our weight matrix W and bias vector b into a
single parameter. Recall from our previous decisions that our scoring function is defined as:

f (xi,W,b) =Wxi +b (9.2)

It’s often tedious to keep track of two separate variables, both in terms of explanation and im-
plementation – to avoid situation this entirely, we can combineW and b together. To combine both
the bias and weight matrix, we add an extra dimension (i.e., column) to our input dataX that holds
a constant 1 – this is our bias dimension.

Typically we either append the new dimension to each individual xi as the first dimension or
the last dimension. In reality, it doesn’t matter. We can choose any arbitrary location to insert a
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column of ones into our design matrix, as long as it exists. Doing so allows us to rewrite our scoring
function via a single matrix multiply:

f (xi,W ) =Wxi (9.3)

Again, we are allowed to omit the b term here as it is embedded into our weight matrix.
In the context of our previous examples in the “Animals” dataset, we’ve worked with 32×

32× 3 images with a total of 3,072 pixels. Each xi is represented by a vector of [3072× 1].
Adding in a dimension with a constant value of one now expands the vector to be [3073× 1].
Similarly, combining both the bias and weight matrix also expands our weight matrix W to be
[3×3073] rather than [3×3072]. In this way, we can treat the bias as a learnable parameter within
the weight matrix that we don’t have to explicitly keep track of in a separate variable.

Figure 9.3: Left: Normally we treat the weight matrix and bias vector as two separate parameters.
Right: However, we can actually embed the bias vector into the weight matrix (thereby making it a
trainable parameter directly inside the weight matrix by initializing our weight matrix with an extra
column of ones.

To visualize the bias trick, consider Figure 9.3 (left) where we separate the weight matrix and
bias. Up until now, this figure depicts is how we have thought of our scoring function. But instead,
we can combine theW and b together, provided that we insert a new column into every xi where
every entry is one (Figure 9.3, right). Applying the bias trick allows us to learn only a single matrix
of weights, hence why we tend to prefer this method for implementation. For all future examples
in this book, whenever I mention W , assume that the bias vector b is implicitly included in the
weight matrix as well.

9.1.5 Pseudocode for Gradient Descent
Below I have included Python-like pseudocode for the standard, vanilla gradient descent algorithm
(pseudocode inspired by cs231n slides [83]):

1 while True:
2 Wgradient = evaluate_gradient(loss, data, W)
3 W += -alpha * Wgradient

This pseudocode is what all variations of gradient descent are built off of. We start off on Line
1 by looping until some condition is met, typically either:

1. A specified number of epochs has passed (meaning our learning algorithm has “seen” each
of the training data points N times).
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2. Our loss has become sufficiently low or training accuracy satisfactory high.
3. Loss has not improved in M subsequent epochs.
Line 2 then calls a function named evaluate_gradient. This function requires three parame-

ters:
1. loss: A function used to compute the loss over our current parameters W and input data.
2. data: Our training data where each training sample is represented by an image (or feature

vector).
3. W: Our actual weight matrix that we are optimizing over. Our goal is to apply gradient descent

to find a W that yields minimal loss.
The evaluate_gradient function returns a vector that is K-dimensional, where K is the

number of dimensions in our image/feature vector. The Wgradient variable is the actual gradient,
where we have a gradient entry for each dimension.

We then apply gradient descent on Line 3. We multiply our Wgradient by alpha (α), which
is our learning rate. The learning rate controls the size of our step.

In practice, you’ll spend a lot of time finding an optimal value of α – it is by far the most
important parameter in your model. If α is too large, you’ll spend all of your time bounding
around the loss landscape, never actually “descending” to the bottom of the basin (unless your
random bouncing takes you there by pure luck). Conversely, if α is too small, then it will take
many (perhaps prohibitively many) iterations to reach the bottom of the basin. Finding the optimal
value of α will cause you many headaches – and you’ll send a consider amount of your time trying
to find an optimal value for this variable for your model and dataset.

9.1.6 Implementing Basic Gradient Descent in Python
Now that we know the basics of gradient descent, let’s implement it in Python and use it to classify
some data. Open up a new file, name it gradient_descent.py, and insert the following code:

1 # import the necessary packages
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import classification_report
4 from sklearn.datasets import make_blobs
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import argparse
8

9 def sigmoid_activation(x):
10 # compute the sigmoid activation value for a given input
11 return 1.0 / (1 + np.exp(-x))

Lines 2-7 import our required Python packages. We have seen all of these imports before, with
the exception of make_blobs, a function used to create “blobs" of normally distributed data points
– this is a handy function when testing or implementing our own models from scratch.

We then define the sigmoid_activation function on Line 9. When plotted this function will
resemble an “S”-shaped curve (Figure 9.4). We call it an activation function because the function
will “activate” and fire “ON” (output value > 0.5) or “OFF” (output value <= 0.5) based on the
inputs x.

We can define this relationship via the predict method below:

13 def predict(X, W):
14 # take the dot product between our features and weight matrix
15 preds = sigmoid_activation(X.dot(W))
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Figure 9.4: The sigmoid activation function. This function is centered at x = 0.5,y = 0.5. The
function saturates at the tails.

16

17 # apply a step function to threshold the outputs to binary
18 # class labels
19 preds[preds <= 0.5] = 0
20 preds[preds > 0] = 1
21

22 # return the predictions
23 return preds

Given a set of input data points X and weights W, we call the sigmoid_activation function
on them to obtain a set of predictions (Line 15). We then threshold the predictions: any prediction
with a value <= 0.5 is set to 0 while any prediction with a value > 0.5 is set to 1 (Lines 19 and
20). The predictions are then returned to the calling function on Line 23.

While there are other (better) alternatives to the sigmoid activation function, it makes for an
excellent starting point in our discussion of neural networks, deep learning, and gradient-based
optimization. I’ll be discussing other activation functions in Chapter 10 of the Starter Bundle and
Chapter 7 of the Practitioner Bundle, but for the time being, simply keep in mind that the sigmoid
is a non-linear activation function that we can use to threshold our predictions.

Next, let’s parse our command line arguments:

25 # construct the argument parse and parse the arguments
26 ap = argparse.ArgumentParser()
27 ap.add_argument("-e", "--epochs", type=float, default=100,
28 help="# of epochs")
29 ap.add_argument("-a", "--alpha", type=float, default=0.01,
30 help="learning rate")
31 args = vars(ap.parse_args())

We can provide two (optional) command line arguments to our script:
• --epochs: The number of epochs that we’ll use when training our classifier using gradient

descent.



102 Chapter 9. Optimization Methods and Regularization

• --alpha: The learning rate for the gradient descent. We typically see 0.1, 0.01, and 0.001 as
initial learning rate values, but again, this is a hyperparameter you’ll need to tune for your own
classification problems.

Now that our command line arguments are parsed, let’s generate some data to classify:

33 # generate a 2-class classification problem with 1,000 data points,
34 # where each data point is a 2D feature vector
35 (X, y) = make_blobs(n_samples=1000, n_features=2, centers=2,
36 cluster_std=1.5, random_state=1)
37 y = y.reshape((y.shape[0], 1))
38

39 # insert a column of 1’s as the last entry in the feature
40 # matrix -- this little trick allows us to treat the bias
41 # as a trainable parameter within the weight matrix
42 X = np.c_[X, np.ones((X.shape[0]))]
43

44 # partition the data into training and testing splits using 50% of
45 # the data for training and the remaining 50% for testing
46 (trainX, testX, trainY, testY) = train_test_split(X, y,
47 test_size=0.5, random_state=42)

On Line 35 we make a call to make_blobs which generates 1,000 data points separated into
two classes. These data points are 2D, implying that the “feature vectors” are of length 2. The
labels for each of these data points are either 0 or 1. Our goal is to train a classifier that correctly
predicts the class label for each data point.

Line 42 applies the “bias trick” (detailed above) that allows us to skip explicitly keeping track
of our bias vector b, by inserting a brand new column of 1s as the last entry in our design matrix X.
Adding a column containing a constant value across all feature vectors allows us to treat our bias as
a trainable parameter within the weight matrixW rather than as an entirely separate variable.

Once we have inserted the column of ones, we partition the data into our training and testing
splits on Lines 46 and 47, using 50% of the data for training and 50% for testing.

Our next code block handles randomly initializing our weight matrix using a uniform dis-
tribution such that it has the same number of dimensions as our input features (including the
bias):

49 # initialize our weight matrix and list of losses
50 print("[INFO] training...")
51 W = np.random.randn(X.shape[1], 1)
52 losses = []

You might also see both zero and one weight initialization, but as we’ll find out later in this
book, good initialization is critical to training a neural network in a reasonable amount of time, so
random initialization along with simple heuristics win out in the vast majority of circumstances
[84].

Line 52 initializes a list to keep track of our losses after each epoch. At the end of your Python
script, we’ll plot the loss (which should ideally decrease over time).

All of our variables are now initialized, so we can move on to the actual training and gradient
descent procedure:

54 # loop over the desired number of epochs
55 for epoch in np.arange(0, args["epochs"]):
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56 # take the dot product between our features ‘X‘ and the weight
57 # matrix ‘W‘, then pass this value through our sigmoid activation
58 # function, thereby giving us our predictions on the dataset
59 preds = sigmoid_activation(trainX.dot(W))
60

61 # now that we have our predictions, we need to determine the
62 # ‘error‘, which is the difference between our predictions and
63 # the true values
64 error = preds - trainY
65 loss = np.sum(error ** 2)
66 losses.append(loss)

On Line 55 we start looping over the supplied number of --epochs. By default, we’ll allow
the training procedure to “see” each of the training points a total of 100 times (thus, 100 epochs).

Line 59 takes the dot product between our entire training set trainX and our weight matrix
W. The output of this dot product is fed through the sigmoid activation function, yielding our
predictions.

Given our predictions, the next step is to determine the “error” of the predictions, or more
simply, the difference between our predictions and the true values (Line 64). Line 65 computes
the least squares error over our predictions, a simple loss typically used for binary classification
problems. The goal of this training procedure is to minimize our least squares error. We append
this loss to our losses list on Line 66, so we can later plot the loss over time.

Now that we have our error, we can compute the gradient and then use it to update our
weight matrix W:

68 # the gradient descent update is the dot product between our
69 # features and the error of the predictions
70 gradient = trainX.T.dot(error)
71

72 # in the update stage, all we need to do is "nudge" the weight
73 # matrix in the negative direction of the gradient (hence the
74 # term "gradient descent" by taking a small step towards a set
75 # of "more optimal" parameters
76 W += -args["alpha"] * gradient
77

78 # check to see if an update should be displayed
79 if epoch == 0 or (epoch + 1) % 5 == 0:
80 print("[INFO] epoch={}, loss={:.7f}".format(int(epoch + 1),
81 loss))

Line 70 handles computing the gradient, which is the dot product between our data points X
and the error.

Line 76 is the most critical step in our algorithm and where the actual gradient descent takes
place. Here we update our weight matrix W by taking a step in the negative direction of the gradient,
thereby allowing us to move towards the bottom of the basin of the loss landscape (hence the
term, gradient descent). After updating our weight matrix, we check to see if an update should be
displayed to our terminal (Lines 79-81) and then keep looping until the desired number of epochs
has been met – gradient descent is thus an iterative algorithm.

Our classifier is now trained. The next step is evaluation:

83 # evaluate our model
84 print("[INFO] evaluating...")
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85 preds = predict(testX, W)
86 print(classification_report(testY, preds))

To actually make predictions using our weight matrix W, we call the predict method on testX
and W on Line 85. Given the predictions, we display a nicely formatted classification report to our
terminal on Line 86.

Our last code block handles plotting (1) the testing data so we can visualize the dataset we are
trying to classify and (2) our loss over time:

88 # plot the (testing) classification data
89 plt.style.use("ggplot")
90 plt.figure()
91 plt.title("Data")
92 plt.scatter(testX[:, 0], testX[:, 1], marker="o", c=testY, s=30)
93

94 # construct a figure that plots the loss over time
95 plt.style.use("ggplot")
96 plt.figure()
97 plt.plot(np.arange(0, args["epochs"]), losses)
98 plt.title("Training Loss")
99 plt.xlabel("Epoch #")

100 plt.ylabel("Loss")
101 plt.show()

9.1.7 Simple Gradient Descent Results
To execute our script, simply issue the following command:

$ python gradient_descent.py
[INFO] training...
[INFO] epoch=1, loss=486.5895513
[INFO] epoch=5, loss=11.1087812
[INFO] epoch=10, loss=9.1312984
[INFO] epoch=15, loss=7.0049498
[INFO] epoch=20, loss=6.9914949
[INFO] epoch=25, loss=6.9382765
[INFO] epoch=30, loss=5.8285461
[INFO] epoch=35, loss=4.1750536
[INFO] epoch=40, loss=2.7319634
[INFO] epoch=45, loss=1.3891531
[INFO] epoch=50, loss=1.0787992
[INFO] epoch=55, loss=0.8927193
[INFO] epoch=60, loss=0.6001450
[INFO] epoch=65, loss=0.3200953
[INFO] epoch=70, loss=0.1651333
[INFO] epoch=75, loss=0.0941329
[INFO] epoch=80, loss=0.0602669
[INFO] epoch=85, loss=0.0424516
[INFO] epoch=90, loss=0.0321485
[INFO] epoch=95, loss=0.0256970
[INFO] epoch=100, loss=0.0213877

As we can see from Figure 9.5 (left), our dataset is clearly linear separable (i.e., we can draw a
line that separates the two classes of data). Our loss also drops dramatically, starting out very high
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and then quickly dropping (right). We can see just how quickly the loss drops by investigating the
terminal output above. Notice how the loss is initially > 400 but drops to ≈ 1.0 by epoch 50. By
the time training terminates by epoch 100, our loss has dropped by an order of magnitude to 0.02.

Figure 9.5: Left: The input dataset that we are trying to classify into two sets: red and blue. This
dataset is clearly linearly separable as we can draw a single line that neatly divides the dataset into
two classes. Right: Learning a set of parameters to classify our dataset via gradient descent. Loss
starts very high but rapidly drops to nearly zero.

This plot validates that our weight matrix is being updated in a manner that allows the classifier
to learn from the training data. However, based on the rest of our terminal output, it seems that our
classifier misclassified a handful of data points (< 5 of them):

[INFO] evaluating...
precision recall f1-score support

0 1.00 0.99 1.00 250
1 0.99 1.00 1.00 250

avg / total 1.00 1.00 1.00 500

Notice how the zero class is classified correctly 100% of the time, but the one class is classified
correctly only 99% of the time. The reason for this discrepancy is because vanilla gradient descent
only performs a weight update once for every epoch – in this example, we trained our model for
100 epochs, so only 100 updates took place. Depending on the initialization of the weight matrix
and the size of the learning rate, it’s possible that we might not be able to learn a model that can
separate the points (even though they are linearly separable).

In fact, subsequent runs of this script may reveal that both classes can be classified correctly
100% of the time – the result is dependent on the initial values W takes on. To verify this result
yourself, run the gradient_descent.py script multiple times.

For simple gradient descent, you are better off training for more epochs with a smaller learning
rate to help overcome this issue. However, as we’ll see in the next section, a variant of gradient
descent called Stochastic Gradient Descent performs a weight update for every batch of training
data, implying there are multiple weight updates per epoch. This approach leads to a faster, more
stable convergence.
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9.2 Stochastic Gradient Descent (SGD)
In the previous section, we discussed gradient descent, a first-order optimization algorithm that
can be used to learn a set of classifier weights for parameterized learning. However, this “vanilla”
implementation of gradient descent can be prohibitively slow to run on large datasets – in fact, it
can even be considered computational wasteful.

Instead, we should apply Stochastic Gradient Descent (SGD), a simple modification to the
standard gradient descent algorithm that computes the gradient and updates the weight matrix
W on small batches of training data, rather than the entire training set. While this modification
leads to “more noisy” updates, it also allows us to take more steps along the gradient (one step per
each batch versus one step per epoch), ultimately leading to faster convergence and no negative
affects to loss and classification accuracy.

SGD is arguably the most important algorithm when it comes to training deep neural networks.
Even though the original incarnation of SGD was introduced over 57 years ago [85], it is still the
engine that enables us to train large networks to learn patterns from data points. Above all other
algorithms covered in this book, take the time to understand SGD.

9.2.1 Mini-batch SGD
Reviewing the vanilla gradient descent algorithm, it should be (somewhat) obvious that the method
will run very slowly on large datasets. The reason for this slowness is because each iteration of
gradient descent requires us to compute a prediction for each training point in our training data
before we are allowed to update our weight matrix. For image datasets such as ImageNet were we
have over 1.2 million training images, this computation can take a long time.

It also turns out that computing predictions for every training point before taking a step along
our weight matrix is computationally wasteful and does little to help our model coverage.

Instead, what we should do is batch our updates. We can update the pseudocode to transform
vanilla gradient descent to become SGD by adding an extra function call:

1 while True:
2 batch = next_training_batch(data, 256)
3 Wgradient = evaluate_gradient(loss, batch, W)
4 W += -alpha * Wgradient

The only difference between vanilla gradient descent and SGD is the addition of the next_training_batch
function. Instead of computing our gradient over the entire data set, we instead sample our data,
yielding a batch. We evaluate the gradient on the batch, and update our weight matrix W. From an
implementation perspective, we also try to randomize our training samples before applying SGD
since the algorithm is sensitive to batches.

After looking at the pseudocode for SGD, you’ll immediately notice an introduction of a new
parameter: the batch size. In a “purist” implementation of SGD, your mini-batch size would be 1,
implying that we would randomly sample one data point from the training set, compute the gradient,
and update our parameters. However, we often use mini-batches that are > 1. Typical batch sizes
include 32, 64, 128, and 256.

So, why bother using batch sizes > 1? To start, batch sizes > 1 help reduce variance in the
parameter update (http://pyimg.co/pd5w0), leading to a more stable convergence. Secondly, powers
of two are often desirable for batch sizes as they allow internal linear algebra optimization libraries
to be more efficient.

In general, the mini-batch size is not a hyperparameter you should worry too much about [57].
If you’re using a GPU to train your neural network, you determine how many training examples
will fit into your GPU and then use the nearest power of two as the batch size such that the batch

http://pyimg.co/pd5w0
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will fit on the GPU. For CPU training, you typically use one of the batch sizes listed above to ensure
you reap the benefits of linear algebra optimization libraries.

9.2.2 Implementing Mini-batch SGD
Let’s go ahead and implement SGD and see how it differs from standard vanilla gradient descent.
Open up a new file, name it sgd.py, and insert the following code:

1 # import the necessary packages
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import classification_report
4 from sklearn.datasets import make_blobs
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import argparse
8

9 def sigmoid_activation(x):
10 # compute the sigmoid activation value for a given input
11 return 1.0 / (1 + np.exp(-x))

Lines 2-7* import our required Python packages, exactly the same as the gradient_descent.py
example earlier in this chapter. Lines 9-11 define the sigmoid_activation function, which
is also identical to the previous version of gradient descent.

In fact, the predict method doesn’t change either:

13 def predict(X, W):
14 # take the dot product between our features and weight matrix
15 preds = sigmoid_activation(X.dot(W))
16

17 # apply a step function to threshold the outputs to binary
18 # class labels
19 preds[preds <= 0.5] = 0
20 preds[preds > 0] = 1
21

22 # return the predictions
23 return preds

However, what does change is the addition of the next_batch function:

25 def next_batch(X, y, batchSize):
26 # loop over our dataset ‘X‘ in mini-batches, yielding a tuple of
27 # the current batched data and labels
28 for i in np.arange(0, X.shape[0], batchSize):
29 yield (X[i:i + batchSize], y[i:i + batchSize])

The next_batch method requires three parameters:
1. X: Our training dataset of feature vectors/raw image pixel intensities.
2. y: The class labels associated with each of the training data points.
3. batchSize: The size of each mini-batch that will be returned.
Lines 28 and 29 then loop over the training examples, yielding subsets of both X and y as

mini-batches.
Next, we can parse our command line arguments:
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31 # construct the argument parse and parse the arguments
32 ap = argparse.ArgumentParser()
33 ap.add_argument("-e", "--epochs", type=float, default=100,
34 help="# of epochs")
35 ap.add_argument("-a", "--alpha", type=float, default=0.01,
36 help="learning rate")
37 ap.add_argument("-b", "--batch-size", type=int, default=32,
38 help="size of SGD mini-batches")
39 args = vars(ap.parse_args())

We have already reviewed both the --epochs (number of epochs) and --alpha (learning rate)
switch from the vanilla gradient descent example – but also notice we are introducing a third switch:
--batch-size, which as the name indicates is the size of each of our mini-batches. We’ll default
this value to be 32 data points per mini-batch.

Our next code block handles generating our 2-class classification problem with 1,000 data
points, adding the bias column, and then performing the training and testing split:

41 # generate a 2-class classification problem with 1,000 data points,
42 # where each data point is a 2D feature vector
43 (X, y) = make_blobs(n_samples=1000, n_features=2, centers=2,
44 cluster_std=1.5, random_state=1)
45 y = y.reshape((y.shape[0], 1))
46

47 # insert a column of 1’s as the last entry in the feature
48 # matrix -- this little trick allows us to treat the bias
49 # as a trainable parameter within the weight matrix
50 X = np.c_[X, np.ones((X.shape[0]))]
51

52 # partition the data into training and testing splits using 50% of
53 # the data for training and the remaining 50% for testing
54 (trainX, testX, trainY, testY) = train_test_split(X, y,
55 test_size=0.5, random_state=42)

We’ll then initialize our weight matrix and losses just like in the previous example:

57 # initialize our weight matrix and list of losses
58 print("[INFO] training...")
59 W = np.random.randn(X.shape[1], 1)
60 losses = []

The real change comes next where we loop over the desired number of epochs, sampling
mini-batches along the way:

62 # loop over the desired number of epochs
63 for epoch in np.arange(0, args["epochs"]):
64 # initialize the total loss for the epoch
65 epochLoss = []
66

67 # loop over our data in batches
68 for (batchX, batchY) in next_batch(X, y, args["batch_size"]):
69 # take the dot product between our current batch of features
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70 # and the weight matrix, then pass this value through our
71 # activation function
72 preds = sigmoid_activation(batchX.dot(W))
73

74 # now that we have our predictions, we need to determine the
75 # ‘error‘, which is the difference between our predictions
76 # and the true values
77 error = preds - batchY
78 epochLoss.append(np.sum(error ** 2))

On Line 63 we start looping over the supplied number of --epochs. We then loop over our
training data in batches on Line 68. For each batch, we compute the dot product between the batch
and W, then pass the result through the sigmoid activation function to obtain our predictions. We
compute the least square error for the batch on Line 77 and use this value to update our epochLoss
on Line 78.

Now that we have the error, we can compute the gradient descent update, which is the dot
product between the current batch data points and the error on the batch:

80 # the gradient descent update is the dot product between our
81 # current batch and the error on the batch
82 gradient = batchX.T.dot(error)
83

84 # in the update stage, all we need to do is "nudge" the
85 # weight matrix in the negative direction of the gradient
86 # (hence the term "gradient descent") by taking a small step
87 # towards a set of "more optimal" parameters
88 W += -args["alpha"] * gradient

Line 88 handles updating our weight matrix based on the gradient, scaled by our learning rate
--alpha. Notice how the weight update stage takes place inside the batch loop – this implies there
are multiple weight updates per epoch.

We can then update our loss history by taking the average across all batches in the epoch and
then displaying an update to our terminal if necessary:

90 # update our loss history by taking the average loss across all
91 # batches
92 loss = np.average(epochLoss)
93 losses.append(loss)
94

95 # check to see if an update should be displayed
96 if epoch == 0 or (epoch + 1) % 5 == 0:
97 print("[INFO] epoch={}, loss={:.7f}".format(int(epoch + 1),
98 loss))

Evaluating our classifier is done in the same way as in vanilla gradient descent – simply call
predict on the testX data using our learned W weight matrix:

100 # evaluate our model
101 print("[INFO] evaluating...")
102 preds = predict(testX, W)
103 print(classification_report(testY, preds))
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We’ll end our script by plotting the testing classification data and along with the loss per epoch:

105 # plot the (testing) classification data
106 plt.style.use("ggplot")
107 plt.figure()
108 plt.title("Data")
109 plt.scatter(testX[:, 0], testX[:, 1], marker="o", c=testY, s=30)
110

111 # construct a figure that plots the loss over time
112 plt.style.use("ggplot")
113 plt.figure()
114 plt.plot(np.arange(0, args["epochs"]), losses)
115 plt.title("Training Loss")
116 plt.xlabel("Epoch #")
117 plt.ylabel("Loss")
118 plt.show()

9.2.3 SGD Results
To visualize the results from our implementation, just execute the following command:

$ python sgd.py
[INFO] training...
[INFO] epoch=1, loss=0.3701232
[INFO] epoch=5, loss=0.0195247
[INFO] epoch=10, loss=0.0142936
[INFO] epoch=15, loss=0.0118625
[INFO] epoch=20, loss=0.0103219
[INFO] epoch=25, loss=0.0092114
[INFO] epoch=30, loss=0.0083527
[INFO] epoch=35, loss=0.0076589
[INFO] epoch=40, loss=0.0070813
[INFO] epoch=45, loss=0.0065899
[INFO] epoch=50, loss=0.0061647
[INFO] epoch=55, loss=0.0057920
[INFO] epoch=60, loss=0.0054620
[INFO] epoch=65, loss=0.0051670
[INFO] epoch=70, loss=0.0049015
[INFO] epoch=75, loss=0.0046611
[INFO] epoch=80, loss=0.0044421
[INFO] epoch=85, loss=0.0042416
[INFO] epoch=90, loss=0.0040575
[INFO] epoch=95, loss=0.0038875
[INFO] epoch=100, loss=0.0037303
[INFO] evaluating...

precision recall f1-score support

0 1.00 1.00 1.00 250
1 1.00 1.00 1.00 250

avg / total 1.00 1.00 1.00 50

We’ll be using the same “blob” dataset as in Figure 9.5 (left) above for classification so we can
compare our SGD results to vanilla gradient descent. Furthermore, SGD example uses the same
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learning rate (0.1) and the same number of epochs (100) as vanilla gradient descent. However,
notice how much smoother our loss curve is in Figure 9.6.

Figure 9.6: Applying Stochastic Gradient Descent to our dataset of red and blue data points.
Using SGD, our learning curve is much smoother. Furthermore, we are able to obtain an order of
magnitude lower loss by the end of the 100th epoch (as compared to standard, vanilla gradient
descent).

Investigating the actual loss values at the end of the 100th epoch, you’ll notice that loss obtained
by SGD is an order of magnitude lower than vanilla gradient descent (0.003 vs 0.021, respectively).
This difference is due to the multiple weight updates per epoch, giving our model more chances to
learn from the updates made to the weight matrix. This effect is even more pronounced on large
datasets, such as ImageNet where we have millions of training examples and small, incremental
updates in our parameters can lead to a low loss (but not necessarily optimal) solution.

9.3 Extensions to SGD

There are two primary extensions that you’ll encounter to SGD in practice. The first is momentum
[86], a method used to accelerate SGD, enabling it to learn faster by focusing on dimensions whose
gradient point in the same direction. The second method is Nesterov acceleration [87], an extension
to standard momentum.

9.3.1 Momentum
Consider your favorite childhood playground where you spent days rolling down a hill, covering
yourself in grass and dirt (much to your mother’s chagrin). As you travel down the hill, you build
up more and more momentum, which in turn carries you faster down the hill.

Momentum applied to SGD has the same effect – our goal is to build upon the standard weight
update to include a momentum term, thereby allowing our model to obtain lower loss (and higher
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accuracy) in less epochs. The momentum term should, therefore, increase the strength of updates for
dimensions who gradients point in the same direction and then decrease the strength of updates for
dimensions who gradients switch directions [86, 88].

Our previous weight update rule simply included the scaling the gradient by our learning rate:

W =W −α∇W f (W ) (9.4)

We now introduce the momentum term V , scaled by γ:

V = γV −α∇W f (W ) W =W +V (9.5)

The momentum term γ is commonly set to 0.9; although another common practice is to set γ

to 0.5 until learning stabilizes and then increase it to 0.9 – it is extremely rare to see momentum
< 0.5. For a more detailed review of momentum, please refer to Sutton [89] and Qian [86].

9.3.2 Nesterov’s Acceleration
Let’s suppose that you are back on your childhood playground, rolling down the hill. You’ve built
up momentum and are moving quite fast – but there’s a problem. At the bottom of the hill is the
brick wall of your school, one that you would like to avoid hitting at full speed.

The same thought can be applied to SGD. If we build up too much momentum, we may
overshoot a local minimum and keep on rolling. Therefore, it would be advantageous to have a
smarter roll, one that knows when to slow down, which is where Nesterov accelerated gradient [87]
comes in.

Nesterov acceleration can be conceptualized as a corrective update to the momentum which
lets us obtain an approximate idea of where our parameters will be after the update. Looking at
Hinton’s Overview of mini-batch gradient descent slides [90], we can see a nice visualization of
Nesterov acceleration (Figure 9.7).

Figure 9.7: A graphical depecition of Nesterov acceleration. First, we make a big jump in the
direction of the previous gradient, then measure the gradient where we ended up and make the
correction.

Using standard momentum, we compute the gradient (small blue vector) and then take a big
jump in the in the direction of the gradient (large blue vector). Under Nesterov acceleration we
would first make a big jump in the direction of our previous gradient (brown vector), measure the
gradient, and then make a correction (red vector) – the green vector is the final corrected update by
Nesterov acceleration (paraphrased from Ruder [88]).

A thorough theoretical and mathematical treatment of Nesterov acceleration are outside the
scope of this book. For those interested in studying Nesterov acceleration in more detail, please
refer to Ruder [88], Bengio [91], and Sutskever [92].
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9.3.3 Anecdotal Recommendations
Momentum is an important term that can increase the convergence of our model; we tend not
to worry with this hyperparameter as much, as compared to our learning rate and regularization
penalty (discussed in the next section), which are by far the most important knobs to tweak.

My personal rule of thumb is that whenever using SGD, also apply momentum. In most cases,
you can set it (and leave it) and 0.9 although Karpathy [93] suggests starting at 0.5 and increasing
it to larger values as your epochs increase.

As for Nesterov acceleration, I tend to use it on smaller datasets, but for larger datasets
(such as ImageNet), I almost always avoid it. While Nesterov acceleration has sound theoretical
guarantees, all major publications trained on ImageNet (e.x., AlexNet [94], VGGNet [95], ResNet
[96], Inception [97], etc.) use SGD with momentum – not a single paper from this seminal group
utilizes Nesterov acceleration.

My personal experience has lead me to find that when training deep networks on large
datasets, SGD is easier to work with when using momentum and leaving out Nesterov accel-
eration. Smaller datasets, on the other hand, tend to enjoy the benefits of Nesterov acceleration.
However, keep in mind that this is my anecdotal opinion and that your mileage may vary.

9.4 Regularization

“Many strategies used in machine learning are explicitly designed to reduce the
test error, possibly at the expense of increased training error. These strategies are
collectively known as regularization.” – Goodfellow et al. [10]

In earlier sections of this chapter, we discussed two important loss functions: Multi-class SVM
loss and cross-entropy loss. We then discussed gradient descent and how a network can actually
learn by updating the weight parameters of a model. While our loss function allows us to determine
how well (or poorly) our set of parameters are performing on a given classification task, the loss
function itself does not take into account how the weight matrix “looks”.

What do I mean by “looks”? Well, keep in mind that we are working in a real-valued space,
thus there are an infinite set of parameters that will obtain reasonable classification accuracy on our
dataset (for some definition of “reasonable”).

How do we go about choosing a set of parameters that help ensure our model generalizes well?
Or, at the very least, lessen the effects of overfitting. The answer is regularization. Second only to
your learning rate, regularization is the most important parameter of your model that can you tune.

There are various types of regularization techniques, such as L1 regularization, L2 regularization
(commonly called “weight decay”), and Elastic Net [98], that are used by updating the loss function
itself, adding an additional parameter to constrain the capacity of the model.

We also have types of regularization that can be explicitly added to the network architecture
– dropout is the quintessential example of such regularization. We then have implicit forms of
regularization that are applied during the training process. Examples of implicit regularization
include data augmentation and early stopping. Inside this section, we’ll mainly be focusing on the
parameterized regularization obtained by modifying our loss and update functions.

In Chapter 11 of the Starter Bundle, we’ll review dropout and then in Chapter 17 we’ll discuss
overfitting in more depth, as well as how we can use early stopping as a regularizer. Inside the
Practitioner Bundle, you’ll find examples of data augmentation used as regularization.

9.4.1 What Is Regularization and Why Do We Need It?
Regularization helps us control our model capacity, ensuring that our models are better at
making (correct) classifications on data points that they were not trained on, which we call the
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ability to generalize. If we don’t apply regularization, our classifiers can easily become too complex
and overfit to our training data, in which case we lose the ability to generalize to our testing data
(and data points outside the testing set as well, such as new images in the wild).

However, too much regularization can be a bad thing. We can run the risk of underfitting, in
which case our model performs poorly on the training data and is not able to model the relationship
between the input data and output class labels (because we limited model capacity too much). For
example, consider the following plot of points, along with various functions that fit to these points
(Figure 9.8).

Figure 9.8: An example of underfitting (orange line), overfitting (blue line), and generalizing (green
line). Our goal when building deep learning classifiers is to obtain these types of “green functions”
that fit our training data nicely, but avoid overfitting. Regularization can help us obtain this type of
desired fit.

The orange line is an example of underfitting – we are not capturing the relationship between the
points. On the other hand, the blue line is an example of overfitting – we have too many parameters
in our model, and while it hits all points in the dataset, it also wildly varies between the points. It is
not a smooth, simple fit that we would prefer. We then have the green function which also hits all
points in our dataset, but does so in a much more predictable, simple manner.

The goal of regularization is to obtain these types of “green functions” that fit our training
data nicely, but avoid overfitting to our training data (blue) or failing to model the underlying
relationship (yellow). We discuss how to monitor training and spot both underfitting and overfitting
in Chapter 17; however, for the time being, simply understand that regularization is a critical aspect
of machine learning and we use regularization to control model generalization. To understand
regularization and the impact it has on our loss function and weight update rule, let’s proceed to the
next section.



9.4 Regularization 115

9.4.2 Updating Our Loss and Weight Update To Include Regularization
Let’s start with our cross-entropy loss function (Section 8.2.3):

Li =−log(esyi/∑
j

es j) (9.6)

The loss over the entire training set can be written as:

L =
1
N

N

∑
i=1

Li (9.7)

Now, let’s say that we have obtained a weight matrix W such that every data point in our
training set is classified correctly, which means that our loss L = 0 for all Li.

Awesome, we’re getting 100% accuracy – but let me ask you a question about this weight
matrix – is it unique? Or, in other words, are there better choices ofW that will improve our
model’s ability to generalize and reduce overfitting?

If there is such aW , how do we know? And how can we incorporate this type of penalty into
our loss function? The answer is to define a regularization penalty, a function that operates on
our weight matrix. The regularization penalty is commonly written as a function, R(W ). Equation
9.8 below shows the most common regularization penalty, L2 regularization (also called weight
decay):

R(W ) = ∑
i

∑
j

W 2
i, j (9.8)

What is the function doing exactly? In terms of Python code, it’s simply taking the sum of
squares over an array:

1 penalty = 0
2

3 for i in np.arange(0, W.shape[0]):
4 for j in np.arange(0, W.shape[1]):
5 penalty += (W[i][j] ** 2)

What we are doing here is looping over all entries in the matrix and taking the sum of squares.
The sum of squares in the L2 regularization penalty discourages large weights in our matrixW ,
preferring smaller ones. Why might we want to discourage large weight values? In short, by
penalizing large weights, we can improve the ability to generalize, and thereby reduce overfitting.

Think of it this way – the larger a weight value is, the more influence it has on the output
prediction. Dimensions with larger weight values can almost singlehandedly control the output
prediction of the classifier (provided the weight value is large enough, of course) which will almost
certainly lead to overfitting.

To mitigate affect various dimensions have on our output classifications, we apply regularization,
thereby seeking W values that take into account all of the dimensions rather than the few with
large values. In practice you may find that regularization hurts your training accuracy slightly, but
actually increases your testing accuracy.

Again, our loss function has the same basic form, only now we add in regularization:

L =
1
N

N

∑
i=1

Li +λR(W ) (9.9)
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The first term we have seen before – it is the average loss over all samples in our training set.
The second term is new – this is our regularization penalty. The λ variable is a hyperparam-

eter that controls the amount or strength of the regularization we are applying. In practice, both the
learning rate α and the regularization term λ are the hyperparameters that you’ll spending the most
time tuning.

Expanding cross-entropy loss to include L2 regularization yields the following equation:

L =
1
N

N

∑
i=1

[−log(esyi/∑
j

es j)]+λ ∑
i

∑
j

W 2
i, j (9.10)

We can also expand Multi-class SVM loss as well:

L =
1
N

N

∑
i=1

∑
j 6=yi

[max(0,s j− syi +1)]+λ ∑
i

∑
j

W 2
i, j (9.11)

Now, let’s take a look at our standard weight update rule:

W =W −α∇W f (W ) (9.12)

This method updates our weights based on the gradient multiple by a learning rate α . Taking
into account regularization, the weight update rule becomes:

W =W −α∇W f (W )+λR(W ) (9.13)

Here we are adding a negative linear term to our gradients (i.e., gradient descent), penalizing
large weights, with the end goal of making it easier for our model to generalize.

9.4.3 Types of Regularization Techniques
In general, you’ll see three common types of regularization there are applied directly to the loss
function. The first, we reviewed earlier, L2 regularization (aka “weight decay”):

R(W ) = ∑
i

∑
j

W 2
i, j (9.14)

We also have L1 regularization which takes the absolute value rather than the square:

R(W ) = ∑
i

∑
j
|Wi, j| (9.15)

Elastic Net [98] regularization seeks to combine both L1 and L2 regularization:

R(W ) = ∑
i

∑
j

βW 2
i, j + |Wi, j| (9.16)

Other types of regularization methods exist such as directly modifying the architecture of a
network along with how the network is actually trained – we will review these methods in later
chapters.



9.4 Regularization 117

In terms of which regularization method you should be using (including none at all), you
should treat this choice as a hyperparameter you need to optimize over and perform experiments to
determine if regularization should be applied, and if so which method of regularization, and what
the proper value of λ is. For more details on regularization, refer to Chapter 7 of Goodfellow et
al. [10], the “Regularization” section from the DeepLearing.net tutorial [99], and the notes from
Karpathy’s cs231n Neural Networks II lecture [100].

9.4.4 Regularization Applied to Image Classification
To demonstrate regularization in action, let’s write some Python code to apply it to our “Animals”
dataset. Open up a new file, name it regularization.py, and insert the following code:

1 # import the necessary packages
2 from sklearn.linear_model import SGDClassifier
3 from sklearn.preprocessing import LabelEncoder
4 from sklearn.model_selection import train_test_split
5 from pyimagesearch.preprocessing import SimplePreprocessor
6 from pyimagesearch.datasets import SimpleDatasetLoader
7 from imutils import paths
8 import argparse

Lines 2-8 import our required Python packages. We’ve seen all of these imports before,
except the scikit-learn SGDClassifier. As the name of this class suggests, this implementation
encapsulates all the concepts we have reviewed in this chapter, including:
• Loss functions
• Number of epochs
• Learning rate
• Regularization terms
Thus making it the perfect example to demonstrate all these concepts in action.
Next, we can parse our command line arguments and grab the list of images from disk:

10 # construct the argument parse and parse the arguments
11 ap = argparse.ArgumentParser()
12 ap.add_argument("-d", "--dataset", required=True,
13 help="path to input dataset")
14 args = vars(ap.parse_args())
15

16 # grab the list of image paths
17 print("[INFO] loading images...")
18 imagePaths = list(paths.list_images(args["dataset"]))

Given the image paths, we’ll resize them to 32×32 pixels, load them from disk into memory,
and then flatten them into a 3,072-dim array:

20 # initialize the image preprocessor, load the dataset from disk,
21 # and reshape the data matrix
22 sp = SimplePreprocessor(32, 32)
23 sdl = SimpleDatasetLoader(preprocessors=[sp])
24 (data, labels) = sdl.load(imagePaths, verbose=500)
25 data = data.reshape((data.shape[0], 3072))
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We’ll also encode the labels as integers and perform a training testing split, using 75% of the
data for training and the remaining 25% for testing:

27 # encode the labels as integers
28 le = LabelEncoder()
29 labels = le.fit_transform(labels)
30

31 # partition the data into training and testing splits using 75% of
32 # the data for training and the remaining 25% for testing
33 (trainX, testX, trainY, testY) = train_test_split(data, labels,
34 test_size=0.25, random_state=5)

Let’s apply a few different types of regularization when training our SGDClassifier:

36 # loop over our set of regularizers
37 for r in (None, "l1", "l2"):
38 # train a SGD classifier using a softmax loss function and the
39 # specified regularization function for 10 epochs
40 print("[INFO] training model with ‘{}‘ penalty".format(r))
41 model = SGDClassifier(loss="log", penalty=r, max_iter=10,
42 learning_rate="constant", eta0=0.01, random_state=42)
43 model.fit(trainX, trainY)
44

45 # evaluate the classifier
46 acc = model.score(testX, testY)
47 print("[INFO] ‘{}‘ penalty accuracy: {:.2f}%".format(r,
48 acc * 100))

Line 37 loops over our regularizers, including no regularization. We then initialize and train
the SGDClassifier on Lines 41-43.

We’ll be using cross-entropy loss, with regularization penalty of r and a default λ of 0.0001.
We’ll use SGD to train the model for 10 epochs with a learning rate of α = 0.01. We then evaluate
the classifier and display the accuracy results to our screen on Lines 46-48.

To see our SGD model trained with various regularization types, just execute the following
command:

$ python regularization.py --dataset ../datasets/animals
[INFO] loading images...
...
[INFO] training model with ‘None‘ penalty
[INFO] ‘None‘ penalty accuracy: 50.40%
[INFO] training model with ‘l1‘ penalty
[INFO] ‘l1‘ penalty accuracy: 52.53%
[INFO] training model with ‘l2‘ penalty
[INFO] ‘l2‘ penalty accuracy: 55.07%

We can see with no regularization we obtain an accuracy of 50.40%. Using L1 regularization
our accuracy increases to 52.53%. L2 regularization obtains the highest accuracy of 55.07%.

R Using different random_state values for train_test_split will yield different results.
The dataset here is too small and the classifier too simplistic to see the full impact of
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regularization, so consider this a “worked example”. As we continue to work through this
book you’ll see more advanced uses of regularization that will have dramatic impacts on your
accuracy.

Realistically, this example is too small to show all the advantages of applying regularization
– for that, we’ll have to wait until we start training Convolutional Neural Networks. However, in
the meantime simply appreciate that regularization can provide a boost in our testing accuracy and
reduce overfitting, provided we can tune the hyperparameters right.

9.5 Summary
In this chapter, we popped the hood on deep learning and took a deep dive into the engine that
powers modern day neural networks – gradient descent. We investigated two types of gradient
descent:

1. The standard vanilla flavor.
2. The stochastic version that is more commonly used.
Vanilla gradient descent performs only one weight update per epoch, making it very slow (if not

impossible) to converge on large datasets. The stochastic version instead applies multiple weight
updates per epoch by computing the gradient on small mini-batches. By using SGD we can
dramatically reduce the time it takes to train a model while also enjoying lower loss and higher
accuracy. Typical batch sizes include 32, 64, 128 and 256.

Gradient descent algorithms are controlled via a learning rate: this is by far the most important
parameter to tune correctly when training your own models.

If your learning rate is too large, you’ll simply bounce around the loss landscape and not
actually “learn” any patterns from your data. On the other hand, if your learning rate is too small,
it will take a prohibitive number of iterations to reach even a reasonable loss. To get it just right,
you’ll want to spend the majority of your time tuning the learning rate.

We then discussed regularization, which is defined as “any method that increases testing
accuracy perhaps at the expense of training accuracy”. Regularization encompasses a broad
range of techniques. We specifically focused on regularization methods that are applied to our loss
functions and weight update rules, including L1 regularization, L2 regularization, and Elastic Net.

In terms of deep learning and neural networks, you’ll commonly see L2 regularization used
for image classification – the trick is tuning the λ parameter to include just the right amount of
regularization.

At this point, we have a sound foundation of machine learning, but we have yet to investigate
neural networks or train a custom neural network from scratch. That will all change in our next
chapter where we discuss neural networks, the backpropagation algorithm, and how to train your
own neural networks on custom datasets.





10. Neural Network Fundamentals

In this chapter, we’ll study the fundamentals of neural networks in depth. We’ll start with a
discussion of artificial neural networks and how they are inspired by the real-life biological neural
networks in our own bodies. From there, we’ll review the classic Perceptron algorithm and the role
it has played in neural network history.

Building on the Perceptron, we’ll also study the backpropagation algorithm, the cornerstone
of modern neural learning – without backpropagation, we would be unable to efficiently train our
networks. We’ll also implement backpropagation with Python from scratch, ensuring we understand
this important algorithm.

Of course, modern neural network libraries such as Keras already have (highly optimized)
backpropagation algorithms built-in. Implementing backpropagation by hand each time we wished
to train a neural network would be like coding a linked list or hash table data structure from scratch
each time we worked on a general purpose programming problem – not only is it unrealistic, but
it’s also a waste of our time and resources. In order to streamline the process, I’ll demonstrate how
to create standard feedforward neural networks using the Keras library.

Finally, we’ll round out this chapter with a discussion of the four ingredients you’ll need when
building any neural network.

10.1 Neural Network Basics

Before we can work with Convolutional Neural Networks, we first need to understand the basics of
neural networks. In this section we’ll review:
• Artificial Neural Networks and their relation to biology.
• The seminal Perceptron algorithm.
• The backpropagation algorithm and how it can be used to train multi-layer neural networks

efficiently.
• How to train neural networks using the Keras library.
By the time you finish this chapter, you’ll have a strong understanding of neural networks and

be able to move on to the more advanced Convolutional Neural Networks.
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Figure 10.1: A simple neural network architecture. Inputs are presented to the network. Each
connection carries a signal through the two hidden layers in the network. A final function computes
the output class label.

10.1.1 Introduction to Neural Networks

Neural networks are the building blocks of deep learning systems. In order to be successful at deep
learning, we need to start by reviewing the basics of neural networks, including architecture, node
types, and algorithms for “teaching” our networks.

In this section we’ll start off with a high-level overview of neural networks and the motivation
behind them, including their relation to biology in the human mind. From there we’ll discuss the
most common type of architecture, feedforward neural networks. We’ll also briefly discuss the
concept of neural learning and how it will later relate to the algorithms we use to train neural
networks.

What are Neural Networks?

Many tasks that involve intelligence, pattern recognition, and object detection are extremely difficult
to automate, yet seem to be performed easily and naturally by animals and young children. For
example, how does your family dog recognize you, the owner, versus a complete and total stranger?
How does a small child learn to recognize the difference between a school bus and a transit bus?
And how do our own brains subconsciously perform complex pattern recognition tasks each and
every day without us even noticing?

The answer lies within our own bodies. Each of us contains a real-life biological neural
networks that is connected to our nervous systems – this network is made up of a large number of
interconnected neurons (nerve cells).

The word “neural” is the adjective form of “neuron”, and “network” denotes a graph-like
structure; therefore, an “Artificial Neural Network” is a computation system that attempts to mimic
(or at least, is inspired by) the neural connections in our nervous system. Artificial neural networks
are also referred to as “neural networks” or “artificial neural systems”. It is common to abbreviate
Artificial Neural Network and refer to them as “ANN” or simply “NN” – I will be using both of the
abbreviations throughout the rest of the book.

For a system to be considered an NN, it must contain a labeled, directed graph structure where
each node in the graph performs some simple computation. From graph theory, we know that a
directed graph consists of a set of nodes (i.e., vertices) and a set of connections (i.e., edges) that
link together pairs of nodes. In Figure 10.1 we can see an example of such an NN graph.
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Each node performs a simple computation. Each connection then carries a signal (i.e., the
output of the computation) from one node to another, labeled by a weight indicating the extent to
which the signal is amplified or diminished. Some connections have large, positive weights that
amplify the signal, indicating that the signal is very important when making a classification. Others
have negative weights, diminishing the strength of the signal, thus specifying that the output of
the node is less important in the final classification. We call such a system an Artificial Neural
Network if it consists of a graph structure (like in Figure 10.1) with connection weights that are
modifiable using a learning algorithm.

Relation to Biology

Figure 10.2: The structure of a biological neuron. Neurons are connected to other neurons through
their dendrites and enurons.

Our brains are composed of approximately 10 billion neurons, each connected to about 10,000
other neurons. The cell body of the neuron is called the soma, where the inputs (dendrites) and
outputs (axons) connect soma to other soma (Figure 10.2).

Each neuron receives electrochemical inputs from other neurons at their dendrites. If these
electrical inputs are sufficiently powerful to activate the neuron, then the activated neuron transmits
the signal along its axon, passing it along to the dendrites of other neurons. These attached neurons
may also fire, thus continuing the process of passing the message along.

The key takeaway here is that a neuron firing is a binary operation – the neuron either
fires or it doesn’t fire. There are no different “grades” of firing. Simply put, a neuron will only fire
if the total signal received at the soma exceeds a given threshold.

However, keep in mind that ANNs are simply inspired by what we know about the brain and
how it works. The goal of deep learning is not to mimic how our brains function, but rather take the
pieces that we understand and allow us to draw similar parallels in our own work. At the end of the
day we do not know enough about neuroscience and the deeper functions of the brain to be able to
correctly model how the brain works – instead, we take our inspirations and move on from there.

Artificial Models
Let’s start by taking a look at a basic NN that performs a simple weighted summation of the inputs
in Figure 10.3. The values x1,x2,and,x3 are the inputs to our NN and typically correspond to a
single row (i.e., data point) from our design matrix. The constant value 1 is our bias that is assumed
to be embedded into the design matrix. We can think of these inputs as the input feature vectors to
the NN.
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Figure 10.3: A simple NN that takes the weighted sum of the input x and weights w. This weighted
sum is then passed through the activation function to determine if the neuron fires.

In practice these inputs could be vectors used to quantify the contents of an image in a systematic,
predefined way (e.x., color histograms, Histogram of Oriented Gradients [32], Local Binary Patterns
[21], etc.). In the context of deep learning, these inputs are the raw pixel intensities of the images
themselves.

Each x is connected to a neuron via a weight vectorW consists of w1,w2, . . .wn, meaning that
for each input x we also have an associated weight w.

Finally, the output node on the right of Figure 10.3 takes the weighted sum, applies an activation
function f (used to determine if the neuron “fires” or not), and outputs a value. Expressing the
output mathematically, you’ll typically encounter the following three forms:
• f (w1x1 +w2x2 + · · ·+wnxn)
• f (∑n

i=1 wixi)
• Or simply, f (net), where net = ∑

n
i=1 wixi

Regardless how the output value is expressed, understand that we are simply taking the weighted
sum of inputs, followed by applying an activation function f .

Activation Functions
The most simple activation function is the “step function”, used by the Perceptron algorithm (which
we’ll cover in the next section).

f (net) =

{
1 if net > 0
0 otherwise

As we can see from the equation above, this is a very simple threshold function. If the weighted
sum ∑

n
i=1 wixi > 0, we output 1, otherwise, we output 0.

Plotting input values along the x-axis and the output of f (net) along the y−axis we can see
why this activation function received its name (Figure 10.4, top-left). The output of f is always
zero when net is less than or equal zero. If net is greater than to zero, then f will return one. Thus,
this function looks like a stair step, not dissimilar to the stairs you walk up and down every day.
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However, while being intuitive and easy to use, the step function is not differentiable, which can
lead to problems when applying gradient descent and training our network.

