
Agents
Authors: Julia Wiesinger, Patrick Marlow
and Vladimir Vuskovic

Agents

2September 2024

Acknowledgements

Reviewers and Contributors

Evan Huang

Emily Xue

Olcan Sercinoglu

Sebastian Riedel

Satinder Baveja

Antonio Gulli

Anant Nawalgaria

Curators and Editors

Antonio Gulli

Anant Nawalgaria

Grace Mollison

Technical Writer

Joey Haymaker

Designer

Michael Lanning

Introduction 4

What is an agent? 5

 The model 6

 The tools 7

 The orchestration layer 7

 Agents vs. models 8

 Cognitive architectures: How agents operate 8

Tools: Our keys to the outside world 12

 Extensions 13

 Sample Extensions 15

 Functions 18

 Use cases 21

 Function sample code 24

 Data stores 27

 Implementation and application 28

 Tools recap 32

Enhancing model performance with targeted learning 33

Agent quick start with LangChain 35

Production applications with Vertex AI agents 38

Summary 40

Endnotes 42

Table of contents

Agents

4September 2024

Introduction
Humans are fantastic at messy pattern recognition tasks. However, they often rely on tools
- like books, Google Search, or a calculator - to supplement their prior knowledge before
arriving at a conclusion. Just like humans, Generative AI models can be trained to use tools
to access real-time information or suggest a real-world action. For example, a model can
leverage a database retrieval tool to access specific information, like a customer's purchase
history, so it can generate tailored shopping recommendations. Alternatively, based on a
user's query, a model can make various API calls to send an email response to a colleague
or complete a financial transaction on your behalf. To do so, the model must not only have
access to a set of external tools, it needs the ability to plan and execute any task in a self-
directed fashion. This combination of reasoning, logic, and access to external information
that are all connected to a Generative AI model invokes the concept of an agent, or a
program that extends beyond the standalone capabilities of a Generative AI model. This
whitepaper dives into all these and associated aspects in more detail.

This combination of reasoning,
logic, and access to external
information that are all connected
to a Generative AI model invokes
the concept of an agent.

Agents

5September 2024

What is an agent?
In its most fundamental form, a Generative AI agent can be defined as an application that
attempts to achieve a goal by observing the world and acting upon it using the tools that it
has at its disposal. Agents are autonomous and can act independently of human intervention,
especially when provided with proper goals or objectives they are meant to achieve. Agents
can also be proactive in their approach to reaching their goals. Even in the absence of
explicit instruction sets from a human, an agent can reason about what it should do next to
achieve its ultimate goal. While the notion of agents in AI is quite general and powerful, this
whitepaper focuses on the specific types of agents that Generative AI models are capable of
building at the time of publication.

In order to understand the inner workings of an agent, let’s first introduce the foundational
components that drive the agent’s behavior, actions, and decision making. The combination
of these components can be described as a cognitive architecture, and there are many
such architectures that can be achieved by the mixing and matching of these components.
Focusing on the core functionalities, there are three essential components in an agent’s
cognitive architecture as shown in Figure 1.

Agents

6September 2024

Figure 1. General agent architecture and components

The model

In the scope of an agent, a model refers to the language model (LM) that will be utilized as
the centralized decision maker for agent processes. The model used by an agent can be one
or multiple LM’s of any size (small / large) that are capable of following instruction based
reasoning and logic frameworks, like ReAct, Chain-of-Thought, or Tree-of-Thoughts. Models
can be general purpose, multimodal or fine-tuned based on the needs of your specific agent
architecture. For best production results, you should leverage a model that best fits your
desired end application and, ideally, has been trained on data signatures associated with the
tools that you plan to use in the cognitive architecture. It’s important to note that the model is
typically not trained with the specific configuration settings (i.e. tool choices, orchestration/
reasoning setup) of the agent. However, it’s possible to further refine the model for the
agent’s tasks by providing it with examples that showcase the agent’s capabilities, including
instances of the agent using specific tools or reasoning steps in various contexts.

Agents

7September 2024

The tools

Foundational models, despite their impressive text and image generation, remain constrained
by their inability to interact with the outside world. Tools bridge this gap, empowering agents
to interact with external data and services while unlocking a wider range of actions beyond
that of the underlying model alone. Tools can take a variety of forms and have varying
depths of complexity, but typically align with common web API methods like GET, POST,
PATCH, and DELETE. For example, a tool could update customer information in a database
or fetch weather data to influence a travel recommendation that the agent is providing to
the user. With tools, agents can access and process real-world information. This empowers
them to support more specialized systems like retrieval augmented generation (RAG),
which significantly extends an agent’s capabilities beyond what the foundational model can
achieve on its own. We’ll discuss tools in more detail below, but the most important thing
to understand is that tools bridge the gap between the agent’s internal capabilities and the
external world, unlocking a broader range of possibilities.