Figure 10.4: Top-left: Step function. Top-right: Sigmoid activation function. Mid-left: Hyper-
bolic tangent. Mid-right: ReLU activation (most used activation function for deep neural networks).
Bottom-left: Leaky ReLU, variant of the ReLU that allows for negative values. Bottom-right:
ELU, another variant of ELU that can often perform better than Leaky ReLU.

Instead, a more common activation function used in the history of NN literature is the sigmoid
function (Figure 10.4, top-right), which follows the equation:

t =
n

∑
i=1

wixi s(t) = 1/(1+ e−t) (10.1)

The sigmoid function is a better choice for learning than the simple step function since it:
1. Is continuous and differentiable everywhere.
2. Is symmetric around the y-axis.
3. Asymptotically approaches its saturation values.
The primary advantage here is that the smoothness of the sigmoid function makes it easier to

devise learning algorithms. However, there are two big problems with the sigmoid function:
1. The outputs of the sigmoid are not zero centered.
2. Saturated neurons essentially kill the gradient, since the delta of the gradient will be extremely

small.
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The hyperbolic tangent, or tanh (with a similar shape of the sigmoid) was also heavily used as
an activation function up until the late 1990s (Figure 10.4, mid-left): The equation for tanh follows:

f (z) = tanh(z) = (ez− e−z)/(ez + e−z) (10.2)

The tanh function is zero centered, but the gradients are still killed when neurons become
saturated.

We now know there are better choices for activation functions than the sigmoid and tanh func-
tions. Specifically, the work of Hahnloser et al. in their 2000 paper, Digital selection and analogue
amplification coexist in a cortex-inspired silicon circuit [101], introduced the Rectified Linear
Unit (ReLU), defined as:

f (x) = max(0,x) (10.3)

ReLU are also called “ramp functions” due to how they look when plotted (Figure 10.4, mid-
right). Notice how the function is zero for negative inputs but then linearly increases for positive
values. The ReLU function is not saturable and is also extremely computationally efficient.

Empirically, the ReLU activation function tends to outperform both the sigmoid and tanh
functions in nearly all applications. Combined with the work of Hahnloser and Seung in their
followup 2003 paper Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks [102],
it was found that the ReLU activation function has stronger biological motivations than the previous
families of an activation functions, including more complete mathematical justifications.

As of 2015, ReLU is the most popular activation function used in deep learning [9]. However,
a problem arises when we have a value of zero – the gradient cannot be taken.

A variant of ReLUs, called Leaky ReLUs [103] allow for a small, non-zero gradient when the
unit is not active:

f (net) =

{
net if net >= 0
α×net otherwise

Plotting this function in Figure 10.4 (bottom-left), we can see that the function is indeed allowed
to take on a negative value, unlike traditional ReLUs which “clamp" the function output at zero.

Parametric ReLUs, or PReLUs for short [96], build on Leaky ReLUs and allow the parameter
α to be learned on an activation-by-activation basis, implying that each node in the network can
learn a different “coefficient of leakage” separate from the other nodes.

Finally, we also have Exponential Linear Units (ELUs) introduced by Clevert et al. in their
2015 paper, Fast and Accurate Deep Learning by Exponential Linear Units (ELUs) [104]:

f (net) =

{
net if net >= 0
α× (exp(net)−1) otherwise

The value of α is constant and set when the network architecture is instantiated – this is unlike
PReLUs where α is learned. A typical value for α is α = 1.0. Figure 10.4 (bottom-right) visualizes
the ELU activation function.

Through the work of Clevert et al. (and my own anecdotal experiments), ELUs often obtain
higher classification accuracy than ReLUs. ELUs rarely, if ever perform worse than your standard
ReLU function.
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Which Activation Function Do I Use?
Given the popularity of the most recent incarnation of deep learning, there has been an associated
explosion in activation functions. Due to the number of choices of activation functions, both modern
(ReLU, Leaky ReLU, ELU, etc.) and “classical” ones (step, sigmoid, tanh, etc.), it may appear to
be a daunting, perhaps even overwhelming task to select an appropriate activation function.

However, in nearly all situations, I recommend starting with a ReLU to obtain a baseline
accuracy (as do most papers published in the deep learning literature). From there you can try
swapping out your standard ReLU for a Leaky ReLU variant.

My personal preference is to start with a ReLU, tune my network and optimizer parameters
(architecture, learning rate, regularization strength, etc.) and note the accuracy. Once I am
reasonably satisfied with the accuracy, I swap in an ELU and often notice a 1−5% improvement
in classification accuracy depending on the dataset. Again, this is only my anecdotal advice. You
should run your own experiments and note your findings, but as a general rule of thumb, start with
a normal ReLU and tune the other parameters in your network – then swap in some of the more
“exotic” ReLU variants.

Feedforward Network Architectures
While there are many, many different NN architectures, the most common architecture is the
feedforward network, as presented in Figure 10.5.

Figure 10.5: An example of a feedforward neural network with 3 input nodes, a hidden layer with 2
nodes a second hidden layer with 3 nodes, and a final output layer with 2 nodes.

In this type of architecture, a connection between nodes is only allowed from nodes in layer i to
nodes in layer i+1 (hence the term, feedforward). There are no backward or inter-layer connections
allowed. When feedforward networks include feedback connections (output connections that feed
back into the inputs) they are called recurrent neural networks.

In this book we focus on feedforward neural networks as they are the cornerstone of modern
deep learning applied to computer vision. As we’ll find out in Chapter 11, Convolutional Neural
Networks are simply a special case of feedforward neural network.



128 Chapter 10. Neural Network Fundamentals

To describe a feedforward network, we normally use a sequence of integers to quickly and
concisely depot the number of nodes in each layer. For example, the network in Figure 10.5 above
is a 3-2-3-2 feedforward network:

Layer 0 contains 3 inputs, our xi values. These could be raw pixel intensities of an image or a
feature vector extracted from the image.

Layers 1 and 2 are hidden layers containing 2 and 3 nodes, respectively.
Layer 3 is the output layer or the visible layer – there is where we obtain the overall output

classification from our network. The output layer typically has as many nodes as class labels; one
node for each potential output. For example, if we were to build an NN to classify handwritten
digits, our output layer would consist of 10 nodes, one for each digit 0-9.

Neural Learning
Neural learning refers to the method of modifying the weights and connections between nodes in a
network. Biologically, we define learning in terms of Hebb’s principle:

“When an axon of cell A is near enough to excite cell B, and repeatedly or
persistently takes place in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased” – Donald Hebb [105]

In terms of ANNs, this principle implies that there should be an increase in strength of
connections between nodes that have similar outputs when presented with the same input. We
call this correlation learning because the strength of the connections between neurons eventually
represents the correlation between outputs.

What are Neural Networks Used For?
Neural Networks can be used in both supervised, unsupervised, and semi-supervised learning tasks,
providing the appropriate architecture is used, of course. A complete review of NNs is outside the
scope of this book (please see Schmidhuber [40] for an extensive survey of deep artificial networks,
along with Mehrota [106] for an review of classical methods); however, common applications
of NN include classification, regression, clustering, vector quantization, pattern association, and
function approximation, just to name a few.

In fact, for nearly every facet of machine learning, NNs have been applied in some form or
another. In the context of this book, we’ll be using NNs for computer vision and image classification.

A Summary of Neural Network Basics
In this section, we reviewed the basics of Artificial Neural Networks (ANNs, or simply NNs).
We started by examining the biological motivation behind ANNs, and then learned how we can
mathematically define a function to mimic the activation of a neuron (i.e., the activation function).

Based on this model of a neuron, we are able to define the architecture of a network consisting
of (at a bare minimum), an input layer and an output layer. Some network architectures may
include multiple hidden layers between the input and output layers. Finally, each layer can have
one or more nodes. Nodes in the input layer do not contain an activation function (they are “where”
the individual pixel intensities of our image are inputted); however, nodes in both the hidden and
output layers do contain an activation function.

We also reviewed three popular activation functions: sigmoid, tanh, and ReLU (and its variants).
Traditionally the sigmoid and tanh functions have been used to train networks; however,

since Hahnloser et al.’s 2000 paper [101], the ReLU function has been used more often.
In 2015, ReLU is by far the most popular activation function used in deep learning architectures

[9]. Based on the success of ReLU, we also have Leaky ReLUs, a variant of ReLUs that seek to
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improve network performance by allowing the function to take on a negative value. The Leaky
ReLU family of functions consists of your standard leaky ReLU variant, PReLUs, and ELUs.

Finally, it’s important to note that even though we are focusing on deep learning strictly in the
context of image classification, neural networks have been used in some fashion in nearly all niches
of machine learning.

Now that we understand the basics of NNs, let’s make this knowledge more concrete by
examining actual architectures and their associated implementations. In the next section, we’ll
discuss the classic Perceptron algorithm, one of the first ANNs ever to be created.

10.1.2 The Perceptron Algorithm

First introduced by Rosenblatt in 1958, The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain [12] is arguably the oldest and most simple of the ANN
algorithms. Following this publication, Perceptron-based techniques were all the rage in the neural
network community. This paper alone is hugely responsible for the popularity and utility of neural
networks today.

But then, in 1969, an “AI Winter” descended on the machine learning community that almost
froze out neural networks for good. Minsky and Papert published Perceptrons: an introduction
to computational geometry [14], a book that effectively stagnated research in neural networks
for almost a decade – there is much controversy regarding the book [107], but the authors did
successfully demonstrate that a single layer Perceptron is unable to separate nonlinear data points.

Given that most real-world datasets are naturally nonlinearly separable, this it seemed that the
Perceptron, along with the rest of neural network research, might reach an untimely end.

Between the Minsky and Papert publication and the broken promises of neural networks revolu-
tionizing industry, the interest in neural networks dwindled substantially. It wasn’t until we started
exploring deeper networks (sometimes called multi-layer perceptrons) along with the backpropa-
gation algorithm (Werbos [15] and Rumelhart [16]) that the “AI Winter” in the 1970s ended and
neural network research started to heat up again.

All that said, the Perceptron is still a very important algorithm to understand as it sets the stage
for more advanced multi-layer networks. We’ll start this section with a review of the Perceptron
architecture and explain the training produced (called the delta rule) used to train the Perceptron.
We’ll also look at the termination criteria of the network (i.e., when the Perceptron should stop
training). Finally, we’ll implement the Perceptron algorithm in pure Python and use it to study and
examine how the network is unable to learn nonlinearly separable datasets.

AND, OR, and XOR Datasets

Before we study the Perceptron itself, let’s first discuss “bitwise operations”, including AND, OR,
and XOR (exclusive OR). If you’ve taken an introductory level computer science course before you
might already be familiar with bitwise functions.

Bitwise operators and associated bitwise datasets accept two input bits and produce a final
output bit after applying the operation. Given two input bits, each potentially taking on a value of 0
or 1, there are four possible combinations of of these two bits – Table 10.1 provides the possible
input and output values for AND, OR, and XOR:

As we can see on the left, a logical AND is true if and only if both input values are 1. If either of
the input values are 0, the AND returns 0. Thus, there is only one combination, x0 = 1 and x1 = 1
when the output of AND is true.

In the middle, we have the OR operation which is true when only one of the input values is 1.
Thus, there are three possible combinations of the two bits x0 and x1 that produce a value of y = 1.

Finally, the right displays the XOR operation which is true if and only if one if the inputs is
1 but not both. While OR had three possible situations where y = 1, XOR only has two.
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x0 x1 x0&x1

0 0 0
0 1 0
1 0 0
1 1 1

x0 x1 x0|x1

0 0 0
0 1 1
1 0 1
1 1 1

x0 x1 x0 ∧x1

0 0 0
0 1 1
1 0 1
1 1 0

Table 10.1: Left: The bitwise AND dataset. Given two inputs, the output is only 1 if both inputs
are 1. Middle: The bitwise OR dataset. Given two inputs, the output is 1 if either of the two inputs
is 1. Right: The XOR (e(X)clusive OR) dataset. Given two inputs, the output 1 if and only if one
if the inputs is 1, but not both.

We often use these simple “bitwise datasets” to test and debug machine learning algorithms. If
we plot and visualize the AND, OR, and XOR values (with red circles being zero outputs and blue
stars one outputs) in Figure 10.6, you’ll notice an interesting pattern:

Figure 10.6: Both the AND and OR bitwise datasets are linearly separable, meaning that we can
draw a single line (green) that separates the two classes. However, for XOR it is impossible to draw
a single line that separates the two classes – this is therefore a nonlinearly separable dataset.

Both AND and OR are linearly separable – we can clearly draw a line that separates the 0
and 1 classes – the same is not true for XOR. Take the time now to convince yourself that it is
not possible to draw a line that cleanly separates the two classes in the XOR problem. XOR is,
therefore, an example of a nonlinearly separable dataset.

Ideally, we would like our machine learning algorithms to be able to separate nonlinear classes
as most datasets encountered in the real-world are nonlinear. Therefore, when constructing,
debugging, and evaluating a given machine learning algorithm, we may use the bitwise values x0
and x1 as our design matrix and then try to predict the corresponding y values.

Unlike our standard procedure of splitting our data into training and testing splits, when using
bitwise datasets we simply train and evaluate our network on the same set of data. Our goal here is
simply to determine if it’s even possible for our learning algorithm to learn the patterns in the data.
As we’ll find out, the Perceptron algorithm can correctly classify the AND and OR functions but
fails to classify the XOR data.

Perceptron Architecture
Rosenblatt [12] defined a Perceptron as a system that learns using labeled examples (i.e., supervised
learning) of feature vectors (or raw pixel intensities), mapping these inputs to their corresponding
output class labels.

In its simplest form, a Perceptron contains N input nodes, one for each entry in the input row of
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the design matrix, followed by only one layer in the network with just a single node in that layer
(Figure 10.7).

Figure 10.7: Architecture of the Perceptron network.

There exist connections and their corresponding weights w1,w2, . . .wi from the input xi’s to the
single output node in the network. This node takes the weighted sum of inputs and applies a step
function to determine the output class label. The Perceptron outputs either a 0 or a 1 – 0 for class #1
and 1 for class #2; thus, in its original form, the Perceptron is simply a binary, two class classifier.

Perceptron Training Procedure and the Delta Rule
Training a Perceptron is a fairly straightforward operation. Our goal is to obtain a set of weights
w that accurately classifies each instance in our training set. In order to train our Perceptron, we
iteratively feed the network our training data multiple times. Each time the network has seen the
full set of training data, we say an epoch has passed. It normally takes many epochs until a weight
vector w can be learned to linearly separate our two classes of data.

The pseudocode for the Perceptron training algorithm can be found below:
The actual “learning” takes place in Steps 2b and 2c. First, we pass the feature vector x j through

the network, take the dot product weight the weightsw and obtain the output y j. This value is then
passed through the step function which will return 1 if x > 0 and 0 otherwise.

Now we need to update our weight vector w to step in the direction that is “closer” to the
correct classification. This update of the weight vector is handled by the delta rule in Step 2c.

The expression (d j−y j) determines if the output classification is correct or not. If the classifica-
tion is correct, then this difference will be zero. Otherwise, the difference will be either positive or
negative, giving us the direction in which our weights will be updated (ultimately bringing us closer
to the correct classification). We then multiply (d j− y j) by x j, moving us closer to the correct
classification.

1. Initialize our weight vector w with small random values
2. Until Perceptron converges:

(a) Loop over each feature vector x j and true class label di in our training set D
(b) Take x and pass it through the network, calculating the output value: y j = f (w(t) ·x j)
(c) Update the weights w: wi(t +1) = wi(t)+η(d j− y j)x j,i for all features 0 <= i <= n

Figure 10.8: The Perceptron algorithm training procedure.
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The value α is our learning rate and controls how large (or small) of a step we take. It’s
critical that this value is set correctly. A larger value of α will cause us to take a step in the
right direction; however, this step could be too large, and we could easily overstep a local/global
optimum.

Conversely, a small value of α allows us to take tiny baby steps in the right direction, ensuring
we don’t overstep a local/global minimum; however, these tiny baby steps make take an intractable
amount of time for our learning to converge.

Finally, we add in the previous weight vector at time t,w j(t) which completes the process of
“stepping” towards the correct classification. If you find this training procedure a bit confusing,
don’t worry – we’ll be covering it in detail with Python code later in Section 10.1.2.

Perceptron Training Termination
The Perceptron training process is allowed to proceed until all training samples are classified
correctly or a preset number of epochs is reached. Termination is ensured if α is sufficiently small
and the training data is linearly separable.

So, what happens if our data is not linearly separable or we make a poor choice in α? Will
training continue infinitely? In this case, no – we normally stop after a set number of epochs
has been hit or if the number of misclassifications has not changed in a large number of epochs
(indicating that the data is not linearly separable). For more details on the perceptron algorithm,
please refer to either Andrew Ng’s Stanford lecture [76] or the introductory chapters of Mehrota et
al. [106].

Implementing the Perceptron in Python
Now that we have studied the Perceptron algorithm, let’s implement the actual algorithm in Python.
Create a file named perceptron.py in your pyimagesearch.nn package – this file will store our
actual Perceptron implementation:

--- pyimagesearch
| |--- __init__.py
| |--- nn
| | |--- __init__.py
| | |--- perceptron.py

After you’ve created the file, open it up, and insert the following code:

1 # import the necessary packages
2 import numpy as np
3

4 class Perceptron:
5 def __init__(self, N, alpha=0.1):
6 # initialize the weight matrix and store the learning rate
7 self.W = np.random.randn(N + 1) / np.sqrt(N)
8 self.alpha = alpha

Line 5 defines the constructor to our Perceptron class, which accepts a single required
parameter followed by a second optional one:

1. N: The number of columns in our input feature vectors. In the context of our bitwise datasets,
we’ll set N equal to two since there are two inputs.

2. alpha: Our learning rate for the Perceptron algorithm. We’ll set this value to 0.01 by default.
Common choices of learning rates are normally in the range α = 0.1,0.01,0.001.
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Line 7 files our weight matrix W with random values sampled from a “normal” (Gaussian)
distribution with zero mean and unit variance. The weight matrix will have N +1 entries, one for
each of the N inputs in the feature vector, plus one for the bias. We divide W by the square-root
of the number of inputs, a common technique used to scale our weight matrix, leading to faster
convergence. We will cover weight initialization techniques later in this chapter.

Next, let’s define the step function:

10 def step(self, x):
11 # apply the step function
12 return 1 if x > 0 else 0

This function mimics the behavior of the step equation in Section 10.4 above – if x is positive
we return 1, otherwise we return 0.

To actually train the Perceptron we’ll define a function named fit. If you have any previous
experience with machine learning, Python, and the scikit-learn library then you’ll know that it’s
common to name your training procedure function fit, as in “fit a model to the data”:

14 def fit(self, X, y, epochs=10):
15 # insert a column of 1’s as the last entry in the feature
16 # matrix -- this little trick allows us to treat the bias
17 # as a trainable parameter within the weight matrix
18 X = np.c_[X, np.ones((X.shape[0]))]

The fit method requires two parameters followed by a single optional one:
The X value is our actual training data. The y variable is our target output class labels (i.e.,

what our network should be predicting). Finally, we supply epochs, the number of epochs our
Perceptron will train for.

Line 18 applies the bias trick (Section 9.3) by inserting a column of ones into the training data,
which allows us to treat the bias as a trainable parameter directly inside the weight matrix.

Next, let’s review the actual training procedure:

20 # loop over the desired number of epochs
21 for epoch in np.arange(0, epochs):
22 # loop over each individual data point
23 for (x, target) in zip(X, y):
24 # take the dot product between the input features
25 # and the weight matrix, then pass this value
26 # through the step function to obtain the prediction
27 p = self.step(np.dot(x, self.W))
28

29 # only perform a weight update if our prediction
30 # does not match the target
31 if p != target:
32 # determine the error
33 error = p - target
34

35 # update the weight matrix
36 self.W += -self.alpha * error * x

On Line 21 we start looping over the desired number of epochs. For each epoch, we also loop
over each individual data point x and output target class label (Line 23).
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Line 27 takes the dot product between the input features x and the weight matrix W, then passes
the output through the step function to obtain the prediction by the Perceptron.

Applying the same training procedure detailed in Listing 10.8 above, we only perform a weight
update if our prediction does not match the target (Line 31). If this is the case, we determine the
error (Line 33) by computing the sign (either positive or negative) via the difference operation.

Updating the weight matrix is handled on Line 36 where we take a step towards the correct
classification, scaling this step by our learning rate alpha. Over a series of epochs, our Perceptron
is able to learn patterns in the underlying data and shift the values of the weight matrix such that
we correctly classify our input samples x.

The last function we need to define is predict, which, as the name suggests, is used to
predict the class labels for a given set of input data:

38 def predict(self, X, addBias=True):
39 # ensure our input is a matrix
40 X = np.atleast_2d(X)
41

42 # check to see if the bias column should be added
43 if addBias:
44 # insert a column of 1’s as the last entry in the feature
45 # matrix (bias)
46 X = np.c_[X, np.ones((X.shape[0]))]
47

48 # take the dot product between the input features and the
49 # weight matrix, then pass the value through the step
50 # function
51 return self.step(np.dot(X, self.W))

Our predict method requires a set of input data X that needs to be classified. A check on Line
43 is made to see if a bias column needs to be added.

Obtaining the output predictions for X is the same as the training procedure – simply take the
dot product between the input features X and our weight matrix W, and then pass the value through
our step function. The output of the step function is returned to the calling function.

Now that we’ve implemented our Perceptron class, let’s try to apply it to our bitwise datasets
and see how the neural network performs.

Evaluating the Perceptron Bitwise Datasets
To start, let’s create a file named perceptron_or.py that attempts to fit a Perceptron model to the
bitwise OR dataset:

1 # import the necessary packages
2 from pyimagesearch.nn import Perceptron
3 import numpy as np
4

5 # construct the OR dataset
6 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
7 y = np.array([[0], [1], [1], [1]])
8

9 # define our perceptron and train it
10 print("[INFO] training perceptron...")
11 p = Perceptron(X.shape[1], alpha=0.1)
12 p.fit(X, y, epochs=20)
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Lines 2 and 3 import our required Python packages. We’ll be using our Perceptron im-
plementation from Section 10.1.2 above. Lines 6 and 7 define the OR dataset based on Table
10.1.

Lines 11 and 12 train our Perceptron with a learning rate of α = 0.1 for a total of 20 epochs.
We can then evaluate our Perceptron on the data to validate that it did, in fact, learn the OR

function:

14 # now that our perceptron is trained we can evaluate it
15 print("[INFO] testing perceptron...")
16

17 # now that our network is trained, loop over the data points
18 for (x, target) in zip(X, y):
19 # make a prediction on the data point and display the result
20 # to our console
21 pred = p.predict(x)
22 print("[INFO] data={}, ground-truth={}, pred={}".format(
23 x, target[0], pred))

On Line 18 we loop over each of the data points in the OR dataset. For each of these data
points, we pass it through the network and obtain the prediction (Line 21).

Finally, Lines 22 and 23 display the input data point, the ground-truth label, as well as our
predicted label to our console.

To see if our Perceptron algorithm is able to learn the OR function, just execute the following
command:

$ python perceptron_or.py
[INFO] training perceptron...
[INFO] testing perceptron...
[INFO] data=[0 0], ground-truth=0, pred=0
[INFO] data=[0 1], ground-truth=1, pred=1
[INFO] data=[1 0], ground-truth=1, pred=1
[INFO] data=[1 1], ground-truth=1, pred=1

Sure enough, our neural network is able to correctly predict that the OR operation for x0 = 0
and x1 = 0 is zero – all other combinations are one.

Now, let’s move on to the AND function – create a new file named perceptron_and.py and
insert the following code:

1 # import the necessary packages
2 from pyimagesearch.nn import Perceptron
3 import numpy as np
4

5 # construct the AND dataset
6 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
7 y = np.array([[0], [0], [0], [1]])
8

9 # define our perceptron and train it
10 print("[INFO] training perceptron...")
11 p = Perceptron(X.shape[1], alpha=0.1)
12 p.fit(X, y, epochs=20)
13
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14 # now that our perceptron is trained we can evaluate it
15 print("[INFO] testing perceptron...")
16

17 # now that our network is trained, loop over the data points
18 for (x, target) in zip(X, y):
19 # make a prediction on the data point and display the result
20 # to our console
21 pred = p.predict(x)
22 print("[INFO] data={}, ground-truth={}, pred={}".format(
23 x, target[0], pred))

Notice here that the only lines of code that have changed are Lines 6 and 7 where we define
the AND dataset rather than the OR dataset.

Executing the following command, we can evaluate the Perceptron on the AND function:

$ python perceptron_and.py
[INFO] training perceptron...
[INFO] testing perceptron...
[INFO] data=[0 0], ground-truth=0, pred=0
[INFO] data=[0 1], ground-truth=0, pred=0
[INFO] data=[1 0], ground-truth=0, pred=0
[INFO] data=[1 1], ground-truth=1, pred=1

Again, our Perceptron was able to correctly model the function. The AND function is only true
when both x0 = 1 and x1 = 1 – for all other combinations the bitwise AND is zero.

Finally, let’s take a look at the nonlineary separable XOR function inside perceptron_xor.py:

1 # import the necessary packages
2 from pyimagesearch.nn import Perceptron
3 import numpy as np
4

5 # construct the XOR dataset
6 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
7 y = np.array([[0], [1], [1], [0]])
8

9 # define our perceptron and train it
10 print("[INFO] training perceptron...")
11 p = Perceptron(X.shape[1], alpha=0.1)
12 p.fit(X, y, epochs=20)
13

14 # now that our perceptron is trained we can evaluate it
15 print("[INFO] testing perceptron...")
16

17 # now that our network is trained, loop over the data points
18 for (x, target) in zip(X, y):
19 # make a prediction on the data point and display the result
20 # to our console
21 pred = p.predict(x)
22 print("[INFO] data={}, ground-truth={}, pred={}".format(
23 x, target[0], pred))

Again, the only lines of code that have been changed are Lines 6 and 7 where we define the
XOR data. The XOR operator is true if and only if one (but not both) x’s are one.
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Executing the following command we can see that the Perceptron cannot learn this nonlinear
relationship:

$ python perceptron_xor.py
[INFO] training perceptron...
[INFO] testing perceptron...
[INFO] data=[0 0], ground-truth=0, pred=1
[INFO] data=[0 1], ground-truth=1, pred=1
[INFO] data=[1 0], ground-truth=1, pred=0
[INFO] data=[1 1], ground-truth=0, pred=0

No matter how many times you run this experiment with varying learning rates or different
weight initialization schemes, you will never be able to correctly model the XOR function with a
single layer Perceptron. Instead, what we need is more layers – and with that, comes the start of
deep learning.

10.1.3 Backpropagation and Multi-layer Networks

Backpropagation is arguably the most important algorithm in neural network history – without
(efficient) backpropagation, it would be impossible to train deep learning networks to the depths
that we see today. Backpropagation can be considered the cornerstone of modern neural networks
and deep learning.

The original incarnation of backpropagation was introduced back in the 1970s, but it wasn’t
until the seminal 1986 paper, Learning representations by back-propagating errors by Rumelhart,
Hinton, and Williams [16], were we able to devise a faster algorithm, more adept to training deeper
networks.

There are quite literally hundreds (if not thousands) of tutorials on backpropagation available
today. Some of my favorites include:

1. Andrew Ng’s discussion on backpropagation inside the Machine Learning course by Coursera
[76].

2. The heavily mathematically motivated Chapter 2 – How the backpropagation algorithm
works from Neural Networks and Deep Learning by Michael Nielsen [108].

3. Stanford’s cs231n exploration and analysis of backpropagation [57].
4. Matt Mazur’s excellent concrete example (with actual worked numbers) that demonstrate

how backpropagation works [109].
As you can see, there are no shortage of backpropagation guides – instead of regurgitating and

reiterating what has been said by others hundreds of times before, I’m going to take a different
approach and do what makes PyImageSearch publications special:

Construct an intuitive, easy to follow implementation of the backpropagation algorithm us-
ing the Python language.

Inside this implementation, we’ll build an actual neural network and train it using the back-
propagation algorithm. By the time you finish this section, you’ll understand how backpropagation
works – and perhaps more importantly, you’ll have a stronger understanding of how this algorithm
is used to train neural networks from scratch.

Backpropagation

The backpropagation algorithm consists of two phases:
1. The forward pass where our inputs are passed through the network and output predictions

obtained (also known as the propagation phase).
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x0 x1 y
0 0 0
0 1 1
1 0 1
1 1 0

x0 x1 x2

0 0 1
0 1 1
1 0 1
1 1 1

Table 10.2: Left: The bitwise XOR dataset (including class labels). Right: The XOR dataset
design matrix with a bias column inserted (excluding class labels for brevity).

2. The backward pass where we compute the gradient of the loss function at the final layer (i.e.,
predictions layer) of the network and use this gradient to recursively apply the chain rule to
update the weights in our network (also known as the weight update phase).

We’ll start by reviewing each of these phases at a high level. From there, we’ll implement the
backpropagation algorithm using Python. Once we have implemented backpropagation we’ll want
to be able to make predictions using our network – this is simply the forward pass phase, only with
a small adjustment (in terms of code) to make the predictions more efficient.

Finally, I’ll demonstrate how to train a custom neural network using backpropagation and
Python on both the:

1. XOR dataset
2. MNIST dataset

The Forward Pass
The purpose of the forward pass is to propagate our inputs through the network by applying a series
of dot products and activations until we reach the output layer of the network (i.e., our predictions).
To visualize this process, let’s first consider the XOR dataset (Table 10.2, left).

Here we can see that each entry X in the design matrix (left) is 2-dim – each data point is
represented by two numbers. For example, the first data point is represented by the feature vector
(0,0), the second data point by (0,1), etc. We then have our output values y as the right column.
Our target output values are the class labels. Given an input from the design matrix, our goal is to
correctly predict the target output value.

As we’ll find out in Section 10.1.3 below, to obtain perfect classification accuracy on this
problem we’ll need a feedforward neural network with at least a single hidden layer, so let’s go
ahead and start with a 2−2−1 architecture (Figure 10.9, top). This is a good start; however, we’re
forgetting to include the bias term. As we know from Chapter 9, there are two ways to include the
bias term b in our network. We can either:

1. Use a separate variable.
2. Treat the bias as a trainable parameter within the weight matrix by inserting a column of 1’s

into the feature vectors.
Inserting a column of 1’s into our feature vector is done programmatically, but to ensure we

understand this point, let’s update our XOR design matrix to explicitly see this taking place (Table
10.2, right). As you can see, a column of 1’s have been added to our feature vectors. In practice
you can insert this column anywhere you like, but we typically place it either as (1) the first entry in
the feature vector or (2) the last entry in the feature vector.

Since we have changed the size of our input feature vector (normally performed inside neural
network implementation itself so that we do not need to explicitly modify our design matrix), that
changes our (perceived) network architecture from 2−2−1 to an (internal) 3−3−1 (Figure 10.9,
bottom).

We’ll still refer to this network architecture as 2−2−1, but when it comes to implementation,
it’s actually 3−3−1 due to the addition of the bias term embedded in the weight matrix.
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Figure 10.9: Top: To build a neural network to correctly classify the XOR dataset, we’ll need a
network with two input nodes, two hidden nodes, and one output node. This gives rise to a 2−2−1
architecture. Bottom: Our actual internal network architecture representation is 3−3−1 due to
the bias trick. In the vast majority of neural network implementations this adjustment to the weight
matrix happens internally and is something that you do not need to worry about; however, it’s still
important to understand what is going on under the hood.

Finally, recall that both our input layer and all hidden layers require a bias term; however, the
final output layer does not require a bias. The benefit of applying the bias trick is that we do not
need to explicitly keep track of the bias parameter any longer – it is now a trainable parameter
within the weight matrix, thus making training more efficient and substantially easier to implement.
Please see Chapter 9 for a more thorough discussion on why this bias trick works.

To see the forward pass in action, we first initialize the weights in our network, as in Figure
10.10. Notice how each arrow in the weight matrix has a value associated with it – this is the
current weight value for a given node and signifies the amount in which a given input is amplified
or diminished. This weight value will then be updated during the backpropagation phase.

On the far left of Figure 10.10, we present the feature vector (0,1,1) (and target output value
1 to the network). Here we can see that 0, 1, and 1 have been assigned to the three input nodes in
the network. To propagate the values through the network and obtain the final classification, we
need to take the dot product between the inputs and the weight values, followed by applying an
activation function (in this case, the sigmoid function, σ ).

Let’s compute the inputs to the three nodes in the hidden layers:
1. σ((0×0.351)+(1×1.076)+(1×1.116)) = 0.899
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Figure 10.10: An example of the forward propagation pass. The input vector [0,1,1] is presented
to the network. The dot product between the inputs and weights are taken, followed by applying
the sigmoid activation function to obtain the values in the hidden layer (0.899, 0.593, and 0.378,
respectively). Finally, the dot product and sigmoid activation function is computed for the final
layer, yielding an output of 0.506. Applying the step function to 0.506 yields 1, which is indeed
the correct target class label.

2. σ((0×−0.097)+(1×−0.165)+(1×0.542)) = 0.593
3. σ((0×0.457)+(1×−0.165)+(1×−0.331)) = 0.378
Looking at the node values of the hidden layers (Figure 10.10, middle), we can see the nodes

have been updated to reflect our computation.
We now have our inputs to the hidden layer nodes. To compute the output prediction, we once

again compute the dot product followed by a sigmoid activation:

σ((0.899×0.383)+(0.593×−0.327)+(0.378×−0.329)) = 0.506 (10.4)

The output of the network is thus 0.506. We can apply a step function to determine if this
output is the correct classification or not:

f (net) =

{
1 if net > 0
0 otherwise
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Applying the step function with net = 0.506 we see that our network predicts 1 which is, in
fact, the correct class label. However, our network is not very confident in this class label – the
predicted value 0.506 is very close to the threshold of the step. Ideally, this prediction should be
closer to 0.98−0.99., implying that our network has truly learned the underlying pattern in the
dataset. In order for our network to actually “learn”, we need to apply the backward pass.

The Backward Pass

In order to apply the backpropagation algorithm, our activation function must be differentiable so
that we can compute the partial derivative of the error with respect to a given weight wi, j, loss (E),
node output o j, and network output net j.

∂E
∂wi, j

=
∂E
∂o j

∂o j

∂net j

∂net j

∂wi, j
(10.5)

As the calculus behind backpropagation has been exhaustively explained many times in previous
works (see Andrew Ng [76], Michael Nielsen [108], Matt Mazur [109]), I’m going to skip the
derivation of the backpropagation chain rule update and instead explain it via code in the following
section.

For the mathematically astute, please see the references above for more information on the
chain rule and its role in the backpropagation algorithm. By explaining this process in code, my
goal is to help readers understand backpropagation through a more intuitive, implementation sense.

Implementing Backpropagation with Python

Let’s go ahead and get started implementing backpropagation. Open up a new file, name it
neuralnetwork.py, and let’s get to work:

1 # import the necessary packages
2 import numpy as np
3

4 class NeuralNetwork:
5 def __init__(self, layers, alpha=0.1):
6 # initialize the list of weights matrices, then store the
7 # network architecture and learning rate
8 self.W = []
9 self.layers = layers

10 self.alpha = alpha

On Line 2 we import the only required package we’ll need for our implementation of back-
propagation – the NumPy numerical processing library.

Line 5 then defines the constructor to our NeuralNetwork class. The constructor requires a
single argument, followed a by a second optional one:
• layers: A list of integers which represents the actual architecture of the feedforward

network. For example, a value of [2,2,1] would imply that our first input layer has two nodes,
our hidden layer has two nodes, and our final output layer has one node.
• alpha: Here we can specify the learning rate of our neural network. This value is applied

during the weight update phase.
Line 8 initializes our list of weights for each layer, W. We then store layers and alpha on

Lines 9 and 10.
Our weights list W is empty, so let’s go ahead and initialize it now:
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12 # start looping from the index of the first layer but
13 # stop before we reach the last two layers
14 for i in np.arange(0, len(layers) - 2):
15 # randomly initialize a weight matrix connecting the
16 # number of nodes in each respective layer together,
17 # adding an extra node for the bias
18 w = np.random.randn(layers[i] + 1, layers[i + 1] + 1)
19 self.W.append(w / np.sqrt(layers[i]))

On Line 14 we start looping over the number of layers in the network (i.e., len(layers)),
but we stop before the final two layer (we’ll find out exactly why later in the explantation of this
constructor).

Each layer in the network is randomly initialized by constructing an MxN weight matrix by
sampling values from a standard, normal distribution (Line 18). The matrix is MxN since we wish
to connect every node in current layer to every node in the next layer.

For example, let’s suppose that layers[i] = 2 and layers[i + 1] = 2. Our weight matrix
would, therefore, be 2x2 to connect all sets of nodes between the layers. However, we need to
be careful here, as we are forgetting an important component – the bias term. To account for the
bias, we add one to the number of layers[i] and layers[i + 1] – doing so changes our weight
matrix w to have the shape 3x3 given 2+1 nodes for the current layer and 2+1 nodes for the next
layer. We scale w by dividing by the square root of the number of nodes in the current layer, thereby
normalizing the variance of each neuron’s output [57] (Line 19).

The final code block of the constructor handles the special where the input connections need a
bias term, but the output does not:

21 # the last two layers are a special case where the input
22 # connections need a bias term but the output does not
23 w = np.random.randn(layers[-2] + 1, layers[-1])
24 self.W.append(w / np.sqrt(layers[-2]))

Again, these weight values are randomly sampled and then normalized.
The next function we define is a Python “magic method” named __repr__ – this function is

useful for debugging:

26 def __repr__(self):
27 # construct and return a string that represents the network
28 # architecture
29 return "NeuralNetwork: {}".format(
30 "-".join(str(l) for l in self.layers))

In our case, we’ll format a string for our NeuralNetwork object by concatenating the integer
value of the number of nodes in each layer. Given a layers value of (2, 2, 1), the output of
calling this function will be:

1 >>> from pyimagesearch.nn import NeuralNetwork
2 >>> nn = NeuralNetwork([2, 2, 1])
3 >>> print(nn)
4 NeuralNetwork: 2-2-1
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Next, we can define our sigmoid activation function:

32 def sigmoid(self, x):
33 # compute and return the sigmoid activation value for a
34 # given input value
35 return 1.0 / (1 + np.exp(-x))

As well as the derivative of the sigmoid which we’ll use during the backward pass:

37 def sigmoid_deriv(self, x):
38 # compute the derivative of the sigmoid function ASSUMING
39 # that ‘x‘ has already been passed through the ‘sigmoid‘
40 # function
41 return x * (1 - x)

Again, note that whenever you perform backpropagation, you’ll always want to choose an
activation function that is differentiable.

We’ll draw inspiration from the scikit-learn library and define a function named fit which will
be responsible for actually training our NeuralNetwork:

43 def fit(self, X, y, epochs=1000, displayUpdate=100):
44 # insert a column of 1’s as the last entry in the feature
45 # matrix -- this little trick allows us to treat the bias
46 # as a trainable parameter within the weight matrix
47 X = np.c_[X, np.ones((X.shape[0]))]
48

49 # loop over the desired number of epochs
50 for epoch in np.arange(0, epochs):
51 # loop over each individual data point and train
52 # our network on it
53 for (x, target) in zip(X, y):
54 self.fit_partial(x, target)
55

56 # check to see if we should display a training update
57 if epoch == 0 or (epoch + 1) % displayUpdate == 0:
58 loss = self.calculate_loss(X, y)
59 print("[INFO] epoch={}, loss={:.7f}".format(
60 epoch + 1, loss))

The fit method requires two parameters, followed by two optional ones. The first, X, is our
training data. The second, y, is the corresponding class labels for each entry in X. We then specify
epochs, which is the number of epochs we’ll train our network for. The displayUpdate parameter
simply controls how many N epochs we’ll print training progress to our terminal.

On Line 47 we perform the bias trick by inserting a column of 1’s as the last entry in our feature
matrix, X. From there, we start looping over our number of epochs on Line 50. For each epoch,
we’ll loop over each individual data point in our training set, make a prediction on the data point,
compute the backpropagation phase, and then update our weight matrix (Lines 53 and 54). Lines
57-60 simply check to see if we should display a training update to our terminal.

The actual heart of the backpropagation algorithm is found inside our fit_partial method
below:
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62 def fit_partial(self, x, y):
63 # construct our list of output activations for each layer
64 # as our data point flows through the network; the first
65 # activation is a special case -- it’s just the input
66 # feature vector itself
67 A = [np.atleast_2d(x)]

The fit_partial function requires two parameters:
• x: An individual data point from our design matrix.
• y: The corresponding class label.
We then initialize a list, A, on Line 67 – this list is responsible for storing the output activations

for each layer as our data point x forward propagates through the network. We initialize this list
with x, which is simply the input data point.

From here, we can start the forward propagation phase:

69 # FEEDFORWARD:
70 # loop over the layers in the network
71 for layer in np.arange(0, len(self.W)):
72 # feedforward the activation at the current layer by
73 # taking the dot product between the activation and
74 # the weight matrix -- this is called the "net input"
75 # to the current layer
76 net = A[layer].dot(self.W[layer])
77

78 # computing the "net output" is simply applying our
79 # nonlinear activation function to the net input
80 out = self.sigmoid(net)
81

82 # once we have the net output, add it to our list of
83 # activations
84 A.append(out)

We start looping over every layer in the network on Line 71. The net input to the current layer
is computed by taking the dot product between the activation and the weight matrix (Line 76). The
net output of the current layer is then computed by passing the net input through the nonlinear
sigmoid activation function. Once we have the net output, we add it to our list of activations (Line
84).

Believe it or not, this code is the entirety of the forward pass described in Section 10.1.3 above –
we are simply looping over each of the layers in the network, taking the dot product between the
activation and the weights, passing the value through a nonlinear activation function, and continuing
to the next layer. The final entry in A is thus the output of the last layer in our network (i.e., the
prediction).

Now that the forward pass is done, we can move on to the slightly more complicated backward
pass:

86 # BACKPROPAGATION
87 # the first phase of backpropagation is to compute the
88 # difference between our *prediction* (the final output
89 # activation in the activations list) and the true target
90 # value
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91 error = A[-1] - y
92

93 # from here, we need to apply the chain rule and build our
94 # list of deltas ‘D‘; the first entry in the deltas is
95 # simply the error of the output layer times the derivative
96 # of our activation function for the output value
97 D = [error * self.sigmoid_deriv(A[-1])]

The first phase of the backward pass is to compute our error, or simply the difference between
our predicted label and the ground-truth label (Line 91). Since the final entry in the activations list
A contains the output of the network, we can access the output prediction via A[-1]. The value y is
the target output for the input data point x.

R When using the Python programming language, specifying an index value of -1 indicates
that we would like to access the last entry in the list. You can read more about Python array
indexes and slices in this tutorial: http://pyimg.co/6dfae.

Next, we need to start applying the chain rule to build our list of deltas, D. The deltas will be
used to update our weight matrices, scaled by the learning rate alpha. The first entry in the deltas
list is the error of our output layer multiplied by the derivative of the sigmoid for the output value
(Line 97).

Given the delta for the final layer in the network, we can now work backward using for loop:

99 # once you understand the chain rule it becomes super easy
100 # to implement with a ‘for‘ loop -- simply loop over the
101 # layers in reverse order (ignoring the last two since we
102 # already have taken them into account)
103 for layer in np.arange(len(A) - 2, 0, -1):
104 # the delta for the current layer is equal to the delta
105 # of the *previous layer* dotted with the weight matrix
106 # of the current layer, followed by multiplying the delta
107 # by the derivative of the nonlinear activation function
108 # for the activations of the current layer
109 delta = D[-1].dot(self.W[layer].T)
110 delta = delta * self.sigmoid_deriv(A[layer])
111 D.append(delta)

On Line 103 we start looping over each of the layers in the network (ignoring the previous
two layers as they are already accounted for in Line 97) in reverse order as we need to work
backward to compute the delta updates for each layer. The delta for the current layer is equal to
the delta of the previous layer, D[-1] dotted with the weight matrix of the current layer (Line 109).
To finish off the computation of the delta, we multiply it by passing the activation for the layer
through our derivative of the sigmoid (Line 110). We then update the deltas D list with the delta
we just computed (Line 111).

Looking at this block of code we can see that the backpropagation step is iterative – we are
simply taking the delta from the previous layer, dotting it with the weights of the current layer, and
then multiplying by the derivative of the activation. This process is repeated until we reach the first
layer in the network.

Given our deltas list D, we can move on to the weight update phase:

http://pyimg.co/6dfae
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113 # since we looped over our layers in reverse order we need to
114 # reverse the deltas
115 D = D[::-1]
116

117 # WEIGHT UPDATE PHASE
118 # loop over the layers
119 for layer in np.arange(0, len(self.W)):
120 # update our weights by taking the dot product of the layer
121 # activations with their respective deltas, then multiplying
122 # this value by some small learning rate and adding to our
123 # weight matrix -- this is where the actual "learning" takes
124 # place
125 self.W[layer] += -self.alpha * A[layer].T.dot(D[layer])

Keep in mind that during the backpropagation step we looped over our layers in reverse order.
To perform our weight update phase, we’ll simply reverse the ordering of entries in D so we can
loop over each layer sequentially from 0 to N, the total number of layers in the network (Line 115).

Updating our actual weight matrix (i.e., where the actual “learning” takes place) is accomplished
on Line 125, which is our gradient descent. We take the dot product of the current layer activation,
A[layer] with the deltas of the current layer, D[layer] and multiple them by the learning rate,
alpha. This value is added to the weight matrix for the current layer, W[layer].

We repeat this process for all layers in the network. After performing the weight update phase,
backpropagation is officially done.

Once our network is trained on a given dataset, we’ll want to make predictions on the testing
set, which can be accomplished via the predict method below:

127 def predict(self, X, addBias=True):
128 # initialize the output prediction as the input features -- this
129 # value will be (forward) propagated through the network to
130 # obtain the final prediction
131 p = np.atleast_2d(X)
132

133 # check to see if the bias column should be added
134 if addBias:
135 # insert a column of 1’s as the last entry in the feature
136 # matrix (bias)
137 p = np.c_[p, np.ones((p.shape[0]))]
138

139 # loop over our layers in the network
140 for layer in np.arange(0, len(self.W)):
141 # computing the output prediction is as simple as taking
142 # the dot product between the current activation value ‘p‘
143 # and the weight matrix associated with the current layer,
144 # then passing this value through a nonlinear activation
145 # function
146 p = self.sigmoid(np.dot(p, self.W[layer]))
147

148 # return the predicted value
149 return p

The predict function is simply a glorified forward pass. This function accepts one required
parameter followed by a second optional one:
• X: The data points we’ll be predicting class labels for.
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• addBias: A boolean indicating whether we need to add a column of 1’s to X to perform the
bias trick.

On Line 131 we initialize p, the output predictions as the input data points X. This value p will
be passed through every layer in the network, propagating until we reach the final output prediction.

On Lines 134-137 we make a check to see if the bias term should be embedded into the data
points. If so, we insert a column of 1’s as the last column in the matrix (exactly as we did in the
fit method above).

From there, we perform the forward propagation by looping over all layers in our network on
Line 140. The data points p are updated by taking the dot product between the current activations
p and the weight matrix for the current layer, followed by passing the output through our sigmoid
activation function (Line 146).

Given that we are looping over all layers in the network, we’ll eventually reach the final layer,
which will give us our final class label prediction. We return the predicted value to the calling
function on Line 149.

The final function we’ll define inside the NeuralNetwork class will be used to calculate the
loss across our entire training set:

151 def calculate_loss(self, X, targets):
152 # make predictions for the input data points then compute
153 # the loss
154 targets = np.atleast_2d(targets)
155 predictions = self.predict(X, addBias=False)
156 loss = 0.5 * np.sum((predictions - targets) ** 2)
157

158 # return the loss
159 return loss

The calculate_loss function requires that we pass in the data points X along with their
ground-truth labels, targets. We make predictions on X on Line 155 and then compute the sum
squared error on Line 156. The loss is then returned to the calling function on Line 159. As our
network learns, we should see this loss decrease.

Backpropagation with Python Example #1: Bitwise XOR
Now that we have implemented our NeuralNetwork class, let’s go ahead and train it on the bitwise
XOR dataset. As we know from our work with the Perceptron, this dataset is not linearly separable
– our goal will be to train a neural network that can model this nonlinear function.

Go ahead and open up a new file, name it nn_xor.py, and insert the following code:

1 # import the necessary packages
2 from pyimagesearch.nn import NeuralNetwork
3 import numpy as np
4

5 # construct the XOR dataset
6 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
7 y = np.array([[0], [1], [1], [0]])

Lines 2 and 3 import our required Python packages. Notice how we are importing our newly
implemented NeuralNetwork class. Lines 6 and 7 then construct the XOR dataset, as depicted by
Table 10.1 earlier in this chapter.

We can now define our network architecture and train it:
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9 # define our 2-2-1 neural network and train it
10 nn = NeuralNetwork([2, 2, 1], alpha=0.5)
11 nn.fit(X, y, epochs=20000)

On Line 10 we instantiate our NeuralNetwork to have a 2−2−1 architecture, implying there
is:

1. An input layer with two nodes (i.e., our two inputs).
2. A single hidden layer with two nodes.
3. An output layer with one node.
Line 11 trains our network for a total of 20,000 epochs.
Once our network is trained, we’ll loop over our XOR datasets, allow the network to predict

the output for each one, and display the prediction to our screen:

13 # now that our network is trained, loop over the XOR data points
14 for (x, target) in zip(X, y):
15 # make a prediction on the data point and display the result
16 # to our console
17 pred = nn.predict(x)[0][0]
18 step = 1 if pred > 0.5 else 0
19 print("[INFO] data={}, ground-truth={}, pred={:.4f}, step={}".format(
20 x, target[0], pred, step))

Line 18 applies a step function to the sigmoid output. If the prediction is > 0.5, we’ll return
one, otherwise, we will return zero. Applying this step function allows us to binarize our output
class labels, just like the XOR function.

To train our neural network using backpropagation with Python, simply execute the following
command:

$ python nn_xor.py
[INFO] epoch=1, loss=0.5092796
[INFO] epoch=100, loss=0.4923591
[INFO] epoch=200, loss=0.4677865
...
[INFO] epoch=19800, loss=0.0002478
[INFO] epoch=19900, loss=0.0002465
[INFO] epoch=20000, loss=0.0002452

A plot of the squared loss is displayed below (Figure 10.11). As we can see, loss slowly
decreases to approximately zero over the course of training. Furthermore, looking at the final four
lines of the output we can see our predictions:

[INFO] data=[0 0], ground-truth=0, pred=0.0054, step=0
[INFO] data=[0 1], ground-truth=1, pred=0.9894, step=1
[INFO] data=[1 0], ground-truth=1, pred=0.9876, step=1
[INFO] data=[1 1], ground-truth=0, pred=0.0140, step=0

For each and every data point, our neural network was able to correctly learn the XOR pattern,
demonstrating that our multi-layer neural network is capable of learning nonlinear functions.

To demonstrate that least one hidden layer is required to learn the XOR function, go back to
Line 10 where we define the 2−2−1 architecture:
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Figure 10.11: Loss over time for our 2−2−1 neural network.

10 # define our 2-2-1 neural network and train it
11 nn = NeuralNetwork([2, 2, 1], alpha=0.5)
12 nn.fit(X, y, epochs=20000)

And change it to be a 2-1 architecture:

10 define our 2-1 neural network and train it
11 nn = NeuralNetwork([2, 1], alpha=0.5)
12 nn.fit(X, y, epochs=20000)

From there, you can attempt to retrain your network:

$ python nn_xor.py
...
[INFO] data=[0 0], ground-truth=0, pred=0.5161, step=1
[INFO] data=[0 1], ground-truth=1, pred=0.5000, step=1
[INFO] data=[1 0], ground-truth=1, pred=0.4839, step=0
[INFO] data=[1 1], ground-truth=0, pred=0.4678, step=0

No matter how much you fiddle with the learning rate or weight initializations, you’ll never
be able to approximate the XOR function. This fact is why multi-layer networks with nonlinear
activation functions trained via backpropagation are so important – they enable us to learn patterns
in datasets that are otherwise nonlinearly separable.
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Backpropagation with Python Example: MNIST Sample
As a second, more interesting example, let’s examine a subset of the MNIST dataset (Figure 10.12)
for handwritten digit recognition. This subset of the MNIST dataset is built-into the scikit-learn
library and includes 1,797 example digits, each of which are 8×8 grayscale images (the original
images are 28×28. When flattened, these images are represented by an 8×8 = 64-dim vector.

Figure 10.12: A sample of the MNIST dataset. The goal of this dataset is to correctly classify the
handwritten digits, 0−9.

Let’s go ahead and train our NeuralNetwork implementation on this MNIST subset now. Open
up a new file, name it nn_mnist.py, and we’ll get to work:

1 # import the necessary packages
2 from pyimagesearch.nn import NeuralNetwork
3 from sklearn.preprocessing import LabelBinarizer
4 from sklearn.model_selection import train_test_split
5 from sklearn.metrics import classification_report
6 from sklearn import datasets

We start on Lines 2-6 by importing our required Python packages.
From there, we load the MNIST dataset from disk using the scikit-learn helper functions:

8 # load the MNIST dataset and apply min/max scaling to scale the
9 # pixel intensity values to the range [0, 1] (each image is

10 # represented by an 8 x 8 = 64-dim feature vector)
11 print("[INFO] loading MNIST (sample) dataset...")
12 digits = datasets.load_digits()
13 data = digits.data.astype("float")
14 data = (data - data.min()) / (data.max() - data.min())
15 print("[INFO] samples: {}, dim: {}".format(data.shape[0],
16 data.shape[1]))

We also perform min/max normalizing by scaling each digit into the range [0,1] (Line 14).
Next, let’s construct a training and testing split, using 75% of the data for testing and 25% for

evaluation:

18 # construct the training and testing splits
19 (trainX, testX, trainY, testY) = train_test_split(data,
20 digits.target, test_size=0.25)
21

22 # convert the labels from integers to vectors
23 trainY = LabelBinarizer().fit_transform(trainY)
24 testY = LabelBinarizer().fit_transform(testY)
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We’ll also encode our class label integers as vectors, a process called one-hot encoding that we
will discuss in detail later in this chapter.

From there, we are ready to train our network:

26 # train the network
27 print("[INFO] training network...")
28 nn = NeuralNetwork([trainX.shape[1], 32, 16, 10])
29 print("[INFO] {}".format(nn))
30 nn.fit(trainX, trainY, epochs=1000)

Here we can see that we are training a NeuralNetwork with a 64−32−16−10 architecture.
The output layer has ten nodes due to the fact that there are ten possible output classes for the digits
0-9.

We then allow our network to train for 1,000 epochs. Once our network has been trained, we
can evaluate it on the testing set:

32 # evaluate the network
33 print("[INFO] evaluating network...")
34 predictions = nn.predict(testX)
35 predictions = predictions.argmax(axis=1)
36 print(classification_report(testY.argmax(axis=1), predictions))

Line 34 computes the output predictions for every data point in testX. The predictions
array has the shape (450, 10) as there are 450 data points in the testing set, each of which with
ten possible class label probabilities.

To find the class label with the largest probability for each data point, we use the argmax
function on Line 35 – this function will return the index of the label with the highest predicted
probability. We then display a nicely formatted classification report to our screen on Line 36.

To train our custom NeuralNetwork implementation on the MNIST dataset, just execute the
following command:

$ python nn_mnist.py
[INFO] loading MNIST (sample) dataset...
[INFO] samples: 1797, dim: 64
[INFO] training network...
[INFO] NeuralNetwork: 64-32-16-10
[INFO] epoch=1, loss=604.5868589
[INFO] epoch=100, loss=9.1163376
[INFO] epoch=200, loss=3.7157723
[INFO] epoch=300, loss=2.6078803
[INFO] epoch=400, loss=2.3823153
[INFO] epoch=500, loss=1.8420944
[INFO] epoch=600, loss=1.3214138
[INFO] epoch=700, loss=1.2095033
[INFO] epoch=800, loss=1.1663942
[INFO] epoch=900, loss=1.1394731
[INFO] epoch=1000, loss=1.1203779
[INFO] evaluating network...

precision recall f1-score support

0 1.00 1.00 1.00 45
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1 0.98 1.00 0.99 51
2 0.98 1.00 0.99 47
3 0.98 0.93 0.95 43
4 0.95 1.00 0.97 39
5 0.94 0.97 0.96 35
6 1.00 1.00 1.00 53
7 1.00 1.00 1.00 49
8 0.97 0.95 0.96 41
9 1.00 0.96 0.98 47

avg / total 0.98 0.98 0.98 450

Figure 10.13: Plotting training loss on the MNIST dataset using a 64−32−16−10 feedforward
neural network.

I have included a plot of the squared loss as well (Figure 10.13). Notice how our loss starts off
very high, but quickly drops during the training process. Our classification report demonstrates
that we are obtaining ≈ 98% classification accuracy on our testing set; however, we are having
some trouble classifying digits 4 and 5 (95% and 94% accuracy, respectively). Later in this book,
we’ll learn how to train Convolutional Neural Networks on the full MNIST dataset and improve our
accuracy further.

Backpropagation Summary
In this section, we learned how to implement the backpropagation algorithm from scratch using
Python. Backpropagation is a generalization of the gradient descent family of algorithms that is
specifically used to train multi-layer feedforward networks.

The backpropagation algorithm consists of two phases:
1. The forward pass where we pass our inputs through the network to obtain our output

classifications.
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2. The backward pass (i.e., weight update phase) where we compute the gradient of the loss
function and use this information to iteratively apply the chain rule to update the weights in
our network.

Regardless of whether we are working with simple feedforward neural networks or complex,
deep Convolutional Neural Networks, the backpropagation algorithm is still used to train these
models. This is accomplished by ensuring that the activation functions inside the network are
differentiable, allowing the chain rule to be applied. Furthermore, any other layers inside the network
that require updates to their weights/parameters, must also be compatible with backpropagation as
well.

We implemented our backpropagation algorithm using the Python programming language and
devised a multi-layer, feedforward NeuralNetwork class. This implementation was then trained on
the XOR dataset to demonstrate that our neural network is capable of learning nonlinear functions
by applying the backpropagation algorithm with at least one hidden layer. We then applied the
same backpropagation + Python implementation to a subset of the MNIST dataset to demonstrate
that the algorithm can be used to work with image data as well.

In practice, backpropagation can be not only challenging to implement (due to bugs in com-
puting the gradient), but also hard to make efficient without special optimization libraries, which
is why we often use libraries such as Keras, TensorFlow, and mxnet that have already (correctly)
implemented backpropagation using optimized strategies.

10.1.4 Multi-layer Networks with Keras
Now that we have implemented neural networks in pure Python, let’s move on to the preferred
implementation method – using a dedicated (highly optimized) neural network library such as
Keras.

In the next two sections, I’ll discuss how to implement feedforward, multi-layer networks and
apply them to the MNIST and CIFAR-10 datasets. These result will hardly be “state-of-the-art”,
but will serve two purposes:
• To demonstrate how you can implement simple neural networks using the Keras library.
• Obtain a baseline using standard neural networks which we will later compare to Convo-

lutional Neural Networks (noting that CNNS will dramatically outperform our previous
methods).

MNIST
Section 10.1.3 above, we only used a sample of the MNIST dataset for two reasons:
• To demonstrate how to implement your first feedforward neural network in pure Python.
• To facilitate faster result gathering – given that our pure Python implementation is by

definition unoptimized, it will take longer to run.
Therefore, we used a sample of the dataset. In this section, we’ll be using the full MNIST

dataset, consisting of 70,000 data points (7,000 examples per digit). Each data point is represented
by a 784-d vector, corresponding to the (flattened) 28×28 images in the MNIST dataset. Our goal
is to train a neural network (using Keras) to obtain > 90% accuracy on this dataset.

As we’ll find out, using Keras to build our network architecture is substantially easier than our
pure Python version. In fact, the actual network architecture will only occupy four lines of code –
the rest of the code in this example simply involves loading the data from disk, transforming the
class labels, and then displaying the results.

To get started, open up a new file, name it keras_mnist.py, and insert the following code:

1 # import the necessary packages
2 from sklearn.preprocessing import LabelBinarizer
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3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import classification_report
5 from keras.models import Sequential
6 from keras.layers.core import Dense
7 from keras.optimizers import SGD
8 from sklearn import datasets
9 import matplotlib.pyplot as plt

10 import numpy as np
11 import argparse

Lines 2-11 import our required Python packages. The LabelBinarizer will be used to one-
hot encode our integer labels as vector labels. One-hot encoding transforms categorical labels
from a single integer to a vector. Many machine learning algorithms (including neural networks)
benefit from this type of label representation. I’ll be discussing one-hot encoding in more detail
and providing multiple examples (including using the LabelBinarizer) later in this section.

The train_test_split on Line 3 will be used to create our training and testing splits from
the MNIST dataset. The classification_report function will give us a nicely formatted report
displaying the total accuracy of our model, along with a breakdown on the classification accuracy
for each digit.

Lines 5-7 import the necessary packages to create a simple feedforward neural network with
Keras. The Sequential class indicates that our network will be feedforward and layers will
be added to the class sequentially, one on top of the other. The Dense class on Line 6 is the
implementation of our fully-connected layers. For our network to actually learn, we need to apply
SGD (Line 7) to optimize the parameters of the network. Finally, to gain access to full MNIST
dataset, we need to import the datasets helper from scikit-learn on Line 8.

Let’s move on to parsing our command line arguments:

13 # construct the argument parse and parse the arguments
14 ap = argparse.ArgumentParser()
15 ap.add_argument("-o", "--output", required=True,
16 help="path to the output loss/accuracy plot")
17 args = vars(ap.parse_args())

We only need a single switch here, --output, which is the path to where our figure plotting
the loss and accuracy over time will be saved to disk.

Next, let’s load the full MNIST dataset:

19 # grab the MNIST dataset (if this is your first time running this
20 # script, the download may take a minute -- the 55MB MNIST dataset
21 # will be downloaded)
22 print("[INFO] loading MNIST (full) dataset...")
23 dataset = datasets.fetch_mldata("MNIST Original")
24

25 # scale the raw pixel intensities to the range [0, 1.0], then
26 # construct the training and testing splits
27 data = dataset.data.astype("float") / 255.0
28 (trainX, testX, trainY, testY) = train_test_split(data,
29 dataset.target, test_size=0.25)

Line 23 loads the MNIST dataset from disk. If you have never run this function before, then the
MNIST dataset will be downloaded and stored locally to your machine – this download is 55MB
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and may take a minute or two to finish downloading, depending on your internet connection. Once
the dataset has been downloaded, it is cached to your machine and will not have to be downloaded
again.

We then perform data normalization on Line 27 by scaling the pixel intensities to the range
[0,1]. We create a training and testing split, using 75% of the data for training and 25% for testing
on Lines 28 and 29.

Given the training and testing splits, we can now encode our labels:

31 # convert the labels from integers to vectors
32 lb = LabelBinarizer()
33 trainY = lb.fit_transform(trainY)
34 testY = lb.transform(testY)

Each data point in the MNIST dataset has an integer label in the range [0,9], one for each of the
possible ten digits in the MNIST dataset. A label with a value of 0 indicates that the corresponding
image contains a zero digit. Similarly, a label with a value of 8 indicates that the corresponding
image contains the number eight.

However, we first need to transform these integer labels into vector labels, where the index in
the vector for label is set to 1 and 0 otherwise (this process is called one-hot encoding).

For example, consider the label 3 and we wish to binarize/one-hot encode it – the label 3 now
becomes:

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Notice how only the index for the digit three is set to one – all other entries in the vector are set
to zero. Astute readers may wonder why the fourth and not the third entry in the vector is updated?
Recall that the first entry in the label is actually for the digit zero. Therefore, the entry for the digit
three is actually the fourth index in the list.

Here is a second example, this time with the label 1 binarized:

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

The second entry in the vector is set to one (since the first entry corresponds to the label 0),
while all other entries are set to zero.

I have included the one-hot encoding representations for each digit, 0−9, in the listing below:

0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
2: [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
3: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
4: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
5: [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
6: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
7: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
8: [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
9: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
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This encoding may seem tedious, but many machine learning algorithms (including neural
networks), benefit from this label representation. Luckily, most machine learning software packages
provide a method/function to perform one-hot encoding, removing much of the tediousness.

Lines 32-34 simply perform this process of one-hot encoding the input integer labels as vector
labels for both the training and testing set.

Next, let’s define our network architecture:

36 # define the 784-256-128-10 architecture using Keras
37 model = Sequential()
38 model.add(Dense(256, input_shape=(784,), activation="sigmoid"))
39 model.add(Dense(128, activation="sigmoid"))
40 model.add(Dense(10, activation="softmax"))

As you can see, our network is a feedforward architecture, instantiated by the Sequential
class on Line 37 – this architecture implies that the layers will be stacked on top of each other with
the output of the previous layer feeding into the next.

Line 38 defines the first fully-connected layer in the network. The input_shape is set to
784, the dimensionality of each MNIST data points. We then learn 256 weights in this layer and
apply the sigmoid activation function. The next layer (Line 39) learns 128 weights. Finally, Line
40 applies another fully-connected layer, this time only learning 10 weights, corresponding to the
ten (0-9) output classes. Instead of a sigmoid activation, we’ll use a softmax activation to obtain
normalized class probabilities for each prediction.

Let’s go ahead and train our network:

42 # train the model using SGD
43 print("[INFO] training network...")
44 sgd = SGD(0.01)
45 model.compile(loss="categorical_crossentropy", optimizer=sgd,
46 metrics=["accuracy"])
47 H = model.fit(trainX, trainY, validation_data=(testX, testY),
48 epochs=100, batch_size=128)

On Line 44 we initialize the SGD optimizer with a learning rate of 0.01 (which we may
commonly write as 1e-2). We’ll use the category cross-entropy loss function as our loss metric
(Lines 45 and 46). Using the cross-entropy loss function is also why we had to convert our integer
labels to vector labels.

A call to .fit of the model on Line 47 and 48 kicks off the training of our neural network.
We’ll supply the training data and training labels as the first two arguments to the method.

The validation_data can then be supplied, which is our testing split. In most circumstances,
such as when you are tuning hyperparameters or deciding on a model architecture, you’ll want
your validation set to be a true validation set and not your testing data. In this case, we are
simply demonstrating how to train a neural network from scratch using Keras so we’re being a bit
lenient with our guidelines. Future chapters in this book, as well as the more advanced content in
the Practitioner Bundle and ImageNet Bundle, are much more rigorous in the scientific method;
however, for now, simply focus on the code and grasp how the network is trained.

We’ll allow our network to train for a total of 100 epochs using a batch size of 128 data points at
a time. The method returns a dictionary, H, which we’ll use to plot the loss/accuracy of the network
overtime in a couple of code blocks.

Once the network has finished training, we’ll want to evaluate it on the testing data to obtain
our final classifications:



10.1 Neural Network Basics 157

50 # evaluate the network
51 print("[INFO] evaluating network...")
52 predictions = model.predict(testX, batch_size=128)
53 print(classification_report(testY.argmax(axis=1),
54 predictions.argmax(axis=1),
55 target_names=[str(x) for x in lb.classes_]))

A call to the .predict method of model will return the class label probabilities for every data
point in testX (Line 52). Thus, if you were to inspect the predictions NumPy array it would
have the shape (X, 10) as there are 17,500 total data points in the testing set and ten possible class
labels (the digits 0-9).

Each entry in a given row is, therefore, a probability. To determine the class with the
largest probability, we can simply call .argmax(axis=1) as we do on Line 53, which will give us
the index of the class label with the largest probability, and, therefore, our final output classification.
The final output classification by the network is tabulated, and then a final classification report is
displayed to our console on Lines 53-55.

Our final code block handles plotting the training loss, training accuracy, validation loss, and
validation accuracy over time:

57 # plot the training loss and accuracy
58 plt.style.use("ggplot")
59 plt.figure()
60 plt.plot(np.arange(0, 100), H.history["loss"], label="train_loss")
61 plt.plot(np.arange(0, 100), H.history["val_loss"], label="val_loss")
62 plt.plot(np.arange(0, 100), H.history["acc"], label="train_acc")
63 plt.plot(np.arange(0, 100), H.history["val_acc"], label="val_acc")
64 plt.title("Training Loss and Accuracy")
65 plt.xlabel("Epoch #")
66 plt.ylabel("Loss/Accuracy")
67 plt.legend()
68 plt.savefig(args["output"])

This plot is then saved to disk based on the --output command line argument.
To train our network of fully-connected layers on MNIST, just execute the following command:

$ python keras_mnist.py --output output/keras_mnist.png
[INFO] loading MNIST (full) dataset...
[INFO] training network...
Train on 52500 samples, validate on 17500 samples
Epoch 1/100
1s - loss: 2.2997 - acc: 0.1088 - val_loss: 2.2918 - val_acc: 0.1145
Epoch 2/100
1s - loss: 2.2866 - acc: 0.1133 - val_loss: 2.2796 - val_acc: 0.1233
Epoch 3/100
1s - loss: 2.2721 - acc: 0.1437 - val_loss: 2.2620 - val_acc: 0.1962
...
Epoch 98/100
1s - loss: 0.2811 - acc: 0.9199 - val_loss: 0.2857 - val_acc: 0.9153
Epoch 99/100
1s - loss: 0.2802 - acc: 0.9201 - val_loss: 0.2862 - val_acc: 0.9148
Epoch 100/100
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1s - loss: 0.2792 - acc: 0.9204 - val_loss: 0.2844 - val_acc: 0.9160
[INFO] evaluating network...

precision recall f1-score support

0.0 0.94 0.96 0.95 1726
1.0 0.95 0.97 0.96 2004
2.0 0.91 0.89 0.90 1747
3.0 0.91 0.88 0.89 1828
4.0 0.91 0.93 0.92 1686
5.0 0.89 0.86 0.88 1581
6.0 0.92 0.96 0.94 1700
7.0 0.92 0.94 0.93 1814
8.0 0.88 0.88 0.88 1679
9.0 0.90 0.88 0.89 1735

avg / total 0.92 0.92 0.92 17500

Figure 10.14: Training a 784−256−128−10 feedforward neural network with Keras on the full
MNIST dataset. Notice how our training and validation curves are near identical, implying there is
no overfitting occurring.

As the results demonstrate, we are obtaining ≈ 92% accuracy. Furthermore, the training
and validation curves match each other nearly identically (Figure 10.14), indicating there is no
overfitting or issues with the training process.

In fact, if you are unfamiliar with the MNIST dataset, you might think 92% accuracy is
excellent – and it was, perhaps 20 years ago. As we’ll find out in Chapter 14, using Convolutional
Neural Networks, we can easily obtain > 98% accuracy. Current state-of-the-art approaches can
even break 99% accuracy.
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While on the surface it may appear that our (strictly) fully-connected network is performing
well, we can actually do much better. And as we’ll see in the next section, strictly fully-connected
networks applied to more challenging datasets can in some cases do just barely better than guessing
randomly.

CIFAR-10

When it comes to computer vision and machine learning, the MNIST dataset is the classic defi-
nition of a “benchmark” dataset, one that is too easy to obtain high accuracy results on, and not
representative of the images we’ll see in the real world.

For a more challenging benchmark dataset, we commonly use CIFAR-10, a collection of
60,000, 32× 32 RGB images, thus implying that each image in the dataset is represented by
32×32×3 = 3,072 integers. As the name suggests, CIFAR-10 consists of 10 classes, including
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. A sample of the CIFAR-10
dataset for each class can be seen in Figure 10.15.

Figure 10.15: Example images from the ten class CIFAR-10 dataset.

Each class is evenly represented with 6,000 images per class. When training and evaluating a
machine learning model on CIFAR-10, it’s typical to use the predefined data splits by the authors
and use 50,000 images for training and 10,000 for testing.

CIFAR-10 is substantially harder than the MNIST dataset. The challenge comes from the
dramatic variance in how objects appear. For example, we can no longer assume that an image
containing a green pixel at a given (x,y)-coordinate is a frog. This pixel could be a background of a
forest that contains a deer. Or it could be the color of a green car or truck.

These assumptions are a stark contrast to the MNIST dataset, where the network can learn
assumptions regarding the spatial distribution of pixel intensities. For example, the spatial distribu-
tion of foreground pixels of a 1 is substantially different than a 0 or a 5. This type of variance in
object appearance makes applying a series of fully-connected layers much more challenging. As
we’ll find out in the rest of this section, standard FC (fully-connected) layer networks are not suited
for this type of image classification.

Let’s go ahead and get started. Open up a new file, name it keras_cifar10.py, and insert the
following code:
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1 # import the necessary packages
2 from sklearn.preprocessing import LabelBinarizer
3 from sklearn.metrics import classification_report
4 from keras.models import Sequential
5 from keras.layers.core import Dense
6 from keras.optimizers import SGD
7 from keras.datasets import cifar10
8 import matplotlib.pyplot as plt
9 import numpy as np

10 import argparse

Lines 2-10 import our required Python packages to build our fully-connected network, identical
to the previous section with MNIST. The exception is the special utility function on Line 7 –
since CIFAR-10 is such a common dataset that researchers benchmark machine learning and deep
learning algorithms on, it’s common to see deep learning libraries provide simple helper functions
to automatically load this dataset from disk.

Next, we can parse our command line arguments:

16 # construct the argument parse and parse the arguments
17 ap = argparse.ArgumentParser()
18 ap.add_argument("-o", "--output", required=True,
19 help="path to the output loss/accuracy plot")
20 args = vars(ap.parse_args())

The only command line argument we need is --output, the path to our output loss/accuracy
plot.

Let’s go ahead and load the CIFAR-10 dataset:

18 # load the training and testing data, scale it into the range [0, 1],
19 # then reshape the design matrix
20 print("[INFO] loading CIFAR-10 data...")
21 ((trainX, trainY), (testX, testY)) = cifar10.load_data()
22 trainX = trainX.astype("float") / 255.0
23 testX = testX.astype("float") / 255.0
24 trainX = trainX.reshape((trainX.shape[0], 3072))
25 testX = testX.reshape((testX.shape[0], 3072))

A call to cifar10.load_data on Line 21 automatically loads the CIFAR-10 dataset from
disk, pre-segmented into training and testing split. If this is the first time you are calling
cifar10.load_data, then this function will fetch and download the dataset for you. This file is
≈ 170MB, so be patient as it is downloaded and unarchived. Once the file is downloaded once, it
will be cached locally on your machine and will not have to be downloaded again.

Lines 22 and 23 convert the data type CIFAR-10 from unsigned 8-bit integers to floating point,
followed by scaling the data to the range [0,1]. Lines 24 and 25 are responsible for reshaping the
design matrix for the training and testing data. Recall that each image in the CIFAR-10 dataset is
represented by a 32×32×3 image.

For example, trainX has the shape (50000, 32, 32, 3) and testX has the shape (10000,
32, 32, 3). If we were to flatten this image into a single list of floating point values, the list
would have a total of 32×32×3 = 3,072 total entries in it.
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To flatten each of the images in the training and testing sets, we simply use the .reshape
function of NumPy. After this function executes, trainX now has the shape (50000, 3072) while
testX has the shape (10000, 3072).

Now that the CIFAR-10 dataset has been loaded from disk, let’s once again binarize the class
label integers into vectors, followed by initializing a list of the actual names of the class labels:

27 # convert the labels from integers to vectors
28 lb = LabelBinarizer()
29 trainY = lb.fit_transform(trainY)
30 testY = lb.transform(testY)
31

32 # initialize the label names for the CIFAR-10 dataset
33 labelNames = ["airplane", "automobile", "bird", "cat", "deer",
34 "dog", "frog", "horse", "ship", "truck"]

It’s now time to define the network architecture:

36 # define the 3072-1024-512-10 architecture using Keras
37 model = Sequential()
38 model.add(Dense(1024, input_shape=(3072,), activation="relu"))
39 model.add(Dense(512, activation="relu"))
40 model.add(Dense(10, activation="softmax"))

Line 37 instantiates the Sequential class. We then add the first Dense layer which has an
input_shape of 3072, a node for each of the 3,072 flattened pixel values in the design matrix –
this layer is then responsible for learning 1,024 weights. We’ll also swap out the antiquated sigmoid
for a ReLU activation in hopes of improve network performance.

The next fully-connected layer (Line 39) learns 512 weights, while the final layer (Line 40)
learns weights corresponding to ten possible output classifications, along with a softmax classifier
to obtain the final output probabilities for each class.

Now that the architecture of the network is defined, we can train it:

42 # train the model using SGD
43 print("[INFO] training network...")
44 sgd = SGD(0.01)
45 model.compile(loss="categorical_crossentropy", optimizer=sgd,
46 metrics=["accuracy"])
47 H = model.fit(trainX, trainY, validation_data=(testX, testY),
48 epochs=100, batch_size=32)

We’ll use the SGD optimizer to train the network with a learning rate of 0.01, a fairly standard
initial choice. The network will be trained for a total of 100 epochs using batches of 32.

Once the network has been trained, we can evaluate it using classification_report to
obtain a more detailed review of model performance:

50 # evaluate the network
51 print("[INFO] evaluating network...")
52 predictions = model.predict(testX, batch_size=32)
53 print(classification_report(testY.argmax(axis=1),
54 predictions.argmax(axis=1), target_names=labelNames))
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And finally, we’ll also plot the loss/accuracy over time as well:

56 # plot the training loss and accuracy
57 plt.style.use("ggplot")
58 plt.figure()
59 plt.plot(np.arange(0, 100), H.history["loss"], label="train_loss")
60 plt.plot(np.arange(0, 100), H.history["val_loss"], label="val_loss")
61 plt.plot(np.arange(0, 100), H.history["acc"], label="train_acc")
62 plt.plot(np.arange(0, 100), H.history["val_acc"], label="val_acc")
63 plt.title("Training Loss and Accuracy")
64 plt.xlabel("Epoch #")
65 plt.ylabel("Loss/Accuracy")
66 plt.legend()
67 plt.savefig(args["output"])

To train our network on CIFAR-10, open up a terminal and execute the following command:

$ python keras_cifar10.py --output output/keras_cifar10.png
[INFO] training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/100
7s - loss: 1.8409 - acc: 0.3428 - val_loss: 1.6965 - val_acc: 0.4070
Epoch 2/100
7s - loss: 1.6537 - acc: 0.4160 - val_loss: 1.6561 - val_acc: 0.4163
Epoch 3/100
7s - loss: 1.5701 - acc: 0.4449 - val_loss: 1.6049 - val_acc: 0.4376
...
Epoch 98/100
7s - loss: 0.0292 - acc: 0.9969 - val_loss: 2.2477 - val_acc: 0.5712
Epoch 99/100
7s - loss: 0.0272 - acc: 0.9972 - val_loss: 2.2514 - val_acc: 0.5717
Epoch 100/100
7s - loss: 0.0252 - acc: 0.9976 - val_loss: 2.2492 - val_acc: 0.5739
[INFO] evaluating network...

precision recall f1-score support

airplane 0.63 0.66 0.64 1000
automobile 0.69 0.65 0.67 1000

bird 0.48 0.43 0.45 1000
cat 0.40 0.38 0.39 1000

deer 0.52 0.51 0.51 1000
dog 0.48 0.47 0.48 1000

frog 0.64 0.63 0.64 1000
horse 0.63 0.62 0.63 1000
ship 0.64 0.74 0.69 1000

truck 0.59 0.65 0.62 1000

avg / total 0.57 0.57 0.57 10000

Looking at the output, you can see that our network obtained 57% accuracy. Examining our
plot of loss and accuracy over time (Figure 10.16), we can see that our network struggles with
overfitting past epoch 10. Loss initially starts to decrease, levels out a bit, and then skyrockets,
and never comes down again. All the while training loss is falling consistently epoch-over-epoch.
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Figure 10.16: Using a standard feedforward neural network leads to dramatic overfitting in the
more challenging CIFAR-10 dataset (notice how training loss falls while validation loss rises
dramatically). To be successful at the CIFAR-10 challenge, we’ll need a powerful technique –
Convolutional Neural Networks.

This behavior of decreasing training loss while validation loss increases is indicative of extreme
overfitting.

We could certainly consider optimizing our hyperparameters further, in particular, experiment-
ing with varying learning rates and increasing both the depth and the number of nodes in the
network, but we would be fighting for meager gains.

The fact is this – basic feedforward networks with strictly fully-connected layers are not suitable
for challenging image datasets. For that, we need a more advanced approach: Convolutional Neural
Networks. Luckily, CNNs are the topic of the entire remainder of this book. By the time you finish
the Starter Bundle, you’ll be able to obtain over 79% accuracy on CIFAR-10. If you so choose to
study deep learning in more depth, the Practitioner Bundle will demonstrate how to increase your
accuracy to over 93%, putting us in the league of state-of-the-art results [110].

10.1.5 The Four Ingredients in a Neural Network Recipe

You might have started to notice a pattern in our Python code examples when training neural
networks. There are four main ingredients you need to put together your own neural network
and deep learning algorithm: a dataset, a model/architecture, a loss function, and an optimization
method. We’ll review each of these ingredients below.

Dataset

The dataset is the first ingredient in training a neural network – the data itself along with the problem
we are trying to solve define our end goals. For example, are we using neural networks to perform
a regression analysis to predict the value of homes in a specific suburb in 20 years? Is our goal
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to perform unsupervised learning, such as dimensionality reduction? Or are we trying to perform
classification?

In the context of this book, we’re strictly on image classification; however, the combination
of your dataset and the problem you are trying to solve influences your choice in loss function,
network architecture, and optimization method used to train the model. Usually, we have little
choice in our dataset (unless you’re working on a hobby project) – we are given a dataset with some
expectation on what the results from our project should be. It is then up to us to train a machine
learning model on the dataset to perform well on the given task.

Loss Function

Given our dataset and target goal, we need to define a loss function that aligns with the problem we
are trying to solve. In nearly all image classification problems using deep learning, we’ll be using
cross-entropy loss. For > 2 classes we call this categorical cross-entropy. For two class problems,
we call the loss binary cross-entropy.

Model/Architecture

Your network architecture can be considered the first actual “choice” you have to make as an
ingredient. Your dataset is likely chosen for you (or at least you’ve decided that you want to work
with a given dataset). And if you’re performing classification, you’ll in all likelihood be using
cross-entropy as your loss function.

However, your network architecture can vary dramatically, especially when with which opti-
mization method you choose to train your network. After taking the time to explore your dataset
and look at:

1. How many data points you have.
2. The number of classes.
3. How similar/dissimilar the classes are.
4. The intra-class variance.
You should start to develop a “feel” for a network architecture you are going to use. This takes

practice as deep learning is part science, part art – in fact, the rest of this book is dedicated to
helping you develop both of these skills.

Keep in mind that the number of layers and nodes in your network architecture (along with any
type of regularization) is likely to change as you perform more and more experiments. The more
results you gather, the better equipped you are to make informed decisions on which techniques to
try next.

Optimization Method

The final ingredient is to define an optimization method. As we’ve seen thus far in this book
Stochastic Gradient Descent (Section 9.2) is used quite often. Other optimization methods exist,
including RMSprop [90], Adagrad [111], Adadelta [112], and Adam [113]; however, these are
more advanced optimization methods that we’ll cover in the Practitioner Bundle.

Even despite all these newer optimization methods, SGD is still the workhorse of deep learning
– most neural networks are trained via SGD, including the networks obtaining state-of-the-art
accuracy on challenging image datasets such as ImageNet.

When training deep learning networks, especially when you’re first getting started and learning
the ropes, SGD should be your optimizer of choice. You then need to set a proper learning rate and
regularization strength, the total number of epochs the network should be trained for, and whether
or not momentum (and if so, which value) or Nesterov acceleration should be used. Take the time
to experiment with SGD as much as you possibly can and become comfortable with tuning the
parameters.

Becoming familiar with a given optimization algorithm is similar to mastering how to drive a
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car – you drive your own car better than other people’s cars because you’ve spent so much time
driving it; you understand your car and its intricacies. Often times, a given optimizer is chosen to
train a network on a dataset not because the optimizer itself is better, but because the driver (i.e.,
deep learning practitioner) is more familiar with the optimizer and understands the “art” behind
tuning its respective parameters.

Keep in mind that obtaining a reasonably performing neural network on even a small/medium
dataset can take 10’s to 100’s of experiments even for advanced deep learning users – don’t be
discouraged when your network isn’t performing extremely well right out of the gate. Becoming
proficient in deep learning will require an investment of your time and many experiments – but it
will be worth it once you master how these ingredients come together.

10.1.6 Weight Initialization
Before we close out this chapter I wanted to briefly discuss the concept of weight initialization, or
more simply, how we initialize our weight matrices and bias vectors.

This section is not meant to be a comprehensive initialization techniques; however, it does
highlight popular methods, but from neural network literature and general rules-of-thumb. To
illustrate how these weight initialization methods work I have included basic Python/NumPy-like
pseudocode when appropriate.

10.1.7 Constant Initialization
When applying constant normalization, all weights in the neural network are initialized with a
constant value, C. Typically C will equal zero or one.

To visualize this in pseudocode let’s consider an arbitrary layer of a neural network that has 64
inputs and 32 outputs (excluding any biases for notional convenience). To initialize these weights
via NumPy and zero initialization (the default used by Caffe, a popular deep learning framework)
we would execute:

>>> W = np.zeros((64, 32))

Similarly, one initialization can be accomplished via:

>>> W = np.ones((64, 32))

We can apply constant initialization using an arbitrary of C using:

>>> W = np.ones((64, 32)) * C

Although constant initialization is easy to grasp and understand, the problem with using this
method is that its near impossible for us to break the symmetry of activations [114]. Therefore, it is
rarely used as a neural network weight initializer.

10.1.8 Uniform and Normal Distributions
A uniform distribution draws a random value from the range [lower, upper] where every value
inside this range has equal probability of being drawn.

Again, let’s presume that for a given layer in a neural network we have 64 inputs and 32 outputs.
We then wish to initialize our weights in the range lower=-0.05 and upper=0.05. Applying the
following Python + NumPy code will allow us to achieve the desired normalization:
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>>> W = np.random.uniform(low=-0.05, high=0.05, size=(64, 32))

Executing the code above NumPy will randomly generate 64× 32 = 2,048 values from the
range [−0.05,0.05] where each value in this range has equal probability.

We then have a normal distribution where we define the probability density for the Gaussian
distribution as:

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (10.6)

The most important parameters here are µ (the mean) and σ (the standard deviation). The
square of the standard deviation, σ2, is called the variance.

When using the Keras library the RandomNormal class draws random values from a normal
distribution with µ = 0 and σ = 0.05. We can mimic this behavior using NumPy below:

>>> W = np.random.normal(0.0, 0.5, size=(64, 32))

Both of uniform and normal distributions can be used to initialize the weights in neural networks;
however, we normally impose various heuristics to create “better” initialization schemes (as we’ll
discuss in the remaining sections).

10.1.9 LeCun Uniform and Normal
If you have ever used the Torch7 or PyTorch frameworks you may notice that the default weight
initialization method is called “Efficient Backprop”, which is derived by the work of LeCun et al.
[17].

Here the authors define a parameter Fin (called “fan in”, or the number of inputs to the layer)
along with Fout (the “fan out”, or number of outputs from the layer). Using these values we can
apply uniform initialization by:

>>> F_in = 64
>>> F_out = 32
>>> limit = np.sqrt(3 / float(F_in))
>>> W = np.random.uniform(low=-limit, high=limit, size=(F_in, F_out))

We can also use a normal distribution as well. The Keras library uses a truncated normal
distribution when constructing the lower and upper limits, along with a zero mean:

>>> F_in = 64
>>> F_out = 32
>>> limit = np.sqrt(1 / float(F_in))
>>> W = np.random.normal(0.0, limit, size=(F_in, F_out))

10.1.10 Glorot/Xavier Uniform and Normal
The default weight initialization method used in the Keras library is called “Glorot initialization” or
“Xavier initialization” named after Xavier Glorot, the first author of the paper, Understanding the
difficulty of training deep feedforward neural networks [115].

For the normal distribution the limit value is constructed by averaging the Fin and Fout together
and then taking the square-root [116]. A zero-center (µ = 0) is then used:
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>>> F_in = 64
>>> F_out = 32
>>> limit = np.sqrt(2 / float(F_in + F_out))
>>> W = np.random.normal(0.0, limit, size=(F_in, F_out))

Glorot/Xavier initialization can also be done with a uniform distribution where we place
stronger restrictions on limit:

>>> F_in = 64
>>> F_out = 32
>>> limit = np.sqrt(6 / float(F_in + F_out))
>>> W = np.random.uniform(low=-limit, high=limit, size=(F_in, F_out))

Learning tends to be quite efficient using this initialization method and I recommend it for most
neural networks.

10.1.11 He et al./Kaiming/MSRA Uniform and Normal
Often referred to as “He et al. initialization”, “Kaiming initialization”, or simply “MSRA initializa-
tion”, this technique is named after Kaiming He, the first author of the paper, Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [117].

We typically used this method when we are training very deep neural networks that use a
ReLU-like activation function (in particular, a “PReLU”, or Parametric Rectified Linear Unit).

To initialize the weights in a layer using He et al. initialization with a uniform distribution we
set limit to be limit =

√
6/Fin, where Fin is the number of input units in the layer:

>>> F_in = 64
>>> F_out = 32
>>> limit = np.sqrt(6 / float(F_in))
>>> W = np.random.uniform(low=-limit, high=limit, size=(F_in, F_out))

We can also use a normal distribution as well by setting µ = 0 and sigma =
√

2/Fin

>>> F_in = 64
>>> F_out = 32
>>> limit = np.sqrt(2 / float(F_in))
>>> W = np.random.normal(0.0, limit, size=(F_in, F_out))

We’ll discuss this initialization method in both the Practitioner Bundle and the ImageNet
Bundle of this book where we train very deep neural networks on large image datasets.

10.1.12 Differences in Initialization Implementation
The actual limit values may vary for LeCun Uniform/Normal, Xavier Uniform/Normal, and He et
al. Uniform/Normal. For example, when using Xavier Uniform in Caffe, limit = -np.sqrt(3
/ F_in) [114]; however, the default Xaiver initialization for Keras uses np.sqrt(6 / (F_in +
F_out)) [118]. No method is “more correct” than the other, but you should read the documentation
of your respective deep learning library.
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10.2 Summary
In this chapter, we reviewed the fundamentals of neural networks. Specifically, we focused on the
history of neural networks and the relation to biology.

From there, we moved on to artificial neural networks, such as the Perceptron algorithm. While
important from a historical standpoint, the Perceptron algorithm has one major flaw – it accurately
classifies nonlinear separable points. In order to work with more challenging datasets we need both
(1) nonlinear activation functions and (2) multi-layer networks.

To train multi-layer networks we must use the backpropagation algorithm. We then implemented
backpropagation by hand and demonstrated that when used to train multi-layer networks with
nonlinear activation functions, we can model nonlinearly separable datasets, such as XOR.

Of course, implementing backpropagation by hand is an arduous process prone to bugs – we,
therefore, often rely on existing libraries such as Keras, Theano, TensorFlow, etc. This enables us
to focus on the actual architecture rather than the underlying algorithm used to train the network.

Finally, we reviewed the four key ingredients when working with any neural network, including
the dataset, loss function, model/architecture, and optimization method.

Unfortunately, as some of our results demonstrated (e.x., CIFAR-10) standard neural networks
fail to obtain high classification accuracy when working with challenging image datasets that
exhibit variations in translation, rotation, viewpoint, etc. In order to obtain reasonable accuracy
on these datasets, we’ll need to work with a special type of feedforward neural networks called
Convolutional Neural Networks (CNNs), which is exactly the subject of our next chapter.



11. Convolutional Neural Networks

Our entire review of machine learning and neural networks thus far have been leading up to this
point: understanding Convolutional Neural Networks (CNNs) and the role they play in deep
learning.

In traditional feedforward neural networks (like the ones we studied in Chapter 10), each
neuron in the input layer is connected to every output neuron in the next layer – we call this a fully-
connected (FC) layer. However, in CNNs, we don’t use FC layers until the very last layer(s) in the
network. We can thus define a CNN as a neural network that swaps in a specialized “convolutional”
layer in place of “fully-connected” layer for at least one of the layers in the network [10].

A nonlinear activation function, such as ReLU, is then applied to the output of these convolutions
and the process of convolution => activation continues (along with a mixture of other layer types to
help reduce the width and height of the input volume and help reduce overfitting) until we finally
reach the end of the network and apply one or two FC layers where we can obtain our final output
classifications.

Each layer in a CNN applies a different set of filters, typically hundreds or thousands of them,
and combines the results, feeding the output into the next layer in the network. During training, a
CNN automatically learns the values for these filters.

In the context of image classification, our CNN may learn to:
• Detect edges from raw pixel data in the first layer.
• Use these edges to detect shapes (i.e., “blobs”) in the second layer.
• Use these shapes to detect higher-level features such as facial structures, parts of a car, etc.

in the highest layers of the network.
The last layer in a CNN uses these higher-level features to make predictions regarding the

contents of the image. In practice, CNNs give us two key benefits: local invariance and composi-
tionality. The concept of local invariance allows us to classify an image as containing a particular
object regardless of where in the image the object appears. We obtain this local invariance through
the usage of "pooling layers” (discussed later in this chapter) which identifies regions of our input
volume with a high response to a particular filter.

The second benefit is compositionality. Each filter composes a local patch of lower-level features
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into a higher-level representation, similar to how we can compose a set of mathematical functions
that build on the output of previous functions: f (g(x(h(x))) – this composition allows our network
to learn more rich features deeper in the network. For example, our network may build edges from
pixels, shapes from edges, and then complex objects from shapes – all in an automated fashion that
happens naturally during the training process. The concept of building higher-level features from
lower-level ones is exactly why CNNs are so powerful in computer vision.

In the rest of this chapter, we’ll discuss exactly what convolutions are and the role they play in
deep learning. We’ll then move on to the building blocks of CNNs: layers, and the various types
of layers you’ll use to build your own CNNs. We’ll wrap up this chapter by looking at common
patterns that are used to stack these building blocks to create CNN architectures that perform well
on a diverse set of image classification tasks.

After reviewing this chapter, we’ll have (1) a strong understanding of Convolutional Neural
Networks and the thought process that goes into building one and (2) a number of CNN “recipes”
we can use to construct our own network architectures. In our next chapter, we’ll use these
fundamentals and recipes to train CNNs of our own.

11.1 Understanding Convolutions

In this section, we’ll address a number of questions, including:
• What are image convolutions?
• What do they do?
• Why do we use them?
• How do we apply them to images?
• And what role do convolutions play in deep learning?
The word “convolution” sounds like a fancy, complicated term – but it’s really not. If you

have any prior experience with computer vision, image processing, or OpenCV before, you’ve
already applied convolutions, whether you realize it or not!

Ever apply blurring or smoothing to an image? Yep, that’s a convolution. What about edge
detection? Yup, convolution. Have you opened Photoshop or GIMP to sharpen an image? You
guessed it – convolution. Convolutions are one of the most critical, fundamental building-blocks in
computer vision and image processing.

But the term itself tends to scare people off – in fact, on the surface, the word even appears
to have a negative connotation (why would anyone want to “convolute” something?) Trust me,
convolutions are anything but scary. They’re actually quite easy to understand.

In terms of deep learning, an (image) convolution is an element-wise multiplication of two ma-
trices followed by a sum.

Seriously. That’s it. You just learned what a convolution is:
1. Take two matrices (which both have the same dimensions).
2. Multiply them, element-by-element (i.e., not the dot product, just a simple multiplication).
3. Sum the elements together.
We’ll learn more about convolutions, kernels, and how they are used inside CNNs in the

remainder of this section.

11.1.1 Convolutions versus Cross-correlation

A reader with prior background in computer vision and image processing may have identified my
description of a convolution above as a cross-correlation operation instead. Using cross-correlation
instead of convolution is actually by design. Convolution (denoted by the ? operator) over a
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two-dimensional input image I and two-dimensional kernel K is defined as:

S(i, j) = (I ?K)(i, j) = ∑
m

∑
n

K(i−m, j−n)I(m,n) (11.1)

However, nearly all machine learning and deep learning libraries use the simplified cross-
correlation function

S(i, j) = (I ?K)(i, j) = ∑
m

∑
n

K(i+m, j+n)I(m,n) (11.2)

All this math amounts to is a sign change in how we access the coordinates of the image I (i.e.,
we don’t have to “flip” the kernel relative to the input when applying cross-correlation).

Again, many deep learning libraries use the simplified cross-correlation operation and call it
convolution – we will use the same terminology here. For readers interested in learning more
about the mathematics behind convolution vs. cross-correlation, please refer to Chapter 3 of
Computer Vision: Algorithms and Applications by Szelski [119].

11.1.2 The “Big Matrix” and “Tiny Matrix" Analogy
An image is a multidimension matrix. Our image has a width (# of columns) and height (# of rows),
just like a matrix. But unlike traditional matrices you have worked with back in grade school,
images also have a depth to them – the number of channels in the image.

For a standard RGB image, we have a depth of 3 – one channel for each of the Red, Green, and
Blue channels, respectively. Given this knowledge, we can think of an image as big matrix and a
kernel or convolutional matrix as a tiny matrix that is used for blurring, sharpening, edge detection,
and other processing functions. Essentially, this tiny kernel sits on top of the big image and slides
from left-to-right and top-to-bottom, applying a mathematical operation (i.e., a convolution) at each
(x,y)-coordinate of the original image.

It’s normal to hand-define kernels to obtain various image processing functions. In fact,
you might already be familiar with blurring (average smoothing, Gaussian smoothing, median
smoothing, etc.), edge detection (Laplacian, Sobel, Scharr, Prewitt, etc.), and sharpening – all of
these operations are forms of hand-defined kernels that are specifically designed to perform a
particular function.

So that raises the question: is there a way to automatically learn these types of filters? And even
use these filters for image classification and object detection? You bet there is. But before we get
there, we need to understand kernels and convolutions a bit more.

11.1.3 Kernels
Again, let’s think of an image as a big matrix and a kernel as a tiny matrix (at least in respect to the
original “big matrix” image), depicted in Figure 11.1. As the figure demonstrates, we are sliding
the kernel (red region) from left-to-right and top-to-bottom along the original image. At each
(x,y)-coordinate of the original image, we stop and examine the neighborhood of pixels located at
the center of the image kernel. We then take this neighborhood of pixels, convolve them with the
kernel, and obtain a single output value. The output value is stored in the output image at the same
(x,y)-coordinates as the center of the kernel.

If this sounds confusing, no worries, we’ll be reviewing an example in the next section. But
before we dive into an example, let’s take a look at what a kernel looks like (Figure 11.3):

K =
1
9

1 1 1
1 1 1
1 1 1

 (11.3)



172 Chapter 11. Convolutional Neural Networks

Figure 11.1: A kernel can be visualized as a small matrix that slides across, from left-to-right and
top-to-bottom, of a larger image. At each pixel in the input image, the neighborhood of the image
is convolved with the kernel and the output stored.

Above we have defined a square 3×3 kernel (any guesses on what this kernel is used for?).
Kernels can be of arbitrary rectangular size MxN, provided that both M and N are odd integers.

R Most kernels applied to deep learning and CNNs are N×N square matrices, allowing us to
take advantage of optimized linear algebra libraries that operate most efficiently on square
matrices.

We use an odd kernel size to ensure there is a valid integer (x,y)-coordinate at the center of
the image (Figure 11.2). On the left, we have a 3×3 matrix. The center of the matrix is located at
x = 1,y = 1 where the top-left corner of the matrix is used as the origin and our coordinates are
zero-indexed. But on the right, we have a 2×2 matrix. The center of this matrix would be located
at x = 0.5,y = 0.5.

But as we know, without applying interpolation, there is no such thing as pixel location
(0.5,0.5) – our pixel coordinates must be integers! This reasoning is exactly why we use odd kernel
sizes: to always ensure there is a valid (x,y)-coordinate at the center of the kernel.

11.1.4 A Hand Computation Example of Convolution
Now that we have discussed the basics of kernels, let’s discuss the actual convolution operation and
see an example of it actually being applied to help us solidify our knowledge. In image processing,
a convolution requires three components:

1. An input image.
2. A kernel matrix that we are going to apply to the input image.
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Figure 11.2: Left: The center pixel of a 3×3 kernel is located at coordinate (1,1) (highlighted in
red). Right: What is the center coordinate of a kernel of size 2×2?

3. An output image to store the output of the image convolved with the kernel.
Convolution (i.e., cross-correlation) is actually very easy. All we need to do is:

1. Select an (x,y)-coordinate from the original image.
2. Place the center of the kernel at this (x,y)-coordinate.
3. Take the element-wise multiplication of the input image region and the kernel, then sum

up the values of these multiplication operations into a single value. The sum of these
multiplications is called the kernel output.

4. Use the same (x,y)-coordinates from Step #1, but this time, store the kernel output at the
same (x,y)-location as the output image.

Below you can find an example of convolving (denoted mathematically as the ? operator) a
3×3 region of an image with a 3×3 kernel used for blurring:

Oi, j =
1
9

1 1 1
1 1 1
1 1 1

?

 93 139 101
26 252 196

135 230 18

=

 1/9×93 1/9×139 1/9×101
1/9×26 1/9×252 1/9×196
1/9×135 1/9×230 1/9×18

 (11.4)

Therefore,

Oi, j = ∑

10.3 15.4 11.2
2.8 28.0 21.7
15.0 25.5 2.0

≈ 132. (11.5)

After applying this convolution, we would set the pixel located at the coordinate (i, j) of the
output image O to Oi, j = 132.

That’s all there is to it! Convolution is simply the sum of element-wise matrix multiplication
between the kernel and neighborhood that the kernel covers of the input image.

11.1.5 Implementing Convolutions with Python
To help us further understand the concept of convolutions, let’s look at some actual code that will
reveal how kernels and convolutions are implemented. This source code will not only help you
understand how to apply convolutions to images, but also enable you to understand what’s going on
under the hood when training CNNs.

Open up a new file, name it convolutions.py, and let’s get to work:
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1 # import the necessary packages
2 from skimage.exposure import rescale_intensity
3 import numpy as np
4 import argparse
5 import cv2

We start on Lines 2-5 by importing our required Python packages. We’ll be using NumPy and
OpenCV for our standard numerical array processing and computer vision functions, along with
the scikit-image library to help us implement our own custom convolution function.

Next, we can start defining this convolve method:

7 def convolve(image, K):
8 # grab the spatial dimensions of the image and kernel
9 (iH, iW) = image.shape[:2]

10 (kH, kW) = K.shape[:2]
11

12 # allocate memory for the output image, taking care to "pad"
13 # the borders of the input image so the spatial size (i.e.,
14 # width and height) are not reduced
15 pad = (kW - 1) // 2
16 image = cv2.copyMakeBorder(image, pad, pad, pad, pad,
17 cv2.BORDER_REPLICATE)
18 output = np.zeros((iH, iW), dtype="float")

The convolve function requires two parameters: the (grayscale) image that we want to
convolve with kernel. Given both our image and kernel (which we presume to be NumPy
arrays), we then determine the spatial dimensions (i.e., width and height) of each (Lines 10 and
11).

Before we continue, it’s important to understand the process of “sliding” a convolutional
matrix across an image, applying the convolution, and then storing the output, which will actually
decrease the spatial dimensions of our input image. Why is this?

Recall that we “center” our computation around the center (x,y)-coordinate of the input image
that the kernel is currently positioned over. This positioning implies there is no such thing as “center”
pixels for pixels that fall along the border of the image (as the corners of the kernel would be
“hanging off” the image where the values are undefined), depicted by Figure 11.3.