The orchestration layer

The orchestration layer describes a cyclical process that governs how the agent takes in
information, performs some internal reasoning, and uses that reasoning to inform its next
action or decision. In general, this loop will continue until an agent has reached its goal or a
stopping point. The complexity of the orchestration layer can vary greatly depending on the
agent and task it’s performing. Some loops can be simple calculations with decision rules,
while others may contain chained logic, involve additional machine learning algorithms, or
implement other probabilistic reasoning techniques. We’ll discuss more about the detailed
implementation of the agent orchestration layers in the cognitive architecture section.

Agents

8September 2024

Agents vs. models

To gain a clearer understanding of the distinction between agents and models, consider the
following chart:

Models Agents

Knowledge is limited to what is available in their
training data.

Knowledge is extended through the connection
with external systems via tools

Single inference / prediction based on the
user query. Unless explicitly implemented for
the model, there is no management of session
history or continuous context. (i.e. chat history)

Managed session history (i.e. chat history) to
allow for multi turn inference / prediction based
on user queries and decisions made in the
orchestration layer. In this context, a ‘turn’ is
defined as an interaction between the interacting
system and the agent. (i.e. 1 incoming event/
query and 1 agent response)

No native tool implementation. Tools are natively implemented in agent
architecture.

No native logic layer implemented. Users can
form prompts as simple questions or use
reasoning frameworks (CoT, ReAct, etc.) to
form complex prompts to guide the model in
prediction.

Native cognitive architecture that uses reasoning
frameworks like CoT, ReAct, or other pre-built
agent frameworks like LangChain.

Cognitive architectures: How agents operate

Imagine a chef in a busy kitchen. Their goal is to create delicious dishes for restaurant
patrons which involves some cycle of planning, execution, and adjustment.

Agents

9September 2024

• They gather information, like the patron’s order and what ingredients are in the pantry
and refrigerator.

• They perform some internal reasoning about what dishes and flavor profiles they can
create based on the information they have just gathered.

• They take action to create the dish: chopping vegetables, blending spices, searing meat.

At each stage in the process the chef makes adjustments as needed, refining their plan as
ingredients are depleted or customer feedback is received, and uses the set of previous
outcomes to determine the next plan of action. This cycle of information intake, planning,
executing, and adjusting describes a unique cognitive architecture that the chef employs to
reach their goal.

Just like the chef, agents can use cognitive architectures to reach their end goals by
iteratively processing information, making informed decisions, and refining next actions
based on previous outputs. At the core of agent cognitive architectures lies the orchestration
layer, responsible for maintaining memory, state, reasoning and planning. It uses the rapidly
evolving field of prompt engineering and associated frameworks to guide reasoning and
planning, enabling the agent to interact more effectively with its environment and complete
tasks. Research in the area of prompt engineering frameworks and task planning for
language models is rapidly evolving, yielding a variety of promising approaches. While not an
exhaustive list, these are a few of the most popular frameworks and reasoning techniques
available at the time of this publication:

• ReAct, a prompt engineering framework that provides a thought process strategy for
language models to Reason and take action on a user query, with or without in-context
examples. ReAct prompting has shown to outperform several SOTA baselines and improve
human interoperability and trustworthiness of LLMs.

Agents

10September 2024

• Chain-of-Thought (CoT), a prompt engineering framework that enables reasoning
capabilities through intermediate steps. There are various sub-techniques of CoT including
self-consistency, active-prompt, and multimodal CoT that each have strengths and
weaknesses depending on the specific application.

• Tree-of-thoughts (ToT),, a prompt engineering framework that is well suited for
exploration or strategic lookahead tasks. It generalizes over chain-of-thought prompting
and allows the model to explore various thought chains that serve as intermediate steps
for general problem solving with language models.

Agents can utilize one of the above reasoning techniques, or many other techniques, to
choose the next best action for the given user request. For example, let’s consider an agent
that is programmed to use the ReAct framework to choose the correct actions and tools for
the user query. The sequence of events might go something like this:

1. User sends query to the agent

2. Agent begins the ReAct sequence

3. The agent provides a prompt to the model, asking it to generate one of the next ReAct
steps and its corresponding output:

a. Question: The input question from the user query, provided with the prompt

b. Thought: The model’s thoughts about what it should do next

c. Action: The model’s decision on what action to take next

i. This is where tool choice can occur

ii. For example, an action could be one of [Flights, Search, Code, None], where the first
3 represent a known tool that the model can choose, and the last represents “no
tool choice”

Agents

11September 2024

d. Action input: The model’s decision on what inputs to provide to the tool (if any)

e. Observation: The result of the action / action input sequence

i. This thought / action / action input / observation could repeat N-times as needed

f. Final answer: The model’s final answer to provide to the original user query

4. The ReAct loop concludes and a final answer is provided back to the user

Figure 2. Example agent with ReAct reasoning in the orchestration layer

As shown in Figure 2, the model, tools, and agent configuration work together to provide
a grounded, concise response back to the user based on the user’s original query. While
the model could have guessed at an answer (hallucinated) based on its prior knowledge,
it instead used a tool (Flights) to search for real-time external information. This additional
information was provided to the model, allowing it to make a more informed decision based
on real factual data and to summarize this information back to the user.