The decrease in spatial dimension is simply a side effect of applying convolutions to images.
Sometimes this effect is desirable, and other times it is not, it simply depends on your application.

However, in most cases, we want our output image to have the same dimensions as our input
image. To ensure the dimensions are the same, we apply padding (Lines 15-18). Here we are
simply replicating the pixels along the border of the image, such that the output image will match
the dimensions of the input image.

Other padding methods exist, including zero padding (filling the borders with zeros – very
common when building Convolutional Neural Networks) and wrap around (where the border pixels
are determined by examining the opposite side of the image). In most cases, you will see either
replicate or zero padding. Replicate padding is more commonly used when aesthetics are concerned
while zero padding is best for efficiency.

We are now ready to apply the actual convolution to our image:

20 # loop over the input image, "sliding" the kernel across
21 # each (x, y)-coordinate from left-to-right and top-to-bottom



11.1 Understanding Convolutions 175

Figure 11.3: If we attempted to apply convolution at the pixel located at (0,0), then our 3×3 kernel
would “hang off” off the edge of the image. Notice how there are no input image pixel values for
the first row and first column of the kernel. Because of this, we always either (1) start convolution
at the first valid position or (2) apply zero padding (covered later in this chapter).

22 for y in np.arange(pad, iH + pad):
23 for x in np.arange(pad, iW + pad):
24 # extract the ROI of the image by extracting the
25 # *center* region of the current (x, y)-coordinates
26 # dimensions
27 roi = image[y - pad:y + pad + 1, x - pad:x + pad + 1]
28

29 # perform the actual convolution by taking the
30 # element-wise multiplication between the ROI and
31 # the kernel, then summing the matrix
32 k = (roi * K).sum()
33

34 # store the convolved value in the output (x, y)-
35 # coordinate of the output image
36 output[y - pad, x - pad] = k

Lines 22 and 23 loop over our image, “sliding” the kernel from left-to-right and top-to-bottom,
one pixel at a time. Line 27 extracts the Region of Interest (ROI) from the image using NumPy
array slicing. The roi will be centered around the current (x,y)-coordinates of the image. The roi
will also have the same size as our kernel, which is critical for the next step.

Convolution is performed on Line 32 by taking the element-wise multiplication between the
roi and kernel, followed by summing the entries in the matrix. The output value k is then stored
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in the output array at the same (x,y)-coordinates (relative to the input image).
We can now finish up our convolve method:

38 # rescale the output image to be in the range [0, 255]
39 output = rescale_intensity(output, in_range=(0, 255))
40 output = (output * 255).astype("uint8")
41

42 # return the output image
43 return output

When working with images, we typically deal with pixel values falling in the range [0,255].
However, when applying convolutions, we can easily obtain values that fall outside this range. In
order to bring our output image back into the range [0,255], we apply the rescale_intensity
function of scikit-image (Line 39).

We also convert our image back to an unsigned 8-bit integer data type on Line 40 (previously,
the output image was a floating point type in order to handle pixel values outside the range
[0,255]). Finally, the output image is returned to the calling function on Line 43.

Now that we’ve defined our convolve function, let’s move on to the driver portion of the script.
This section of our program will handle parsing command line arguments, defining a series of
kernels we are going to apply to our image, and then displaying the output results:

45 # construct the argument parse and parse the arguments
46 ap = argparse.ArgumentParser()
47 ap.add_argument("-i", "--image", required=True,
48 help="path to the input image")
49 args = vars(ap.parse_args())

Our script requires only a single command line argument, --image, which is the path to our
input image. We can then define two kernels used for blurring and smoothing an image:

51 # construct average blurring kernels used to smooth an image
52 smallBlur = np.ones((7, 7), dtype="float") * (1.0 / (7 * 7))
53 largeBlur = np.ones((21, 21), dtype="float") * (1.0 / (21 * 21))

To convince yourself that this kernel is performing blurring, notice how each entry in the kernel
is an average of 1/S where S is the total number of entries in the matrix. Thus, this kernel will
multiply each input pixel by a small fraction and take the sum – this is exactly the definition of the
average.

We then have a kernel responsible for sharpening an image:

55 # construct a sharpening filter
56 sharpen = np.array((
57 [0, -1, 0],
58 [-1, 5, -1],
59 [0, -1, 0]), dtype="int")

Then the Laplacian kernel used to detect edge-like regions:
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61 # construct the Laplacian kernel used to detect edge-like
62 # regions of an image
63 laplacian = np.array((
64 [0, 1, 0],
65 [1, -4, 1],
66 [0, 1, 0]), dtype="int")

The Sobel kernels can be used to detect edge-like regions along both the x and y axis, respec-
tively:

68 # construct the Sobel x-axis kernel
69 sobelX = np.array((
70 [-1, 0, 1],
71 [-2, 0, 2],
72 [-1, 0, 1]), dtype="int")
73

74 # construct the Sobel y-axis kernel
75 sobelY = np.array((
76 [-1, -2, -1],
77 [0, 0, 0],
78 [1, 2, 1]), dtype="int")

And finally, we define the emboss kernel:

80 # construct an emboss kernel
81 emboss = np.array((
82 [-2, -1, 0],
83 [-1, 1, 1],
84 [0, 1, 2]), dtype="int")

Explaining how each of these kernels were formulated is outside the scope of this book, so for
the time being simply understand that these are kernels that were manually built to perform a given
operation.

For a thorough treatment of how kernels are mathematically constructed and proven to perform
a given image processing operation, please refer to Szeliksi (Chapter 3) [119]. I also recommend
using this excellent kernel visualization tool from Setosa.io [120].

Given all these kernels, we can lump them together into a set of tuples called a “kernel bank”:

86 # construct the kernel bank, a list of kernels we’re going to apply
87 # using both our custom ‘convole‘ function and OpenCV’s ‘filter2D‘
88 # function
89 kernelBank = (
90 ("small_blur", smallBlur),
91 ("large_blur", largeBlur),
92 ("sharpen", sharpen),
93 ("laplacian", laplacian),
94 ("sobel_x", sobelX),
95 ("sobel_y", sobelY),
96 ("emboss", emboss))
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Constructing this list of kernels enables use to loop over them and visualize their output in an
efficient manner, as the code block below demonstrates:

98 # load the input image and convert it to grayscale
99 image = cv2.imread(args["image"])

100 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
101

102 # loop over the kernels
103 for (kernelName, K) in kernelBank:
104 # apply the kernel to the grayscale image using both our custom
105 # ‘convolve‘ function and OpenCV’s ‘filter2D‘ function
106 print("[INFO] applying {} kernel".format(kernelName))
107 convolveOutput = convolve(gray, K)
108 opencvOutput = cv2.filter2D(gray, -1, K)
109

110 # show the output images
111 cv2.imshow("Original", gray)
112 cv2.imshow("{} - convole".format(kernelName), convolveOutput)
113 cv2.imshow("{} - opencv".format(kernelName), opencvOutput)
114 cv2.waitKey(0)
115 cv2.destroyAllWindows()

Lines 99 and 100 load our image from disk and convert it to grayscale. Convolution operators
can and are applied to RGB or other multi-channel volumes, but for the sake of simplicity, we’ll
only apply our filters to grayscale images.

We start looping over our set of kernels in the kernelBank on Line 103 and then apply the
current kernel to the gray image on Line 104 by calling our function convolve method, defined
earlier in the script.

As a sanity check, we also call cv2.filter2D which also applies our kernel to the gray
image. The cv2.filter2D function is OpenCV’s much more optimized version of our convolve
function. The main reason I am including both here is for us to sanity check our custom implemen-
tation.

Finally, Lines 111-115 display the output images to our screen for each kernel type.

Convolution Results
To run our script (and visualize the output of various convolution operations), just issue the following
command:

$ python convolutions.py --image jemma.png

You’ll then see the results of applying the smallBlur kernel to the input image in Figure 11.4.
On the left, we have our original image. Then, in the center, we have the results from the convolve
function. And on the right, the results from cv2.filter2D. A quick visual inspection will reveal
that our output matches cv2.filter2D, indicating that our convolve function is working properly.
Furthermore, our image now appears “blurred” and “smoothed”, thanks to the smoothing kernel.

Let’s apply a larger blur, results of which can be seen in Figure 11.5 (top-left). This time I
am omitting the cv2.filter2D results to save space. Comparing the results from Figure 11.5 to
Figure 11.4, notice how as the size of the averaging kernel increases, the amount of blurring in the
output image increases as well.

We can also sharpen our image (Figure 11.5, top-mid) and detect edge-like regions via the
Laplacian operator (top-right).
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Figure 11.4: Left: Our original input image. Center: Applying a 7× 7 average blur using our
custom convolve function. Right: Applying the same 7×7 blur using OpenCV’s cv2.filter2D
– notice how the output of the two functions is identical, implying that our convolve method is
implemented correctly.

The sobelX kernel is used to find vertical edges in the image (Figure 11.5, bottom-left), while
the sobelY kernel reveals horizontal edges (bottom-mid). Finally, we can see the result of the
emboss kernel in the bottom-left.

11.1.6 The Role of Convolutions in Deep Learning

As you’ve gathered from this section, we must manually hand-define each of our kernels for each
of our various image processing operations, such as smoothing, sharpening, and edge detection.
That’s all fine and good, but what if there was a way to learn these filters instead?

Is it possible to define a machine learning algorithm that can look at our input images and
eventually learn these types of operators? In fact, there is – these types of algorithms are the
primary focus of this book: Convolutional Neural Networks (CNNs).

By applying convolutions filters, nonlinear activation functions, pooling, and backpropagation,
CNNs are able to learn filters that can detect edges and blob-like structures in lower-level layers
of the network – and then use the edges and structures as “building blocks”, eventually detecting
high-level objects (e.x., faces, cats, dogs, cups, etc.) in the deeper layers of the network.

This process of using the lower-level layers to learn high-level features is exactly the composi-
tionality of CNNs that we were referring to earlier. But exactly how do CNNs do this? The answer
is by stacking a specific set of layers in a purposeful manner. In our next section, we’ll discuss
these types of layers, followed by examining common layer stacking patterns that are widely used
among many image classification tasks.

11.2 CNN Building Blocks

As we learned from Chapter 10, neural networks accept an input image/feature vector (one input
node for each entry) and transform it through a series of hidden layers, commonly using nonlinear
activation functions. Each hidden layer is also made up of a set of neurons, where each neuron is
fully-connected to all neurons in the previous layer. The last layer of a neural network (i.e., the
“output layer”) is also fully-connected and represents the final output classifications of the network.
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Figure 11.5: Top-left: Applying a 21×21 average blur. Notice how this image is more blurred
than in Figure 11.4. Top-mid: Using a sharpening kernel to enhance details. Top-right: Detecting
edge-like operations via the Laplacian operator. Bottom-left: Computing vertical edges using the
Sobel-X kernel. Bottom-mid: Finding horizontal edges using the Sobel-Y kernel. Bottom-right:
Applying an emboss kernel.

However, as the results of Section 10.1.4 demonstrate, neural networks operating directly on
raw pixel intensities:

1. Do not scale well as the image size increases.
2. Leaves much accuracy to be desired (i.e., a standard feedforward enroll network on CIFAR-10

obtained only 15% accuracy).
To demonstrate how standard neural networks do not scale well as image size increases, let’s

again consider the CIFAR-10 dataset. Each image in CIFAR-10 is 32×32 with a Red, Green, and
Blue channel, yielding a total of 32×32×3 = 3,072 total inputs to our network.

A total of 3,072 inputs does not seem to amount to much, but consider if we were using
250×250 pixel images – the total number of inputs and weights would jump to 250×250×3 =
187,500 – and this number is only for the input layer alone! Surely, we would want to add multiple
hidden layers with varying number of nodes per lay – these parameters can quickly add up, and
given the poor performance of standard neural networks on raw pixel intensities, this bloat is hardly
worth it.

Instead, we can use Convolutional Neural Networks (CNNs) that take advantage of the input
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image structure and define a network architecture in a more sensible way. Unlike a standard neural
network, layers of a CNN are arranged in a 3D volume in three dimensions: width, height, and
depth (where depth refers to the third dimension of the volume, such as the number of channels in
an image or the number of filters in a layer).

To make this example more concrete, again consider the CIFAR-10 dataset: the input volume
will have dimensions 32×32×3 (width, height, and depth, respectively). Neurons in subsequent
layers will only be connected to a small region of the layer before it (rather than the fully-connected
structure of a standard neural network) – we call this local connectivity which enables us to save a
huge amount of parameters in our network. Finally, the output layer will be a 1×1×N volume
which represents the image distilled into a single vector of class scores. In the case of CIFAR-10,
given ten classes, N = 10, yielding a 1×1×10 volume.

11.2.1 Layer Types
There are many types of layers used to build Convolutional Neural Networks, but the ones you are
most likely to encounter include:
• Convolutional (CONV)
• Activation (ACT or RELU, where we use the same of the actual activation function)
• Pooling (POOL)
• Fully-connected (FC)
• Batch normalization (BN)
• Dropout (DO)
Stacking a series of these layers in a specific manner yields a CNN. We often use simple text

diagrams to describe a CNN: INPUT => CONV => RELU => FC => SOFTMAX
Here we define a simple CNN that accepts an input, applies a convolution layer, then an

activation layer, then a fully-connected layer, and, finally, a softmax classifier to obtain the output
classification probabilities. The SOFTMAX activation layer is often omitted from the network diagram
as it is assumed it directly follows the final FC.

Of these layer types, CONV and FC, (and to a lesser extent, BN) are the only layers that con-
tain parameters that are learned during the training process. Activation and dropout layers are
not considered true “layers" themselves, but are often included in network diagrams to make the
architecture explicitly clear. Pooling layers (POOL), of equal importance as CONV and FC, are also
included in network diagrams as they have a substantial impact on the spatial dimensions of an
image as it moves through a CNN.

CONV, POOL, RELU, and FC are the most important when defining your actual network
architecture. That’s not to say that the other layers are not critical, but take a backseat to this
critical set of four as they define the actual architecture itself.

R Activation functions themselves are practically assumed to be part of the architecture, When
defining CNN architectures we often omit the activation layers from a table/diagram to save
space; however, the activation layers are implicitly assumed to be part of the architecture.

In the remainder of this section, we’ll review each of these layer types in detail and discuss the
parameters associated with each layer (and how to set them). Later in this chapter I’ll discuss in
more detail how to stack these layers properly to build your own CNN architectures.

11.2.2 Convolutional Layers
The CONV layer is the core building block of a Convolutional Neural Network. The CONV layer
parameters consist of a set of K learnable filters (i.e., “kernels”), where each filter has a width and a
height, and are nearly always square. These filters are small (in terms of their spatial dimensions)
but extend throughout the full depth of the volume.
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For inputs to the CNN, the depth is the number of channels in the image (i.e., a depth of three
when working with RGB images, one for each channel). For volumes deeper in the network, the
depth will be the number of filters applied in the previous layer.

To make this concept more clear, let’s consider the forward-pass of a CNN, where we convolve
each of the K filters across the width and height of the input volume, just like we did in Section
11.1.5 above. More simply, we can think of each of our K kernels sliding across the input region,
computing an element-wise multiplication, summing, and then storing the output value in a 2-
dimensional activation map, such as in Figure 11.6.

Figure 11.6: Left: At each convolutional layer in a CNN, there are K kernels applied to the input
volume. Middle: Each of the K kernels is convolved with the input volume. Right: Each kernel
produces an 2D output, called an activation map.

After applying all K filters to the input volume, we now have K, 2-dimensional activation maps.
We then stack our K activation maps along the depth dimension of our array to form the final output
volume (Figure 11.7).

Figure 11.7: After obtaining the K activation maps, they are stacked together to form the input
volume to the next layer in the network.

Every entry in the output volume is thus an output of a neuron that “looks” at only a small
region of the input. In this manner, the network “learns” filters that activate when they see a specific
type of feature at a given spatial location in the input volume. In lower layers of the network, filters
may activate when they see edge-like or corner-like regions.

Then, in the deeper layers of the network, filters may activate in the presence of high-level
features, such as parts of the face, the paw of a dog, the hood of a car, etc. This activation concept
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goes back to our neural network analogy in Chapter 10 – these neurons are becoming “excited” and
“activating” when they see a particular pattern in an input image.

The concept of convolving a small filter with a large(r) input volume has special meaning in
Convolutional Neural Networks – specifically, the local connectivity and the receptive field of
a neuron. When working with images, it’s often impractical to connect neurons in the current
volume to all neurons in the previous volume – there are simply too many connections and too
many weights, making it impossible to train deep networks on images with large spatial dimensions.
Instead, when utilizing CNNs, we choose to connect each neuron to only a local region of the input
volume – we call the size of this local region the receptive field (or simply, the variable F) of the
neuron.

To make this point clear, let’s return to our CIFAR-10 dataset where the input volume as an
input size of 32×32×3. Each image thus has a width of 32 pixels, a height of 32 pixels, and a
depth of 3 (one for each RGB channel). If our receptive field is of size 3×3, then each neuron in
the CONV layer will connect to a 3×3 local region of the image for a total of 3×3×3 = 27 weights
(remember, the depth of the filters is three because they extend through the full depth of the input
image, in this case, three channels).

Now, let’s assume that the spatial dimensions of our input volume have been reduced to a
smaller size, but our depth is now larger, due to utilizing more filters deeper in the network, such
that the volume size is now 16×16×94. Again, if we assume a receptive field of size 3×3, then
every neuron in the CONV layer will have a total of 3×3×94 = 846 connections to the input volume.
Simply put, the receptive field F is the size of the filter, yielding an F×F kernel that is convolved
with the input volume.

At this point we have explained the connectivity of neurons in the input volume, but not the
arrangement or size of the output volume. There are three parameters that control the size of an
output volume: the depth, stride, and zero-padding size, each of which we’ll review below.

Depth
The depth of an output volume controls the number of neurons (i.e., filters) in the CONV layer that
connect to a local region of the input volume. Each filter produces an activation map that “activate”
in the presence of oriented edges or blobs or color.

For a given CONV layer, the depth of the activation map will be K, or simply the number of
filters we are learning in the current layer. The set of filters that are “looking at” the same (x,y)
location of the input is called the depth column.

Stride
Consider Figure 11.1 earlier in this chapter where we described a convolution operation as “sliding”
a small matrix across a large matrix, stopping at each coordinate, computing an element-wise
multiplication and sum, then storing the output. This description is similar to a sliding win-
dow (http://pyimg.co/0yizo) that slides from left-to-right and top-to-bottom across an image.

In the context of Section 11.1.5 on convolution above, we only took a step of one pixel each
top. In the context of CNNs, the same principle can be applied – for each step, we create a new
depth column around the local region of the image where we convolve each of the K filters with
the region and store the output in a 3D volume. When creating our CONV layers we normally use a
stride step size S of either S = 1 or S = 2.

Smaller strides will lead to overlapping receptive fields and larger output volumes. Conversely,
larger strides will result in less overlapping receptive fields and smaller output volumes. To make
the concept of convolutional stride more concrete, consider the Table 11.1 where we have a 5×5
input image (left) along with a 3×3 Laplacian kernel (right).

Using S = 1, our kernel slides from left-to-right and top-to-bottom, one pixel at a time, produc-
ing the following output (Figure 11.2, left). However, if we were to apply the same operation, only

http://pyimg.co/0yizo
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95 242 186 152 39
39 14 220 153 180
5 247 212 54 46
46 77 133 110 74
156 35 74 93 116

0 1 0
1 -4 1
0 1 0

Table 11.1: Our input 5× 5 image (left) that we are going to convolve with a Laplacian kernel
(right).

692 -315 -6
-680 -194 305
153 -59 -86

692 -6
153 -86

Table 11.2: Left: Output of convolution with 1×1 stride. Right: Output of convolution with 2×2
stride. Notice how a larger stride can reduce the spatial dimensions of the input.

this time with a stride of S = 2, we skip two pixels at a time (two pixels along the x-axis and two
pixels along the y-axis), producing a smaller output volume (right).

Thus, we can see how convolution layers can be used to reduce the spatial dimensions of
the input volumes simply by changing the stride of the kernel. As we’ll see later in this section,
convolutional layers and pooling layers are the primary methods to reduce spatial input size. The
pooling layers section will also provide a more visual example of how vary stride sizes will affect
output size.

Zero-padding
As we know from Section 11.1.5, we need to “pad” the borders of an image to retain the original
image size when applying a convolution – the same is true for filters inside of a CNN. Using
zero-padding, we can “pad” our input along the borders such that our output volume size matches
our input volume size. The amount of padding we apply is controlled by the parameter P.

This technique is especially critical when we start looking at deep CNN architectures that apply
multiple CONV filters on top of each other. To visualize zero-padding, again refer to Table 11.1
where we applied a 3×3 Laplacian kernel to a 5×5 input image with a stride of S = 1.

We can see in Table 11.3 (left) how the output volume is smaller (3×3) than the input volume
(5×5) due to the nature of the convolution operation. If we instead set P = 1, we can pad our input
volume with zeros (middle) to create a 7× 7 volume and then apply the convolution operation,
leading to an output volume size that matches the original input volume size of 5×5 (right).

Without zero padding, the spatial dimensions of the input volume would decrease too quickly,
and we wouldn’t be able to train deep networks (as the input volumes would be too tiny to learn
any useful patterns from).

Putting all these parameters together, we can compute the size of an output volume as a function
of the input volume size (W , assuming the input images are square, which they nearly always are),
the receptive field size F , the stride S, and the amount of zero-padding P. To construct a valid CONV
layer, we need to ensure the following equation is an integer:

((W −F +2P)/S)+1 (11.6)

If it is not an integer, then the strides are set incorrectly, and the neurons cannot be tiled such
that they fit across the input volume in a symmetric way.
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692 -315 -6
-680 -194 305
153 -59 -86

0 0 0 0 0 0 0
0 95 242 186 152 39 0
0 39 14 220 153 180 0
0 5 247 212 54 46 0
0 46 77 133 110 74 0
0 156 35 74 93 116 0
0 0 0 0 0 0 0

-99 -673 -130 -230 176
-42 692 -315 -6 -482
312 -680 -194 305 124
54 153 -59 -86 -24
-543 167 -35 -72 -297

Table 11.3: Left: The output of applying a 3× 3 convolution to a 5× 5 output (i.e., the spatial
dimensions decrease). Right: Applying zero-padding to the original input with P = 1 increases the
spatial dimensions to 7×7. Bottom: After applying the 3×3 convolution to the padded input, our
output volume times matches the original input volume size of 5×5, thus zero-padding helps us
preserve spatial dimensions.

As an example, consider the first layer of the AlexNet architecture which won the 2012
ImageNet classification challenge and is hugely responsible for the current boom of deep learning
applied to image classification. Inside their paper, Krizhevsky et al. [94] documented their CNN
architecture according to Figure 11.8.

Figure 11.8: The original AlexNet architecture diagram provided by Krizhevsky et al. [94] Notice
how the input image is documented to be 224×224×3, although this cannot be possible due to
Equation 11.6. It’s also worth noting that we are unsure why the top-half of this figure is cutoff
from the original publication.

Notice how the first layer claims that the input image size is 224×224 pixels. However, this
can’t possibly be correct if we apply our equation above using 11×11 filters, a stride of four, and
no padding:

((224−11+2(0))/4)+1 = 54.25 (11.7)

Which is certainly not an integer.
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For novice readers just getting started in deep learning and CNNs, this small error in such a
seminal paper has caused countless errors of confusion and frustration. It’s unknown why this typo
occurred, but it’s likely that Krizhevsky et al. used 227×227 input images, since:

((227−11+2(0))/4)+1 = 55 (11.8)

Errors like these are more common than you might think, so when implementing CNNs from
publications, be sure to check the parameters yourself rather than simply assuming the parameters
listed are correct. Due to the vast number of parameters in a CNN, it’s quite easy to make a
typographical mistake when documenting an architecture (I’ve done it myself many times).

To summarize, the CONV layer in the same, elegant manner as Karpathy [121]:
• Accepts an input volume of size Winput ×Hinput ×Dinput (the input sizes are normally square,

so it’s common to see Winput = Hinput).
• Requires four parameters:

1. The number of filters K (which controls the depth of the output volume).
2. The receptive field size F (the size of the K kernels used for convolution and is nearly

always square, yielding an F×F kernel).
3. The stride S.
4. The amount of zero-padding P.

• The output of the CONV layer is then Wout put ×Hout put ×Dout put , where:
– Wout put = ((Winput −F +2P)/S)+1
– Hout put = ((Hinput −F +2P)/S)+1
– Dout put = K

We’ll review common settings for these parameters in Section 11.3.1 below.

11.2.3 Activation Layers
After each CONV layer in a CNN, we apply a nonlinear activation function, such as ReLU, ELU, or
any of the other Leaky ReLU variants mentioned in Chapter 10. We typically denote activation
layers as RELU in network diagrams as since ReLU activations are most commonly used, we may
also simply state ACT – in either case, we are making it clear that an activation function is being
applied inside the network architecture.

Activation layers are not technically “layers” (due to the fact that no parameters/weights are
learned inside an activation layer) and are sometimes omitted from network architecture diagrams
as it’s assumed that an activation immediately follows a convolution.

In this case, authors of publications will mention which activation function they are using
after each CONV layer somewhere in their paper. As an example, consider the following network
architecture: INPUT => CONV => RELU => FC.

To make this diagram more concise, we could simply remove the RELU component since it’s
assumed that an activation always follows a convolution: INPUT => CONV => FC. I personally do
not like this and choose to explicitly include the activation layer in a network diagram to make it
clear when and what activation function I am applying in the network.

An activation layer accepts an input volume of size Winput×Hinput×Dinput and then applies the
given activation function (Figure 11.9). Since the activation function is applied in an element-wise
manner, the output of an activation layer is always the same as the input dimension, Winput =Wout put ,
Hinput = Hout put , Dinput = Dout put .

11.2.4 Pooling Layers
There are two methods to reduce the size of an input volume – CONV layers with a stride > 1 (which
we’ve already seen) and POOL layers. It is common to insert POOL layers in-between consecutive
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Figure 11.9: An example of an input volume going through a ReLU activation, max(0,x). Activa-
tions are done in-place so there is no need to create a separate output volume although it is easy to
visualize the flow of the network in this manner.

CONV layers in a CNN architectures:
INPUT => CONV => RELU => POOL => CONV => RELU => POOL => FC
The primary function of the POOL layer is to progressively reduce the spatial size (i.e., width

and height) of the input volume. Doing this allows us to reduce the amount of parameters and
computation in the network – pooling also helps us control overfitting.

POOL layers operate on each of the depth slices of an input independently using either the
max or average function. Max pooling is typically done in the middle of the CNN architecture
to reduce spatial size, whereas average pooling is normally used as the final layer of the network
(e.x., GoogLeNet, SqueezeNet, ResNet) where we wish to avoid using FC layers entirely. The most
common type of POOL layer is max pooling, although this trend is changing with the introduction
of more exotic micro-architectures.

Typically we’ll use a pool size of 2×2, although deeper CNNs that use larger input images
(> 200 pixels) may use a 3×3 pool size early in the network architecture. We also commonly set
the stride to either S = 1 or S = 2. Figure 11.10 (heavily inspired by Karpathy et al. [121]) follows
an example of applying max pooling with 2×2 pool size and a stride of S = 1. Notice for every
2×2 block, we keep only the largest value, take a single step (like a sliding window), and apply
the operation again – thus producing an output volume size of 3×3.

We can further decrease the size of our output volume by increasing the stride – here we apply
S = 2 to the same input (Figure 11.10, bottom). For every 2×2 block in the input, we keep only
the largest value, then take a step of two pixels, and apply the operation again. This pooling allows
us to reduce the width and height by a factor of two, effectively discarding 75% of activations from
the previous layer.

In summary, POOL layers Accept an input volume of size Winput ×Hinput ×Dinput . They then
require two parameters:
• The receptive field size F (also called the “pool size”).
• The stride S.
Applying the POOL operation yields an output volume of size Wout put×Hout put×Dout put , where:
• Wout put = ((Winput −F)/S)+1
• Hout put = ((Hinput −F)/S)+1
• Dout put = Dinput

In practice, we tend to see two types of max pooling variations:
• Type #1: F = 3,S = 2 which is called overlapping pooling and normally applied to im-

ages/input volumes with large spatial dimensions.
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Figure 11.10: Left: Our input 4×4 volume. Right: Applying 2×2 max pooling with a stride of
S = 1. Bottom: Applying 2× 2 max pooling with S = 2 – this dramatically reduces the spatial
dimensions of our input.

• Type #2: F = 2,S = 2 which is called non-overlapping pooling. This is the most common
type of pooling and is applied to images with smaller spatial dimensions.

For network architectures that accept smaller input images (in the range of 32−64 pixels) you
may also see F = 2,S = 1 as well.

To POOL or CONV?
In their 2014 paper, Striving for Simplicity: The All Convolutional Net, Springenberg et al. [122]
recommend discarding the POOL layer entirely and simply relying on CONV layers with a larger
stride to handle downsampling the spatial dimensions of the volume. Their work demonstrated this
approach works very well on a variety of datasets, including CIFAR-10 (small images, low number
of classes) and ImageNet (large input images, 1,000 classes). This trend continues with the ResNet
architecture [96] which uses CONV layers for downsampling as well.

It’s becoming increasingly more common to not use POOL layers in the middle of the network
architecture and only use average pooling at the end of the network if FC layers are to be avoided.
Perhaps in the future there won’t be pooling layers in Convolutional Neural Networks – but in the
meantime, it’s important that we study them, learn how they work, and apply them to our own
architectures.

11.2.5 Fully-connected Layers
Neurons in FC layers are fully-connected to all activations in the previous layer, as is the standard for
feedforward neural networks that we’ve been discussing in Chapter 10. FC layers are always placed
at the end of the network (i.e., we don’t apply a CONV layer, then an FC layer, followed by another
CONV) layer.

It’s common to use one or two FC layers prior to applying the softmax classifier, as the following
(simplified) architecture demonstrates:

INPUT => CONV => RELU => POOL => CONV => RELU => POOL => FC => FC

Here we apply two fully-connected layers before our (implied) softmax classifier which will
compute our final output probabilities for each class.
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11.2.6 Batch Normalization
First introduced by Ioffe and Szgedy in their 2015 paper, Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift [123], batch normalization layers (or BN for
short), as the name suggests, are used to normalize the activations of a given input volume before
passing it into the next layer in the network.

If we consider x to be our mini-batch of activations, then we can compute the normalized x̂ via
the following equation:

x̂i =
xi−µβ√

σ2
β
+ ε

(11.9)

During training, we compute the µβ and σβ over each mini-batch β , where:
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2
β
=

1
m

m

∑
i=1

(xi−µβ )
2 (11.10)

We set ε equal to a small positive value such as 1e-7 to avoid taking the square root of zero.
Applying this equation implies that the activations leaving a batch normalization layer will have
approximately zero mean and unit variance (i.e., zero-centered).

At testing time, we replace the mini-batch µβ and σβ with running averages of µβ and σβ

computed during the training process. This ensures that we can pass images through our network
and still obtain accurate predictions without being biased by the µβ and σβ from the final mini-batch
passed through the network at training time.

Batch normalization has been shown to be extremely effective at reducing the number of
epochs it takes to train a neural network. Batch normalization also has the added benefit of helping
“stabilize” training, allowing for a larger variety of learning rates and regularization strengths. Using
batch normalization doesn’t alleviate the need to tune these parameters of course, but it will make
your life easier by making learning rate and regularization less volatile and more straightforward
to tune. You’ll also tend to notice lower final loss and a more stable loss curve when using batch
normalization in your networks.

The biggest drawback of batch normalization is that it can actually slow down the wall time it
takes to train your network (even though you’ll need fewer epochs to obtain reasonable accuracy)
by 2-3x due to the computation of per-batch statistics and normalization.

That said, I recommend using batch normalization in nearly every situation as it does make
a significant difference. As we’ll see later in this book, applying batch normalization to our
network architectures can help us prevent overfitting and allows us to obtain significantly higher
classification accuracy in fewer epochs compared to the same network architecture without batch
normalization.

So, Where Do the Batch Normalization Layers Go?
You’ve probably noticed in my discussion of batch normalization I’ve left out exactly where in the
network architecture we place the batch normalization layer. According to the original paper by
Ioffe and Szegedy [123], they placed their batch normalization (BN) before the activation:

"We add the BN transform immediately before the nonlinearity, by normalizing
x =Wu+b."

Using this scheme, a network architecture utilizing batch normalization would look like this:
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INPUT => CONV => BN => RELU ...

However, this view of batch normalization doesn’t make sense from a statistical point of view.
In this context, a BN layer is normalizing the distribution of features coming out of a CONV layer.
Some of these features may be negative, in which they will be clamped (i.e., set to zero) by a
nonlinear activation function such as ReLU.

If we normalize before activation, we are essentially including the negative values inside the
normalization. Our zero-centered features are then passed through the ReLU where we kill of any
activations less than zero (which include features which may have not been negative before the
normalization) – this layer ordering entirely defeats the purpose of applying batch normalization in
the first place.

Instead, if we place the batch normalization after the ReLU we will normalize the positive
valued features without statistically biasing them with features that would have otherwise not made
it to the next CONV layer. In fact, François Chollet, the creator and maintainer of Keras confirms
this point stating that the BN should come after the activation:

"I can guarantee that recent code written by Christian [Szegedy, from the BN
paper] applies relu before BN. It is still occasionally a topic of debate, though.” [124]

It is unclear why Ioffe and Szegedy suggested placing the BN layer before the activation in
their paper, but further experiments [125] as well as anecdotal evidence from other deep learning
researchers [126] confirm that placing the batch normalization layer after the nonlinear activation
yields higher accuracy and lower loss in nearly all situations.

Placing the BN after the activation in a network architecture would look like this:

INPUT => CONV => RELU => BN ...

I can confirm that in nearly all experiments I’ve performed with CNNs, placing the BN after the
RELU yields slightly higher accuracy and lower loss. That said, take note of the word “nearly” –
there have been a very small number of situations where placing the BN before the activation worked
better, which implies that you should default to placing the BN after the activation, but may want to
dedicate (at most) one experiment to placing the BN before the activation and noting the results.

After running a few of these experiments, you’ll quickly realize that BN after the activation
performs better and there are more important parameters to your network to tune to obtain higher
classification accuracy. I discuss this in more detail in Section 11.3.2 later in this chapter.

11.2.7 Dropout
The last layer type we are going to discuss is dropout. Dropout is actually a form of regulariza-
tion that aims to help prevent overfitting by increasing testing accuracy, perhaps at the expense
of training accuracy. For each mini-batch in our training set, dropout layers, with probability p,
randomly disconnect inputs from the preceding layer to the next layer in the network architecture.

Figure 11.11 visualizes this concept where we randomly disconnect with probability p = 0.5 the
connections between two FC layers for a given mini-batch. Again, notice how half of the connections
are severed for this mini-batch. After the forward and backward pass are computed for the mini-
batch, we re-connect the dropped connections, and then sample another set of connections to
drop.

The reason we apply dropout is to reduce overfitting by explicitly altering the network architec-
ture at training time. Randomly dropping connections ensures that no single node in the network is
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Figure 11.11: Left: Two layers of a neural network that are fully-connected with no dropout. Right:
The same two layers after dropping 50% of the connections.

responsible for “activating” when presented with a given pattern. Instead, dropout ensures there are
multiple, redundant nodes that will activate when presented with similar inputs – this in turn helps
our model to generalize.

It is most common to place dropout layers with p = 0.5 in-between FC layers of an architecture
where the final FC layer is assumed to be our softmax classifier:

... CONV => RELU => POOL => FC => DO => FC => DO => FC

However, as I discuss in Section 11.3.2, we may also apply dropout with smaller probabilities
(i.e., p = 0.10−0.25) in earlier layers of the network as well (normally following a downsampling
operation, either via max pooling or convolution).

11.3 Common Architectures and Training Patterns
As we have seen throughout this chapter, Convolutional Neural Networks are made up of four
primary layers: CONV, POOL, RELU, and FC. Taking these layers and stacking them together in a
particular pattern yields a CNN architecture.

The CONV and FC layers (and BN) are the only layers of the network that actually learn parameters
– the other layers are simply responsible for performing a given operation. Activation layers, (ACT)
such as RELU and dropout aren’t technically layers, but are often included in the CNN architecture
diagrams to make the operation order explicitly clear – we’ll adopt the same convention in this
section as well.

11.3.1 Layer Patterns
By far, the most common form of CNN architecture is to stack a few CONV and RELU layers,
following them with a POOL operation. We repeat this sequence until the volume width and height is
small, at which point we apply one or more FC layers. Therefore, we can derive the most common
CNN architecture using the following pattern [121]:

INPUT => [[CONV => RELU]*N => POOL?]*M => [FC => RELU]*K => FC

Here the * operator implies one or more and the ? indicates an optional operation.
Common choices for each reputation include:
• 0 <= N <= 3
• M >= 0
• 0 <= K <= 2
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Below we can see some examples of CNN architectures that follow this pattern:
• INPUT => FC
• INPUT => [CONV => RELU => POOL] * 2 => FC => RELU => FC
• INPUT => [CONV => RELU => CONV => RELU => POOL] * 3 => [FC => RELU] * 2
=> FC

Here is an example of a very shallow CNN with only one CONV layer (N = M = K = 0) which
we will review in Chapter 12:

INPUT => CONV => RELU => FC

Below is an example of an AlexNet-like [94] CNN architecture which has multiple CONV =>
RELU => POOL layer sets, followed by FC layers:

INPUT => [CONV => RELU => POOL] * 2 => [CONV => RELU] * 3 => POOL =>
[FC => RELU => DO] * 2 => SOFTMAX

For deeper network architectures, such as VGGNet [95], we’ll stack two (or more) layers before
every POOL layer:

INPUT => [CONV => RELU] * 2 => POOL => [CONV => RELU] * 2 => POOL =>
[CONV => RELU] * 3 => POOL => [CONV => RELU] * 3 => POOL =>
[FC => RELU => DO] * 2 => SOFTMAX

Generally, we apply deeper network architectures when we (1) have lots of labeled training
data and (2) the classification problem is sufficiently challenging. Stacking multiple CONV layers
before applying a POOL layer allows the CONV layers to develop more complex features before the
destructive pooling operation is performed.

As we’ll discover in the ImageNet Bundle of this book, there are more “exotic” network
architectures that deviate from these patterns and, in turn, have created patterns of their own. Some
architectures remove the POOL operation entirely, relying on CONV layers to downsample the volume
– then, at the end of the network, average pooling is applied rather than FC layers to obtain the input
to the softmax classifiers.

Network architectures such as GoogLeNet, ResNet, and SqueezeNet [96, 97, 127] are great
examples of this pattern and demonstrate how removing FC layers leads to less parameters and
faster training time.

These types of network architectures also “stack” and concatenate filters across the channel
dimension: GoogLeNet applies 1×1, 3×3, and 5×5 filters and then concatenates them together
across the channel dimension to learn multi-level features. Again, these architectures are considered
more “exotic” and considered advanced techniques.

If you’re interested in these more advanced CNN architectures, please refer to the ImageNet
Bundle; otherwise, you’ll want to stick with the basic layer stacking patterns until you learn the
fundamentals of deep learning.

11.3.2 Rules of Thumb
In this section, I’ll review common rules of thumb when constructing your own CNNs. To start,
the images presented to the input layer should be square. Using square inputs allows us to take
advantage of linear algebra optimization libraries. Common input layer sizes include 32× 32,
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64× 64, 96× 96, 224× 224, 227× 227 and 229× 229 (leaving out the number of channels for
notational convenience).

Secondly, the input layer should also be divisible by two multiple times after the first CONV
operation is applied. You can do this by tweaking your filter size and stride. The “divisible by two
rule" enables the spatial inputs in our network to be conveniently down sampled via POOL operation
in an efficient manner.

In general, your CONV layers should use smaller filter sizes such as 3× 3 and 5× 5. Tiny
1×1 filters are used to learn local features, but only in your more advanced network architectures.
Larger filter sizes such as 7×7 and 11×11 may be used as the first CONV layer in the network (to
reduce spatial input size, provided your images are sufficiently larger than > 200×200 pixels);
however, after this initial CONV layer the filter size should drop dramatically, otherwise you will
reduce the spatial dimensions of your volume too quickly.

You’ll also commonly use a stride of S = 1 for CONV layers, at least for smaller spatial input
volumes (networks that accept larger input volumes that use a stride S >= 2 in the first CONV layer).
Using a stride of S = 1 enables our CONV layers to learn filters while the POOL layer is responsible
for downsampling. However, keep in mind that not all network architectures follow this pattern –
some architectures skip max pooling altogether and rely on the CONV stride to reduce volume size.

My personal preference is to apply zero-padding to my CONV layers to ensure the output
dimension size matches the input dimension size – the only exception to this rule is if I want
to purposely reduce spatial dimensions via convolution. Applying zero-padding when stacking
multiple CONV layers on top of each other has also demonstrated to increase classification accuracy
in practice. As we’ll see later in this book, libraries such as Keras can automatically compute
zero-padding for you, making it even easier to build CNN architectures.

A second personal recommendation is to use POOL layers (rather than CONV layers) reduce the
spatial dimensions of your input, at least until you become more experienced constructing your own
CNN architectures. Once you reach that point, you should start experimenting with using CONV
layers to reduce spatial input size and try removing max pooling layers from your architecture.

Most commonly, you’ll see max pooling applied over a 2×2 receptive field size and a stride of
S = 2. You might also see a 3×3 receptive field early in the network architecture to help reduce
image size. It is highly uncommon to see receptive fields larger than three since these operations
are very destructive to their inputs.

Batch normalization is an expensive operation which can double or triple the amount of time it
takes to train your CNN; however, I recommend using BN in nearly all situations. While BN does
indeed slow down the training time, it also tends to “stabilize” training, making it easier to tune
other hyperparameters (there are some exceptions, of course – I detail a few of these “exception
architectures" inside the ImageNet Bundle).

I also place the batch normalization after the activation, as has become commonplace in the
deep learning community even though it goes against the original Ioffe and Szegedy paper [123].

Inserting BN into the common layer architectures above, they become:
• INPUT => CONV => RELU => BN => FC
• INPUT => [CONV => RELU => BN => POOL] * 2 => FC => RELU => BN => FC
• INPUT => [CONV => RELU => BN => CONV => RELU => BN => POOL] * 3 => [FC =>
RELU => BN] * 2 => FC

You do not apply batch normalization before the softmax classifier as at this point we assume
our network has learned its discriminative features earlier in the architecture.

Dropout (DO) is typically applied in between FC layers with a dropout probability of 50% –
you should consider applying dropout in nearly every architecture you build. While not always
performed, I also like to include dropout layers (with a very small probability, 10-25%) between
POOL and CONV layers. Due to the local connectivity of CONV layers, dropout is less effective here,
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but I’ve often found it helpful when battling overfitting.
By keeping these rules of thumb in mind, you’ll be able to reduce your headaches when

constructing CNN architectures since your CONV layers will preserve input sizes while the POOL
layers take care of reducing spatial dimensions of the volumes, eventually leading to FC layers and
the final output classifications.

Once you master this “traditional” method of building Convolutional Neural Networks, you
should then start exploring leaving max pooling operations out entirely and using just CONV layers
to reduce spatial dimensions, eventually leading to average pooling rather than an FC layer – these
types of more advanced architecture techniques are covered inside the ImageNet Bundle.

11.4 Are CNNs Invariant to Translation, Rotation, and Scaling?
A common question I get asked is:

“Are Convolutional Neural Networks invariant to changes in translation, rotation,
and scaling? Is that why they are such powerful image classifiers?”

To answer this question, we first need to discriminate between the individual filters in the
network along with the final trained network. Individual filters in a CNN are not invariant to
changes in how an image is rotated – we demonstrate this in Chapter 12 of the ImageNet Bundle
where we use features extracted from a CNN to determine how an image is oriented.

Figure 11.12: CNN as a whole learns filters that will fire when a pattern is presented at a particular
orientation. On the left the, the digit 9 has been rotated ≈ 10◦. This rotation is similar to node three
which has learned what the digit 9 looks like when rotated in this manner. This node will have a
higher activation than the other two nodes – the max pooling operation will detect this. On the right
we have a second example, only this time the 9 has been rotated ≈−45◦, causing the first node to
have the highest activation (Figure heavily inspired by Goodfellow et al. [10]).

However, a CNN as a whole can learn filters that fire when a pattern is presented at a particular
orientation. For example, consider Figure 11.12, adapted and inspired from Deep Learning by
Goodfellow et al. [10].

Here we see the digit “9” (bottom) presented to the CNN along with a set of filters the CNN
has learned (middle). Since there is a filter inside the CNN that has “learned” what a “9” looks
like, rotated by 10 degrees, it fires and emits a strong activation. This large activation is captured
during the pooling stage and ultimately reported as the final classification.
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The same is true for the second example (Figure 11.12, left). Here we see the “9” rotated
by −45 degrees, and since there is a filter in the CNN that has learned what a “9” looks like
when it is rotated by −45 degrees, the neuron activates and fires. Again, these filters themselves
are not rotation invariant – it’s just that the CNN has learned what a “9” looks like under small
rotations that exist in the training set.

Unless your training data includes digits that are rotated across the full 360-degree spectrum,
your CNN is not truly rotation invariant (again, this point is demonstrated in Chapter 12 of the
ImageNet Bundle).

The same can be said about scaling – the filters themselves are not scale invariant, but it is
highly likely that your CNN has learned a set of filters that fire when patterns exist at varying scales.
We can also “help” our CNNs to be scale invariant by presenting our example image to them at
testing time under varying scales and crops, then averaging the results together (see Chapter 10 of
the Practitioner Bundle for more details on crop averaging to increase classification accuracy).

Translation invariance; however, is something that a CNN excels at. Keep in mind that a filter
slides from left-to-right and top-to-bottom across an input, and will activate when it comes across a
particular edge-like region, corner, or color blob. During the pooling operation, this large response
is found and thus “beats” all its neighbors by having a larger activation. Therefore, CNNs can be
seen as “not caring” exactly where an activation fires, simply that it does fire – and, in this way, we
naturally handle translation inside a CNN.

11.5 Summary
In this chapter we took a tour of Convolutional Neural Network concepts (CNNs). We started by
discussing what convolution and cross-correlation are and how the terms are used interchangeably
in the deep learning literature.

To understand convolution at a more intimate level, we implemented it by hand using Python
and OpenCV. However, traditional image processing operations require us to hand-define our
kernels and are specific to a given image processing task (e.x., smoothing, edge detection, etc.).
Using deep learning we can instead learn these types of filters which are then stacked on top of
each other to automatically discover high-level concepts. We call this stacking and learning of
higher-level features based on lower-level inputs the compositionality of Convolutional Neural
Networks.

CNNs are built by stacking a sequence of layers where each layer is responsible for a given
task. CONV layers will learn a set of K convolutional filters, each of which are size F×F pixels. We
then apply activation layers on top of the CONV layers to obtain a nonlinear transformation. POOL
layers help reduce the spatial dimensions of the input volume as it flows through the network.

Once the input volume is sufficiently small, we can apply FC layers which are our traditional
dot product layers from Chapter 12, eventually feeding into a softmax classifier for our final output
predictions.

Batch normalization layers are used to standardize inputs to a CONV or activation layer by
computing the mean and standard deviation across a mini-batch. A dropout layer can then be
applied to randomly disconnect nodes from a given input to an output, helping to reduce overfitting.

Finally, we wrapped up the chapter by reviewing common CNN architectures that you can use
to implement your own networks. In our next chapter, we’ll implement your first CNN in Keras,
ShallowNet, based on the layer patterns we mentioned above. Future chapters will discuss deeper
network architectures such as the seminal LeNet architecture [19] and variants of the VGGNet
architecture [95].





12. Training Your First CNN

Now that we’ve reviewed the fundamentals of Convolutional Neural Networks, we are ready to
implement our first CNN using Python and Keras. We’ll start the chapter with a quick review of
Keras configurations you should keep in mind when constructing and training your own CNNs.

We’ll then implement ShallowNet, which as the name suggests, is a very shallow CNN with
only a single CONV layer. However, don’t let the simplicity of this network fool you – as our
results will demonstrate, ShallowNet is capable of obtaining higher classification accuracy on both
CIFAR-10 and the Animals dataset than any other method we’ve reviewed thus far in this book.

12.1 Keras Configurations and Converting Images to Arrays

Before we can implement ShallowNet, we first need to review the keras.json configuration file
and how the settings inside this file will influence how you implement your own CNNs. We’ll also
implement a second image preprocessor called ImageToArrayPreprocessor which accepts an
input image and then converts it to a NumPy array that Keras can work with.

12.1.1 Understanding the keras.json Configuration File

The first time you import the Keras library into your Python shell/execute a Python script that
imports Keras, behind the scenes Keras generates a keras.json file in your home directory. You
can find this configuration file in ∼/.keras/keras.json.

Go ahead and open the file up now and take a look at its contents:

1 {
2 "epsilon": 1e-07,
3 "floatx": "float32",
4 "image_data_format": "channels_last",
5 "backend": "tensorflow"
6 }
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You’ll notice that this JSON-encoded dictionary has four keys and four corresponding values.
The epsilon value is used in a variety of locations throughout the Keras library to prevent division
by zero errors. The default value of 1e-07 is suitable and should not be changed. We then have the
floatx value which defines the floating point precision – it is safe to leave this value at float32.

The final two configurations, image_data_format and backend, are extremely important. By
default, the Keras library uses the TensorFlow numerical computation backend. We can also use
the Theano backend simply by replacing tensorflow with theano.

You’ll want to keep these backends in mind when developing your own deep learning networks
and when you deploy them to other machines. Keras does a fantastic job abstracting the backend,
allowing you to write deep learning code that is compatible with either backend (and surely more
backends to come in the future), and for the most part, you’ll find that both computational backends
will give you the same result. If you find your results are inconsistent or your code is returning
strange errors, check your backend first and make sure the setting is what you expect it to be.

Finally, we have the image_data_format which can accept two values: channels_last
or channels_first. As we know from previous chapters in this book, images loaded via
OpenCV are represented in (rows, columns, channels) ordering, which is what Keras calls
channels_last, as the channels are the last dimension in the array.

Alternatively, we can set image_data_format to be channels_first where our input images
are represented as (channels, rows, columns) – notice how the number of channels is the first
dimension in the array.

Why the two settings? In the Theano community, users tended to use channels first ordering.
However, when TensorFlow was released, their tutorials and examples used channels last ordering.
This discrepancy caused a bit of a problem when using Keras as code compatible with Theano
because it may not be compatible with TensorFlow depending on how the programmer built their
network. Thus, Keras introduced a special function called img_to_array which accepts an input
image and then orders the channels correctly based on the image_data_format setting.

In general, you can leave the image_data_format setting as channels_last and Keras will
take care of the dimension ordering for you regardless of backend; however, I do want to call this
situation to your attention just in case you are working with legacy Keras code and notice that a
different image channel ordering is used.

12.1.2 The Image to Array Preprocessor
As I mentioned above, the Keras library provides the img_to_array function that accepts an input
image and then properly orders the channels based on our image_data_format setting. We are
going to wrap this function inside a new class named ImageToArrayPreprocessor. Creating
a class with a special preprocess function, just like we did in Chapter 7 when creating the
SimplePreprocessor to resize images, will allow us to create “chains” of preprocessors to
efficiently prepare images for training and testing.

To create our image-to-array preprocessor, create a new file named imagetoarraypreprocessor.py
inside the preprocessing sub-module of pyimagesearch:

|--- pyimagesearch
| |--- __init__.py
| |--- datasets
| | |--- __init__.py
| | |--- simpledatasetloader.py
| |--- preprocessing
| | |--- __init__.py
| | |--- imagetoarraypreprocessor.py
| | |--- simplepreprocessor.py
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From there, open the file and insert the following code:

1 # import the necessary packages
2 from keras.preprocessing.image import img_to_array
3

4 class ImageToArrayPreprocessor:
5 def __init__(self, dataFormat=None):
6 # store the image data format
7 self.dataFormat = dataFormat
8

9 def preprocess(self, image):
10 # apply the Keras utility function that correctly rearranges
11 # the dimensions of the image
12 return img_to_array(image, data_format=self.dataFormat)

Line 2 imports the img_to_array function from Keras.
We then define the constructor to our ImageToArrayPreprocessor class on Lines 5-7. The

constructor accepts an optional parameter named dataFormat. This value defaults to None, which
indicates that the setting inside keras.json should be used. We could also explicitly supply
a channels_first or channels_last string, but it’s best to let Keras choose which image
dimension ordering to used based on the configuration file.

Finally, we have the preprocess function on Lines 9-12. This method:
1. Accepts an image as input.
2. Calls img_to_array on the image, ordering the channels based on our configuration file/the

value of dataFormat.
3. Returns a new NumPy array with the channels properly ordered.
The benefit of defining a class to handle this type of image preprocessing rather than simply

calling img_to_array on every single image is that we can now chain preprocessors together as
we load datasets from disk.

For example, let’s suppose we wished to resize all input images to a fixed size of 32×32 pixels.
To accomplish this, we would need to initialize our SimpleProcessor from Chapter 7:

1 sp = SimplePreprocessor(32, 32)

After the image is resized, we then need to apply the properly channel ordering – this can be
accomplished using our ImageToArrayPreprocessor above:

2 iap = ImageToArrayPreprocessor()

Now, suppose we wished to load an image dataset from disk and prepare all images in the
dataset for training. Using the SimpleDatasetLoader from Chapter 7, our task becomes very
easy:

3 sdl = SimpleDatasetLoader(preprocessors=[sp, iap])
4 (data, labels) = sdl.load(imagePaths, verbose=500)

Notice how our image preprocessors are chained together and will be applied in sequential
order. For every image in our dataset, we’ll first apply the SimplePreprocessor to resize it to
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Figure 12.1: An example image pre-processing pipeline that (1) loads an image from disk, (2)
resizes it to 32×32 pixels, (3) orders the channel dimensions, and (4) outputs the image.

32×32 pixels. Once the image is resized, the ImageToArrayPreprocessor is applied to handle
ordering the channels of the image. This image processing pipeline can be visualized in Figure
12.1.

Chaining simple preprocessors together in this manner, where each preprocessor is responsible
for one, small job, is an easy way to build an extendable deep learning library dedicated to
classifying images. We’ll make use of these preprocessors in the next section as well as define
more advanced preprocessors in both the Practitioner Bundle and ImageNet Bundle.

12.2 ShallowNet
Inside this section, we’ll implement the ShallowNet architecture. As the name suggests, the
ShallowNet architecture contains only a few layers – the entire network architecture can be
summarized as: INPUT => CONV => RELU => FC

This simple network architecture will allow us to get our feet wet implementing Convolutional
Neural Networks using the Keras library. After implementing ShallowNet, I’ll apply it to the
Animals and CIFAR-10 datasets. As our results will demonstrate, CNNs are able to dramatically
outperform the previous image classification methods discussed in this book.

12.2.1 Implementing ShallowNet
To keep our pyimagesearch package tidy, let’s create a new sub-module inside nn named conv
where all our CNN implementations will live:

--- pyimagesearch
| |--- __init__.py
| |--- datasets
| |--- nn
| | |--- __init__.py
...
| | |--- conv
| | | |--- __init__.py
| | | |--- shallownet.py
| |--- preprocessing

Inside the conv sub-module, create a new file named shallownet.py to store our ShallowNet
architecture implementation. From there, open up the file and insert the following code:

1 # import the necessary packages
2 from keras.models import Sequential
3 from keras.layers.convolutional import Conv2D
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4 from keras.layers.core import Activation
5 from keras.layers.core import Flatten
6 from keras.layers.core import Dense
7 from keras import backend as K

Lines 2-7 import our required Python packages. The Conv2D class is the Keras implementation
of the convolutional layer discussed in Section 11.1. We then have the Activation class, which as
the name suggests, handles applying an activation function to an input. The Flatten classes takes
our multi-dimensional volume and “flattens” it into a 1D array prior to feeding the inputs into the
Dense (i.e, fully-connected) layers.

When implementing network architectures, I prefer to define them inside a class to keep the
code organized – we’ll do the same here:

9 class ShallowNet:
10 @staticmethod
11 def build(width, height, depth, classes):
12 # initialize the model along with the input shape to be
13 # "channels last"
14 model = Sequential()
15 inputShape = (height, width, depth)
16

17 # if we are using "channels first", update the input shape
18 if K.image_data_format() == "channels_first":
19 inputShape = (depth, height, width)

On Line 9 we define the ShallowNet class and then define a build method on Line 11. Every
CNN that we implement inside this book will have a build method – this function will accept a
number of parameters, construct the network architecture, and then return it to the calling function.
In this case, our build method requires four parameters:
• width: The width of the input images that will be used to train the network (i.e., number of

columns in the matrix).
• height: The height of our input images (i.e., the number of rows in the matrix)
• depth: The number of channels in the input image.
• classes: The total number of classes that our network should learn to predict. For Animals,
classes=3 and for CIFAR-10, classes=10.

We then initialize the inputShape to the network on Line 15 assuming “channels last” ordering.
Line 18 and 19 make a check to see if the Keras backend is set to “channels first”, and if so, we
update the inputShape. It’s common practice to include Lines 15-19 for nearly every CNN that
you build, thereby ensuring that your network will work regardless of how a user is ordering the
channels of their image.

Now that our inputShape is defined, we can start to build the ShallowNet architecture:

21 # define the first (and only) CONV => RELU layer
22 model.add(Conv2D(32, (3, 3), padding="same",
23 input_shape=inputShape))
24 model.add(Activation("relu"))

On Line 22 we define the first (and only) convolutional layer. This layer will have 32 filters (K)
each of which are 3×3 (i.e., square F×F filters). We’ll apply same padding to ensure the size of
output of the convolution operation matches the input (using same padding isn’t strictly necessary
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for this example, but it’s a good habit to start forming now). After the convolution we apply an
ReLU activation on Line 24.

Let’s finish building ShallowNet:

26 # softmax classifier
27 model.add(Flatten())
28 model.add(Dense(classes))
29 model.add(Activation("softmax"))
30

31 # return the constructed network architecture
32 return model

In order to apply our fully-connected layer, we first need to flatten the multi-dimensional
representation into a 1D list. The flattening operation is handled by the Flatten call on Line 27.
Then, a Dense layer is created using the same number of nodes as our output class labels (Line 28).
Line 29 applies a softmax activation function which will give us the class label probabilities for
each class. The ShallowNet architecture is returned to the calling function on Line 32.

Now that ShallowNet has been defined, we can move on to creating the actual “driver scripts”
used to load a dataset, preprocess it, and then train the network. We’ll look at two examples that
leverage ShallowNet – Animals and CIFAR-10.

12.2.2 ShallowNet on Animals

To train ShallowNet on the Animals dataset, we need to create a separate Python file. Open up your
favorite IDE, create a new file named shallownet_animals.py, ensuring that it is in the same
directory level as our pyimagesearch module (or you have added pyimagesearch to the list of
paths your Python interpreter/IDE will check when running a script).

From there, we can get to work:

1 # import the necessary packages
2 from sklearn.preprocessing import LabelBinarizer
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import classification_report
5 from pyimagesearch.preprocessing import ImageToArrayPreprocessor
6 from pyimagesearch.preprocessing import SimplePreprocessor
7 from pyimagesearch.datasets import SimpleDatasetLoader
8 from pyimagesearch.nn.conv import ShallowNet
9 from keras.optimizers import SGD

10 from imutils import paths
11 import matplotlib.pyplot as plt
12 import numpy as np
13 import argparse

Lines 2-13 import our required Python packages. Most of these imports you’ve seen from
previous examples, but I do want to call your attention to Lines 5-7 where we import our
ImageToArrayPreprocessor, SimplePreprocessor, and SimpleDatasetLoader – these classes
will form the actual pipeline used to process images before passing them through our network. We
then import ShallowNet on Line 8 along with SGD on Line 9 – we’ll be using Stochastic Gradient
Descent to train ShallowNet.

Next, we need to parse our command line arguments and grab our image paths:
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15 # construct the argument parser and parse the arguments
16 ap = argparse.ArgumentParser()
17 ap.add_argument("-d", "--dataset", required=True,
18 help="path to input dataset")
19 args = vars(ap.parse_args())
20

21 # grab the list of images that we’ll be describing
22 print("[INFO] loading images...")
23 imagePaths = list(paths.list_images(args["dataset"]))

Our script requires only a single switch here, --dataset, which is the path to the directory
containing our Animals dataset. Line 23 then grabs the file paths to all 3,000 images inside
Animals.

Remember how I was talking about creating a pipeline to load and process our dataset? Let’s
see how that is done now:

25 # initialize the image preprocessors
26 sp = SimplePreprocessor(32, 32)
27 iap = ImageToArrayPreprocessor()
28

29 # load the dataset from disk then scale the raw pixel intensities
30 # to the range [0, 1]
31 sdl = SimpleDatasetLoader(preprocessors=[sp, iap])
32 (data, labels) = sdl.load(imagePaths, verbose=500)
33 data = data.astype("float") / 255.0

Line 26 defines the SimpleProcessor used to resize input images to 32× 32 pixels. The
ImageToArrayPreprocessor is then instantiated on Line 27 to handle channel ordering.

We combine these preprocessors together on Line 31 where we initialize the SimpleDatasetLoader.
Take a look at the preprocessors parameter of the constructor – we are supplying a list of pre-
processors that will be applied in sequential order. First, a given input image will be resized
to 32× 32 pixels. Then, the resized image will be have its channels ordered according to our
keras.json configuration file. Line 32 loads the images (applying the preprocessors) and the
class labels. We then scale the images to the range [0,1].

Now that the data and labels are loaded, we can perform our training and testing split, along
with one-hot encoding the labels:

35 # partition the data into training and testing splits using 75% of
36 # the data for training and the remaining 25% for testing
37 (trainX, testX, trainY, testY) = train_test_split(data, labels,
38 test_size=0.25, random_state=42)
39

40 # convert the labels from integers to vectors
41 trainY = LabelBinarizer().fit_transform(trainY)
42 testY = LabelBinarizer().fit_transform(testY)

Here we are using 75% of our data for training and 25% for testing.
The next step is to instantiate ShallowNet, followed by training the network itself:
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44 # initialize the optimizer and model
45 print("[INFO] compiling model...")
46 opt = SGD(lr=0.005)
47 model = ShallowNet.build(width=32, height=32, depth=3, classes=3)
48 model.compile(loss="categorical_crossentropy", optimizer=opt,
49 metrics=["accuracy"])
50

51 # train the network
52 print("[INFO] training network...")
53 H = model.fit(trainX, trainY, validation_data=(testX, testY),
54 batch_size=32, epochs=100, verbose=1)

We initialize the SGD optimizer on Line 46 using a learning rate of 0.005 (we’ll discuss how
to tune learning rates in a future chapter). The ShallowNet architecture is instantiated on Line
47, supplying a width and height of 32 pixels along with a depth of 3 – this implies that our input
images are 32×32 pixels with three channels. Since the Animals dataset has three class labels, we
set classes=3.

The model is then compiled on Lines 48 and 49 where we’ll use cross-entropy as our loss
function and SGD as our optimizer. To actual train the network, we make a call to the .fit method
of model on Lines 53 and 54. The .fit method requires us to pass in the training and testing data.
We’ll also supply our testing data so we can evaluate the performance of ShallowNet after each
epoch. The network will be trained for 100 epochs using mini-batch sizes of 32 (meaning that 32
images will be presented to the network at a time, and a full forward and backward pass will be
done to update the parameters of the network).

After training our network, we can evaluate its performance:

56 # evaluate the network
57 print("[INFO] evaluating network...")
58 predictions = model.predict(testX, batch_size=32)
59 print(classification_report(testY.argmax(axis=1),
60 predictions.argmax(axis=1),
61 target_names=["cat", "dog", "panda"]))

To obtain the output predictions on our testing data, we call .predict of the model. A nicely
formatted classification report is displayed to our screen on Lines 59-61.

Our final code block handles plotting the accuracy and loss over time for both the training and
testing data:

63 # plot the training loss and accuracy
64 plt.style.use("ggplot")
65 plt.figure()
66 plt.plot(np.arange(0, 100), H.history["loss"], label="train_loss")
67 plt.plot(np.arange(0, 100), H.history["val_loss"], label="val_loss")
68 plt.plot(np.arange(0, 100), H.history["acc"], label="train_acc")
69 plt.plot(np.arange(0, 100), H.history["val_acc"], label="val_acc")
70 plt.title("Training Loss and Accuracy")
71 plt.xlabel("Epoch #")
72 plt.ylabel("Loss/Accuracy")
73 plt.legend()
74 plt.show()
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To train ShallowNet on the Animals dataset, just execute the following command:

$ python shallownet_animals.py --dataset ../datasets/animals

Training should be quite fast as the network is very shallow and our image dataset is relatively
small:

[INFO] loading images...
[INFO] processed 500/3000
[INFO] processed 1000/3000
[INFO] processed 1500/3000
[INFO] processed 2000/3000
[INFO] processed 2500/3000
[INFO] processed 3000/3000
[INFO] compiling model...
[INFO] training network...
Train on 2250 samples, validate on 750 samples
Epoch 1/100
0s - loss: 1.0290 - acc: 0.4560 - val_loss: 0.9602 - val_acc: 0.5160
Epoch 2/100
0s - loss: 0.9289 - acc: 0.5431 - val_loss: 1.0345 - val_acc: 0.4933
...
Epoch 100/100
0s - loss: 0.3442 - acc: 0.8707 - val_loss: 0.6890 - val_acc: 0.6947
[INFO] evaluating network...

precision recall f1-score support

cat 0.58 0.77 0.67 239
dog 0.75 0.40 0.52 249

panda 0.79 0.90 0.84 262

avg / total 0.71 0.69 0.68 750

Due to the small amount of training data, epochs were quite speedy, taking less than one second
on both my CPU and GPU.

As you can see from the output above, ShallowNet obtained 71% classification accuracy on
our testing data, a massive improvement from our previous best of 59% using simple feedforward
neural networks. Using more advanced training networks, as well as a more powerful architecture,
we’ll be able to boost classification accuracy even higher.

The loss and accuracy plotted over time is displayed in Figure 12.2. On the x-axis we have our
epoch number and on the y-axis we have our loss and accuracy. Examining this figure, we can see
that learning is a bit volatile with large spikes in loss around epoch 20 and epoch 60 – this result is
likely due to our learning rate being too high, something we’ll help resolve in Chapter 16.

Also take note that the training and testing loss diverge heavily past epoch 30, which implies
that our network is modeling the training data too closely and overfitting. We can remedy this issue
by obtaining more data or applying techniques like data augmentation (covered in the Practitioner
Bundle).

Around epoch 60 our testing accuracy saturates – we are unable to get past≈ 70% classification
accuracy, meanwhile our training accuracy continues to climb to over 85%. Again, gathering more
training data, applying data augmentation, and taking more care to tune our learning rate will help
us improve our results in the future.
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Figure 12.2: A plot of our loss and accuracy over the course of 100 epochs for the ShallowNet
architecture trained on the Animals dataset.

The key point here is that an extremely simple Convolutional Neural Network was able to obtain
71% classification accuracy on the Animals dataset where our previous best was only 59% – that’s
an improvement of over 12%!

12.2.3 ShallowNet on CIFAR-10
Let’s also apply the ShallowNet architecture to the CIFAR-10 dataset to see if we can improve our
results. Open a new file, name it shallownet_cifar10.py, and insert the following code:

1 # import the necessary packages
2 from sklearn.preprocessing import LabelBinarizer
3 from sklearn.metrics import classification_report
4 from pyimagesearch.nn.conv import ShallowNet
5 from keras.optimizers import SGD
6 from keras.datasets import cifar10
7 import matplotlib.pyplot as plt
8 import numpy as np
9

10 # load the training and testing data, then scale it into the
11 # range [0, 1]
12 print("[INFO] loading CIFAR-10 data...")
13 ((trainX, trainY), (testX, testY)) = cifar10.load_data()
14 trainX = trainX.astype("float") / 255.0
15 testX = testX.astype("float") / 255.0
16

17 # convert the labels from integers to vectors
18 lb = LabelBinarizer()



12.2 ShallowNet 207

19 trainY = lb.fit_transform(trainY)
20 testY = lb.transform(testY)
21

22 # initialize the label names for the CIFAR-10 dataset
23 labelNames = ["airplane", "automobile", "bird", "cat", "deer",
24 "dog", "frog", "horse", "ship", "truck"]

Lines 2-8 import our required Python packages. We then load the CIFAR-10 dataset (pre-
split into training and testing sets), followed by scaling the image pixel intensities to the range
[0,1]. Since the CIFAR-10 images are preprocessed and the channel ordering is handled automat-
ically inside of cifar10.load_data, we do not need to apply any of our custom preprocessing
classes.

Our labels are then one-hot encoded to vectors on Lines 18-20. We also initialize the label
names for the CIFAR-10 dataset on Lines 23 and 24.

Now that our data is prepared, we can train ShallowNet:

26 # initialize the optimizer and model
27 print("[INFO] compiling model...")
28 opt = SGD(lr=0.01)
29 model = ShallowNet.build(width=32, height=32, depth=3, classes=10)
30 model.compile(loss="categorical_crossentropy", optimizer=opt,
31 metrics=["accuracy"])
32

33 # train the network
34 print("[INFO] training network...")
35 H = model.fit(trainX, trainY, validation_data=(testX, testY),
36 batch_size=32, epochs=40, verbose=1)

Line 28 initializes the SGD optimizer with a learning rate of 0.01. ShallowNet is then
constructed on Line 29 using a width of 32, a height of 32, a depth of 3 (since CIFAR-10 images
have three channels). We set classes=10 since, as the name suggests, there are ten classes in
the CIFAR-10 dataset. The model is compiled on Lines 30 and 31 then trained on Lines 35 and
36 over the course of 40 epochs.

Evaluating ShallowNet is done in the exact same manner as our previous example with the
Animals dataset:

38 # evaluate the network
39 print("[INFO] evaluating network...")
40 predictions = model.predict(testX, batch_size=32)
41 print(classification_report(testY.argmax(axis=1),
42 predictions.argmax(axis=1), target_names=labelNames))

We’ll also plot the loss and accuracy over time so we can get an idea how our network is
performing:

44 # plot the training loss and accuracy
45 plt.style.use("ggplot")
46 plt.figure()
47 plt.plot(np.arange(0, 40), H.history["loss"], label="train_loss")
48 plt.plot(np.arange(0, 40), H.history["val_loss"], label="val_loss")
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Figure 12.3: Loss and accuracy for ShallowNet trained on CIFAR-10. Our network obtains 60%
classification accuracy; however, it is overfitting. Further accuracy can be obtained by applying
regularization, which we’ll cover later in this book.

49 plt.plot(np.arange(0, 40), H.history["acc"], label="train_acc")
50 plt.plot(np.arange(0, 40), H.history["val_acc"], label="val_acc")
51 plt.title("Training Loss and Accuracy")
52 plt.xlabel("Epoch #")
53 plt.ylabel("Loss/Accuracy")
54 plt.legend()
55 plt.show()

To train ShallowNet on CIFAR-10, simply execute the following command:

$ python shallownet_cifar10.py
[INFO] loading CIFAR-10 data...
[INFO] compiling model...
[INFO] training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/40
5s - loss: 1.8087 - acc: 0.3653 - val_loss: 1.6558 - val_acc: 0.4282
Epoch 2/40
5s - loss: 1.5669 - acc: 0.4583 - val_loss: 1.4903 - val_acc: 0.4724
...
Epoch 40/40
5s - loss: 0.6768 - acc: 0.7685 - val_loss: 1.2418 - val_acc: 0.5890
[INFO] evaluating network...

precision recall f1-score support
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airplane 0.62 0.68 0.65 1000
automobile 0.79 0.64 0.71 1000

bird 0.43 0.46 0.44 1000
cat 0.42 0.38 0.40 1000

deer 0.52 0.51 0.52 1000
dog 0.44 0.57 0.50 1000

frog 0.74 0.61 0.67 1000
horse 0.71 0.61 0.66 1000
ship 0.65 0.77 0.70 1000

truck 0.67 0.66 0.66 1000

avg / total 0.60 0.59 0.59 10000

Again, epochs are quite fast due to the shallow network architecture and relatively small dataset.
Using my GPU, I obtained 5-second epochs while my CPU took 22 seconds for each epoch.

After 40 epochs ShallowNet is evaluated and we find that it obtains 60% accuracy on the
testing set, an increase from the previous 57% accuracy using simple neural networks.

More importantly, plotting our loss and accuracy in Figure 12.3 gives us some insight to the
training process demonstrates that our validation loss does not skyrocket. Our training and testing
loss/accuracy start to diverge past epoch 10. Again, this can be attributed to a larger learning rate
and the fact we aren’t using methods to help combat overfitting (regularization parameters, dropout,
data augmentation, etc.).

It is also notoriously easy to overfit on the CIFAR-10 dataset due to the limited number of
low-resolution training samples. As we become more comfortable building and training our own
custom Convolutional Neural Networks, we’ll discover methods to boost classification accuracy on
CIFAR-10 while simultaneously reducing overfitting.

12.3 Summary
In this chapter, we implemented our first Convolutional Neural Network architecture, ShallowNet,
and trained it on the Animals and CIFAR-10 dataset. ShallowNet obtained 71% classification
accuracy on Animals, an increase of 12% from our previous best using simple feedforward neural
networks.

When applied to CIFAR-10, ShallowNet reached 60% accuracy, an increase of the previous
best of 57% using simple multi-layer NNs (and without the significant overfitting).

ShallowNet is an extremely simple CNN that uses only one CONV layer – further accuracy can
be obtained by training deeper networks with multiple sets of CONV => RELU => POOL operations.





13. Saving and Loading Your Models

In our last chapter, you learned how to train your first Convolutional Neural Network using the
Keras library. However, you might have noticed that each time you wanted to evaluate your network
or test it on a set of images, you first needed to train it before you could do any type of evaluation.
This requirement can be quite the nuisance.

We are only working with a shallow network on a small dataset which can be trained relatively
quickly, but what if our network was deep and we needed to train it on a much larger dataset, thus
taking many hours or even days to train? Would we have to invest this amount of time and resources
to train our network each and every time? Or is there a way to save our model to disk after training
is complete and then simply load it from disk when we want to classify new images?

You bet there’s a way. The process of saving and loading a trained model is called model
serialization and is the primary topic of this chapter.

13.1 Serializing a Model to Disk

Using the Keras library, model serialization is as simple as calling model.save on a trained model
and then loading it via the load_model function. In the first part of this chapter, we’ll modify our
ShallowNet training script from the last chapter to serialize the network after it’s been trained on
the Animals dataset. We’ll then create a second Python script that demonstrates how to load our
serialized model from disk.

Let’s get started with the training part – open up a new file, name it shallownet_train.py,
and insert the following code:

1 # import the necessary packages
2 from sklearn.preprocessing import LabelBinarizer
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import classification_report
5 from pyimagesearch.preprocessing import ImageToArrayPreprocessor
6 from pyimagesearch.preprocessing import SimplePreprocessor
7 from pyimagesearch.datasets import SimpleDatasetLoader
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8 from pyimagesearch.nn.conv import ShallowNet
9 from keras.optimizers import SGD

10 from imutils import paths
11 import matplotlib.pyplot as plt
12 import numpy as np
13 import argparse

Lines 2-13 import our required Python packages. Much of the code in this example is identical
to shallownet_animals.py from Chapter 12. We’ll review the entire file, for the sake of com-
pleteness, and I’ll be sure to call out the important changes made to accomplish model serialization,
but for a detailed review of how to train ShallowNet on the Animals dataset, please refer Section
12.2.1.

Next, let’s parse our command line arguments:

15 # construct the argument parse and parse the arguments
16 ap = argparse.ArgumentParser()
17 ap.add_argument("-d", "--dataset", required=True,
18 help="path to input dataset")
19 ap.add_argument("-m", "--model", required=True,
20 help="path to output model")
21 args = vars(ap.parse_args())

Our previous script only required a single switch, --dataset, which is the path to the input
Animals dataset. However, as you can see, we’ve added another switch here – --model which is
the path to where we would like to save network after training is complete.

We can now grab the paths to the images in our --dataset, initialize our preprocessors, and
load our image dataset from disk:

23 # grab the list of images that we’ll be describing
24 print("[INFO] loading images...")
25 imagePaths = list(paths.list_images(args["dataset"]))
26

27 # initialize the image preprocessors
28 sp = SimplePreprocessor(32, 32)
29 iap = ImageToArrayPreprocessor()
30

31 # load the dataset from disk then scale the raw pixel intensities
32 # to the range [0, 1]
33 sdl = SimpleDatasetLoader(preprocessors=[sp, iap])
34 (data, labels) = sdl.load(imagePaths, verbose=500)
35 data = data.astype("float") / 255.0

The next step is to partition our data into training and testing splits, along with encoding our
labels as vectors:

37 # partition the data into training and testing splits using 75% of
38 # the data for training and the remaining 25% for testing
39 (trainX, testX, trainY, testY) = train_test_split(data, labels,
40 test_size=0.25, random_state=42)
41

42 # convert the labels from integers to vectors
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43 trainY = LabelBinarizer().fit_transform(trainY)
44 testY = LabelBinarizer().fit_transform(testY)

Training ShallowNet is handled via the code block below:

46 # initialize the optimizer and model
47 print("[INFO] compiling model...")
48 opt = SGD(lr=0.005)
49 model = ShallowNet.build(width=32, height=32, depth=3, classes=3)
50 model.compile(loss="categorical_crossentropy", optimizer=opt,
51 metrics=["accuracy"])
52

53 # train the network
54 print("[INFO] training network...")
55 H = model.fit(trainX, trainY, validation_data=(testX, testY),
56 batch_size=32, epochs=100, verbose=1)

Now that our network is trained, we need to save it to disk. This process is as simple as calling
model.save and supplying the path to where our output network should be saved to disk:

58 # save the network to disk
59 print("[INFO] serializing network...")
60 model.save(args["model"])

The .save method takes the weights and state of the optimizer and serializes them to disk in
HDF5 format. As we’ll see in the next section, loading these weights from disk is just as easy as
saving them.

From here we evaluate our network:

62 # evaluate the network
63 print("[INFO] evaluating network...")
64 predictions = model.predict(testX, batch_size=32)
65 print(classification_report(testY.argmax(axis=1),
66 predictions.argmax(axis=1),
67 target_names=["cat", "dog", "panda"]))

As well as plot our loss and accuracy:

69 # plot the training loss and accuracy
70 plt.style.use("ggplot")
71 plt.figure()
72 plt.plot(np.arange(0, 100), H.history["loss"], label="train_loss")
73 plt.plot(np.arange(0, 100), H.history["val_loss"], label="val_loss")
74 plt.plot(np.arange(0, 100), H.history["acc"], label="train_acc")
75 plt.plot(np.arange(0, 100), H.history["val_acc"], label="val_acc")
76 plt.title("Training Loss and Accuracy")
77 plt.xlabel("Epoch #")
78 plt.ylabel("Loss/Accuracy")
79 plt.legend()
80 plt.show()
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To run our script, simply execute the following command:

$ python shallownet_train.py --dataset ../datasets/animals \
--model shallownet_weights.hdf5

After the network has finished training, list the contents of your directory:

$ ls
shallownet_load.py shallownet_train.py shallownet_weights.hdf5

And you will see a file named shallownet_weights.hdf5 – this file is our serialized network.
The next step is to take this saved network and load it from disk.

13.2 Loading a Pre-trained Model from Disk
Now that we’ve trained our model and serialized it, we need to load it from disk. As a practical
application of model serialization, I’ll be demonstrating how to classify individual images from the
Animals dataset and then display the classified images to our screen.

Open a new file, name it shallownet_load.py, and we’ll get our hands dirty:

1 # import the necessary packages
2 from pyimagesearch.preprocessing import ImageToArrayPreprocessor
3 from pyimagesearch.preprocessing import SimplePreprocessor
4 from pyimagesearch.datasets import SimpleDatasetLoader
5 from keras.models import load_model
6 from imutils import paths
7 import numpy as np
8 import argparse
9 import cv2

We start off by importing our required Python packages. Lines 2-4 import the classes uses
to construct our standard pipeline of resizing an image to a fixed size, converting it to a Keras
compatible array, and then using these preprocessors to load an entire image dataset into memory.

The actual function used to load our trained model from disk is load_model on Line 5. This
function is responsible for accepting the path to our trained network (an HDF5 file), decoding the
weights and optimizer inside the HDF5 file, and setting the weights inside our architecture so we
can (1) continue training or (2) use the network to classify new images.

We’ll import our OpenCV bindings on Line 9 as well so we can draw the classification label
on our images and display them to our screen.

Next, let’s parse our command line arguments:

11 # construct the argument parse and parse the arguments
12 ap = argparse.ArgumentParser()
13 ap.add_argument("-d", "--dataset", required=True,
14 help="path to input dataset")
15 ap.add_argument("-m", "--model", required=True,
16 help="path to pre-trained model")
17 args = vars(ap.parse_args())
18

19 # initialize the class labels
20 classLabels = ["cat", "dog", "panda"]
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Just like in shallownet_save.py, we’ll need two command line arguments:
1. --dataset: The path to the directory that contains images that we wish to classify (in this

case, the Animals dataset).
2. --model: The path to the trained network serialized on disk.
Line 20 then initializes a list of class labels for the Animals dataset.
Our next code block handles randomly sampling ten image paths from the Animals dataset for

classification:

22 # grab the list of images in the dataset then randomly sample
23 # indexes into the image paths list
24 print("[INFO] sampling images...")
25 imagePaths = np.array(list(paths.list_images(args["dataset"])))
26 idxs = np.random.randint(0, len(imagePaths), size=(10,))
27 imagePaths = imagePaths[idxs]

Each of these ten images will need to be preprocessed, so let’s initialize our preprocessors and
load the ten images from disk:

29 # initialize the image preprocessors
30 sp = SimplePreprocessor(32, 32)
31 iap = ImageToArrayPreprocessor()
32

33 # load the dataset from disk then scale the raw pixel intensities
34 # to the range [0, 1]
35 sdl = SimpleDatasetLoader(preprocessors=[sp, iap])
36 (data, labels) = sdl.load(imagePaths)
37 data = data.astype("float") / 255.0

Notice how we are preprocessing our images in the exact same manner in which we prepro-
cessed our images during training. Failing to do this procedure can lead to incorrect classifications
since the network will be presented with patterns it cannot recognize. Always take special care to
ensure your testing images were preprocessed in the same way as your training images.

Next, let’s load our saved network from disk:

39 # load the pre-trained network
40 print("[INFO] loading pre-trained network...")
41 model = load_model(args["model"])

Loading our serialized network is as simple as calling load_model and supplying the path to
model’s HDF5 file residing on disk.

Once the model is loaded, we can make predictions on our ten images:

43 # make predictions on the images
44 print("[INFO] predicting...")
45 preds = model.predict(data, batch_size=32).argmax(axis=1)

Keep in mind that the .predict method of model will return a list of probabilities for every
image in data – one probability for each class label, respectively. Taking the argmax on axis=1
finds the index of the class label with the largest probability for each image.

Now that we have our predictions, let’s visualize the results:
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47 # loop over the sample images
48 for (i, imagePath) in enumerate(imagePaths):
49 # load the example image, draw the prediction, and display it
50 # to our screen
51 image = cv2.imread(imagePath)
52 cv2.putText(image, "Label: {}".format(classLabels[preds[i]]),
53 (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
54 cv2.imshow("Image", image)
55 cv2.waitKey(0)

On Line 48 we start looping over our ten randomly sampled image paths. For each image, we
load it from disk (Line 51) and draw the class label prediction on the image itself (Lines 52 and
53). The output image is then displayed to our screen on Lines 54 and 55.

To give shallownet_load.py a try, execute the following command:

$ python shallownet_load.py --dataset ../datasets/animals \
--model shallownet_weights.hdf5

[INFO] sampling images...
[INFO] loading pre-trained network...
[INFO] predicting...

Based on the output, you can see that our images have been sampled, the pre-trained ShallowNet
weights have been loaded from disk, and that ShallowNet has made predictions on our images. I
have included a sample of predictions from the ShallowNet drawn on the images themselves in
Figure 13.1.

Figure 13.1: A sample of images correctly classified by our ShallowNet CNN.
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Keep in mind that ShallowNet is obtaining ≈ 70% classification accuracy on the Animals
dataset, meaning that nearly one in every three example images will be classified incorrectly.
Furthermore, based on the classification_report from Section 12.2.2, we know that the
network still struggles to consistently discriminate between dogs and cats. As we continue our
journey applying deep learning to computer vision classification tasks, we’ll look at methods to
help us boost our classification accuracy.

13.3 Summary
In this chapter we learned how to:

1. Train a network.
2. Serialize the network weights and optimizer state to disk.
3. Load the trained network and classify images.
Later in Chapter 18 we’ll discover how we can save our model’s weights to disk after every

epoch, allowing us to “checkpoint” our network and choose the best performing one. Saving model
weights during the actual training process also enables us to restart training from a specific point
if our network starts exhibiting signs of overfitting. The process of stopping training, tweaking
parameters, and then restarting training again is covered in-depth inside the Practitioner Bundle and
ImageNet Bundle.





14. LeNet: Recognizing Handwritten Digits

The LeNet architecture is a seminal work in the deep learning community, first introduced by
LeCun et al. in their 1998 paper, Gradient-Based Learning Applied to Document Recognition
[19]. As the name of the paper suggests, the authors’ motivation behind implementing LeNet was
primarily for Optical Character Recognition (OCR).

The LeNet architecture is straightforward and small (in terms of memory footprint), making it
perfect for teaching the basics of CNNs.

In this chapter, we’ll seek to replicate experiments similar to LeCun’s in their 1998 paper. We’ll
start by reviewing the LeNet architecture and then implement the network using Keras. Finally,
we’ll evaluate LeNet on the MNIST dataset for handwritten digit recognition.

14.1 The LeNet Architecture

Figure 14.1: The LeNet architecture consists of two series of CONV => TANH => POOL layer sets
followed by a fully-connected layer and softmax output. Photo Credit: http://pyimg.co/ihjsx

Now that we have explored the building blocks of Convolutional Neural Networks in Chapter
12 using ShallowNet, we are ready to take the next step and discuss LeNet. The LeNet architecture

http://pyimg.co/ihjsx
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Layer Type Output Size Filter Size / Stride
INPUT IMAGE 28×28×1
CONV 28×28×20 5×5,K = 20
ACT 28×28×20
POOL 14×14×20 2×2
CONV 14×14×50 5×5,K = 50
ACT 14×14×50
POOL 7×7×50 2×2
FC 500
ACT 500
FC 10
SOFTMAX 10

Table 14.1: A table summary of the LeNet architecture. Output volume sizes are included for each
layer, along with convolutional filter size/pool size when relevant.

(Figure 14.1) is an excellent first “real-world” network. The network is small and easy to understand
— yet large enough to provide interesting results.

Furthermore, the combination of LeNet + MNIST is able to be easily run on the CPU, making
it easy for beginners to take their first step in deep learning and CNNs. In many ways, LeNet +
MNIST is the “Hello, World” equivalent of deep learning applied to image classification. The
LeNet architecture consists of the following layers, using a pattern of CONV => ACT => POOL
from Section 11.3:

INPUT => CONV => TANH => POOL => CONV => TANH => POOL =>
FC => TANH => FC

Notice how the LeNet architecture uses the tanh activation function rather than the more popular
ReLU. Back in 1998 the ReLU had not been used in the context of deep learning — it was more
common to use tanh or sigmoid as an activation function. When implementing LeNet today, it’s
common to swap out TANH for RELU — we’ll follow this same guideline and use ReLU as our
activation function later in this chapter.

Table 14.1 summarizes the parameters for the LeNet architecture. Our input layer takes an input
image with 28 rows, 28 columns, and a single channel (grayscale) for depth (i.e., the dimensions of
the images inside the MNIST dataset). We then learn 20 filters, each of which are 5×5. The CONV
layer is followed by a ReLU activation followed by max pooling with a 2×2 size and 2×2 stride.

The next block of the architecture follows the same pattern, this time learning 50 5×5 filters.
It’s common to see the number of CONV layers increase in deeper layers of the network as the actual
spatial input dimensions decrease.

We then have two FC layers. The first FC contains 500 hidden nodes followed by a ReLU
activation. The final FC layer controls the number of output class labels (0-9; one for each of the
possible ten digits). Finally, we apply a softmax activation to obtain the class probabilities.

14.2 Implementing LeNet
Given Table 14.1 above, we are now ready to implement the seminal LeNet architecture using the
Keras library. Begin by adding a new file named lenet.py inside the pyimagesearch.nn.conv
sub-module — this file will store our actual LeNet implementation:
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--- pyimagesearch
| |--- __init__.py
| |--- nn
| | |--- __init__.py
...
| | |--- conv
| | | |--- __init__.py
| | | |--- lenet.py
| | | |--- shallownet.py

From there, open up lenet.py, and we can start coding:

1 # import the necessary packages
2 from keras.models import Sequential
3 from keras.layers.convolutional import Conv2D
4 from keras.layers.convolutional import MaxPooling2D
5 from keras.layers.core import Activation
6 from keras.layers.core import Flatten
7 from keras.layers.core import Dense
8 from keras import backend as K

Lines 2-8 handle importing our required Python packages — these imports are exactly the
same as the ShallowNet implementation from Chapter 12 and form the essential set of required
imports when building (nearly) any CNN using Keras.

We then define the build method of LeNet below, used to actually construct the network
architecture:

10 class LeNet:
11 @staticmethod
12 def build(width, height, depth, classes):
13 # initialize the model
14 model = Sequential()
15 inputShape = (height, width, depth)
16

17 # if we are using "channels first", update the input shape
18 if K.image_data_format() == "channels_first":
19 inputShape = (depth, height, width)

The build method requires four parameters:
1. The width of the input image.
2. The height of the input image.
3. The number of channels (depth) of the image.
4. The number class labels in the classification task.
The Sequential class, the building block of sequential networks sequentially stack one layer

on top of the other is initialized on Line 14. We then initialize the inputShape as if using “channels
last” ordering. In the case that our Keras configuration is set to use “channels first” ordering, we
update the inputShape on Lines 18 and 19.

The first set of CONV => RELU => POOL layers are defined below:
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21 # first set of CONV => RELU => POOL layers
22 model.add(Conv2D(20, (5, 5), padding="same",
23 input_shape=inputShape))
24 model.add(Activation("relu"))
25 model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

Our CONV layer will learn 20 filters, each of size 5× 5. We then apply a ReLU activation
function followed by a 2×2 pooling with a 2×2 stride, thereby decreasing the input volume size
by 75%.

Another set of CONV => RELU => POOL layers are then applied, this time learning 50 filters
rather than 20:

27 # second set of CONV => RELU => POOL layers
28 model.add(Conv2D(50, (5, 5), padding="same"))
29 model.add(Activation("relu"))
30 model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

The input volume can then be flattened and a fully-connected layer with 500 nodes can be
applied:

32 # first (and only) set of FC => RELU layers
33 model.add(Flatten())
34 model.add(Dense(500))
35 model.add(Activation("relu"))

Followed by the final softmax classifier:

37 # softmax classifier
38 model.add(Dense(classes))
39 model.add(Activation("softmax"))
40

41 # return the constructed network architecture
42 return model

Now that we have coded up the LeNet architecture, we can move on to applying it to the MNIST
dataset.

14.3 LeNet on MNIST
Our next step is to create a driver script that is responsible for:

1. Loading the MNIST dataset from disk.
2. Instantiating the LeNet architecture.
3. Training LeNet.
4. Evaluating network performance.
To train and evaluate LeNet on MNIST, create a new file named lenet_mnist.py, and we can

get started:

1 # import the necessary packages
2 from pyimagesearch.nn.conv import LeNet
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3 from keras.optimizers import SGD
4 from sklearn.preprocessing import LabelBinarizer
5 from sklearn.model_selection import train_test_split
6 from sklearn.metrics import classification_report
7 from sklearn import datasets
8 from keras import backend as K
9 import matplotlib.pyplot as plt

10 import numpy as np

At this point, our Python imports should start to feel pretty standard with a noticeable pattern
appearing. In the vast majority of examples in this book, we’ll have to import:

1. A network architecture that we are going to train.
2. An optimizer to train the network (in this case, SGD).
3. A (set of) convenience function(s) used to construct the training and testing splits of a given

dataset.
4. A function to compute a classification report so we can evaluate our classifier’s performance.
Again, nearly all examples in this book will follow this import pattern, along with a few extra

classes here and there to facilitate certain tasks (such as preprocessing images). The MNIST dataset
has already been preprocessed so we can simply load via the following function call:

12 # grab the MNIST dataset (if this is your first time using this
13 # dataset then the 55MB download may take a minute)
14 print("[INFO] accessing MNIST...")
15 dataset = datasets.fetch_mldata("MNIST Original")
16 data = dataset.data

Line 15 loads the MNIST dataset from disk. If this is your first time calling the fetch_mldata
function with the "MNIST Original" string, then the MNIST dataset will need to be downloaded
from the mldata.org dataset repository. The MNIST dataset is serialized into a single 55MB file, so
depending on your internet connection, this download may take anywhere from a couple of seconds
to a couple of minutes.

It’s important to note that each MNIST sample inside data is represented by a 784-d vector
(i.e., the raw pixel intensities) of a 28×28 grayscale mage. Therefore, we need to reshape the data
matrix depending on whether we are using “channels first” or “channels last” ordering:

18 # if we are using "channels first" ordering, then reshape the
19 # design matrix such that the matrix is:
20 # num_samples x depth x rows x columns
21 if K.image_data_format() == "channels_first":
22 data = data.reshape(data.shape[0], 1, 28, 28)
23

24 # otherwise, we are using "channels last" ordering, so the design
25 # matrix shape should be: num_samples x rows x columns x depth
26 else:
27 data = data.reshape(data.shape[0], 28, 28, 1)

If we are performing “channels first” ordering (Lines 21 and 22), then the data matrix is
reshaped such that the number of samples is the first entry in the matrix, the single channel as the
second entry, followed by the number of rows and columns (28 and 28 respectively). Otherwise,
we assume we are using “channels last” ordering in which case the matrix is reshaped as number of
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samples first, number of rows, number of columns, and finally the number of channels (Lines 26
and 27).

Now that our data matrix is properly shaped, we can perform a training and testing split, taking
care to scale the image pixel intensities to the range [0,1] first:

29 # scale the input data to the range [0, 1] and perform a train/test
30 # split
31 (trainX, testX, trainY, testY) = train_test_split(data / 255.0,
32 dataset.target.astype("int"), test_size=0.25, random_state=42)
33

34 # convert the labels from integers to vectors
35 le = LabelBinarizer()
36 trainY = le.fit_transform(trainY)
37 testY = le.transform(testY)

After splitting the data, we also encode our class labels as one-hot vectors rather than single
integer values. For example, if the class label for a given sample was 3, then the output of one-hot
encoding the label would be:

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
Notice how all entries in the vector are zero except for the fourth index which is now set to one

(keep in mind that the digit 0 is the first index, hence why three is the fourth index).
The stage is now set to train LeNet on MNIST:

39 # initialize the optimizer and model
40 print("[INFO] compiling model...")
41 opt = SGD(lr=0.01)
42 model = LeNet.build(width=28, height=28, depth=1, classes=10)
43 model.compile(loss="categorical_crossentropy", optimizer=opt,
44 metrics=["accuracy"])
45

46 # train the network
47 print("[INFO] training network...")
48 H = model.fit(trainX, trainY, validation_data=(testX, testY),
49 batch_size=128, epochs=20, verbose=1)

Line 41 initializes our SGD optimizer with a learning rate of 0.01. LeNet itself is instantiated
on Line 42, indicating that all input images in our dataset will be 28 pixels wide, 28 pixels tall, and
have a depth of 1. Given that there are ten classes in the MNIST dataset (one for each of the digits,
0−9), we set classes=10.

Lines 43 and 44 compile the model using cross-entropy loss as our loss function. Line 48 and
49 trains LeNet on MNIST for a total of 20 epochs using a mini-batch size of 128.

Finally, we can evaluate the performance on our network as well as plot the loss and accuracy
over time in the final code block below:

51 # evaluate the network
52 print("[INFO] evaluating network...")
53 predictions = model.predict(testX, batch_size=128)
54 print(classification_report(testY.argmax(axis=1),
55 predictions.argmax(axis=1),
56 target_names=[str(x) for x in le.classes_]))
57
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58 # plot the training loss and accuracy
59 plt.style.use("ggplot")
60 plt.figure()
61 plt.plot(np.arange(0, 20), H.history["loss"], label="train_loss")
62 plt.plot(np.arange(0, 20), H.history["val_loss"], label="val_loss")
63 plt.plot(np.arange(0, 20), H.history["acc"], label="train_acc")
64 plt.plot(np.arange(0, 20), H.history["val_acc"], label="val_acc")
65 plt.title("Training Loss and Accuracy")
66 plt.xlabel("Epoch #")
67 plt.ylabel("Loss/Accuracy")
68 plt.legend()
69 plt.show()

I mentioned this fact before in Section 12.2.2 when evaluating ShallowNet, but make sure you
understand what Line 53 is doing when model.predict is called. For each sample in testX,
batch sizes of 128 are constructed and then passed through the network for classification. After all
testing data points have been classified, the predictions variable is returned.

The predictions variable is actually a NumPy array with the shape (len(testX), 10)
implying that we now have the 10 probabilities associated with each class label for every data
point in testX. Taking predictions.argmax(axis=1) in classification_report on Lines
54-56 finds the index of the label with the largest probability (i.e., the final output classification).
Given the final classification from the network, we can compare our predicted class labels to the
ground-truth labels.

To execute our script, just issue the following command:

$ python lenet_mnist.py

The MNIST dataset should then be downloaded and/or loaded from disk and training should
commence:

[INFO] accessing MNIST...
[INFO] compiling model...
[INFO] training network...
Train on 52500 samples, validate on 17500 samples
Epoch 1/20
3s - loss: 1.0970 - acc: 0.6976 - val_loss: 0.5348 - val_acc: 0.8228
...
Epoch 20/20
3s - loss: 0.0411 - acc: 0.9877 - val_loss: 0.0576 - val_acc: 0.9837
[INFO] evaluating network...

precision recall f1-score support

0 0.99 0.99 0.99 1677
1 0.99 0.99 0.99 1935
2 0.99 0.98 0.99 1767
3 0.99 0.97 0.98 1766
4 1.00 0.98 0.99 1691
5 0.99 0.98 0.98 1653
6 0.99 0.99 0.99 1754
7 0.98 0.99 0.99 1846
8 0.94 0.99 0.97 1702
9 0.98 0.98 0.98 1709
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avg / total 0.98 0.98 0.98 17500

Using my Titan X GPU I was obtaining three-second epochs. Using just the CPU, the number
of seconds per epoch jumped to thirty. After training completes, we can see that LeNet is obtaining
98% classification accuracy, a huge increase from 92% when using standard feedforward neural
networks in Chapter 10.

Furthermore, looking at our loss and accuracy plot over time in Figure 14.2 demonstrates that
our network is behaving quite well. After only five epochs LeNet is already reaching ≈ 96%
classification accuracy. Loss on both the training and validation data continues to fall with only a
handful of minor “spikes” due to our learning rate staying constant and not decaying (a concept
we’ll cover later in Chapter 16). At the end of the twentieth epoch, we are reaching 98% accuracy
on our testing set.

Figure 14.2: Training LeNet on MNIST. After only twenty epochs we are obtaining 98% classifica-
tion accuracy.

This plot demonstrating the loss and accuracy of LeNet on MNIST is arguably the quintessential
graph we are looking for: the training and validation loss and accuracy mimic each other (nearly) ex-
actly with no signs of overfitting. As we’ll see, it’s often very hard to obtain this type of training
plot that behaves so nicely, indicating that our network is learning the underlying patterns without
overfitting.

There is also the problem that the MNIST dataset is heavily preprocessed and not representative
of image classification problems we’ll encounter in the real-world. Researchers tend to use the
MNIST dataset as a benchmark to evaluate new classification algorithms. If their methods cannot
obtain > 95% classification accuracy, then there is either a flaw in (1) the logic of the algorithm or
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(2) the implementation itself.
Nonetheless, applying LeNet to MNIST is an excellent way to get your first taste at applying

deep learning to image classification problems and mimicking the results of the seminal LeCun et
al. paper.

14.4 Summary
In this chapter, we explored the LeNet architecture, introduced by LeCun et al. in their 1998
paper, Gradient-Based Learning Applied to Document Recognition [19]. LeNet is a seminal work
in the deep learning literature — it thoroughly demonstrated how neural networks could be trained
to recognize objects in images in an end-to-end manner (i.e., no feature extraction had to take place,
the network was able to learn patterns from the images themselves).

While seminal, LeNet by today’s standards is still considered a “shallow” network. With only
four trainable layers (two CONV layers and two FC layers), the depth of LeNet pales in comparison
to the depth of current state-of-the-art architectures such as VGG (16 and 19 layers) and ResNet
(100+ layers).

In our next chapter, we’ll discuss a variation of the VGGNet architecture which I call “MiniVG-
GNet”. This variation of the architecture uses the exact same guiding principles as Simonyan
and Zisserman’s work [95], but reduces the depth, allowing us to train the network on smaller
datasets. For a full implementation of the VGGNet architecture, you’ll want to refer to Chapter 6 of
the ImageNet Bundle where we train VGGNet from scratch on ImageNet.





15. MiniVGGNet: Going Deeper with CNNs

In our previous chapter we discussed LeNet, a seminal Convolutional Neural Network in the deep
learning and computer vision literature. VGGNet, (sometimes referred to as simply VGG), was first
introduced by Simonyan and Zisserman in their 2014 paper, Very Deep Learning Convolutional
Neural Networks for Large-Scale Image Recognition [95]. The primary contribution of their work
was demonstrating that an architecture with very small (3×3) filters can be trained to increasingly
higher depths (16-19 layers) and obtain state-of-the-art classification on the challenging ImageNet
classification challenge.

Previously, network architectures in the deep learning literature used a mix of filter sizes:
The first layer of the CNN usually includes filter sizes somewhere between 7× 7 [94] and

11× 11 [128]. From there, filter sizes progressively reduced to 5× 5. Finally, only the deepest
layers of the network used 3×3 filters.

VGGNet is unique in that it uses 3×3 kernels throughout the entire architecture. The use
of these small kernels is arguably what helps VGGNet generalize to classification problems outside
what the network was originally trained on (we’ll see this inside the Practitioner Bundle and
ImageNet Bundle when we discuss transfer learning).

Any time you see a network architecture that consists entirely of 3× 3 filters, you can rest
assured that it was inspired by VGGNet. Reviewing the entire 16 and 19 layer variants of VGGNet
is too advanced for this introduction to Convolutional Neural Networks – for a detailed review of
VGG16 and VGG19, please refer to the Chapter 11 of the ImageNet Bundle.

Instead, we are going to review the VGG family of networks and define what characteristics a
CNN must exhibit to fit into this family. From there we’ll implement a smaller version of VGGNet
called MiniVGGNet that can easily be trained on your system. This implementation will also
demonstrate how to use two important layers we discussed in Chapter 11 – batch normalization
(BN) and dropout.

15.1 The VGG Family of Networks
The VGG family of Convolutional Neural Networks can be characterized by two key components:

1. All CONV layers in the network using only 3×3 filters.
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2. Stacking multiple CONV => RELU layer sets (where the number of consecutive CONV =>
RELU layers normally increases the deeper we go) before applying a POOL operation.

In this section, we are going to discuss a variant of the VGGNet architecture which I call
“MiniVGGNet” due to the fact that the network is substantially more shallow than its big brother.
For a detailed review and implementation of the original VGG architecture proposed by Simonyan
and Zisserman, along with a demonstration on how to train the network on the ImageNet dataset,
please refer to Chapter 11 of the ImageNet Bundle.

15.1.1 The (Mini) VGGNet Architecture
In both ShallowNet and LeNet we have applied a series of CONV => RELU => POOL layers. How-
ever, in VGGNet, we stack multiple CONV => RELU layers prior to applying a single POOL layer.
Doing this allows the network to learn more rich features from the CONV layers prior to downsam-
pling the spatial input size via the POOL operation.

Overall, MiniVGGNet consists of two sets of CONV => RELU => CONV => RELU => POOL
layers, followed by a set of FC => RELU => FC => SOFTMAX layers. The first two CONV layers
will learn 32 filters, each of size 3×3. The second two CONV layers will learn 64 filters, again, each
of size 3×3. Our POOL layers will perform max pooling over a 2×2 window with a 2×2 stride.
We’ll also be inserting batch normalization layers after the activations along with dropout layers
(DO) after the POOL and FC layers.

The network architecture itself is detailed in Table 15.1, where the initial input image size is
assumed to be 32× 32× 3 as we’ll be training MiniVGGNet on CIFAR-10 later in this chapter
(and then comparing performance to ShallowNet).

Again, notice how the batch normalization and dropout layers are included in the network
architecture based on my “Rules of Thumb” in Section 11.3.2. Applying batch normalization will
help reduce the effects of overfitting and increase our classification accuracy on CIFAR-10.

15.2 Implementing MiniVGGNet
Given the description of MiniVGGNet in Table 15.1, we can now implement the network architec-
ture using Keras. To get started, add a new file named minivggnet.py inside the pyimagesearch.nn.conv
sub-module – there is where we will write our MiniVGGNet implementation:

--- pyimagesearch
| |--- __init__.py
| |--- nn
| | |--- __init__.py
...
| | |--- conv
| | | |--- __init__.py
| | | |--- lenet.py
| | | |--- minivggnet.py
| | | |--- shallownet.py

After creating the minivggnet.py file, open it up in your favorite code editor and we’ll get to
work:

1 # import the necessary packages
2 from keras.models import Sequential
3 from keras.layers.normalization import BatchNormalization
4 from keras.layers.convolutional import Conv2D
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Layer Type Output Size Filter Size / Stride
INPUT IMAGE 32×32×3
CONV 32×32×32 3×3,K = 32
ACT 32×32×32
BN 32×32×32
CONV 32×32×32 3×3,K = 32
ACT 32×32×32
BN 32×32×32
POOL 16×16×32 2×2
DROPOUT 16×16×32
CONV 16×16×64 3×3,K = 64
ACT 16×16×64
BN 16×16×64
CONV 16×16×64 3×3,K = 64
ACT 16×16×64
BN 16×16×64
POOL 8×8×64 2×2
DROPOUT 8×8×64
FC 512
ACT 512
BN 512
DROPOUT 512
FC 10
SOFTMAX 10

Table 15.1: A table summary of the MiniVGGNet architecture. Output volume sizes are included
for each layer, along with convolutional filter size/pool size when relevant. Notice how only 3×3
convolutions are applied.
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5 from keras.layers.convolutional import MaxPooling2D
6 from keras.layers.core import Activation
7 from keras.layers.core import Flatten
8 from keras.layers.core import Dropout
9 from keras.layers.core import Dense

10 from keras import backend as K

Lines 2-10 import our required classes from the Keras library. Most of these imports you have
already seen before, but I want to bring your attention to the BatchNormalization (Line 3) and
Dropout (Line 8) – these classes will enable us to apply batch normalization and dropout to our
network architecture.

Just like our implementations of both ShallowNet and LeNet, we’ll define a build method that
can be called to construct the architecture using a supplied width, height, depth, and number of
classes:

12 class MiniVGGNet:
13 @staticmethod
14 def build(width, height, depth, classes):
15 # initialize the model along with the input shape to be
16 # "channels last" and the channels dimension itself
17 model = Sequential()
18 inputShape = (height, width, depth)
19 chanDim = -1
20

21 # if we are using "channels first", update the input shape
22 # and channels dimension
23 if K.image_data_format() == "channels_first":
24 inputShape = (depth, height, width)
25 chanDim = 1

Line 17 instantiates the Sequential class, the building block of sequential neural networks in
Keras. We then initialize the inputShape, assuming we are using channels last ordering (Line 18).

Line 19 introduces a variable we haven’t seen before, chanDim, the index of the channel
dimension. Batch normalization operates over the channels, so in order to apply BN, we need to
know which axis to normalize over. Setting chanDim = -1 implies that the index of the channel
dimension last in the input shape (i.e., channels last ordering). However, if we are using channels
first ordering (Lines 23-25), we need need to update the inputShape and set chanDim = 1, since
the channel dimension is now the first entry in the input shape.

The first layer block of MiniVGGNet is defined below:

27 # first CONV => RELU => CONV => RELU => POOL layer set
28 model.add(Conv2D(32, (3, 3), padding="same",
29 input_shape=inputShape))
30 model.add(Activation("relu"))
31 model.add(BatchNormalization(axis=chanDim))
32 model.add(Conv2D(32, (3, 3), padding="same"))
33 model.add(Activation("relu"))
34 model.add(BatchNormalization(axis=chanDim))
35 model.add(MaxPooling2D(pool_size=(2, 2)))
36 model.add(Dropout(0.25))
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Here we can see our architecture consists of (CONV => RELU => BN) * 2 => POOL => DO.
Line 28 defines a CONV layer with 32 filters, each of which has a 3×3 filter size. We then apply a
ReLU activation (Line 30) which is immediately fed into a BatchNormalization layer (Line 31)
to zero-center the activations.

However, instead of applying a POOL layer to reduce the spatial dimensions of our input, we
instead apply another set of CONV => RELU => BN – this allows our network to learn more rich
features, a common practice when training deeper CNNs.

On Line 35 we use MaxPooling2D with a size of 2×2. Since we do not explicitly set a stride,
Keras implicitly assumes our stride to be equal to the max pooling size (which is 2×2).

We then apply Dropout on Line 36 with a probability of p = 0.25, which this implies that a
node from the POOL layer will randomly disconnect from the next layer with a probability of 25%
during training. We apply dropout to help reduce the effects of overfitting. You can read more
about dropout in Section 11.2.7. We then add the second layer block to MiniVGGNet below:

38 # second CONV => RELU => CONV => RELU => POOL layer set
39 model.add(Conv2D(64, (3, 3), padding="same"))
40 model.add(Activation("relu"))
41 model.add(BatchNormalization(axis=chanDim))
42 model.add(Conv2D(64, (3, 3), padding="same"))
43 model.add(Activation("relu"))
44 model.add(BatchNormalization(axis=chanDim))
45 model.add(MaxPooling2D(pool_size=(2, 2)))
46 model.add(Dropout(0.25))

The code above follows the exact same pattern as the above; however, now we are learning two
sets of 64 filters (each of size 3×3) as opposed to 32 filters. Again, it is common to increase the
number of filters as the spatial input size decreases deeper in the network.

Next comes our first (and only) set of FC => RELU layers:

48 # first (and only) set of FC => RELU layers
49 model.add(Flatten())
50 model.add(Dense(512))
51 model.add(Activation("relu"))
52 model.add(BatchNormalization())
53 model.add(Dropout(0.5))

Our FC layer has 512 nodes, which will be followed by a ReLU activation and BN. We’ll
also apply dropout here, increasing the probability to 50% – typically you’ll see dropout with
p = 0.5 applied in between FC layers.

Finally, we apply the softmax classifier and return the network architecture to the calling
function:

55 # softmax classifier
56 model.add(Dense(classes))
57 model.add(Activation("softmax"))
58

59 # return the constructed network architecture
60 return model

Now that we’ve implemented the MiniVGGNet architecture, let’s move on to applying it to
CIFAR-10.
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15.3 MiniVGGNet on CIFAR-10
We will follow a similar pattern training MiniVGGNet as we did for LeNet in Chapter 14, only this
time with the CIFAR-10 dataset:
• Load the CIFAR-10 dataset from disk.
• Instantiate the MiniVGGNet architecture.
• Train MiniVGGNet using the training data.
• Evaluate network performance with the testing data.
To create a driver script to train MiniVGGNet, open a new file, name it minivggnet_cifar10.py,

and insert the following code:

1 # set the matplotlib backend so figures can be saved in the background
2 import matplotlib
3 matplotlib.use("Agg")
4

5 # import the necessary packages
6 from sklearn.preprocessing import LabelBinarizer
7 from sklearn.metrics import classification_report
8 from pyimagesearch.nn.conv import MiniVGGNet
9 from keras.optimizers import SGD

10 from keras.datasets import cifar10
11 import matplotlib.pyplot as plt
12 import numpy as np
13 import argparse

Line 2 imports the matplotlib library which we’ll later use to plot our accuracy and loss over
time. We need to set the matplotlib backend to Agg to indicate to create a non-interactive that
will simply be saved to disk. Depending on what your default maplotlib backend is and whether
you are accessing your deep learning machine remotely (via SSH, for instance), X11 session may
timeout. If that happens, matplotlib will error out when it tries to display your figure. Instead,
we can simply set the background to Agg and write the plot to disk when we are done training our
network.

Lines 9-13 import the rest of our required Python packages, all of which you’ve seen before –
the exception being MiniVGGNet on Line 11 which we implemented in the previous section.

Next, let’s parse our command line arguments:

15 # construct the argument parse and parse the arguments
16 ap = argparse.ArgumentParser()
17 ap.add_argument("-o", "--output", required=True,
18 help="path to the output loss/accuracy plot")
19 args = vars(ap.parse_args())

This script will require only a single command line argument, --output, the path to our output
training and loss plot.

We can now load the CIFAR-10 dataset (pre-split into training and testing data), scale the pixels
into the range [0,1], and then one-hot encode the labels:

21 # load the training and testing data, then scale it into the
22 # range [0, 1]
23 print("[INFO] loading CIFAR-10 data...")
24 ((trainX, trainY), (testX, testY)) = cifar10.load_data()
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25 trainX = trainX.astype("float") / 255.0
26 testX = testX.astype("float") / 255.0
27

28 # convert the labels from integers to vectors
29 lb = LabelBinarizer()
30 trainY = lb.fit_transform(trainY)
31 testY = lb.transform(testY)
32

33 # initialize the label names for the CIFAR-10 dataset
34 labelNames = ["airplane", "automobile", "bird", "cat", "deer",
35 "dog", "frog", "horse", "ship", "truck"]

Let’s compile our model and start training MiniVGGNet:

37 # initialize the optimizer and model
38 print("[INFO] compiling model...")
39 opt = SGD(lr=0.01, decay=0.01 / 40, momentum=0.9, nesterov=True)
40 model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
41 model.compile(loss="categorical_crossentropy", optimizer=opt,
42 metrics=["accuracy"])
43

44 # train the network
45 print("[INFO] training network...")
46 H = model.fit(trainX, trainY, validation_data=(testX, testY),
47 batch_size=64, epochs=40, verbose=1)

We’ll use SGD as our optimizer with a learning rate of α = 0.1 and momentum term of γ = 0.9.
Setting nestrov=True indicates that we would like to apply Nestrov accelerated gradient to the
SGD optimizer (Section 9.3).

An optimizer term we haven’t seen yet is the decay parameter. This argument is used to slowly
reduce the learning rate over time. As we’ll discuss in more detail in the next chapter on Learning
Rate Schedulers, decaying the learning rate is helpful in reducing overfitting and obtaining higher
classification accuracy – the smaller the learning rate is, the smaller the weight updates will be. A
common setting for decay is to divide the initial learning rate by the total number of epochs – in
this case, we’ll be training our network for a total of 40 epochs with an initial learning rate of 0.01,
therefore decay = 0.01 / 40.

After training completes, we can evaluate the network and display a nicely formatted classifica-
tion report:

49 # evaluate the network
50 print("[INFO] evaluating network...")
51 predictions = model.predict(testX, batch_size=64)
52 print(classification_report(testY.argmax(axis=1),
53 predictions.argmax(axis=1), target_names=labelNames))

And with save our loss and accuracy plot to disk:

55 # plot the training loss and accuracy
56 plt.style.use("ggplot")
57 plt.figure()
58 plt.plot(np.arange(0, 40), H.history["loss"], label="train_loss")
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59 plt.plot(np.arange(0, 40), H.history["val_loss"], label="val_loss")
60 plt.plot(np.arange(0, 40), H.history["acc"], label="train_acc")
61 plt.plot(np.arange(0, 40), H.history["val_acc"], label="val_acc")
62 plt.title("Training Loss and Accuracy on CIFAR-10")
63 plt.xlabel("Epoch #")
64 plt.ylabel("Loss/Accuracy")
65 plt.legend()
66 plt.savefig(args["output"])

When evaluating MinIVGGNet I performed two experiments:
1. One with batch normalization.
2. One without batch normalization.
Let’s go ahead and take a look at these results to compare how network performance increases

when applying batch normalization.

15.3.1 With Batch Normalization
To train MiniVGGNet on the CIFAR-10 dataset, just execute the following command:

$ python minivggnet_cifar10.py --output output/cifar10_minivggnet_with_bn.png
[INFO] loading CIFAR-10 data...
[INFO] compiling model...
[INFO] training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/40
23s - loss: 1.6001 - acc: 0.4691 - val_loss: 1.3851 - val_acc: 0.5234
Epoch 2/40
23s - loss: 1.1237 - acc: 0.6079 - val_loss: 1.1925 - val_acc: 0.6139
Epoch 3/40
23s - loss: 0.9680 - acc: 0.6610 - val_loss: 0.8761 - val_acc: 0.6909
...
Epoch 40/40
23s - loss: 0.2557 - acc: 0.9087 - val_loss: 0.5634 - val_acc: 0.8236
[INFO] evaluating network...

precision recall f1-score support

airplane 0.88 0.81 0.85 1000
automobile 0.93 0.89 0.91 1000

bird 0.83 0.68 0.75 1000
cat 0.69 0.65 0.67 1000

deer 0.74 0.85 0.79 1000
dog 0.72 0.77 0.74 1000

frog 0.85 0.89 0.87 1000
horse 0.85 0.87 0.86 1000
ship 0.89 0.91 0.90 1000

truck 0.88 0.91 0.90 1000

avg / total 0.83 0.82 0.82 10000

On my GPU, epochs were quite fast at 23s. On my CPU, epochs were considerably longer,
clocking in at 171s.

After training completed, we can see that MiniVGGNet is obtaining 83% classification accuracy
on the CIFAR-10 dataset with batch normalization – this result is substantially higher than the 60%
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accuracy when applying ShallowNet in Chapter 12. We thus see how a deeper network architectures
are able to learn richer, more discriminative features.

But what about the role of batch normalization? Is it actually helping us here? To find out, let’s
move on to the next section.

15.3.2 Without Batch Normalization
Go back to the minivggnet.py implementation and comment out all BatchNormalization
layers, like so:

27 # first CONV => RELU => CONV => RELU => POOL layer set
28 model.add(Conv2D(32, (3, 3), padding="same",
29 input_shape=inputShape))
30 model.add(Activation("relu"))
31 #model.add(BatchNormalization(axis=chanDim))
32 model.add(Conv2D(32, (3, 3), padding="same"))
33 model.add(Activation("relu"))
34 #model.add(BatchNormalization(axis=chanDim))
35 model.add(MaxPooling2D(pool_size=(2, 2)))
36 model.add(Dropout(0.25))

Once you’ve commented out all BatchNormalization layers from your network, re-train
MiniVGGNet on CIFAR-10:

$ python minivggnet_cifar10.py --output output/cifar10_minivggnet_without_bn.png
[INFO] loading CIFAR-10 data...
[INFO] compiling model...
[INFO] training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/40
13s - loss: 1.8055 - acc: 0.3426 - val_loss: 1.4872 - val_acc: 0.4573
Epoch 2/40
13s - loss: 1.4133 - acc: 0.4872 - val_loss: 1.3246 - val_acc: 0.5224
Epoch 3/40
13s - loss: 1.2162 - acc: 0.5628 - val_loss: 1.0807 - val_acc: 0.6139
...
Epoch 40/40
13s - loss: 0.2780 - acc: 0.8996 - val_loss: 0.6466 - val_acc: 0.7955
[INFO] evaluating network...

precision recall f1-score support

airplane 0.83 0.80 0.82 1000
automobile 0.90 0.89 0.90 1000

bird 0.75 0.69 0.71 1000
cat 0.64 0.57 0.61 1000

deer 0.75 0.81 0.78 1000
dog 0.69 0.72 0.70 1000

frog 0.81 0.88 0.85 1000
horse 0.85 0.83 0.84 1000
ship 0.90 0.88 0.89 1000

truck 0.84 0.89 0.86 1000

avg / total 0.79 0.80 0.79 10000
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The first thing you’ll notice is that your network trains faster without batch normalization (13s
compared to 23s, a reduction by 43%). However, once the network finishes training, you’ll notice a
lower classification accuracy of 79%.

When we plot MiniVGGNet with batch normalization (left) and without batch normalization
(right) side-by-side in Figure 15.1, we can see the positive affect batch normalization has on the
training process:

Figure 15.1: Left: MiniVGGNet trained on CIFAR-10 with batch normalization. Right: MiniVG-
GNet trained on CIFAR-10 without batch normalization. Applying batch normalization allows us
to obtain higher classification accuracy and reduce the affects of overfitting.

Notice how the loss for MiniVGGNet without batch normalization starts to increase past epoch
30, indicating that the network is overfitting to the training data. We can also clearly see that
validation accuracy has become quite saturated by epoch 25.

On the other hand, the MiniVGGNet implementation with batch normalization is more stable.
While both loss and accuracy start to flatline past epoch 35, we aren’t overfitting as badly – this
is one of the many reasons why I suggest applying batch normalization to your own network
architectures.

15.4 Summary

In this chapter we discussed the VGG family of Convolutional Neural Networks. A CNN can be
considered VGG-net like if:

1. It makes use of only 3×3 filters, regardless of network depth.
2. There are multiple CONV => RELU layers applied before a single POOL operation, some-

times with more CONV => RELU layers stacked on top of each other as the network increases
in depth.

We then implemented a VGG inspired network, suitably named MiniVGGNet. This network
architecture consisted of two sets of (CONV => RELU) * 2) => POOL layers followed by an FC
=> RELU => FC => SOFTMAX layer set. We also applied batch normalization after every activation
as well as dropout after every pool and fully-connected layer. To evaluate MiniVGGNet, we used
the CIFAR-10 dataset.

Our previous best accuracy on CIFAR-10 was only 60% from the ShallowNet network (Chapter
12). However, using MiniVGGNet we were able to increase accuracy all the way to 83%.

Finally, we examined the role batch normalization plays in deep learning and CNNs With batch
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normalization, MiniVGGNet reached 83% classification accuracy – but without batch normalization,
accuracy decreased to 79% (and we also started to see signs of overfitting).

Thus, the takeaway here is that:
1. Batch normalization can lead to a faster, more stable convergence with higher accuracy.
2. However, the advantages will come at the expense of training time – batch normalization will

require more “wall time” to train the network, even though the network will obtain higher
accuracy in less epochs.

That said, the extra training time often outweighs the negatives, and I highly encourage you to
apply batch normalization to your own network architectures.





16. Learning Rate Schedulers

In our last chapter, we trained the MiniVGGNet architecture on the CIFAR-10 dataset. To help
alleviate the effects of overfitting, I introduced the concept of adding a decay to our learning rate
when applying SGD to train the network.

In this chapter we’ll discuss the concept of learning rate schedules, sometimes called learning
rate annealing or adaptive learning rates. By adjusting our learning rate on an epoch-to-epoch basis,
we can reduce loss, increase accuracy, and even in certain situations reduce the total amount of time
it takes to train a network.

16.1 Dropping Our Learning Rate

The most simple and heavily learning rate schedulers are ones that progressively reduce learning
rate over time. To consider why learning rate schedules are an interesting method to apply to help
increase model accuracy, consider our standard weight update formula from Section 9.1.6:

W += -args["alpha"] * gradient

Recall that the learning rate α controls the “step” we make along the gradient. Larger values of
α imply that we are taking bigger steps while smaller values of α will make tiny steps – if α is
zero, the network cannot make any steps at all (since the gradient multiplied by zero is zero).

In our previous examples throughout this book, our learning rates were constant – we typically
set α = {0.1,0.01} and then trained the network for a fixed number of epochs without changing
the learning rate. This method may work well in some situations, but it’s often beneficial to
decrease our learning rate over time.

When training our network, we are trying to find some location along our loss landscape where
the network obtains reasonable accuracy. It doesn’t have to be a global minima or even a local
minima, but in practice, simply finding an area of the loss landscape with reasonably low loss is
“good enough”.
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If we constantly keep a learning rate high, we could overshoot these areas of low loss as we’ll
be taking too large of steps to descend into these areas. Instead, what we can do is decrease our
learning rate, thereby allowing our network to take smaller steps – this decreased rate enables
our network to descend into areas of the loss landscape that are "more optimal" and would have
otherwise been missed entirely by our larger learning rate.

We can, therefore, view the process of learning rate scheduling as:
1. Finding a set of reasonably “good” weights early in the training process with a higher learning

rate.
2. Tuning these weights later in the process to find more optimal weights using a smaller

learning rate.
There are two primary types of learning rate schedulers that you’ll likely encounter:

1. Learning rate schedulers that decrease gradually based on the epoch number (like a linear,
polynomial, or exponential function).

2. Learning rate schedulers that drop based on specific epoch (such as a piecewise function).
We’ll review both types of learning rate schedulers in this chapter.

16.1.1 The Standard Decay Schedule in Keras
The Keras library ships with a time-based learning rate scheduler – it is controlled via the decay
parameter of the optimizer classes (such as SGD).

Going back to our previous chapter, let’s take a look at the code block where we initialize SGD
and MiniVGGNet:

37 # initialize the optimizer and model
38 print("[INFO] compiling model...")
39 opt = SGD(lr=0.01, decay=0.01 / 40, momentum=0.9, nesterov=True)
40 model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
41 model.compile(loss="categorical_crossentropy", optimizer=opt,
42 metrics=["accuracy"])

Here we initialize our SGD optimizer with a learning rate of α = 0.01, a momentum γ = 0.9,
and indicate that we are using Nesterov accelerated gradient. We then set our decay (γ) to be the
learning rate divided by the total number of epochs we are training the network for (a common rule
of thumb), resulting in 0.01/40 = 0.00025.

Internally, Keras applies the following learning rate schedule to adjust the learning rate after
every epoch:

αe+1 = αe ×1/(1+ γ ∗ e) (16.1)

If we set the decay to zero (the default value in Keras optimizers unless we explicitly supply
it), we’ll notice there is no effect on the learning rate (here we arbitrarily set our current epoch e to
be e = 1 to demonstrate this point):

αe+1 = 0.01 ×1/(1+0.0×1) = 0.01 (16.2)

But if we instead use decay = 0.01 / 40, you’ll notice that the learning rate starts to decrease
after every epoch (Table 16.1).

Using this time-based learning rate decay, our MiniVGGNet model obtained 83% classification
accuracy, as shown in Chapter 15. I would encourage you to set decay=0 in the SGD optimizer
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Epoch Learning Rate (α)
1 0.01
2 0.00990
3 0.00971
... ...
38 0.00685
39 0.00678
40 0.00672

Table 16.1: A table demonstrating how our learning rate decreases over time using 40 epochs, an
initial learning rate of α = 0.01 and a decay term of 0.04/40.

and then rerun the experiment. You’ll notice that the network also obtains ≈ 83% classification
accuracy; however, by investing the learning plots of the two models in Figure 16.1, you’ll notice
that overfitting is starting to occur as validation loss rises past epoch 25 (left).

This result is in contrast to when we set decay=0.01 / 40 (right) and obtain a much nicer
learning plot (and not to mention, higher accuracy). By using learning rate decay we can often not
only improve our classification accuracy but also lessen the affects of overfitting, thereby increasing
the ability of our model to generalize.

Figure 16.1: Left: Training MiniVGGNet on CIFAR-10 without learning rate decay. Notice how
loss starts to increase past epoch 25, indicating that overfitting is happening. Right: Applying a
decay factor of 0.01/40. This reduces the learning rate over time, helping alleivate the affects of
overfitting.

16.1.2 Step-based Decay

Another popular learning rate scheduler is step-based decay where we systematically drop the
learning rate after specific epochs during training. The step decay learning rate schedulers can be
thought of as a piecewise function, such as in Figure 16.2. Here the learning rate is constant for a
number of epochs, then drops, and is constant once more, then drops again, etc.

When applying step decay to our learning rate, we have two options:
1. Define an equation that models the piecewise drop in learning rate we wish to achieve.
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Figure 16.2: An example of two learning rate schedules that drop the learning rate in a piecewise
fashion. Lowering the factor value increases the speed of the drop. In each case, the learning rate
approaches zero at the final epoch.

2. Use what I call the ctrl + c method to training a deep learning network where we train for
some number of epochs at a given learning rate, eventually notice validation performance
has stalled, then ctrl + c to stop the script, adjust our learning rate, and continue training.

We’ll primarily be focusing on the equation-based piecewise drop to learning rate scheduling in
this chapter. The ctrl + c method is more advanced and is normally applied to larger datasets
using deeper neural networks where the exact number of epochs required to obtain reasonable
accuracy is unknown. I cover ctrl + c training heavily inside the Practitioner Bundle and
ImageNet Bundle of this book.

When applying step decay, we often drop our learning rate by either (1) half or (2) an order
of magnitude after every fixed number of epochs. For example, let’s suppose our initial learning
rate is α = 0.1. After 10 epochs we drop the learning rate to α = 0.05. After another 10 epochs of
training (i.e., the 20th total epoch), α is dropped by 0.5 again, such that α = 0.025, etc. In fact,
this is the exact same learning rate schedule plotted in Figure 16.2 above (red line). The blue line
displays a much more aggressive drop with a factor of 0.25.

16.1.3 Implementing Custom Learning Rate Schedules in Keras

Conveniently, the Keras library provides us with a LearningRateScheduler class that allows us
to define a custom learning rate function and then have it automatically applied during the training
process. This function should take the epoch number as an argument and then compute our desired
learning rate based on a function that we define.

In this example, we’ll be defining a piecewise function that will drop the learning rate by a
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certain factor F after every D epochs. Our equation will thus look like this:

αE+1 = αI×F(1+E)/D (16.3)

Where αI is our initial learning rate, F is the factor value controlling the rate in which the
learning rate drops, D is the “drop every” epochs value, and E is the current epoch. The larger our
factor F is, the slower the learning rate will decay. Conversely, the smaller the factor F is the
faster the learning rate will decrease.

Written in Python code, this equation might be expressed as:

alpha = initAlpha * (factor ** np.floor((1 + epoch) / dropEvery))

Let’s go ahead and implement this custom learning rate schedule and then apply it to MiniVG-
GNet on CIFAR-10. Open up a new file, name it cifar10_lr_decay.py, and let’s start coding:

1 # set the matplotlib backend so figures can be saved in the background
2 import matplotlib
3 matplotlib.use("Agg")
4

5 # import the necessary packages
6 from sklearn.preprocessing import LabelBinarizer
7 from sklearn.metrics import classification_report
8 from pyimagesearch.nn.conv import MiniVGGNet
9 from keras.callbacks import LearningRateScheduler

10 from keras.optimizers import SGD
11 from keras.datasets import cifar10
12 import matplotlib.pyplot as plt
13 import numpy as np
14 import argparse

Lines 2-14 import our required Python packages as in the original minivggnet_cifar10.py
script form Chapter 15. However, take notice of Line 9 where we import our LearningRateScheduler
from the Keras library – this class will enable us to define our own custom learning rate scheduler.

Speaking of a custom learning rate scheduler, let’s define that now:

16 def step_decay(epoch):
17 # initialize the base initial learning rate, drop factor, and
18 # epochs to drop every
19 initAlpha = 0.01
20 factor = 0.25
21 dropEvery = 5
22

23 # compute learning rate for the current epoch
24 alpha = initAlpha * (factor ** np.floor((1 + epoch) / dropEvery))
25

26 # return the learning rate
27 return float(alpha)

Line 16 defines the step_decay function which accepts a single required parameter – the cur-
rent epoch. We then define the initial learning rate (0.01), the drop factor (0.25), set dropEvery
= 5, implying that we’ll drop our learning rate by a factor of 0.25 every five epochs (Lines 19-21).
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We compute the new learning rate for the current epoch on Line 24 using the Equation 16.3
above. This new learning rate is returned to the calling function on Line 27, allowing Keras to
internally update the optimizer’s learning rate.

From here we can continue on with our script:

29 # construct the argument parse and parse the arguments
30 ap = argparse.ArgumentParser()
31 ap.add_argument("-o", "--output", required=True,
32 help="path to the output loss/accuracy plot")
33 args = vars(ap.parse_args())
34

35 # load the training and testing data, then scale it into the
36 # range [0, 1]
37 print("[INFO] loading CIFAR-10 data...")
38 ((trainX, trainY), (testX, testY)) = cifar10.load_data()
39 trainX = trainX.astype("float") / 255.0
40 testX = testX.astype("float") / 255.0
41

42 # convert the labels from integers to vectors
43 lb = LabelBinarizer()
44 trainY = lb.fit_transform(trainY)
45 testY = lb.transform(testY)
46

47 # initialize the label names for the CIFAR-10 dataset
48 labelNames = ["airplane", "automobile", "bird", "cat", "deer",
49 "dog", "frog", "horse", "ship", "truck"]

Lines 30-33 parse our command line arguments. We only need a single argument, --output,
the path to our output loss/accuracy plot. We then load the CIFAR-10 dataset from disk and scale
the pixel intensities to the range [0,1] on Lines 37-40. Lines 43-45 handle one-hot encoding the
class labels.

Next, let’s train our network:

51 # define the set of callbacks to be passed to the model during
52 # training
53 callbacks = [LearningRateScheduler(step_decay)]
54

55 # initialize the optimizer and model
56 opt = SGD(lr=0.01, momentum=0.9, nesterov=True)
57 model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
58 model.compile(loss="categorical_crossentropy", optimizer=opt,
59 metrics=["accuracy"])
60

61 # train the network
62 H = model.fit(trainX, trainY, validation_data=(testX, testY),
63 batch_size=64, epochs=40, callbacks=callbacks, verbose=1)

Line 53 is important as it initializes our list of callbacks. Depending on how the callback is
defined, Keras will call this function at the start or end of every epoch, mini-batch update, etc. The
LearningRateScheduler will call step_decay at the end of every epoch, allowing us to update
the learning prior to the next epoch starting.
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Line 56 initializes the SGD optimizer with a momentum of 0.9 and Nestrov accelerated gradient.
The lr parameter will be ignored here since we’ll be using the LearningRateScheduler callback
so we could technically leave this parameter out entirely; however, I like to include it and have it
match initAlpha as a matter of clarity.

Line 57 initializes MiniVGGNet which we then train for 40 epochs on Lines 62 and 63.
Once the network is trained we can evaluate it:

65 # evaluate the network
66 print("[INFO] evaluating network...")
67 predictions = model.predict(testX, batch_size=64)
68 print(classification_report(testY.argmax(axis=1),
69 predictions.argmax(axis=1), target_names=labelNames))

As well as plot the loss and accuracy:

71 # plot the training loss and accuracy
72 plt.style.use("ggplot")
73 plt.figure()
74 plt.plot(np.arange(0, 40), H.history["loss"], label="train_loss")
75 plt.plot(np.arange(0, 40), H.history["val_loss"], label="val_loss")
76 plt.plot(np.arange(0, 40), H.history["acc"], label="train_acc")
77 plt.plot(np.arange(0, 40), H.history["val_acc"], label="val_acc")
78 plt.title("Training Loss and Accuracy on CIFAR-10")
79 plt.xlabel("Epoch #")
80 plt.ylabel("Loss/Accuracy")
81 plt.legend()
82 plt.savefig(args["output"])

To evaluate the effect the drop factor has on learning rate scheduling and overall network
classification accuracy, we’ll be evaluating two drop factors: 0.25 and 0.5, respectively. The drop
factor of 0.25 will decrease significantly faster than the 0.5 rate, as we know from Figure 16.2
above.

Again, take notice how much faster the 0.25 drop factor lowers our learning rate. We’ll go
ahead and evaluate the faster learning rate drop of 0.25 (Line 20) – to execute our script, just issue
the following command:

$ python cifar10_lr_decay.py --output output/lr_decay_f0.25_plot.png
[INFO] loading CIFAR-10 data...
Train on 50000 samples, validate on 10000 samples
Epoch 1/40
34s - loss: 1.6380 - acc: 0.4550 - val_loss: 1.1413 - val_acc: 0.5993
Epoch 2/40
34s - loss: 1.1847 - acc: 0.5925 - val_loss: 1.0986 - val_acc: 0.6057
...
Epoch 40/40
34s - loss: 0.5423 - acc: 0.8081 - val_loss: 0.5899 - val_acc: 0.7885
[INFO] evaluating network...

precision recall f1-score support

airplane 0.81 0.81 0.81 1000
automobile 0.91 0.89 0.90 1000
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bird 0.71 0.65 0.68 1000
cat 0.63 0.60 0.62 1000

deer 0.72 0.79 0.75 1000
dog 0.70 0.67 0.68 1000

frog 0.80 0.88 0.84 1000
horse 0.86 0.83 0.84 1000
ship 0.87 0.90 0.88 1000

truck 0.87 0.87 0.87 1000

avg / total 0.79 0.79 0.79 10000

Here we see that our network obtains only 79% classification accuracy. The learning rate is
dropping quite aggressively – after epoch fifteen α is only 0.00125, meaning that our network is
taking very small steps along the loss landscape. This behavior can be seen in the Figure 16.3 (left)
where validation loss and accuracy have essentially stagnated after epoch fifteen.

Figure 16.3: Left: Plotting the accuracy/loss of our network using a faster learning rate drop with a
factor of 0.25. Notice how loss/accuracy stagnate past epoch 15 as the learning rate is too small.
Right: Accuracy/loss of our network with a slower learning rate drop ( f actor = 0.5). This time
our network is able to continue to learn past epoch 30 until stagnation occurs.

If we instead change the drop factor to 0.5 by setting factor = 0.5 inside of step_decay:

16 def step_decay(epoch):
17 # initialize the base initial learning rate, drop factor, and
18 # epochs to drop every
19 initAlpha = 0.01
20 factor = 0.5
21 dropEvery = 5

And then re-run the experiment, we’ll obtain higher classification accuracy:

$ python cifar10_lr_decay.py --output output/lr_decay_f0.5_plot.png
[INFO] loading CIFAR-10 data...
Train on 50000 samples, validate on 10000 samples
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Epoch 1/40
35s - loss: 1.6733 - acc: 0.4402 - val_loss: 1.2024 - val_acc: 0.5771
Epoch 2/40
34s - loss: 1.1868 - acc: 0.5898 - val_loss: 0.9651 - val_acc: 0.6643
...
Epoch 40/40
33s - loss: 0.3562 - acc: 0.8742 - val_loss: 0.5452 - val_acc: 0.8177
[INFO] evaluating network...

precision recall f1-score support

airplane 0.85 0.82 0.84 1000
automobile 0.91 0.91 0.91 1000

bird 0.75 0.70 0.73 1000
cat 0.68 0.65 0.66 1000

deer 0.75 0.82 0.78 1000
dog 0.74 0.74 0.74 1000

frog 0.83 0.89 0.86 1000
horse 0.88 0.86 0.87 1000
ship 0.89 0.91 0.90 1000

truck 0.89 0.88 0.88 1000

avg / total 0.82 0.82 0.82 10000

This time, with the slower drop in learning rate we obtain 82% accuracy. Looking at the plot
in Figure 16.3 (right) we can see that our network continues to learn past epoch 25-30 until loss
stagnates on the validation data Past epoch 30 the learning rate is very small at 2.44e-06 and
is unable to make any significant changes to the weights to influence the loss/accuracy on the
validation data.

16.2 Summary

The purpose of this chapter was to review the concept of learning rate schedulers and how they can
be used to increase classification accuracy. We discussed the two primary types of learning rate
schedulers:

1. Time-based schedulers that gradually decrease based on epoch number.
2. Drop-based schedulers that drop based on a specific epoch, similar to the behavior of a

piecewise function.
Exactly which learning rate scheduler you should use (if you should use a scheduler at all) is

part of the experimentation process. Typically your first experiment would not use any type of
decay or learning rate scheduling so you can obtain a baseline accuracy and loss/accuracy curve.

From there you might introduce the standard time-based schedule provided by Keras (with
the rule of thumb of decay = alpha_init / epochs) and run a second experiment to evaluate
the results. The next few experiments might involve swapping out a time-bases schedule for a
drop-based one using various drop factors.

Depending on how challenging your classification dataset is along with the depth of your
network, you might opt for the ctrl + c method to training as detailed in the Practitioner
Bundle and ImageNet Bundle which is the approach taken by most deep learning practitioners when
training networks on the ImageNet dataset.

Overall, be prepared to spend a significant amount of time training your networks and evaluating
different sets of parameters and learning routines. Even simple datasets and projects can take 10’s
to 100’s of experiments to obtain a high accuracy model.
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At this point in your study of deep learning you should understand that training deep neural
networks is part science, part art. My goal in this book is to provide you with the science behind
training a network along with the common rules of thumb that I use so you can learn the “art”
behind it – but keep in mind that nothing beats actually running the experiments yourself.

The more practice you have at training neural networks, logging the results of what did work
and what didn’t, the better you’ll become at it. There is no shortcut when it comes to mastering this
art – you need to put in the hours and become comfortable with the SGD optimizer (and others)
along with their parameters.



17. Spotting Underfitting and Overfitting

We briefly touched on underfitting and overfitting in Chapter 9. We are now going to take a deeper
dive and discuss both underfitting and overfitting in the context of deep learning. To help us
understand the concept of both underfitting and overfitting, I’ll provide a number of graphs and
figures so you can match your own training loss/accuracy curves to them – this practice will be
especially useful if this book is your first exposure to machine learning/deep learning and you
haven’t had to spot underfitting/overfitting before.

From there we’ll discuss how we can create a (near) real-time training monitor for Keras that
you can use to babysit the training process of your network. Up until now, we’ve had to wait until
after our network had completed training before we could plot the training loss and accuracy.

Waiting until the end of the training process to visualize loss and accuracy can be computation-
ally wasteful, especially if our experiments take a long time to run and we have no way to visualize
loss/accuracy during the training process itself (other than looking at the raw terminal output) – we
could spend hours or even days training a network when without realizing that the process should
have been stopped after the first few epochs.

Instead, it would be much more beneficial if we could plot the training and loss after every
epoch and visualize the results. From there we could make better, more informed decisions
regarding whether we should terminate the experiment early or keep training.

17.1 What Are Underfitting and Overfitting?

When training your own neural networks, you need to be highly concerned with both underfitting
and overfitting. Underfitting occurs when your model cannot obtain sufficiently low loss on
the training set. In this case, your model fails to learn the underlying patterns in your training data.
On the other end of the spectrum, we have overfitting where your network models the training data
too well and fails to generalize to your validation data.

Therefore, our goal when training a machine learning model is to:
1. Reduce the training loss as much as possible.
2. While ensuring the gap between the training and testing loss is reasonably small.
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Controlling whether a model is likely to underfit or overfit can be accomplished by adjusting
the capacity of the neural network. We can increase capacity by adding more layers and neurons to
our network. Similarly, we can decrease capacity by removing layers and neurons and applying
regularization techniques (weight decay, dropout, data augmentation, early stopping, etc.).

The following Figure 17.1, (inspired by the excellent example of Figure 5.3 of Goodfellow et al.,
page 112 [10]), helps visualize the relationship between underfitting and overfitting in conjunction
with model capacity:

Figure 17.1: Relationship between model capacity and loss. The vertical purple line separates
optimal capacity from underfitting (left) and overfitting (right). When we are underfitting the
generalization gap is maintained. Optimal capacity occurs when the loss for both training and
generalization levels out. When generalization loss increases we are overfitting. Note: Figure
inspired by Goodfellow et al., page 112 [10].

On the x-axis, we have plotted the capacity of the network, and on the y-axis, we have the
loss, where lower loss is more desirable. Typically when a network starts training we are in the
“underfitting zone” (Figure 17.1, left). At this point, we are simply trying to learn some initial
patterns in the underlying data and move the weights away from their random initializations to
values that enable us to actually “learn” from the data itself. Ideally, both the training loss and
validation loss will drop together during this period – that drop demonstrates that our network is
actually learning.

However, as our model capacity increases (due to deeper networks, more neurons, no regu-
larization, etc.) we’ll reach the “optimal capacity” of the network. At this point, our training and
validation loss/accuracy start to diverge from each other, and a noticeable gap starts to form. Our
goal is to limit this gap, thus preserving the generalizability of our model.

If we fail to limit this gap, we enter the “overfitting zone” (Figure 17.1, right). At this point, our
training loss will either stagnate/continue to drop while our validation loss stagnates and eventually
increases. An increase in validation loss over a series of consecutive epochs is a heavy indicator of
overfitting.

So, how do we combat overfitting? In general, there are two techniques:
1. Reduce the complexity of the model, opting for a more shallow network with less layers and
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neurons.
2. Apply regularization methods.
Using smaller neural networks may work for smaller datasets, but in general, this is not the

preferred solution. Instead, we should apply regularization techniques such as weight decay, dropout,
data augmentation, etc. In practice, it’s nearly always better to use regularization techniques to
control overfitting rather than your network size [129] unless you have very good reason to believe
that your network architecture is simply far too large for the problem.

17.1.1 Effects of Learning Rates
In our previous section we looked at an example of overfitting – but what role does our learning
rate play in overfitting? Is there actually a way to spot if our model is overfitting given a set of
hyperparameters simply by examining the loss curve? You bet there is. Just take a look at Figure
17.2 for an example (heavily inspired by Karpathy et al. [93]).

Figure 17.2: A plot visualizing the affect varying learning rates will have on loss (heavily inspired
by Karpathy et al. [93]). Very high learning rates (red) will drop loss initially but dramatically
increase soon after. Low learning rates (blue) will be approximately linear in their loss over time
while high learning rates (purple) will drop quickly, but level-off. Finally, good learning rates
(green) decrease will decrease at a rate faster than linear, but at a lower exponential, allowing us to
navigate the loss landscape.

On the x-axis, we have plotted the epochs of a neural network along with the corresponding
loss on the y-axis. Ideally, our training loss and validation loss should look like the green curve,
where loss drops quickly but not so quickly that we are unable to navigate our loss landscape and
settle into an area of low loss.

Furthermore, when we plot both the training and validation loss at the same time we can get an
even more detailed understanding of training progress. Preferably, our training and validation loss
would nearly mimic each other, with only a small gap between training loss and validation loss,
indicating little overfitting.
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However, in many real-world applications, identical, mimicking behavior is simply not practical
or even desirable as it may imply that it will take a long time to train our model. Therefore, we
simply need to “mind the gap” between the training and validation loss. As long as the gap doesn’t
increase dramatically, we know there is an acceptable level of overfitting. However, if we fail to
maintain this gap and training and validation loss diverge heavily, then we know we are at risk of
overfitting. Once the validation loss starts to increase, we know we are strongly overfitting.

17.1.2 Pay Attention to Your Training Curves

When training your own neural networks, pay attention to your loss and accuracy curves for both
the training data and validation data. During the first few epochs, it may seem that a neural network
is tracking well, perhaps underfitting slightly – but this pattern can change quickly, and you might
start to see a divergence in training and validation loss. When this happens, assess your model:
• Are you applying any regularization techniques?
• Is your learning rate too high?
• Is your network too deep?
Again, training deep learning networks is part science, part art. The best way to learn how to

read these curves is to train as many networks as you can and inspect their plots. Over time you
will develop a sense of what works and what doesn’t – but don’t expect to get it “right” on the
first try. Even the most seasoned deep learning practitioner will run 10’s to 100’s of experiments,
examining the loss/accuracy curves along the way, noting what works and what doesn’t, and
eventually zeroing in on a solution that works.

Finally, you should also accept the fact that overfitting for certain datasets is an inevitability.
For example, it is very easy to overfit a model to the CIFAR-10 dataset. If your training loss and
validation loss start to diverge, don’t panic – simply try to control the gap as much as possible.

Also realize that as you lower your learning rate in later epochs (such as when using a learning
rate scheduler), it will become easier to overfit as well. This point will become more clear in the
more advanced chapters in both the Practitioner Bundle and ImageNet Bundle.

17.1.3 What if Validation Loss Is Lower than Training Loss?

Another strange phenomenon you might encounter is when your validation loss is actually
lower than your training loss. How is this possible? How can a network possibly be performing
better on the validation data when the patterns it is trying to learn is from the training data?
Shouldn’t the training performance always be better than the validation or testing loss?

Not always. In fact, there are multiple reasons for this behavior. Perhaps the simplest explana-
tion is:

1. Your training data is seeing all the “hard” examples to classify.
2. While your validation data consists of the “easy” data points.
However, unless you purposely sampled your data in this way, it’s unlikely that a random

training and testing split would neatly segment these types of data points.
A second reason would be data augmentation. We cover data augmentation in detail inside the

Practitioner Bundle, but the gist is that during the training process we randomly alter the training
images by applying random transformations to them such as translation, rotation, resizing, and
shearing. Because of these alterations, the network is constantly seeing augmented examples of
the training data, which is a form of regularization, enabling the network to generalize better to
the validation data while perhaps performing worse on the training set (see Chapter 9.4 for more
details on regularization).

A third reason could be you’re not training "hard enough". You might want to consider
increasing your learning rate and tweaking your regularization strength.
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17.2 Monitoring the Training Process
In the first part of this section, we’ll create a TrainingMonitor callback that will be called at the
end of every epoch when training a network with Keras. This monitor will serialize the loss and
accuracy for both the training and validation set to disk, followed by constructing a plot of the data.

Applying this callback during training will enable us to babysit the training process and spot
overfitting early, allowing us to abort the experiment and continue trying to tune our parameters.

17.2.1 Creating a Training Monitor
Our TrainingMonitor class will live in the pyimagesearch.callbacks sub-module:

|--- pyimagesearch
| |--- __init__.py
| |--- callbacks
| | |--- __init__.py
| | |--- trainingmonitor.py
| |--- datasets
| |--- nn
| |--- preprocessing
| |--- utils

Create the trainingmonitor.py file and let’s get started:

1 # import the necessary packages
2 from keras.callbacks import BaseLogger
3 import matplotlib.pyplot as plt
4 import numpy as np
5 import json
6 import os
7

8 class TrainingMonitor(BaseLogger):
9 def __init__(self, figPath, jsonPath=None, startAt=0):

10 # store the output path for the figure, the path to the JSON
11 # serialized file, and the starting epoch
12 super(TrainingMonitor, self).__init__()
13 self.figPath = figPath
14 self.jsonPath = jsonPath
15 self.startAt = startAt

Lines 1-6 import our required Python packages. In order to create a class that logs our loss and
accuracy to disk, we’ll need to extend Keras’ BaseLogger class (Line 2).

The constructor to the TrainingMonitor class is defined on Line 9. The constructor requires
one argument, followed by two optional ones:
• figPath: The path to the output plot that we can use to visualize loss and accuracy over

time.
• jsonPath: An optional path used to serialize the loss and accuracy values as a JSON file.

This path is useful if you want to use the training history to create custom plots of your own.
• startAt: This is the starting epoch that training is resumed at when using ctrl + c training.

We cover ctrl + c training in the Practitioner Bundle so we can ignore this variable for
now.

Next, let’s define the on_train_begin callback, which as the name suggests, is called
once when the training process starts:
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17 def on_train_begin(self, logs={}):
18 # initialize the history dictionary
19 self.H = {}
20

21 # if the JSON history path exists, load the training history
22 if self.jsonPath is not None:
23 if os.path.exists(self.jsonPath):
24 self.H = json.loads(open(self.jsonPath).read())
25

26 # check to see if a starting epoch was supplied
27 if self.startAt > 0:
28 # loop over the entries in the history log and
29 # trim any entries that are past the starting
30 # epoch
31 for k in self.H.keys():
32 self.H[k] = self.H[k][:self.startAt]

On Line 19 we define H, used to represent the “history” of losses. We’ll see how this dictionary
is updated in the on_epoch_end function in the next code block.

Line 22 makes a check to see if a JSON path was supplied. If so, we then check to see if this
JSON file exists. Provided that the JSON file does exist, we load its contents and update the history
dictionary H up until the starting epoch (since that is where we will resume training from).

We can now move on to the most important function, on_epoch_end which is called when a
training epoch completes:

34 def on_epoch_end(self, epoch, logs={}):
35 # loop over the logs and update the loss, accuracy, etc.
36 # for the entire training process
37 for (k, v) in logs.items():
38 l = self.H.get(k, [])
39 l.append(v)
40 self.H[k] = l

The on_epoch_end method is automatically supplied to parameters from Keras. The first is
an integer representing the epoch number. The second is a dictionary, logs, which contains the
training and validation loss + accuracy for the current epoch. We loop over each of the items in
logs and then update our history dictionary (Lines 37-40).

After this code executes, the dictionary H now has four keys:
1. train_loss
2. train_acc
3. val_loss
4. val_acc
We maintain a list of values for each of these keys. Each list is updated at the end of every

epoch, thus enabling us to plot an updated loss and accuracy curve as soon as the epoch completes.
In the case that a jsonPath was provided, we serialize the history H to disk:

42 # check to see if the training history should be serialized
43 # to file
44 if self.jsonPath is not None:
45 f = open(self.jsonPath, "w")
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46 f.write(json.dumps(self.H))
47 f.close()

Finally, we can construct the actual plot as well:

49 # ensure at least two epochs have passed before plotting
50 # (epoch starts at zero)
51 if len(self.H["loss"]) > 1:
52 # plot the training loss and accuracy
53 N = np.arange(0, len(self.H["loss"]))
54 plt.style.use("ggplot")
55 plt.figure()
56 plt.plot(N, self.H["loss"], label="train_loss")
57 plt.plot(N, self.H["val_loss"], label="val_loss")
58 plt.plot(N, self.H["acc"], label="train_acc")
59 plt.plot(N, self.H["val_acc"], label="val_acc")
60 plt.title("Training Loss and Accuracy [Epoch {}]".format(
61 len(self.H["loss"])))
62 plt.xlabel("Epoch #")
63 plt.ylabel("Loss/Accuracy")
64 plt.legend()
65

66 # save the figure
67 plt.savefig(self.figPath)
68 plt.close()

Now that our TrainingMonitor is defined, let’s move on to actually monitoring and babysit-
ting the training process.

17.2.2 Babysitting Training

To monitor the training process, we’ll need to create a driver script that trains a network using the
TrainingMonitor callback. To begin, open up a new file, name it cifar10_monitor.py, and
insert the following code:

1 # set the matplotlib backend so figures can be saved in the background
2 import matplotlib
3 matplotlib.use("Agg")
4

5 # import the necessary packages
6 from pyimagesearch.callbacks import TrainingMonitor
7 from sklearn.preprocessing import LabelBinarizer
8 from pyimagesearch.nn.conv import MiniVGGNet
9 from keras.optimizers import SGD

10 from keras.datasets import cifar10
11 import argparse
12 import os

Lines 1-12 import our required Python packages. Note how we are importing our newly defined
TrainingMonitor class to enable us to babysit the training of our network.

Next, we can parse our command line arguments:
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14 # construct the argument parse and parse the arguments
15 ap = argparse.ArgumentParser()
16 ap.add_argument("-o", "--output", required=True,
17 help="path to the output directory")
18 args = vars(ap.parse_args())
19

20 # show information on the process ID
21 print("[INFO process ID: {}".format(os.getpid()))

The only command line argument we need is --output, the path to the output directory to
store our matplotlib generated figure and serialized JSON training history.

A neat trick I like to do is use the process ID assigned by the operating system to name my plots
and JSON files. If I notice that training is going poorly, I can simply open up my task manager and
kill the process ID associated with my script. This ability is especially useful if you are running
multiple experiments at the same time. Line 21 simply displays the process ID to our screen.

From there, we perform our standard pipeline of loading the CIFAR-10 dataset and preparing
the data + labels for training:

23 # load the training and testing data, then scale it into the
24 # range [0, 1]
25 print("[INFO] loading CIFAR-10 data...")
26 ((trainX, trainY), (testX, testY)) = cifar10.load_data()
27 trainX = trainX.astype("float") / 255.0
28 testX = testX.astype("float") / 255.0
29

30 # convert the labels from integers to vectors
31 lb = LabelBinarizer()
32 trainY = lb.fit_transform(trainY)
33 testY = lb.transform(testY)
34

35 # initialize the label names for the CIFAR-10 dataset
36 labelNames = ["airplane", "automobile", "bird", "cat", "deer",
37 "dog", "frog", "horse", "ship", "truck"]

We are now ready to initialize the SGD optimizer along with the MiniVGGNet architecture:

39 # initialize the SGD optimizer, but without any learning rate decay
40 print("[INFO] compiling model...")
41 opt = SGD(lr=0.01, momentum=0.9, nesterov=True)
42 model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
43 model.compile(loss="categorical_crossentropy", optimizer=opt,
44 metrics=["accuracy"])

Notice how I am not including a learning rate decay of any sort. This omission is on purpose so
I can demonstrate how to monitor your training process and spot overfitting as it’s happening.

Let’s construct our TrainingMonitor callback and train the network:

46 # construct the set of callbacks
47 figPath = os.path.sep.join([args["output"], "{}.png".format(
48 os.getpid())])
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49 jsonPath = os.path.sep.join([args["output"], "{}.json".format(
50 os.getpid())])
51 callbacks = [TrainingMonitor(figPath, jsonPath=jsonPath)]
52

53 # train the network
54 print("[INFO] training network...")
55 model.fit(trainX, trainY, validation_data=(testX, testY),
56 batch_size=64, epochs=100, callbacks=callbacks, verbose=1)

Lines 47-50 initialize the paths to our output plot and JSON serialized file, respectively. Notice
how each of these file paths includes the process ID, allowing us to easily associate an experiment
with a process ID – in the case that an experiment goes poorly, we can kill the script off using our
task manager. Given the figure and JSON paths, Line 51 builds our callbacks list, consisting of a
single entry, the TrainingMonitor itself.

Finally, Lines 55 and 56 train our network for a total of 100 epochs. I’ve purposely set the
epochs very high to encourage our network to overfit.

To execute the script (and learn how to spot overfitting), just execute the following command:

$ python cifar10_monitor.py --output output

After the first few epochs you’ll notice two files in your --output directory:

$ ls output/
7857.json 7857.png

These are your serialized training history and learning plots, respectively. Each file is named
after the process ID that created them. The benefit of using the TrainingMonitor is that I can
now babysit the learning process and monitor the training after every epoch completes.

For example, Figure 17.3 (top-left) displays our loss and accuracy plot after epoch 5. Right
now we are still in the “underfitting zone”. Our network is clearly learning from the training data as
we can see loss decreasing and accuracy increasing; however, we have not reached any plateaus.

After epoch 10 we can notice signs of overfitting, but nothing that is overly alarming (Figure
17.3, top-middle). The training loss is starting to diverge from the validation loss, but some
divergence is entirely normal, and even a good indication that our network is continuing to learn
underlying patterns from the training data.

However, by epoch 25 we have reached the “overfitting zone” (Figure 17.3, top-right). Training
loss is continuing to decline while validation loss has stagnated. This is a clear first sign of
overfitting and bad things to come.

By epoch 50 we are clearly in trouble (Figure 17.3, bottom-left). Validation loss is starting
to increase, the tell-tale sign of overfitting. At this point, you should have definitely stopped the
experiment to reassess your parameters.

If we were to let the network train until epoch 100, the overfitting would only get worse
(Figure 17.3, bottom-right). The gap between training loss and validation loss is gigantic, all while
validation loss continues to increase. While the validation accuracy of this network is above 80%,
the ability of this model to generalize would be quite poor. Based on these plots we can clearly see
when and where overfitting starts to occur. When running your own experiments, make sure you
use the TrainingMonitor to aid you in babysitting the training process.

Finally, when you start to think there are signs of overfitting, don’t become too trigger happy
to kill off the experiment. Let the network train for another 10-15 epochs to ensure your hunch is
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Figure 17.3: Examples of monitoring the training process by examining the training/validation loss
curves. At epoch 5 we are still in the underfitting zone. At epoch 14 we are starting to overfit, but
nothing to be overly concerned about. By epoch 25 we are certainly inside the overfitting zone.
Epochs 50 and 100 demonstrate heavy overfitting as the validation loss rises while training loss
continues to fall.

correct and that overfitting is occurring – we often need the context of these epochs to help us make
this final decision.

Too often I see deep learning practitioners new to machine learning too trigger happy and
kill experiments too early. Wait until you see clear signs of overfitting, then kill the process. As
you hone your deep learning skills you’ll develop a sixth sense to guide you when training your
networks, but until then, trust the context of the extra epochs to enable you to make a better, more
informed decision.

17.3 Summary

In this chapter we reviewed underfitting and overfitting. Underfitting occurs when your model
is unable to obtain sufficiently low loss on the training set. Meanwhile, overfitting occurs when
the gap between your training loss and validation loss is too large, indicating that the network is
modeling the underlying patterns in the training data too strong.

Underfitting is relatively easy to combat: simply add more layers/neurons to your network.
Overfitting is an entirely different beast though. When overfitting occurs you should consider:

1. Reducing the capacity of your network by removing layers/neurons (not recommended unless
for small dataset).

2. Applying stronger regularization techniques.
In nearly all situations you should first attempt applying stronger regularization than reducing

the size of your network – the exception being if you’re attempting to train a massively deep
network on a tiny dataset.

After understanding the relationship between model capacity and both underfitting and overfit-
ting, we learned how to monitor our training process and spot overfitting as it’s happening – this
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process allows us to stop networks from training early instead of wasting time letting the network
overfit. Finally, we wrapped up the chapter by looking at some tell-tale examples of overfitting.





18. Checkpointing Models

In Chapter 13 we discussed how to save and serialize your models to disk after training is complete.
And in the last chapter, we learned how to spot underfitting and overfitting as they are happening,
enabling you to kill off experiments that are not performing well while keeping the models that
show promise while training.

However, you might be wondering if it’s possible to combine both of these strategies. Can
we serialize models whenever our loss/accuracy improves? Or is it possible to serialize only the
best model (i.e., the one with the lowest loss or highest accuracy) during the training process? You
bet. And luckily, we don’t have to build a custom callback either – this functionality is baked right
into Keras.

18.1 Checkpointing Neural Network Model Improvements

A good application of checkpointing is to serialize your network to disk each time there is an
improvement during training. We define an “improvement” to be either a decrease in loss or an
increase in accuracy – we’ll set this parameter inside the actual Keras callback.

In this example, we’ll be training the MiniVGGNet architecture on the CIFAR-10 dataset and
then serializing our network weights to disk each time model performance improves. To get started,
open up a new file, name it cifar10_checkpoint_improvements.py, and insert the following
code:

1 # import the necessary packages
2 from sklearn.preprocessing import LabelBinarizer
3 from pyimagesearch.nn.conv import MiniVGGNet
4 from keras.callbacks import ModelCheckpoint
5 from keras.optimizers import SGD
6 from keras.datasets import cifar10
7 import argparse
8 import os
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Lines 2-8 import our required Python packages. Take note of the ModelCheckpoint class
imported on Line 4 – this class will enable us to checkpoint and serialize our networks to disk
whenever we find an incremental improvement in model performance.

Next, let’s parse our command line arguments:

10 # construct the argument parse and parse the arguments
11 ap = argparse.ArgumentParser()
12 ap.add_argument("-w", "--weights", required=True,
13 help="path to weights directory")
14 args = vars(ap.parse_args())

The only command line argument we need is --weights, the path to the output directory that
will store our serialized models during the training process. We then perform our standard routine
of loading the CIFAR-10 dataset from disk, scaling the pixel intensities to the range [0,1], and then
one-hot encoding the labels:

16 # load the training and testing data, then scale it into the
17 # range [0, 1]
18 print("[INFO] loading CIFAR-10 data...")
19 ((trainX, trainY), (testX, testY)) = cifar10.load_data()
20 trainX = trainX.astype("float") / 255.0
21 testX = testX.astype("float") / 255.0
22

23 # convert the labels from integers to vectors
24 lb = LabelBinarizer()
25 trainY = lb.fit_transform(trainY)
26 testY = lb.transform(testY)

Given our data, we are now ready to initialize our SGD optimizer along with the MiniVGGNet
architecture:

28 # initialize the optimizer and model
29 print("[INFO] compiling model...")
30 opt = SGD(lr=0.01, decay=0.01 / 40, momentum=0.9, nesterov=True)
31 model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
32 model.compile(loss="categorical_crossentropy", optimizer=opt,
33 metrics=["accuracy"])

We’ll use the SGD optimizer with an initial learning rate of α = 0.01 and then slowly decay it
over the course of 40 epochs. We’ll also apply a momentum of γ = 0.9 and indicate that Nesterov
acceleration should also be used as well.

The MiniVGGNet architecture is instantiated to accept input images with a width of 32 pixels, a
height of 32 pixels, and a depth of 3 (number of channels). We set classes=10 since the CIFAR-10
dataset has ten possible class labels.

The critical step to checkpointing our network can be found in the code block below:

35 # construct the callback to save only the *best* model to disk
36 # based on the validation loss
37 fname = os.path.sep.join([args["weights"],
38 "weights-{epoch:03d}-{val_loss:.4f}.hdf5"])
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39 checkpoint = ModelCheckpoint(fname, monitor="val_loss", mode="min",
40 save_best_only=True, verbose=1)
41 callbacks = [checkpoint]

On Lines 37 and 38 we construct a special filename (fname) template string that Keras uses
when writing our models to disk. The first variable in the template, {epoch:03d}, is our epoch
number, written out to three digits.

The second variable is the metric we want to monitor for improvement, {val_loss:.4f}, the
loss itself for validation set on the current epoch. Of course, if we wanted to monitor the validation
accuracy we can replace val_loss with val_acc. If we instead wanted to monitor the training loss
and accuracy the variable would become train_loss and train_acc, respectively (although I
would recommend monitoring your validation metrics as they will give you a better sense on how
your model will generalize).

Once the output filename template is defined, we then instantiate the ModelCheckpoint class
on Lines 39 and 40. The first parameter to ModelCheckpoint is the string representing our
filename template. We then pass in what we would like to monitor. In this case, we would like to
monitor the validation loss (val_loss).

The mode parameter controls whether the ModelCheckpoint should be looking for values that
minimize our metric or maximize it. Since we are working with loss, lower is better, so we set
mode="min". If we were instead working with val_acc, we would set mode="max" (since higher
accuracy is better).

Setting save_best_only=True ensures that the latest best model (according to the metric
monitored) will not be overwritten. Finally, the verbose=1 setting simply logs a notification to our
terminal when a model is being serialized to disk during training.

Line 41 then constructs a list of callbacks – the only callback we need is our checkpoint.
The last step is to simply train the network and allowing our checkpoint to take care of the

rest:

43 # train the network
44 print("[INFO] training network...")
45 H = model.fit(trainX, trainY, validation_data=(testX, testY),
46 batch_size=64, epochs=40, callbacks=callbacks, verbose=2)

To execute our script, simply open up a terminal and execute the following command:

$ python cifar10_checkpoint_improvements.py --weights weights/improvements
[INFO] loading CIFAR-10 data...
[INFO] compiling model...
[INFO] training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/40
171s - loss: 1.6700 - acc: 0.4375 - val_loss: 1.2697 - val_acc: 0.5425
Epoch 2/40
Epoch 00001: val_loss improved from 1.26973 to 0.98481, saving model to test/

weights-001-0.9848.hdf5
...
Epoch 40/40
Epoch 00039: val_loss did not improve
315s - loss: 0.2594 - acc: 0.9075 - val_loss: 0.5707 - val_acc: 0.8190
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Figure 18.1: Checkpointing individual models every time model performance improves, resulting
in multiple weight files after training completes.

As we can see from my terminal output and Figure 18.1, every time the validation loss decreases
we save a new serialized model to disk.

At the end of the training process we have 18 separate files, one for each incremental improve-
ment:

$ find ./ -printf "%f\n" | sort
./
weights-000-1.2697.hdf5
weights-001-0.9848.hdf5
weights-003-0.8176.hdf5
weights-004-0.7987.hdf5
weights-005-0.7722.hdf5
weights-006-0.6925.hdf5
weights-007-0.6846.hdf5
weights-008-0.6771.hdf5
weights-009-0.6212.hdf5
weights-012-0.6121.hdf5
weights-013-0.6101.hdf5
weights-014-0.5899.hdf5
weights-015-0.5811.hdf5
weights-017-0.5774.hdf5
weights-019-0.5740.hdf5
weights-022-0.5724.hdf5
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weights-024-0.5628.hdf5
weights-033-0.5546.hdf5

As you can see, each filename has three components. The first is a static string, weights. We
then have the epoch number. The final component of the filename is the metric we are measuring
for improvement, which in this case is validation loss.

Our best validation loss was obtained on epoch 33 with a value of 0.5546. We could then take
this model and load it from disk (Chapter 13) and further evaluate it or apply it to our own custom
images (which we’ll cover in the next chapter).

Keep in mind that your results will not match mine as networks are stochastic and initialized
with random variables. Depending on the initial values, you might have dramatically different
model checkpoints, but at the end of the training process, our networks should obtain similar
accuracy (± a few percentage points).

18.2 Checkpointing Best Neural Network Only

Perhaps the biggest downside with checkpointing incremental improvements is that we end up with
a bunch of extra files that we are (unlikely) interested in, which is especially true if our validation
loss moves up and down over training epochs – each of these incremental improvements will be
captured and serialized to disk. In this case, it’s best to save only one model and simply overwrite
it every time our metric improves during training.

Luckily, accomplishing this action is as simple as updating the ModelCheckpoint class to
accept a simple string (i.e., a file path without any template variables). Then, whenever our metric
improves, that file is simply overwritten. To understand the process, let’s create a second Python
file named cifar10_checkpoint_best.py and review the differences.

First, we need to import our required Python packages:

1 # import the necessary packages
2 from sklearn.preprocessing import LabelBinarizer
3 from pyimagesearch.nn.conv import MiniVGGNet
4 from keras.callbacks import ModelCheckpoint
5 from keras.optimizers import SGD
6 from keras.datasets import cifar10
7 import argparse

Then parse our command line arguments:

9 # construct the argument parse and parse the arguments
10 ap = argparse.ArgumentParser()
11 ap.add_argument("-w", "--weights", required=True,
12 help="path to best model weights file")
13 args = vars(ap.parse_args())

The name of the command line argument itself is the same (--weights), but the description of
the switch is now different: “path to best model weights file”. Thus, this command line argument
will be a simple string to an output path – there will be no tempting applied to this string.

From there we can load our CIFAR-10 dataset and prepare it for training:
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15 # load the training and testing data, then scale it into the
16 # range [0, 1]
17 print("[INFO] loading CIFAR-10 data...")
18 ((trainX, trainY), (testX, testY)) = cifar10.load_data()
19 trainX = trainX.astype("float") / 255.0
20 testX = testX.astype("float") / 255.0
21

22 # convert the labels from integers to vectors
23 lb = LabelBinarizer()
24 trainY = lb.fit_transform(trainY)
25 testY = lb.transform(testY)

As well as initialize our SGD optimizer and MiniVGGNet architecture:

27 # initialize the optimizer and model
28 print("[INFO] compiling model...")
29 opt = SGD(lr=0.01, decay=0.01 / 40, momentum=0.9, nesterov=True)
30 model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
31 model.compile(loss="categorical_crossentropy", optimizer=opt,
32 metrics=["accuracy"])

We are now ready to update the ModelCheckpoint code:

34 # construct the callback to save only the *best* model to disk
35 # based on the validation loss
36 checkpoint = ModelCheckpoint(args["weights"], monitor="val_loss",
37 save_best_only=True, verbose=1)
38 callbacks = [checkpoint]

Notice how the fname template string is gone – all we are doing is supply the value of
--weights to ModelCheckpoint. Since there are no template values to fill in, Keras will simply
overwrite the existing serialized weights file whenever our monitoring metric improves (in this
case, validation loss).

Finally, we train on network in the code block below:

40 # train the network
41 print("[INFO] training network...")
42 H = model.fit(trainX, trainY, validation_data=(testX, testY),
43 batch_size=64, epochs=40, callbacks=callbacks, verbose=2)

To execute our script, issue the following command:

$ python cifar10_checkpoint_best.py --weights test_best/cifar10_best_weights.hdf5
[INFO] loading CIFAR-10 data...
[INFO] compiling model...
[INFO] training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/40
Epoch 00000: val_loss improved from inf to 1.26677, saving model to

test_best/cifar10_best_weights.hdf5
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305s - loss: 1.6657 - acc: 0.4441 - val_loss: 1.2668 - val_acc: 0.5584
Epoch 2/40
Epoch 00001: val_loss improved from 1.26677 to 1.21923, saving model to

test_best/cifar10_best_weights.hdf5
309s - loss: 1.1996 - acc: 0.5828 - val_loss: 1.2192 - val_acc: 0.5798
...
Epoch 40/40
Epoch 00039: val_loss did not improve
173s - loss: 0.2615 - acc: 0.9079 - val_loss: 0.5511 - val_acc: 0.8250

Here you can see that we overwrite our cifar10_best_weights.hdf5 file with the updated
network only if our validation loss decreases. This has two primary benefits:

1. There is only one serialized file at the end of the training process – the model epoch that
obtained the lowest loss.

2. We are not capturing “incremental improvements” where loss fluctuates up and down. Instead,
we only save and overwrite the existing best model if our metric obtains a loss lower than
all previous epochs.

To confirm this, take a look at my weights/best directory where you can see there is only
one output file:

$ ls -l weights/best/
total 17024
-rw-rw-r-- 1 adrian adrian 17431968 Apr 28 09:47 cifar10_best_weights.hdf5

You can then take this serialized MiniVGGNet and further evaluate it on the testing data or
apply it to your own images (covered in the Chapter 15).

18.3 Summary
In this chapter, we reviewed how to monitor a given metric (e.x., validation loss, validation accuracy,
etc.) during training and then save high performing networks to disk. There are two methods to
accomplish this inside Keras:

1. Checkpoint incremental improvements.
2. Checkpoint only the best model found during the process.
Personally, I prefer the latter over the former since it results in less files and a single output file

that represents the best epoch found during the training process.





19. Visualizing Network Architectures

One concept we have not discussed yet is architecture visualization, the process of constructing a
graph of nodes and associated connections in a network and saving the graph to disk as an image
(i.e., .PNG. JPG, etc.). Nodes in the graphs represent layers, while connections between nodes
represent the flow of data through the network.

These graphs typically include the following components for each layer:
1. The input volume size.
2. The output volume size.
3. And optionally the name of the layer.
We typically use network architecture visualization when (1) debugging our own custom

network architectures and (2) publication, where a visualization of the architecture is easier to
understand than including the actual source code or trying to construct a table to convey the same
information. In the remainder of this chapter, you will learn how to construct network architecture
visualization graphs using Keras, followed by serializing the graph to disk as an actual image.

19.1 The Importance of Architecture Visualization
Visualizing the architecture of a model is a critical debugging tool, especially if you are:

1. Implementing an architecture in a publication, but are unfamiliar with it.
2. Implementing your own custom network architecture.
In short, network visualization validates our assumptions that our code is correctly building the

model we are intending to construct. By examining the output graph image, you can see if there is
a flaw in your logic. The most common flaws include:

1. Incorrectly ordering layers in the network.
2. Assuming an (incorrect) output volume size after a CONV or POOL layer.
Whenever implementing a network architecture, I suggest you visualize the network architecture

after every block of CONV and POOL layers, which will enable you to validate your assumptions
(and more importantly, catch “bugs” in the network early on).

Bugs in Convolutional Neural Networks are not like other logic bugs in applications resulting
from edge cases. Instead, a CNN very well may train and obtain reasonable results even with an
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incorrect layer ordering, but if you don’t realize that this bug has happened, you might report your
results thinking you did one thing, but in reality did another.

In the remainder of this chapter, I’ll help you visualize your own network architectures to avoid
these types of problematic situations.

19.1.1 Installing graphviz and pydot
In order to construct a graph of our network and save it to disk using Keras, we need to install the
graphviz prerequisite:

On Ubuntu, this is as simple as:

$ sudo apt-get install graphviz

While on macOS, we can install graphviz via Homebrew:

$ brew install graphviz

Once graphviz library is installed, we need to install two Python packages:

$ pip install graphviz==0.5.2
$ pip install pydot-ng==1.0.0

The above instructions were included in Chapter 6 when you configured your development
machine for deep learning, but I’ve included them here as well as a matter of completeness. If you
are struggling to get these libraries installed, please see the associated supplementary material at
the end of Chapter 6.

19.1.2 Visualizing Keras Networks
Visualizing network architectures with Keras is incredibly simple. To see how easy it is, open up a
new file, name it visualize_architecture.py and insert the following code:

1 # import the necessary packages
2 from pyimagesearch.nn.conv import LeNet
3 from keras.utils import plot_model
4

5 # initialize LeNet and then write the network architecture
6 # visualization graph to disk
7 model = LeNet.build(28, 28, 1, 10)
8 plot_model(model, to_file="lenet.png", show_shapes=True)

Line 2 imports our implementation of LeNet (Chapter 14) – this is the network architecture
that we’ll be visualizing. Line 3 imports the plot_model function from Keras. As this function
name suggests, plot_model is responsible for constructing a graph based on the layers inside the
input model and then writing the graph to disk an image.

On Line 7 we instantiate the LeNet architecture as if we were going to apply it to MNIST for
digit classification. The parameters include the width of the input volume (28 pixels), the height
(28 pixels), the depth (1 channel), and the total number of class labels (10).

Finally, Line 8 plots our model saves it to disk under the name lenet.png.
To execute our script, just open up a terminal and issue the following command:
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Figure 19.1: Part I of a graphical depiction of the LeNet network architecture generated by Keras.
Each node in the graph represents a specific layer function (i.e., convolution, pooling, activation,
flattening, fully-connected, etc.). Arrows represent the flow of data through the network. Each node
also includes the volume input size and output size after a given operation.

$ python visualize_architecture.py

Once the command successfully exists, check your current working directory:

$ ls
lenet.png visualize_architecture.py

As you’ll see, there is a file named lenet.png – this file is our actual network visualization
graph. Open it up and examine it (Figures 19.1 and 19.2).

Here we can see a visualization of the data flow through our network. Each layer is represented
as a node in the architecture which are then connected to other layers, ultimately terminating after
the softmax classifier is applied. Notice how each layer in the network includes an input and
output attribute – these values are the size of the respective volume’s spatial dimensions when it
enters the layer and after it exits the layer.
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Walking through the LeNet architecture, we see the first layer is our InputLayer which accepts
a 28×28×1 input image. The spatial dimensions for the input and output of the layer are the same
as this is simply a “placeholder” for the input data.

You might be wondering what the None represents in the data shape (None, 28, 28, 1).
The None is actually our batch size. When visualizing the network architecture, Keras does not
know our intended batch size so it leaves the value as None. When training this value would change
to 32, 64, 128, etc., or whatever batch size we deemed appropriate.

Next, our data flows to the first CONV layer, where we learn 20 kernels on the 28×28×1 input.
The output of this first CONV layer is 28×28×20. We have retained our original spatial dimensions
due to zero padding, but by learning 20 filters we have changed the volume size.

Figure 19.2: Part II of the LeNet architecture visualization, including the fully-connected layers
and softmax classifier. In this case, we assume our instantiation of LeNet will be used with the
MNIST dataset so we have ten total output nodes in our final softmax layer.

An activation layer follows the CONV layer, which by definition cannot change the input volume
size. However, a POOL operation can reduce the volume size – here our input volume is reduced
from 28×28×20 down to 14×14×20.

The second CONV accepts the 14×14×20 volume as input, but then learns 50 filters, changing
the output volume size to 14×14×50 (again, zero padding is leveraged to ensure the convolution
itself does not reduce the width and height of the input). An activation is applied prior to another
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POOL operation which again halves the width and height from 14×14×50 down to 7×7×50.
At this point, we are ready to apply our FC layers. To accomplish this, our 7× 7× 50 input

is flattened into a list of 2,450 values (since 7×7×50 = 2,450). Now that we have flattened the
output of the convolutional part of our network, we can apply a FC layer that accepts the 2,450
input values and learns 500 nodes. An activation follows, followed by another FC layer, this time
reducing 500 down to 10 (the total number of class labels for the MNIST dataset).

Finally, a softmax classifier is applied to each of the 10 input nodes, giving us our final class
probabilities.

19.2 Summary
Just as we can express the LeNet architecture in code, we can also visualize the model itself as
an image. As you get started on your deep learning journey, I highly encourage you to use this
code to visualize any networks you are working with, especially if you are unfamiliar with them.
Ensuring you understand the flow of data through the network and how the volume sizes change
based on CONV, POOL, and FC layers will give you a dramatically more intimate understanding of
the architecture rather than relying on code alone.

When implementing my own network architectures, I validate that I’m on the right track by
visualizing the architecture every 2-3 layer blocks as I’m actually coding the network – this action
helps me find bugs or flaws in my logic early on.
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Thus far we have learned how to train our own custom Convolutional Neural Networks from scratch.
Most of these CNNs have been on the more shallow side (and on smaller datasets) so they can be
easily trained on our CPUs, without having to resort to more expensive GPUs, which allows us to
master the basics of neural networks and deep learning without having to empty our pockets.

However, because we have been working with more shallow networks and smaller datasets, we
haven’t been able to take advantage of the full classification power that deep learning affords us.
Luckily, the Keras library ships with five CNNs that have been pre-trained on the ImageNet dataset:
• VGG16
• VGG19
• ResNet50
• Inception V3
• Xception
As we discussed in Chapter 5, the goal of the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [42] is to train a model that can correctly classify an input image into 1,000
separate object categories. These 1,000 image categories represent object classes that we encounter
in our day-to-day lives, such as species of dogs, cats, various household objects, vehicle types, and
much more.

This implies that if we leverage CNNs pre-trained on the ImageNet dataset, we can recognize
all of these 1,000 object categories out-of-the-box – no training required! A complete list of
object categories that you can recognize using pre-trained ImageNet models can be found here
http://pyimg.co/x1ler.

In this chapter, we’ll review the pre-trained state-of-the-art ImageNet models inside the Keras
library. I’ll then demonstrate how we can write a Python script to use these networks to classify our
own custom images without having to train these models from scratch.

20.1 State-of-the-art CNNs in Keras

At this point, you’re probably wondering:

http://pyimg.co/x1ler
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“I don’t have an expensive GPU. How can I use these massive deep learning net-
works that have been pre-trained on datasets much larger than what we’ve worked
with in this book?”

To answer that question, consider Chapter 8 on Parameterized Learning. Recall that the point
of parameterized learning is two-fold:

1. Define a machine learning model that can learn patterns from our input data during training
time (requiring us to spend more time on the training process), but have the testing process
be much faster.

2. Obtain a model that can be defined using a small number of parameters that can easily
represent the network, regardless of training size.

Therefore, our actual model size is a function of its parameters, not the amount of training data.
We could train a very deep CNN (such as VGG or ResNet) on a dataset of 1 million images or a
dataset of 100 images – but the resulting output model size will be the same because model size is
determined by the architecture that we choose.

Secondly, neural networks frontload the vast majority of the work. We spend most of our time
actually training our CNNs, whether this is due to the depth of the architecture, the amount of
training data, or the number of experiments we have to run to tune our hyperparameters.

Optimized hardware such as GPUs enable us to speed up the training process as we need to
perform both the forward pass and the backward pass in the backpropagation algorithm – as we
already know, this process is how our network actually learns. However, once the network is trained,
we only need to perform the forward pass to classify a given input image. The forward pass is
substantially faster, enabling us to classify input images using deep neural networks on a CPU.

In most cases, the network architectures presented in this chapter won’t be able to achieve true
real-time performance on a CPU (for that we’ll need a GPU) – but that’s okay; you’ll still be able
to use these pre-trained networks in your own applications. If you’re interested in learning how to
train state-of-the-art Convolutional Neural Networks from scratch on the challenging ImageNet
dataset, be sure to refer to the ImageNet Bundle of this book where I demonstrate exactly that.

20.1.1 VGG16 and VGG19

Figure 20.1: A visualization of the VGG architecture. Images with 224×224×3 dimensions are
inputted to the network. Convolution filters of only 3×3 are then applied with more convolutions
stacked on top of each other prior to max pooling operations deeper in the architecture. Image
credit: http://pyimg.co/xgiek

The VGG network architecture (Figure 20.1) was introduced by Simonyan and Zisserman in
their 2014 paper, Very Deep Convolutional Networks for Large Scale Image Recognition [95].

http://pyimg.co/xgiek
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As we discussed in Chapter 15, the VGG family of networks is characterized by using only
3×3 convolutional layers stacked on top of each other in increasing depth. Reducing volume size
is handled by max pooling. Two fully-connected layers each with 4,096 nodes are then followed by
a softmax classifier.

In 2014, 16 and 19 layer networks were considered very deep, although we now have the
ResNet architecture which can be successfully trained at depths of 50-200 for ImageNet and over
1,000 for CIFAR-10. Unfortunately, there are two major drawbacks with VGG:

1. It is painfully slow to train (luckily we are only testing input images in this chapter).
2. The network weights themselves are quite larger (in terms of disk space/bandwidth). Due to

its depth and number of fully-connected nodes, the serialized weight files for VGG16 are
533MB while VGG19 is 574MB.

Luckily, these weights only have to be downloaded once – from there we can cache them to
disk.

20.1.2 ResNet

Figure 20.2: Left: The original residual module. Right: The updated residual module using
pre-activation. Figures from He et al., 2016 [130].

First introduced by He et al. in their 2015 paper, Deep Residual Learning for Image Recog-
nition [96], the ResNet architecture has become a seminal work in the deep learning literature,
demonstrating that extremely deep networks can be trained using standard SGD (and a reasonable
initialization function) through the use of residual modules.

Further accuracy can be obtained by updating the residual module to use identity mappings
(Figure 20.2), as demonstrated in their 2016 follow-up publication, Identity Mappings in Deep
Residual Networks [130].

That said, keep in mind that the ResNet50 (as in 50 weight layers) implementation in the Keras
core library is based on the former 2015 paper. Even though ResNet is much deeper than both
VGG16 and VGG19, the model size is actually substantially smaller due to the use of global
average pooling rather than fully-connected layers, which reduces the model size down to 102MB
for ResNet50.
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If you are interested in learning more about the ResNet architecture, including the residual
module and how it works, please refer to the Practitioner Bundle and ImageNet Bundle where
ResNet is covered in-depth.

20.1.3 Inception V3

Figure 20.3: The original Inception module used in GoogLeNet. The Inception module acts as
a “multi-level feature extractor” by computing 1× 1, 3× 3, and 5× 5 convolutions within the
same module of the network. Figure from Szegedy et al., 2014 [97].

The “Inception” module (and the resulting Inception architecture) was introduced by Szegedy et
al. their 2014 paper, Going Deeper with Convolutions [97]. The goal of the inception module (Figure
20.3) is to act as “multi-level feature extractor” by computing 1×1, 3×3, and 5×5 convolutions
within the same module of the network – the output of these filters are then stacked along the
channel dimension before being fed into the next layer in the network.

The original incarnation of this architecture was called GoogLeNet, but subsequent mani-
festations have simply been named Inception vN where N refers to the version number put out
by Google. The Inception V3 architecture included in the Keras core comes from the later by
publication by Szegedy et al., Rethinking the Inception Architecture for Computer Vision (2015)
[131], which proposes updates to the inception module to further boost ImageNet classification
accuracy. The weights for Inception V3 are smaller than both VGG and ResNet, coming in at
96MB.

For more information on how the Inception module works (and how to train GoogLeNet from
scratch), please refer to the Practitioner Bundle and ImageNet Bundle.

20.1.4 Xception
Xception was proposed by none other than François Chollet himself, the creator and chief maintainer
of the Keras library, in his 2016 paper, Xception: Deep Learning with Depthwise Separable
Convolutions [132]. Xception is an extension to the Inception architecture which replaces the
standard Inception modules with depthwise separable convolutions. The Xception weights are the
smallest of the pre-trained networks included in the Keras library, weighing in at 91MB.

20.1.5 Can We Go Smaller?
While it’s not included in the Keras library, I wanted to mention that the SqueezeNet architecture
[127] is often used when we need a tiny footprint. SqueezeNet is very small at only 4.9MB and is
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Figure 20.4: The "fire" module in SqueezeNet, consisting of a "squeeze" and "expand". Figure
from Iandola et al, 2016 [127].

often used when networks need to be trained and then deployed over a network and/or to resource
constrained devices.

Again, SqueezeNet is not included in the Keras core, but I do demonstrate how to train it from
scratch on the ImageNet dataset inside the ImageNet Bundle.

20.2 Classifying Images with Pre-trained ImageNet CNNs

Let’s learn how to classify images with pre-trained Convolutional Neural Networks using the Keras
library. We don’t have to update our core pyimagesearch module that we have been developing
thus far as the pre-trained models are already part of the Keras library.

Simply open up a new file, name it imagenet_pretrained.py, and insert the following code:

1 # import the necessary packages
2 from keras.applications import ResNet50
3 from keras.applications import InceptionV3
4 from keras.applications import Xception # TensorFlow ONLY
5 from keras.applications import VGG16
6 from keras.applications import VGG19
7 from keras.applications import imagenet_utils
8 from keras.applications.inception_v3 import preprocess_input
9 from keras.preprocessing.image import img_to_array

10 from keras.preprocessing.image import load_img
11 import numpy as np
12 import argparse
13 import cv2

Lines 2-13 import our required Python packages. As you can see, most of the packages are
part of the Keras library. Specifically, Lines 2-6 handle importing the Keras implementations
of ResNet50, Inception V3, Xception, VGG16, and VGG19, respectively. Please note that the
Xception network is compatible only with the TensorFlow backend (the class will raise an error if
you try to instantiate it when using a Theano backend).
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Line 7 gives us access to the imagenet_utils sub-module, a handy set of convenience
functions that will make pre-processing our input images and decoding output classifications easier.

The remainder of the imports are other helper functions, followed by NumPy for numerical
operations and cv2 for our OpenCV bindings.

Next, let’s parse our command line arguments:

15 # construct the argument parse and parse the arguments
16 ap = argparse.ArgumentParser()
17 ap.add_argument("-i", "--image", required=True,
18 help="path to the input image")
19 ap.add_argument("-model", "--model", type=str, default="vgg16",
20 help="name of pre-trained network to use")
21 args = vars(ap.parse_args())

We’ll require only a single command line argument, --image, which is the path to our input
image that we wish to classify. We’ll also accept an optional command line argument, --model, a
string that specifies which pre-trained CNN we would like to use – this value defaults to vgg16 for
the VGG16 architecture.

Given that we accept the name of a pre-trained network via a command line argument, we need
to define a Python dictionary that maps the model names (strings) to their actual Keras classes:

23 # define a dictionary that maps model names to their classes
24 # inside Keras
25 MODELS = {
26 "vgg16": VGG16,
27 "vgg19": VGG19,
28 "inception": InceptionV3,
29 "xception": Xception, # TensorFlow ONLY
30 "resnet": ResNet50
31 }
32

33 # ensure a valid model name was supplied via command line argument
34 if args["model"] not in MODELS.keys():
35 raise AssertionError("The --model command line argument should "
36 "be a key in the ‘MODELS‘ dictionary")

Lines 25-31 define our MODELS dictionary which maps the model name string to the corre-
sponding class. If the --model name is not found inside MODELS, we’ll raise an AssertionError
(Lines 34-36).

As we already know, a CNN takes an image as an input and then returns a set of probabilities
corresponding to the class labels as output. Typical input image sizes to a CNN trained on ImageNet
are 224×224, 227×227, 256×256, and 299×299; however, you may see other dimensions as
well.

VGG16, VGG19, and ResNet all accept 224× 224 input images while Inception V3 and
Xception require 229×229 pixel inputs, as demonstrated by the following code block:

38 # initialize the input image shape (224x224 pixels) along with
39 # the pre-processing function (this might need to be changed
40 # based on which model we use to classify our image)
41 inputShape = (224, 224)
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42 preprocess = imagenet_utils.preprocess_input
43

44 # if we are using the InceptionV3 or Xception networks, then we
45 # need to set the input shape to (299x299) [rather than (224x224)]
46 # and use a different image processing function
47 if args["model"] in ("inception", "xception"):
48 inputShape = (299, 299)
49 preprocess = preprocess_input

Here we initialize our inputShape to be 224×224 pixels. We also initialize our preprocess
function to be the standard preprocess_input from Keras (which performs mean subtraction,
a normalization technique we cover in the Practitioner Bundle). However, if we are using In-
ception or Xception, we need to set the inputShape to 299×299 pixels, followed by updating
preprocess to use a separate pre-processing function that performs a different type of scaling
http://pyimg.co/3ico2.

The next step is to load our pre-trained network architecture weights from disk and instantiate
our model:

51 # load our the network weights from disk (NOTE: if this is the
52 # first time you are running this script for a given network, the
53 # weights will need to be downloaded first -- depending on which
54 # network you are using, the weights can be 90-575MB, so be
55 # patient; the weights will be cached and subsequent runs of this
56 # script will be *much* faster)
57 print("[INFO] loading {}...".format(args["model"]))
58 Network = MODELS[args["model"]]
59 model = Network(weights="imagenet")

Line 58 uses the MODELS dictionary along with the --model command line argument to grab
the correct network class. The CNN is then instantiated on Line 59 using the pre-trained ImageNet
weights.

Again, keep in mind that the weights for VGG16 and VGG19 are 500MB. ResNet weights are
≈ 100MB, while Inception and Xception weights are between 90-100MB. If this is the first time
you are running this script for a given network architecture, these weights will be (automatically)
downloaded and cached to your local disk. Depending on your internet speed, this may take awhile.
However, once the weights are downloaded, they will not need to be downloaded again, allowing
subsequent runs of imagenet_pretrained.py to run much faster.

Our network is now loaded and ready to classify an image – we just need to prepare the image
for classification by preprocessing it:

61 # load the input image using the Keras helper utility while ensuring
62 # the image is resized to ‘inputShape‘, the required input dimensions
63 # for the ImageNet pre-trained network
64 print("[INFO] loading and pre-processing image...")
65 image = load_img(args["image"], target_size=inputShape)
66 image = img_to_array(image)
67

68 # our input image is now represented as a NumPy array of shape
69 # (inputShape[0], inputShape[1], 3) however we need to expand the
70 # dimension by making the shape (1, inputShape[0], inputShape[1], 3)
71 # so we can pass it through thenetwork

http://pyimg.co/3ico2
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72 image = np.expand_dims(image, axis=0)
73

74 # pre-process the image using the appropriate function based on the
75 # model that has been loaded (i.e., mean subtraction, scaling, etc.)
76 image = preprocess(image)

Line 65 loads our input image from disk using the supplied inputShape to resize the width
and height of the image. Assuming we are using “channels last” ordering, our input image is now
represented as a NumPy array with the shape (inputShape[0], inputShape[1], 3).

However, we train/classify images in batches with CNNs, so we need to add an extra dimension
to the array via np.expand_dims function on Line 72. After calling np.expand_dims, our image
will now have the shape (1, inputShape[0], inputShape[1], 3), again, assuming channels
last ordering. Forgetting to add this extra dimension will result in an error when you call the
.predict method of the model.

Lastly, Line 76 calls the appropriate pre-processing function to perform mean subtraction
and/or scaling.

We are now ready to pass our image through the network and obtain the output classifications:

78 # classify the image
79 print("[INFO] classifying image with ’{}’...".format(args["model"]))
80 preds = model.predict(image)
81 P = imagenet_utils.decode_predictions(preds)
82

83 # loop over the predictions and display the rank-5 predictions +
84 # probabilities to our terminal
85 for (i, (imagenetID, label, prob)) in enumerate(P[0]):
86 print("{}. {}: {:.2f}%".format(i + 1, label, prob * 100))

A call to .predict on Line 80 returns the predictions from the CNN. Given these predictions,
we pass them into the ImageNet utility function, .decode_predictions, to give us a list of
ImageNet class label IDs, “human-readable” labels, and the probability associated with each class
label. The top-5 predictions (i.e., the labels with the largest probabilities) are then printed to our
terminal on Lines 85 and 86.

Our final code block will handle loading our image image from disk via OpenCV, drawing the
#1 prediction on the image, and finally displaying it to our screen:

88 # load the image via OpenCV, draw the top prediction on the image,
89 # and display the image to our screen
90 orig = cv2.imread(args["image"])
91 (imagenetID, label, prob) = P[0][0]
92 cv2.putText(orig, "Label: {}".format(label), (10, 30),
93 cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
94 cv2.imshow("Classification", orig)
95 cv2.waitKey(0)

To see our pre-trained ImageNet networks in action, let’s move on to the next section.

20.2.1 Classification Results
To classify an image using a pre-trained network and Keras, simply use our imagenet_pretrained.py
script and then supply (1) a path to your input image that you wish to classify and (2) the name of
the network architecture you wish to use.
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I have included example commands for each of the available pre-trained networks available in
Keras below:

$ python imagenet_pretrained.py \
--image example_images/example_01.jpg --model vgg16

$ python imagenet_pretrained.py \
--image example_images/example_02.jpg --model vgg19

$ python imagenet_pretrained.py \
--image example_images/example_03.jpg --model inception

$ python imagenet_pretrained.py \
--image example_images/example_04.jpg --model xception

$ python imagenet_pretrained.py \
--image example_images/example_05.jpg --model resnet

Figure 20.5 below displays a montage of the results generated for various input images. In each
case, the label predicted by the given network architecture accurately reflects the contents of the
image.

Figure 20.5: Results of applying various pre-trained ImageNet networks to input images. In each
of the examples, the pre-trained network returns correct classifications.
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20.3 Summary
In this chapter, we reviewed the five Convolutional Neural Networks pre-trained on the ImageNet
dataset inside the Keras library:

1. VGG16
2. VGG19
3. ResNet50
4. Inception V3
5. Xception
We then learned how to use each of these architectures to classify your own input images. Given

that the ImageNet dataset consists of 1,000 popular object categories you are likely to encounter in
everyday life, these models make for great “general purpose” classifiers. Depending on your own
motivation and end goals of studying deep learning, these networks alone may be enough to build
your desired application.

However, for readers who are interested in learning more advanced techniques to train deeper net-
works on larger datasets, I would absolutely recommend that you read through the Practitioner
Bundle. For readers who want the full experience and discover how to train these state-of-the-art
networks on the challenging ImageNet dataset, please refer to the ImageNet Bundle.
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So far in this book we’ve worked with datasets that have been pre-compiled and labeled for us –
but what if we wanted to go about creating our own custom dataset and then training a CNN on it?
In this chapter, I’ll present a complete deep learning case study that will give you an example of:

1. Downloading a set of images.
2. Labeling and annotating your images for training.
3. Training a CNN on your custom dataset.
4. Evaluating and testing the trained CNN.
The dataset of images we’ll be downloading is a set of captcha images used to prevent bots

from automatically registering or logging in to a given website (or worse, trying to brute force their
way into someone’s account).

Once we’ve downloaded a set of captcha images we’ll need to manually label each of the digits
in the captcha. As we’ll find out, obtaining and labeling a dataset can be half (if not more) the
battle. Depending on how much data you need, how easy it is to obtain, and whether or not you
need to label the data (i.e., assign a ground-truth label to the image), it can be a costly process, both
in terms of time and/or finances (if you pay someone else to label the data).

Therefore, whenever possible we try to use traditional computer vision techniques to speedup
the labeling process. In the context of this chapter, if we were to use image processing software
such as Photoshop or GIMP to manually extract digits in a captcha image to create our training set,
it might takes us days of non-stop work to complete the task.

However, by applying some basic computer vision techniques, we can download and label our
training set in less than an hour. This is one of the many reasons why I encourage deep learning
practitioners to also invest in their computer vision education. Books such as Practical Python and
OpenCV are meant to help you master the fundamentals of computer vision and OpenCV quickly –
if you are serious about mastering deep learning applied to computer vision, you would do well to
learn the basics of the broader computer vision and image processing field as well.

I’d also like to mention that datasets in the real-world are not like the benchmark datasets
such as MNIST, CIFAR-10, and ImageNet where images are neatly labeled and organized and
our goal is only to train a model on the data and evaluate it. These benchmark datasets may be

https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/practical-python-opencv/
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challenging, but in the real-world, the struggle is often obtaining the (labeled) data itself – and in
many instances, the labeled data is worth a lot more than the deep learning model obtained from
training a network on your dataset.

For example, if you were running a company responsible for creating a custom Automatic
License Plate Recognition (ANPR) system for the United States government, you might invest
years building a robust, massive dataset, while at the same time evaluating various deep learning
approaches to recognizing license plates. Accumulating such a massive labeled dataset would give
you a competitive edge over other companies – and in this case, the data itself is worth more than
the end product.

Your company would be more likely to be acquired simply because of the exclusive rights you
have to the massive, labeled dataset. Building an amazing deep learning model to recognize license
plates would only increase the value of your company, but again, labeled data is expensive to obtain
and replicate, so if you own the keys to a dataset that is hard (if not impossible) to replicate, make
no mistake: your company’s primary asset is the data, not the deep learning.

In the remainder of this chapter, we’ll look how we can obtain a dataset of images, label them,
and then apply deep learning to break a captcha system.

21.1 Breaking Captchas with a CNN

This chapter is broken into many parts to help keep it organized and easy to read. In the first
section I discuss the captcha dataset we are working with and discuss the concept of responsible
disclosure – something you should always do when computer security is involved.

From there I discuss the directory structure of our project. We then create a Python script to
automatically download a set of images that we’ll be using for training and evaluation.

After downloading our images, we’ll need to use a bit of computer vision to aid us in labeling
the images, making the process much easier and substantially faster than simply cropping and
labeling inside photo software like GIMP or Photoshop. Once we have labeled our data, we’ll train
the LeNet architecture – as we’ll find out, we’re able to break the captcha system and obtain 100%
accuracy in less than 15 epochs.

21.1.1 A Note on Responsible Disclosure
Living in the northeastern/midwestern part of the United States, it’s hard to travel on major
highways without an E-ZPass [133]. E-ZPass is an electronic toll collection system used on many
bridges, interstates, and tunnels. Travelers simply purchase an E-ZPass transponder, place it on the
windshield of their car, and enjoy the ability to quickly travel through tolls without stopping, as a
credit card attached to their E-ZPass account is charged for any tolls.

E-ZPass has made tolls a much more “enjoyable” process (if there is such a thing). Instead of
waiting in interminable lines where a physical transaction needs to take place (i.e., hand the cashier
money, receive your change, get a printed receipt for reimbursement, etc.), you can simply blaze
through in the fast lane without stopping – it saves a bunch of time when traveling and is much less
of a hassle (you still have to pay the toll though).

I spend much of my time traveling between Maryland and Connecticut, two states along the
I-95 corridor of the United States. The I-95 corridor, especially in New Jersey, contains a plethora
of toll booths, so an E-ZPass pass was a no-brainer decision for me. About a year ago, the credit
card I had attached to my E-ZPass account expired, and I needed to update it. I went to the E-ZPass
New York website (the state I bought my E-ZPass in) to log in and update my credit card, but I
stopped dead in my tracks (Figure 21.1).

Can you spot the flaw in this system? Their “captcha” is nothing more than four digits on a
plain white background which is a major security risk – someone with even basic computer vision
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Figure 21.1: The E-Z Pass New York login form. Can you spot the flaw in their login system?

or deep learning experience could develop a piece of software to break this system.
This is where the concept of responsible disclosure comes in. Responsible disclosure is a

computer security term for describing how to disclose a vulnerability. Instead of posting it on
the internet for everyone to see immediately after the threat is detected, you try to contact the
stakeholders first to ensure they know there is an issue. The stakeholders can then attempt to patch
the software and resolve the vulnerability.

Simply ignoring the vulnerability and hiding the issue is a false security, something that should
be avoided. In an ideal world, the vulnerability is resolved before it is publicly disclosed.

However, when stakeholders do not acknowledge the issue or do not fix the problem in a
reasonable amount of time it creates an ethical conundrum – do you hide the issue and pretend it
doesn’t exist? Or do you disclose it, bringing more attention to the problem in an effort to bring
a fix to the problem faster? Responsible disclosure states that you first bring the problem to the
stakeholders (responsible) – if it’s not resolved, then you need to disclose the issue (disclosure).

To demonstrate how the E-ZPass NY system was at risk, I trained a deep learning model to
recognize the digits in the captcha. I then wrote a second Python script to (1) auto-fill my login
credentials and (2) break the captcha, allowing my script access to my account.

In this case, I was only auto-logging into my account. Using this “feature", I could auto-update
a credit card, generate reports on my tolls, or even add a new car to my E-ZPass. But someone
nefarious may use this as a method to brute force their way into a customer’s account.

I contacted E-ZPass over email, phone, and Twitter regarding the issue one year before I wrote
this chapter. They acknowledged the receipt of my messages; however, nothing has been done to
fix the issue, despite multiple contacts.

In the rest of this chapter, I’ll discuss how we can use the E-ZPass system to obtain a captcha
dataset which we’ll then label and train a deep learning model on. I will not be sharing the Python
code to auto-login to an account – that is outside the boundaries of responsible disclosure so please
do not ask me for this code.

My honest hope is by the time this book is published that E-ZPass NY will have updated their
website and resolved the captcha vulnerability, thereby leaving this chapter as a great example of
applying deep learning to a hand-labeled dataset, with zero vulnerability threat.

Keep in mind that with all knowledge comes responsibility. This knowledge, under no circum-
stance, should be used for nefarious or unethical reasons. This case study exists as a method to
demonstrate how to obtain and label a custom dataset, followed by training a deep learning model
on top of it.

I am required to say that I am not responsible for how this code is used – use this as
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an opportunity to learn, not an opportunity to be nefarious.

21.1.2 The Captcha Breaker Directory Structure
In order to build the captcha breaker system, we’ll need to update the pyimagesearch.utils
sub-module and include a new file named captchahelper.py:

|--- pyimagesearch
| |--- __init__.py
| |--- datasets
| |--- nn
| |--- preprocessing
| |--- utils
| | |--- __init__.py
| | |--- captchahelper.py

This file will store a utility function named preprocess to help us process digits before feeding
them into our deep neural network.

We’ll also create a second directory, this one named captcha_breaker, outside of our pyim-
agesearch module, and include the following files and subdirectories:

|--- captcha_breaker
| |--- dataset/
| |--- downloads/
| |--- output/
| |--- annotate.py
| |--- download_images.py
| |--- test_model.py
| |--- train_model.py

The captcha_breaker directory is where all our project code will be stored to break image
captchas. The dataset directory is where we will store our labeled digits which we’ll be hand-
labeling. I prefer to keep my datasets organized using the following directory structure template:

root_directory/class_name/image_filename.jpg

Therefore, our dataset directory will have the structure:

dataset/{1-9}/example.jpg

Where dataset is the root directory, {1-9} are the possible digit names, and example.jpg
will be an example of the given digit.

The downloads directory will store the raw captcha .jpg files downloaded from the E-ZPass
website. Inside the output directory, we’ll store our trained LeNet architecture.

The download_images.py script, as the name suggests, will be responsible for actually
downloading the example captchas and saving them to disk. Once we’ve downloaded a set of
captchas we’ll need to extract the digits from each image and hand-label every digit – this will be
accomplished by annotate.py.

The train_model.py script will train LeNet on the labeled digits while test_model.py will
apply LeNet to captcha images themselves.
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21.1.3 Automatically Downloading Example Images
The first step in building our captcha breaker is to download the example captcha images themselves.
If we were to right click on the captcha image next to the text “Security Image” in Figure 21.1
above, we would obtain the following URL:

https://www.e-zpassny.com/vector/jcaptcha.do
If you copy and paste this URL into your web browser and hit refresh multiple times, you’ll

notice that this is a dynamic program that generates a new captcha each time you refresh. Therefore,
to obtain our example captcha images we need to request this image a few hundred times and save
the resulting image.

To automatically fetch new captcha images and save them to disk we can use download_images.py:

1 # import the necessary packages
2 import argparse
3 import requests
4 import time
5 import os
6

7 # construct the argument parse and parse the arguments
8 ap = argparse.ArgumentParser()
9 ap.add_argument("-o", "--output", required=True,

10 help="path to output directory of images")
11 ap.add_argument("-n", "--num-images", type=int,
12 default=500, help="# of images to download")
13 args = vars(ap.parse_args())

Lines 2-5 import our required Python packages. The requests library makes working with
HTTP connections easy and is heavily used in the Python ecosystem. If you do not already have
requests installed on your system, you can install it via:

$ pip install requests

We then parse our command line arguments on Lines 8-13. We’ll require a single command
line argument, --output, which is the path to the output directory that will store our raw captcha
images (we’ll later hand label each of the digits in the images).

A second optional switch --num-images, controls the number of captcha images we’re going
to download. We’ll default this value to 500 total images. Since there are four digits in each captcha,
this value of 500 will give us 500×4 = 2,000 total digits that we can use for training our network.

Our next code block initializes the URL of the captcha image we are going to download along
with the total number of images generated thus far:

15 # initialize the URL that contains the captcha images that we will
16 # be downloading along with the total number of images downloaded
17 # thus far
18 url = "https://www.e-zpassny.com/vector/jcaptcha.do"
19 total = 0

We are now ready to download the captcha images:

21 # loop over the number of images to download
22 for i in range(0, args["num_images"]):
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23 try:
24 # try to grab a new captcha image
25 r = requests.get(url, timeout=60)
26

27 # save the image to disk
28 p = os.path.sep.join([args["output"], "{}.jpg".format(
29 str(total).zfill(5))])
30 f = open(p, "wb")
31 f.write(r.content)
32 f.close()
33

34 # update the counter
35 print("[INFO] downloaded: {}".format(p))
36 total += 1
37

38 # handle if any exceptions are thrown during the download process
39 except:
40 print("[INFO] error downloading image...")
41

42 # insert a small sleep to be courteous to the server
43 time.sleep(0.1)

On Line 22 we start looping over the --num-images that we wish to download. A request is
made on Line 25 to download the image. We then save the image to disk on Lines 28-32. If there
was an error downloading the image, our try/except block on Line 39 and 40 catches it and
allows our script to continue. Finally, we insert a small sleep on Line 43 to be courteous to the web
server we are requesting.

You can execute download_images.py using the following command:

$ python download_images.py --output downloads

This script will take awhile to run since we have (1) are making a network request to download
the image and (2) inserted a 0.1 second pause after each download.

Once the program finishes executing you’ll see that your download directory is filled with
images:

$ ls -l downloads/*.jpg | wc -l
500

However, these are just the raw captcha images – we need to extract and label each of the digits
in the captchas to create our training set. To accomplish this, we’ll use a bit of OpenCV and image
processing techniques to make our life easier.

21.1.4 Annotating and Creating Our Dataset
So, how do you go about labeling and annotating each of our captcha images? Do we open up
Photoshop or GIMP and use the “select/marquee” tool to copy out a given digit, save it to disk, and
then repeat ad nauseam? If we did, it might take us days of non-stop working to label each of the
digits in the raw captcha images.

Instead, a better approach would be to use basic image processing techniques inside the OpenCV
library to help us out. To see how we can label our dataset more efficiently, open a new file, name it
annotate.py, and inserting the following code:
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1 # import the necessary packages
2 from imutils import paths
3 import argparse
4 import imutils
5 import cv2
6 import os
7

8 # construct the argument parse and parse the arguments
9 ap = argparse.ArgumentParser()

10 ap.add_argument("-i", "--input", required=True,
11 help="path to input directory of images")
12 ap.add_argument("-a", "--annot", required=True,
13 help="path to output directory of annotations")
14 args = vars(ap.parse_args())

Lines 2-6 import our required Python packages while Lines 9-14 parse our command line
arguments. This script requires two arguments:
• --input: The input path to our raw captcha images (i.e., the downloads directory).
• --annot: The output path to where we’ll be storing the labeled digits (i.e., the dataset

directory).
Our next code block grabs the paths to all images in the --input directory and initializes a

dictionary named counts that will store the total number of times a given digit (the key) has been
labeled (the value):

16 # grab the image paths then initialize the dictionary of character
17 # counts
18 imagePaths = list(paths.list_images(args["input"]))
19 counts = {}

The actual annotation process starts below:

21 # loop over the image paths
22 for (i, imagePath) in enumerate(imagePaths):
23 # display an update to the user
24 print("[INFO] processing image {}/{}".format(i + 1,
25 len(imagePaths)))
26

27 try:
28 # load the image and convert it to grayscale, then pad the
29 # image to ensure digits caught on the border of the image
30 # are retained
31 image = cv2.imread(imagePath)
32 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
33 gray = cv2.copyMakeBorder(gray, 8, 8, 8, 8,
34 cv2.BORDER_REPLICATE)

On Line 22 we start looping over each of the individual imagePaths. For each image, we load
it from disk (Line 31), convert it to grayscale (Line 32), and pad the borders of the image with
eight pixels in every direction (Line 33 and 34). Figure 21.2 below shows the difference between
the original image (left) and the padded image (right).
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Figure 21.2: Left: The original image loaded from disk. Right: Padding the image to ensure we
can extract the digits just in case any of the digits are touching the border of the image.

We perform this padding just in case any of our digits are touching the border of the image.
If the digits were touching the border, we wouldn’t be able to extract them from the image. Thus,
to prevent this situation, we purposely pad the input image so it’s not possible for a given digit to
touch the border.

We are now ready to binarize the input image via Otsu’s thresholding method (Chapter 9,
Practical Python and OpenCV):

36 # threshold the image to reveal the digits
37 thresh = cv2.threshold(gray, 0, 255,
38 cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

This function call automatically thresholds our image such that our image is now binary – black
pixels represent the background while white pixels are our foreground as shown in Figure 21.3.

Figure 21.3: Thresholding the image ensures the foreground is white while the background is black.
This is a typical assumption/requirement when working with many image processing functions
with OpenCV.

Thresholding the image is a critical step in our image processing pipeline as we now need to
find the outlines of each of the digits:

40 # find contours in the image, keeping only the four largest
41 # ones
42 cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
43 cv2.CHAIN_APPROX_SIMPLE)
44 cnts = cnts[0] if imutils.is_cv2() else cnts[1]
45 cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:4]

Lines 42 and 43 find the contours (i.e., outlines) of each of the digits in the image. Just in case
there is “noise” in the image we sort the contours by their area, keeping only the four largest one
(i.e., our digits themselves).

Given our contours we can extract each of them by computing the bounding box:

47 # loop over the contours
48 for c in cnts:

https://www.pyimagesearch.com/practical-python-opencv/
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49 # compute the bounding box for the contour then extract
50 # the digit
51 (x, y, w, h) = cv2.boundingRect(c)
52 roi = gray[y - 5:y + h + 5, x - 5:x + w + 5]
53

54 # display the character, making it larger enough for us
55 # to see, then wait for a keypress
56 cv2.imshow("ROI", imutils.resize(roi, width=28))
57 key = cv2.waitKey(0)

On Line 48 we loop over each of the contours found in the thresholded image. We call
cv2.boundingRect to compute the bounding box (x,y)-coordinates of the digit region. This
region of interest (ROI) is then extracted from the grayscale image on Line 52. I have included a
sample of example digits extracted from their raw captcha images as a montage in Figure 21.4.

Figure 21.4: A sample of the digit ROIs extracted from our captcha images. Our goal will be to
label these images in such a way that we can train a custom Convolutional Neural Network on
them.

Line 56 displays the digit ROI to our screen, resizing it to be large enough for us to see easily.
Line 57 then waits for a keypress on your keyboard – but choose your keypress wisely! The key
you press will be used as the label for the digit.

To see how the labeling process works via the cv2.waitKey call, take a look at the following
code block:

59 # if the ’‘’ key is pressed, then ignore the character
60 if key == ord("‘"):
61 print("[INFO] ignoring character")
62 continue
63

64 # grab the key that was pressed and construct the path
65 # the output directory
66 key = chr(key).upper()
67 dirPath = os.path.sep.join([args["annot"], key])
68
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69 # if the output directory does not exist, create it
70 if not os.path.exists(dirPath):
71 os.makedirs(dirPath)

If the tilde key ‘ (tilde) is pressed, we’ll ignore the character (Lines 60 and 62). Needing to
ignore a character may happen if our script accidentally detects “noise” (i.e., anything but a digit)
in the input image or if we are not sure what the digit is. Otherwise, we assume that the key pressed
was the label for the digit (Line 66) and use the key to construct the directory path to our output
label (Line 67).

For example, if I pressed the 7 key on my keyboard, the dirPath would be:

dataset/7

Therefore, all images containing the digit “7” will be stored in the dataset/7 sub-directory.
Lines 70 and 71 make a check to see if the dirPath directory does not exist – if it doesn’t, we
create it.

Once we have ensured that dirPath properly exists, we simply have to write the example digit
to file:

73 # write the labeled character to file
74 count = counts.get(key, 1)
75 p = os.path.sep.join([dirPath, "{}.png".format(
76 str(count).zfill(6))])
77 cv2.imwrite(p, roi)
78

79 # increment the count for the current key
80 counts[key] = count + 1

Line 74 grabs the total number of examples written to disk thus far for the current digit. We
then construct the output path to the example digit using the dirPath. After executing Lines 75
and 76, our output path p may look like:

datasets/7/000001.png

Again, notice how all example ROIs that contain the number seven will be stored in the
datasets/7 subdirectory – this is an easy, convenient way to organize your datasets when labeling
images.

Our final code block handles if we want to ctrl+c out of the script to exit or if there is an error
processing an image:

82 # we are trying to control-c out of the script, so break from the
83 # loop (you still need to press a key for the active window to
84 # trigger this)
85 except KeyboardInterrupt:
86 print("[INFO] manually leaving script")
87 break
88

89 # an unknown error has occurred for this particular image
90 except:
91 print("[INFO] skipping image...")
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If we wish to ctrl+c and quit the script early, Line 85 detects this and allows our Python
program to exit gracefully. Line 90 catches all other errors and simply ignores them, allowing us
to continue with the labeling process.

The last thing you want when labeling a dataset is for a random error to occur due to an image
encoding problem, causing your entire program to crash. If this happens, you’ll have to restart the
labeling process all over again. You can obviously build in extra logic to detect where you left off,
but such an example is outside the scope of this book.

To label the images you downloaded from the E-ZPass NY website, just execute the following
command:

$ python annotate.py --input downloads --annot dataset

Here you can see that the number 7 is displayed to my screen in Figure 21.5.

Figure 21.5: When annotating our dataset of digits, a given digit ROI will display on our screen.
We then need to press the corresponding key on our keyboard to label the image and save the ROI
to disk.

I then press 7 key on my keyboard to label it and then the digit is written to file in the dataset/7
sub-directory.

The annotate.py script then proceeds to the next digit for me to label. You can then proceed
to label all of the digits in the raw captcha images. You’ll quickly realize that labeling a dataset can
be very tedious, time-consuming process. Labeling all 2,000 digits should take you less than half
an hour – but you’ll likely become bored within the first five minutes.

Remember, actually obtaining your labeled dataset is half the battle. From there the actual work
can start. Luckily, I have already labeled the digits for you! If you check the dataset directory
included in the accompanying downloads of this book you’ll find the entire dataset ready to go:

$ ls dataset/
1 2 3 4 5 6 7 8 9
$ ls -l dataset/1/*.png | wc -l
232

Here you can see nine sub-directories, one for each of the digits that we wish to recognize.
Inside each subdirectory, there are example images of the particular digit. Now that we have our
labeled dataset, we can proceed to training our captcha breaker using the LeNet architecture.

21.1.5 Preprocessing the Digits
As we know, our Convolutional Neural Networks require an image with a fixed width and height to
be passed in during training. However, our labeled digit images are of various sizes – some are
taller than they are wide, others are wider than they are tall. Therefore, we need a method to pad
and resize our input images to a fixed size without distorting their aspect ratio.

We can resize and pad our images while preserving the aspect ratio by defining a preprocess
function inside captchahelper.py:
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1 # import the necessary packages
2 import imutils
3 import cv2
4

5 def preprocess(image, width, height):
6 # grab the dimensions of the image, then initialize
7 # the padding values
8 (h, w) = image.shape[:2]
9

10 # if the width is greater than the height then resize along
11 # the width
12 if w > h:
13 image = imutils.resize(image, width=width)
14

15 # otherwise, the height is greater than the width so resize
16 # along the height
17 else:
18 image = imutils.resize(image, height=height)

Our preprocess function requires three parameters:
1. image: The input image that we are going to pad and resize.
2. width: The target output width of the image.
3. height: The target output height of the image.
On Lines 12 and 13 we make a check to see if the width is greater than the height, and if so,

we resize the image along the larger dimension (width) Otherwise, if the height is greater than
the width, we resize along the height (Lines 17 and 18), which implies either the width or height
(depending on the dimensions of the input image) are fixed.

However, the opposite dimension is smaller than it should be. To fix this issue, we can “pad” the
image along the shorter dimension to obtain our fixed size:

20 # determine the padding values for the width and height to
21 # obtain the target dimensions
22 padW = int((width - image.shape[1]) / 2.0)
23 padH = int((height - image.shape[0]) / 2.0)
24

25 # pad the image then apply one more resizing to handle any
26 # rounding issues
27 image = cv2.copyMakeBorder(image, padH, padH, padW, padW,
28 cv2.BORDER_REPLICATE)
29 image = cv2.resize(image, (width, height))
30

31 # return the pre-processed image
32 return image

Lines 22 and 23 compute the required amount of padding to reach the target width and
height. Lines 27 and 28 apply the padding to the image. Applying this padding should bring our
image to our target width and height; however, there may be cases where we are one pixel off in
a given dimension. The easiest way to resolve this discrepancy is to simply call cv2.resize (Line
29) to ensure all images are the same width and height.

The reason we do not immediately call cv2.resize at the top of the function is because we
first need to consider the aspect ratio of the input image and attempt to pad it correctly first. If we
do not maintain the image aspect ratio, then our digits will become distorted.
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21.1.6 Training the Captcha Breaker
Now that our preprocess function is defined, we can move on to training LeNet on the image
captcha dataset. Open up the train_model.py file and insert the following code:

1 # import the necessary packages
2 from sklearn.preprocessing import LabelBinarizer
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import classification_report
5 from keras.preprocessing.image import img_to_array
6 from keras.optimizers import SGD
7 from pyimagesearch.nn.conv import LeNet
8 from pyimagesearch.utils.captchahelper import preprocess
9 from imutils import paths

10 import matplotlib.pyplot as plt
11 import numpy as np
12 import argparse
13 import cv2
14 import os

Lines 2-14 import our required Python packages. Notice that we’ll be using the SGD optimizer
along with the LeNet architecture to train a model on the digits. We’ll also be using our newly
defined preprocess function on each digit before passing it through our network.

Next, let’s review our command line arguments:

16 # construct the argument parse and parse the arguments
17 ap = argparse.ArgumentParser()
18 ap.add_argument("-d", "--dataset", required=True,
19 help="path to input dataset")
20 ap.add_argument("-m", "--model", required=True,
21 help="path to output model")
22 args = vars(ap.parse_args())

The train_model.py script requires two command line arguments:
1. --dataset: The path to the input dataset of labeled captcha digits (i.e., the dataset

directory on disk).
2. --model: Here we supply the path to where our serialized LeNet weights will be saved after

training.
We can now load our data and corresponding labels from disk:

24 # initialize the data and labels
25 data = []
26 labels = []
27

28 # loop over the input images
29 for imagePath in paths.list_images(args["dataset"]):
30 # load the image, pre-process it, and store it in the data list
31 image = cv2.imread(imagePath)
32 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
33 image = preprocess(image, 28, 28)
34 image = img_to_array(image)
35 data.append(image)
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36

37 # extract the class label from the image path and update the
38 # labels list
39 label = imagePath.split(os.path.sep)[-2]
40 labels.append(label)

On Lines 25 and 26 we initialize our data and labels lists, respectively. We then loop over
every image in our labeled --dataset on Line 29. For each image in the dataset, we load it from
disk, convert it to grayscale, and preprocess it such that it has a width of 28 pixels and a height of
28 pixels (Lines 31-35). The image is then converted to a Keras-compatible array and added to the
data list (Lines 34 and 35).

One of the primary benefits of organizing your dataset directory structure in the format of:

root_directory/class_label/image_filename.jpg

is that you can easily extract the class label by grabbing the second-to-last component from the
filename (Line 39). For example, given the input path dataset/7/000001.png, the label would
be 7, which is the added to the labels list (Line 40).

Our next code block handles normalizing raw pixel intensity values to the range [0,1], followed
by constructing the training and testing splits, along with one-hot encoding the labels:

42 # scale the raw pixel intensities to the range [0, 1]
43 data = np.array(data, dtype="float") / 255.0
44 labels = np.array(labels)
45

46 # partition the data into training and testing splits using 75% of
47 # the data for training and the remaining 25% for testing
48 (trainX, testX, trainY, testY) = train_test_split(data,
49 labels, test_size=0.25, random_state=42)
50

51 # convert the labels from integers to vectors
52 lb = LabelBinarizer().fit(trainY)
53 trainY = lb.transform(trainY)
54 testY = lb.transform(testY)

We can then initialize the LeNet model and SGD optimizer:

56 # initialize the model
57 print("[INFO] compiling model...")
58 model = LeNet.build(width=28, height=28, depth=1, classes=9)
59 opt = SGD(lr=0.01)
60 model.compile(loss="categorical_crossentropy", optimizer=opt,
61 metrics=["accuracy"])

Our input images will have a width of 28 pixels, a height of 28 pixels, and a single channel.
There are a total of 9 digit classes we are recognizing (there is no 0 class).

Given the initialized model and optimizer we can train the network for 15 epochs, evaluate it,
and serialize it to disk:
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63 # train the network
64 print("[INFO] training network...")
65 H = model.fit(trainX, trainY, validation_data=(testX, testY),
66 batch_size=32, epochs=15, verbose=1)
67

68 # evaluate the network
69 print("[INFO] evaluating network...")
70 predictions = model.predict(testX, batch_size=32)
71 print(classification_report(testY.argmax(axis=1),
72 predictions.argmax(axis=1), target_names=lb.classes_))
73

74 # save the model to disk
75 print("[INFO] serializing network...")
76 model.save(args["model"])

Our last code block will handle plotting the accuracy and loss for both the training and testing
sets over time:

78 # plot the training + testing loss and accuracy
79 plt.style.use("ggplot")
80 plt.figure()
81 plt.plot(np.arange(0, 15), H.history["loss"], label="train_loss")
82 plt.plot(np.arange(0, 15), H.history["val_loss"], label="val_loss")
83 plt.plot(np.arange(0, 15), H.history["acc"], label="acc")
84 plt.plot(np.arange(0, 15), H.history["val_acc"], label="val_acc")
85 plt.title("Training Loss and Accuracy")
86 plt.xlabel("Epoch #")
87 plt.ylabel("Loss/Accuracy")
88 plt.legend()
89 plt.show()

To train the LeNet architecture using the SGD optimizer on our custom captcha dataset, just
execute the following command:

$ python train_model.py --dataset dataset --model output/lenet.hdf5
[INFO] compiling model...
[INFO] training network...
Train on 1509 samples, validate on 503 samples
Epoch 1/15
0s - loss: 2.1606 - acc: 0.1895 - val_loss: 2.1553 - val_acc: 0.2266
Epoch 2/15
0s - loss: 2.0877 - acc: 0.3565 - val_loss: 2.0874 - val_acc: 0.1769
Epoch 3/15
0s - loss: 1.9540 - acc: 0.5003 - val_loss: 1.8878 - val_acc: 0.3917
...
Epoch 15/15
0s - loss: 0.0152 - acc: 0.9993 - val_loss: 0.0261 - val_acc: 0.9980
[INFO] evaluating network...

precision recall f1-score support

1 1.00 1.00 1.00 45
2 1.00 1.00 1.00 55
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3 1.00 1.00 1.00 63
4 1.00 0.98 0.99 52
5 0.98 1.00 0.99 51
6 1.00 1.00 1.00 70
7 1.00 1.00 1.00 50
8 1.00 1.00 1.00 54
9 1.00 1.00 1.00 63

avg / total 1.00 1.00 1.00 503

[INFO] serializing network...

As we can see, after only 15 epochs our network is obtaining 100% classification accuracy on
both the training and validation sets. This is not a case of overfitting either – when we investigate
the training and validation curves in Figure 21.6 we can see that by epoch 5 the validation and
training loss/accuracy match each other.

Figure 21.6: Using the LeNet architecture on our custom digits datasets enables us to obtain 100%
classification accuracy after only fifteen epochs. Furthermore, there are no signs of overfitting.

If you check the output directory, you’ll also see the serialized lenet.hdf5 file:

$ ls -l output/
total 9844
-rw-rw-r-- 1 adrian adrian 10076992 May 3 12:56 lenet.hdf5

We can then use this model on new input images.
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21.1.7 Testing the Captcha Breaker
Now that our captcha breaker is trained, let’s test it out on some example images. Open up the
test_model.py file and insert the following code:

1 # import the necessary packages
2 from keras.preprocessing.image import img_to_array
3 from keras.models import load_model
4 from pyimagesearch.utils.captchahelper import preprocess
5 from imutils import contours
6 from imutils import paths
7 import numpy as np
8 import argparse
9 import imutils

10 import cv2

As usual, our Python script starts with importing our Python packages. We’ll again be using
the preprocess function to prepare digits for classification.

Next, we’ll parse our command line arguments:

12 # construct the argument parse and parse the arguments
13 ap = argparse.ArgumentParser()
14 ap.add_argument("-i", "--input", required=True,
15 help="path to input directory of images")
16 ap.add_argument("-m", "--model", required=True,
17 help="path to input model")
18 args = vars(ap.parse_args())

The --input switch controls the path to the input captcha images that we wish to break. We
could download a new set of captchas from the E-ZPass NY website, but for simplicity, we’ll
sample images from our existing raw captcha files. The --model argument is simply the path to
the serialized weights residing on disk.

We can now load our pre-trained CNN and randomly sample ten captcha images to classify:

20 # load the pre-trained network
21 print("[INFO] loading pre-trained network...")
22 model = load_model(args["model"])
23

24 # randomly sample a few of the input images
25 imagePaths = list(paths.list_images(args["input"]))
26 imagePaths = np.random.choice(imagePaths, size=(10,),
27 replace=False)

Here comes the fun part – actually breaking the captcha:

29 # loop over the image paths
30 for imagePath in imagePaths:
31 # load the image and convert it to grayscale, then pad the image
32 # to ensure digits caught only the border of the image are
33 # retained
34 image = cv2.imread(imagePath)
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35 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
36 gray = cv2.copyMakeBorder(gray, 20, 20, 20, 20,
37 cv2.BORDER_REPLICATE)
38

39 # threshold the image to reveal the digits
40 thresh = cv2.threshold(gray, 0, 255,
41 cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

On Line 30 we start looping over each of our sampled imagePaths. Just like in the annotate.py
example, we need to extract each of the digits in the captcha. This extraction is accomplished by
loading the image from disk, converting it to grayscale, and padding the border such that a digit
cannot touch the boundary of the image (Lines 34-37). We add extra padding here so we have
enough room to actually draw and visualize the correct prediction on the image.

Lines 40 and 41 threshold the image such that the digits appear as a white foreground against a
black background.

We now need to find the contours of the digits in the thresh image:

43 # find contours in the image, keeping only the four largest ones,
44 # then sort them from left-to-right
45 cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
46 cv2.CHAIN_APPROX_SIMPLE)
47 cnts = cnts[0] if imutils.is_cv2() else cnts[1]
48 cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:4]
49 cnts = contours.sort_contours(cnts)[0]
50

51 # initialize the output image as a "grayscale" image with 3
52 # channels along with the output predictions
53 output = cv2.merge([gray] * 3)
54 predictions = []

We can find the digits by calling cv2.findContours on the thresh image. This function
returns a list of (x,y)-coordinates that specify the outline of each individual digit.

We then perform two stages of sorting. The first stage sorts the contours by their size, keeping
only the largest four outlines. We (correctly) assume that the four contours with the largest size
are the digits we want to recognize. However, there is no guaranteed spatial ordering imposed on
these contours – the third digit we wish to recognize may be first in the cnts list. Since we read
digits from left-to-right, we need to sort the contours from left-to-right. This is accomplished via
the sort_contours function (http://pyimg.co/sbm9p).

Line 53 takes our gray image and converts it to a three channel image by replicating the
grayscale channel three times (one for each Red, Green, and Blue channel). We then initialize our
list of predictions by the CNN on Line 54.

Given the contours of the digits in the captcha, we can now break it:

56 # loop over the contours
57 for c in cnts:
58 # compute the bounding box for the contour then extract the
59 # digit
60 (x, y, w, h) = cv2.boundingRect(c)
61 roi = gray[y - 5:y + h + 5, x - 5:x + w + 5]
62

63 # pre-process the ROI and classify it then classify it

http://pyimg.co/sbm9p
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64 roi = preprocess(roi, 28, 28)
65 roi = np.expand_dims(img_to_array(roi), axis=0) / 255.0
66 pred = model.predict(roi).argmax(axis=1)[0] + 1
67 predictions.append(str(pred))
68

69 # draw the prediction on the output image
70 cv2.rectangle(output, (x - 2, y - 2),
71 (x + w + 4, y + h + 4), (0, 255, 0), 1)
72 cv2.putText(output, str(pred), (x - 5, y - 5),
73 cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 255, 0), 2)

On Line 57 we loop over each of the outlines (which have been sorted from left-to-right) of the
digits. We then extract the ROI of the digit on Lines 60 and 61 followed by preprocessing it on
Lines 64 and 65.

Line 66 calls the .predict method of our model. The index with the largest probability
returned by .predict will be our class label. We add 1 to this value since indexes values start
at zero; however, there is no zero class – only classes for the digits 1-9. This prediction is then
appended to the predictions list on Line 67.

Lines 70 and 71 draw a bounding box surrounding the current digit while Lines 72 and
73 draw the predicted digit on the output image itself.

Our last code block handles writing the broken captcha as a string to our terminal as well as
displaying the output image:

75 # show the output image
76 print("[INFO] captcha: {}".format("".join(predictions)))
77 cv2.imshow("Output", output)
78 cv2.waitKey()

To see our captcha breaker in action, simply execute the following command:

$ python test_model.py --input downloads --model output/lenet.hdf5
Using TensorFlow backend.
[INFO] loading pre-trained network...
[INFO] captcha: 2696
[INFO] captcha: 2337
[INFO] captcha: 2571
[INFO] captcha: 8648

In Figure 21.7 I have included four samples generated from my run of test_model.py. In
every case we have correctly predicted the digit string and broken the image captcha using a simple
network architecture trained on a small amount of training data.

21.2 Summary

In this chapter we learned how to:
1. Gather a dataset of raw images.
2. Label and annotate our images for training.
3. Train a a custom Convolutional Neural Network on our labeled dataset.
4. Test and evaluate our model on example images.
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Figure 21.7: Examples of captchas that have been correctly classified and broken by our LeNet
model.

To accomplish this, we scraped 500 example captcha images from the E-ZPass NY website.
We then wrote a Python script that aids us in the labeling process, enabling us to quickly label the
entire dataset and store the resulting images in an organized directory structure.

After our dataset was labeled, we trained the LeNet architecture using the SGD optimizer on
the dataset using categorical cross-entropy loss – the resulting model obtained 100% accuracy on
the testing set with zero overfitting. Finally, we visualized results of the predicted digits to confirm
that we have successfully devised a method to break the captcha.

Again, I want to remind you that this chapter serves as only an example of how to obtain an
image dataset and label it. Under no circumstances should you use this dataset or resulting model
for nefarious reasons. If you are ever in a situation where you find that computer vision or deep
learning can be used to exploit a vulnerability, be sure to practice responsible disclosure and attempt
to report the issue to the proper stakeholders; failure to do so is unethical (as is misuse of this code,
which, legally, I must say I cannot take responsibility for).

Secondly, this chapter (as will the next one on smile detection with deep learning) have
leveraged computer vision and the OpenCV library to facilitate building a complete application. If
you are planning on becoming a serious deep learning practitioner, I highly recommend that you
learn the fundamentals of image processing and the OpenCV library – having even a rudimentary
understanding of these concepts will enable you to:

1. Appreciate deep learning at a higher level.
2. Develop more robust applications that use deep learning for image classification
3. Leverage image processing techniques to more quickly obtain your goals.
A great example of using basic image processing techniques to our advantage can be found in

the Section 21.1.4 above where we were able to quickly annotate and label our dataset. Without
using simple computer vision techniques, we would have been stuck manually cropping and saving
the example digits to disk using image editing software such as Photoshop or GIMP. Instead, we
were able to write a quick-and-dirty application that automatically extracted each digit from the
captcha – all we had to do was press the proper key on our keyboard to label the image.

If you are new to the world of OpenCV or computer vision, or if you simply want to level up
your skills, I would highly encourage you to work through my book, Practical Python and OpenCV
[8]. The book is a quick read and will give you the foundation you need to be successful when
applying deep learning to image classification and computer vision tasks.

https://www.pyimagesearch.com/practical-python-opencv/
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In this chapter, we will be building a complete end-to-end application that can detect smiles in a
video stream in real-time using deep learning along with traditional computer vision techniques.

To accomplish this task, we’ll be training the LetNet architecture on a dataset of images that
contain faces of people who are smiling and not smiling. Once our network is trained, we’ll create
a separate Python script – this one will detect faces in images via OpenCV’s built-in Haar cascade
face detector, extract the face region of interest (ROI) from the image, and then pass the ROI
through LeNet for smile detection.

When developing real-world applications for image classification, you’ll often have to mix
traditional computer vision and image processing techniques with deep learning. I’ve done my best
to ensure this book stands on its own in terms of algorithms, techniques, and libraries you need to
understand in order to be successful when studying and applying deep learning. However, a full
review of OpenCV and other computer vision techniques is outside the scope of this book.

To get up to speed with OpenCV and image processing fundamentals, I recommend you read
through Practical Python and OpenCV – the book is a quick read and will take you less than a
weekend to work through. By the time you finish, you’ll have a strong understanding of image
processing fundamentals.

For a more in-depth treatment of computer vision techniques, be sure to refer to the PyImage-
Search Gurus course. Regardless of your background in computer vision and image processing, by
the time you have finished this chapter, you’ll have a complete smile detection solution that you
can use in your own applications.

22.1 The SMILES Dataset

The SMILES dataset consists of images of faces that are either smiling or not smiling [51]. In total,
there are 13,165 grayscale images in the dataset, with each image having a size of 64×64 pixels.

As Figure 22.1 demonstrates, images in this dataset are tightly cropped around the face, which
will make the training process easier as we’ll be able to learn the “smiling” or “not smiling” patterns
directly from the input images, just as we have done in similar chapters earlier in this book.

https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/pyimagesearch-gurus/
https://www.pyimagesearch.com/pyimagesearch-gurus/
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Figure 22.1: Top: Examples of "smiling" faces. Bottom: Samples of "not smiling" faces. In this
chapter we will be training a Convolutional Neural Network to recognize between smiling and not
smiling faces in real-time video streams.

However, the close cropping poses a problem during testing – since our input images will not
only contain a face but the background of the image as well, we first need to localize the face in the
image and extract the face ROI before we can pass it through our network for detection. Luckily,
using traditional computer vision methods such as Haar cascades, this is a much easier task than it
sounds.

A second issue we need to handle in the SMILES dataset is class imbalance. While there are
13,165 images in the dataset, 9,475 of these examples are not smiling while only 3,690 belong to
the smiling class. Given that there are over 2.5x the number of "not smiling” images to “smiling”
examples, we need to be careful when devising our training procedure.

Our network may naturally pick the “not smiling” label since (1) the distributions are uneven
and (2) it has more examples of what a “not smiling” face looks like. As we’ll see later in this
chapter, we can combat class imbalance by computing a “weight” for each class during training
time.

22.2 Training the Smile CNN
The first step in building our smile detector is to train a CNN on the SMILES dataset to distin-
guish between a face that is smiling versus not smiling. To accomplish this task, let’s create a new
file named train_model.py. From there, insert the following code:

1 # import the necessary packages
2 from sklearn.preprocessing import LabelEncoder
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import classification_report
5 from keras.preprocessing.image import img_to_array
6 from keras.utils import np_utils
7 from pyimagesearch.nn.conv import LeNet
8 from imutils import paths
9 import matplotlib.pyplot as plt

10 import numpy as np
11 import argparse
12 import imutils
13 import cv2
14 import os
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Lines 2-14 import our required Python packages. We’ve used all of the packages before, but I
want to call your attention to Line 7 where we import the LeNet (Chapter 14) class – this is the
architecture we’ll be using when creating our smile detector.

Next, let’s parse our command line arguments:

16 # construct the argument parse and parse the arguments
17 ap = argparse.ArgumentParser()
18 ap.add_argument("-d", "--dataset", required=True,
19 help="path to input dataset of faces")
20 ap.add_argument("-m", "--model", required=True,
21 help="path to output model")
22 args = vars(ap.parse_args())
23

24 # initialize the list of data and labels
25 data = []
26 labels = []

Our script will require two command line arguments, each of which I’ve detailed below:
1. --dataset: The path to the SMILES directory residing on disk.
2. --model: The path to where the serialized LeNet weights will be saved after training.
We are now ready to load the SMILES dataset from disk and store it in memory:

28 # loop over the input images
29 for imagePath in sorted(list(paths.list_images(args["dataset"]))):
30 # load the image, pre-process it, and store it in the data list
31 image = cv2.imread(imagePath)
32 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
33 image = imutils.resize(image, width=28)
34 image = img_to_array(image)
35 data.append(image)
36

37 # extract the class label from the image path and update the
38 # labels list
39 label = imagePath.split(os.path.sep)[-3]
40 label = "smiling" if label == "positives" else "not_smiling"
41 labels.append(label)

On Line 29 we loop over all images in the --dataset input directory. For each of these images
we:

1. Load it from disk (Line 31).
2. Convert it to grayscale (Line 32).
3. Resize it to have a fixed input size of 28×28 pixels (Line 33).
4. Convert the image to an array compatible with Keras and its channel ordering (Line 34).
5. Add the image to the data list that LeNet will be trained on.
Lines 39-41 handle extracting the class label from the imagePath and updating the labels list.

The SMILES dataset stores smiling faces in the SMILES/positives/positives7 subdirectory
while not smiling faces live in the SMILES/negatives/negatives7 subdirectory.

Therefore, given the path to an image:

SMILEs/positives/positives7/10007.jpg
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We can extract the class label by splitting on the image path separator and grabbing the
third-to-last subdirectory: positives. In fact, this is exactly what Line 39 accomplishes.

Now that our data and labels are constructed, we can scale the raw pixel intensities to the
range [0,1] and then apply one-hot encoding to the labels:

43 # scale the raw pixel intensities to the range [0, 1]
44 data = np.array(data, dtype="float") / 255.0
45 labels = np.array(labels)
46

47 # convert the labels from integers to vectors
48 le = LabelEncoder().fit(labels)
49 labels = np_utils.to_categorical(le.transform(labels), 2)

Our next code block handles our data imbalance issue by computing the class weights:

51 # account for skew in the labeled data
52 classTotals = labels.sum(axis=0)
53 classWeight = classTotals.max() / classTotals

Line 52 computes the total number of examples per class. In this case, classTotals will be
an array: [9475, 3690] for “not smiling” and “smiling”, respectively.

We then scale these totals on Line 53 to obtain the classWeight used to handle the class
imbalance, yielding the array: [1, 2.56]. This weighting implies that our network will treat every
instance of “smiling” as 2.56 instances of “not smiling” and helps combat the class imbalance issue
by amplifying the per-instance loss by a larger weight when seeing “smiling” examples.

Now that we’ve computed our class weights, we can move on to partitioning our data into
training and testing splits, using 80% of the data for training and 20% for testing:

55 # partition the data into training and testing splits using 80% of
56 # the data for training and the remaining 20% for testing
57 (trainX, testX, trainY, testY) = train_test_split(data,
58 labels, test_size=0.20, stratify=labels, random_state=42)

Finally, we are ready to train LeNet:

60 # initialize the model
61 print("[INFO] compiling model...")
62 model = LeNet.build(width=28, height=28, depth=1, classes=2)
63 model.compile(loss="binary_crossentropy", optimizer="adam",
64 metrics=["accuracy"])
65

66 # train the network
67 print("[INFO] training network...")
68 H = model.fit(trainX, trainY, validation_data=(testX, testY),
69 class_weight=classWeight, batch_size=64, epochs=15, verbose=1)

Line 62 initializes the LeNet architecture which will accept 28× 28 single channel images.
Given that there are only two classes (smiling versus not smiling), we set classes=2.
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We’ll also be using binary_crossentropy rather than categorical_crossentropy as our
loss function. Again, categorical cross-entropy is only used when the number of classes is more
than two.

Up until this point, we’ve been using the SGD optimizer to train our network. Here we’ll
be using Adam (Line 63) [113]. I cover more advanced optimizers (including Adam, RMSprop,
Adadelta), and others inside the Practitioner Bundle; however, for the sake of this example, simply
understand that Adam can converge faster than SGD in certain situations.

Again, the optimizer and associated parameters are often considered hyperparameters that you
need to tune when training your network. When I put this example together I found that Adam
performed substantially better than SGD.

Lines 68 and 69 train LeNet for a total of 15 epochs using our supplied classWeight to
combat class imbalance.

Once our network is trained we can evaluate it and serialize the weights to disk:

71 # evaluate the network
72 print("[INFO] evaluating network...")
73 predictions = model.predict(testX, batch_size=64)
74 print(classification_report(testY.argmax(axis=1),
75 predictions.argmax(axis=1), target_names=le.classes_))
76

77 # save the model to disk
78 print("[INFO] serializing network...")
79 model.save(args["model"])

We’ll also construct a learning curve for our network so we can visualize performance:

81 # plot the training + testing loss and accuracy
82 plt.style.use("ggplot")
83 plt.figure()
84 plt.plot(np.arange(0, 15), H.history["loss"], label="train_loss")
85 plt.plot(np.arange(0, 15), H.history["val_loss"], label="val_loss")
86 plt.plot(np.arange(0, 15), H.history["acc"], label="acc")
87 plt.plot(np.arange(0, 15), H.history["val_acc"], label="val_acc")
88 plt.title("Training Loss and Accuracy")
89 plt.xlabel("Epoch #")
90 plt.ylabel("Loss/Accuracy")
91 plt.legend()
92 plt.show()

To train our smile detector, execute the following command:

$ python train_model.py --dataset ../datasets/SMILEsmileD \
--model output/lenet.hdf5

[INFO] compiling model...
[INFO] training network...
Train on 10532 samples, validate on 2633 samples
Epoch 1/15
8s - loss: 0.3970 - acc: 0.8161 - val_loss: 0.2771 - val_acc: 0.8872
Epoch 2/15
8s - loss: 0.2572 - acc: 0.8919 - val_loss: 0.2620 - val_acc: 0.8899
Epoch 3/15
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7s - loss: 0.2322 - acc: 0.9079 - val_loss: 0.2433 - val_acc: 0.9062
...
Epoch 15/15
8s - loss: 0.0791 - acc: 0.9716 - val_loss: 0.2148 - val_acc: 0.9351
[INFO] evaluating network...

precision recall f1-score support

not_smiling 0.95 0.97 0.96 1890
smiling 0.91 0.86 0.88 743

avg / total 0.93 0.94 0.93 2633

[INFO] serializing network...

After 15 epochs we can see that our network is obtaining 93% classification accuracy. Figure
22.2 plots our learning curve:

Figure 22.2: A plot of the learning curve for the LeNet architecture trained on the SMILES dataset.
After fifteen epochs we are obtaining ≈ 93% classification accuracy on our testing set.

Past epoch six our validation loss starts to stagnate – further training past epoch 15 would result
in overfitting. If desired, we would improve the accuracy of our smile detector by using more
training data, either by:

1. Gathering additional training data.
2. Applying data augmentation to randomly translate, rotate, and shift our existing training set.

Data augmentation is covered in detail inside the Practitioner Bundle.
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22.3 Running the Smile CNN in Real-time
Now that we’ve trained our model, the next step is to build the Python script to access our
webcam/video file and apply smile detection to each frame. To accomplish this step, open up a new
file, name it detect_smile.py, and we’ll get to work.

1 # import the necessary packages
2 from keras.preprocessing.image import img_to_array
3 from keras.models import load_model
4 import numpy as np
5 import argparse
6 import imutils
7 import cv2

Lines 2-7 import our required Python packages. The img_to_array function will be used
to convert each individual frame from our video stream to a properly channel ordered array. The
load_model function will be used to load the weights of our trained LeNet model from disk.

The detectsmile.py script requires two command line arguments followed by a third optional
one:

9 # construct the argument parse and parse the arguments
10 ap = argparse.ArgumentParser()
11 ap.add_argument("-c", "--cascade", required=True,
12 help="path to where the face cascade resides")
13 ap.add_argument("-m", "--model", required=True,
14 help="path to pre-trained smile detector CNN")
15 ap.add_argument("-v", "--video",
16 help="path to the (optional) video file")
17 args = vars(ap.parse_args())

The first argument, --cascade is the path to a Haar cascade used to detect faces in images.
First published in 2001 by Paul Viola and Michael Jones detail the Haar cascade in their work,
Rapid Object Detection using a Boosted Cascade of Simple Features [134]. This publication has
become one of the most cited papers in the computer vision literature.

The Haar cascade algorithm is capable of detecting objects in images, regardless of their
location and scale. Perhaps most intriguing (and relevant to our application), the detector can run
in real-time on modern hardware. In fact, the motivation of behind Viola and Jones’ work was to
create a face detector.

Because a detailed review of object detection using traditional computer vision methods is
outside the scope of this book, you should review of Haar cascades, along with the common
Histogram of Oriented Gradients + Linear SVM framework for object detection, by referring to this
PyImageSearch blog post (http://pyimg.co/gq9lu) along with the Object Detection module inside
PyImageSearch Gurus [33].

The second common line argument, --model, specifies the path to our serialized LeNet weights
on disk. Our script will default to reading frames from a built-in/USB webcam; however, if we
instead want to read frames from a file, we can specify the file via the optional --video switch.

Before we can detect smiles, we first need to perform some initializations:

19 # load the face detector cascade and smile detector CNN
20 detector = cv2.CascadeClassifier(args["cascade"])

http://pyimg.co/gq9lu
https://www.pyimagesearch.com/pyimagesearch-gurus/
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21 model = load_model(args["model"])
22

23 # if a video path was not supplied, grab the reference to the webcam
24 if not args.get("video", False):
25 camera = cv2.VideoCapture(0)
26

27 # otherwise, load the video
28 else:
29 camera = cv2.VideoCapture(args["video"])

Lines 20 and 21 load the Haar cascade face detector and the pre-trained LeNet model, re-
spectively. If a video path was not supplied, we grab a pointer to our webcam (Lines 24 and 25).
Otherwise, we open a pointer to the video file on disk (Lines 28 and 29).

We have now reached the main processing pipeline of our application:

31 # keep looping
32 while True:
33 # grab the current frame
34 (grabbed, frame) = camera.read()
35

36 # if we are viewing a video and we did not grab a frame, then we
37 # have reached the end of the video
38 if args.get("video") and not grabbed:
39 break
40

41 # resize the frame, convert it to grayscale, and then clone the
42 # original frame so we can draw on it later in the program
43 frame = imutils.resize(frame, width=300)
44 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
45 frameClone = frame.copy()

Line 32 starts a loop that will continue until (1) we stop the script or (2) we reach the end of a
the video file (provided a --video path was applied).

Line 34 grabs the next frame from the video stream. If the frame could not be grabbed, then
we have reached the end of the video file. Otherwise, we pre-process the frame for face detection
by resizing it to have a width of 300 pixels (Line 43) and converting it to grayscale (Line 44).

The .detectMultiScale method handles detecting the bounding box (x,y)-coordinates of
faces in the frame:

47 # detect faces in the input frame, then clone the frame so that
48 # we can draw on it
49 rects = detector.detectMultiScale(gray, scaleFactor=1.1,
50 minNeighbors=5, minSize=(30, 30),
51 flags=cv2.CASCADE_SCALE_IMAGE)

Here we pass in our grayscale image and indicate that for a given region to be considered a face
it must have a minimum width of 30×30 pixels. The minNeighbors attribute helps prune false-
positives while the scaleFactor controls the number of image pyramid (http://pyimg.co/rtped)
levels generated.

Again, a detailed review of Haar cascades for object detection is outside the scope of this book.
For a more thorough look at face detection in video streams, please see Chapter 15 of Practical
Python and OpenCV .

http://pyimg.co/rtped
https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/practical-python-opencv/
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The .detectMultiScale method returns a list of 4-tuples that make up the rectangle that
bounds the face in the frame. The first two values in this list are the starting (x,y)-coordinates. The
second two values in the rects list are the width and height of the bounding box, respectively.

We loop over each set of bounding boxes below:

53 # loop over the face bounding boxes
54 for (fX, fY, fW, fH) in rects:
55 # extract the ROI of the face from the grayscale image,
56 # resize it to a fixed 28x28 pixels, and then prepare the
57 # ROI for classification via the CNN
58 roi = gray[fY:fY + fH, fX:fX + fW]
59 roi = cv2.resize(roi, (28, 28))
60 roi = roi.astype("float") / 255.0
61 roi = img_to_array(roi)
62 roi = np.expand_dims(roi, axis=0)

For each of the bounding boxes we use NumPy array slicing to extract the face ROI (Line 58).
Once we have the ROI, we preprocess it and prepare it for classification via LeNet by resizing it,
scaling it, converting it to a Keras-compatible array, and padding the image with an extra dimension
(Lines 69-62).

Once the roi is preprocessed, it can be passed through LeNet for classification:

64 # determine the probabilities of both "smiling" and "not
65 # smiling", then set the label accordingly
66 (notSmiling, smiling) = model.predict(roi)[0]
67 label = "Smiling" if smiling > notSmiling else "Not Smiling"

A call to .predict on Line 66 returns the probabilities of “not smiling” and “smiling”,
respectively. Line 67 sets the label depending on which probability is larger.

Once we have the label, we can draw it, along with the corresponding bounding box on the
frame:

69 # display the label and bounding box rectangle on the output
70 # frame
71 cv2.putText(frameClone, label, (fX, fY - 10),
72 cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
73 cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH),
74 (0, 0, 255), 2)

Our final code block handles displaying the output frame to our screen:

76 # show our detected faces along with smiling/not smiling labels
77 cv2.imshow("Face", frameClone)
78

79 # if the ’q’ key is pressed, stop the loop
80 if cv2.waitKey(1) & 0xFF == ord("q"):
81 break
82

83 # cleanup the camera and close any open windows
84 camera.release()
85 cv2.destroyAllWindows()
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If the q key is pressed, we exit the script.
To run detect_smile.py using your webcam, execute the following command:

$ python detect_smile.py --cascade haarcascade_frontalface_default.xml \
--model output/lenet.hdf5

If you instead want to use a video file (like I have supplied in the accompanying downloads of
this book), you would update your command to use the --video switch:

$ python detect_smile.py --cascade haarcascade_frontalface_default.xml \
--model output/lenet.hdf5 --video path/to/your/video.mov

I have included the results of the smile detection script in the Figure 22.3 below:

Figure 22.3: Applying our CNN to recognize smiling vs. not-smiling in real-time video streams on
a CPU.

Notice how LeNet is correctly predicting “smiling” or “not smiling” based on my facial
expression.

22.4 Summary
In this chapter we learned how to build an end-to-end computer vision and deep learning application
to perform smile detection. To do so we first trained the LeNet architecture on the SMILES dataset.
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Due to class imbalances in the SMILES dataset, we discovered how to compute class weights used
to help mitigate the problem.

Once trained, we evaluated LeNet on our testing set and found the network obtained a re-
spectable 93% classification accuracy. Higher classification accuracy can be obtained by gathering
more training data or applying data augmentation to existing training data.

We then created a Python script to read frames from a webcam/video file, detect faces, and then
apply our pre-trained network. In order to detect faces, we used OpenCV’s Haar cascades. Once a
face was detected it was extracted from the frame and then passed through LeNet to determine if
the person was smiling or not smiling. As a whole, our smile detection system can easily run in
real-time on the CPU using modern hardware.





23. Your Next Steps

Take a second to congratulate yourself; you’ve worked through the entire Starter Bundle of Deep
Learning for Computer Vision with Python. That’s quite an achievement, and you’ve earned it.

Let’s reflect on your journey. Inside this book you’ve:
• Learned the fundamentals of image classification.
• Configured your deep learning environment.
• Built your first image classifier.
• Studied parameterized learning.
• Learned all about basic optimization methods (SGD) and regularization techniques.
• Studied Neural Networks inside and out.
• Mastered the fundamentals of Convolutional Neural Networks (CNN).
• Trained your first CNN.
• Investigated more advanced architectures, including LeNet and MiniVGGNet.
• Learned how to spot underfitting and overfitting.
• Applied pre-trained CNNs on the ImageNet dataset to classify to your images.
• Built an end-to-end computer vision system to break captchas.
• Created your own smile detector.
At this point, you have a very strong understanding of the fundamentals of machine learning,

neural networks, and deep learning applied to computer vision. But, I have the feeling that your
journey is just getting started. . .

23.1 So, What’s Next?
The Starter Bundle of Deep Learning for Computer Vision with Python is just the tip of the iceberg.
This book is meant to help you understand the fundamentals of Convolutional Neural Networks,
as well as provide actual end-to-end examples/case studies that you can use to guide you when
applying deep learning to your own applications.

But just as deep learning researchers found that going deeper leads to more accurate networks,
I too would encourage you to take a deeper dive into deep learning.

If you want to:



320 Chapter 23. Your Next Steps

• Understand more advanced training techniques.
• Train your networks faster using transfer-learning.
• Work with large datasets, too big to fit into memory.
• Improve your classification accuracy with network ensembles.
• Explore more exotic architectures such as GoogLeNet and ResNet.
• Study deep dreaming and neural style.
• Learn about Generative Adversarial Networks (GANs).
• Train state-of-the-art architectures such as AlexNet, VGGNet, GoogLeNet, ResNet, and

SqueezeNet from scratch on the challenging ImageNet dataset. . .
. . . then I would highly encourage you to not stop here. Continue your journey towards deep

learning mastery. If you enjoyed the Starter Bundle, I can guarantee you that the Practitioner
Bundle and ImageNet Bundle only get better from here.

I hope you’ll allow me to continue to guide you on your deep learning journey (and avoid
the same mistakes I did). If you haven’t already picked up a copy of the Practitioner Bundle or
ImageNet Bundle, you can do so here:

https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/
And if you have any questions at all, feel free to contact me:
http://www.pyimagesearch.com/contact/
Cheers,
–Adrian Rosebrock

https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/
http://www.pyimagesearch.com/contact/
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