Agents

12September 2024

In summary, the quality of agent responses can be tied directly to the model’s ability to
reason and act about these various tasks, including the ability to select the right tools, and
how well that tools has been defined. Like a chef crafting a dish with fresh ingredients and
attentive to customer feedback, agents rely on sound reasoning and reliable information to
deliver optimal results. In the next section, we’ll dive into the various ways agents connect
with fresh data.

Tools: Our keys to the outside world
While language models excel at processing information, they lack the ability to directly
perceive and influence the real world. This limits their usefulness in situations requiring
interaction with external systems or data. This means that, in a sense, a language model
is only as good as what it has learned from its training data. But regardless of how much
data we throw at a model, they still lack the fundamental ability to interact with the outside
world. So how can we empower our models to have real-time, context-aware interaction with
external systems? Functions, Extensions, Data Stores and Plugins are all ways to provide this
critical capability to the model.

While they go by many names, tools are what create a link between our foundational models
and the outside world. This link to external systems and data allows our agent to perform a
wider variety of tasks and do so with more accuracy and reliability. For instance, tools can
enable agents to adjust smart home settings, update calendars, fetch user information from
a database, or send emails based on a specific set of instructions.

As of the date of this publication, there are three primary tool types that Google models are
able to interact with: Extensions, Functions, and Data Stores. By equipping agents with tools,
we unlock a vast potential for them to not only understand the world but also act upon it,
opening doors to a myriad of new applications and possibilities.

Agents

13September 2024

Extensions

The easiest way to understand Extensions is to think of them as bridging the gap between
an API and an agent in a standardized way, allowing agents to seamlessly execute APIs
regardless of their underlying implementation. Let’s say that you’ve built an agent with a goal
of helping users book flights. You know that you want to use the Google Flights API to retrieve
flight information, but you’re not sure how you’re going to get your agent to make calls to this
API endpoint.

Figure 3. How do Agents interact with External APIs?

One approach could be to implement custom code that would take the incoming user query,
parse the query for relevant information, then make the API call. For example, in a flight
booking use case a user might state “I want to book a flight from Austin to Zurich.” In this
scenario, our custom code solution would need to extract “Austin” and “Zurich” as relevant
entities from the user query before attempting to make the API call. But what happens if the
user says “I want to book a flight to Zurich” and never provides a departure city? The API call
would fail without the required data and more code would need to be implemented in order
to catch edge and corner cases like this. This approach is not scalable and could easily break
in any scenario that falls outside of the implemented custom code.

Agents

14September 2024

A more resilient approach would be to use an Extension. An Extension bridges the gap
between an agent and an API by:

1. Teaching the agent how to use the API endpoint using examples.

2. Teaching the agent what arguments or parameters are needed to successfully call the
API endpoint.

Figure 4. Extensions connect Agents to External APIs

Extensions can be crafted independently of the agent, but should be provided as part of the
agent’s configuration. The agent uses the model and examples at run time to decide which
Extension, if any, would be suitable for solving the user’s query. This highlights a key strength
of Extensions, their built-in example types, that allow the agent to dynamically select the
most appropriate Extension for the task.

Figure 5. 1-to-many relationship between Agents, Extensions and APIs

Agents

15September 2024

Think of this the same way that a software developer decides which API endpoints to use
while solving and solutioning for a user’s problem. If the user wants to book a flight, the
developer might use the Google Flights API. If the user wants to know where the nearest
coffee shop is relative to their location, the developer might use the Google Maps API. In
this same way, the agent / model stack uses a set of known Extensions to decide which one
will be the best fit for the user’s query. If you’d like to see Extensions in action, you can try
them out on the Gemini application by going to Settings > Extensions and then enabling any
you would like to test. For example, you could enable the Google Flights extension then ask
Gemini “Show me flights from Austin to Zurich leaving next Friday.”

Sample Extensions

To simplify the usage of Extensions, Google provides some out of the box extensions that
can be quickly imported into your project and used with minimal configurations. For example,
the Code Interpreter extension in Snippet 1 allows you to generate and run Python code from
a natural language description.

Agents

16September 2024

Python

import vertexai
import pprint

PROJECT_ID = "YOUR_PROJECT_ID"
REGION = "us-central1"

vertexai.init(project=PROJECT_ID, location=REGION)

from vertexai.preview.extensions import Extension

extension_code_interpreter = Extension.from_hub("code_interpreter")
CODE_QUERY = """Write a python method to invert a binary tree in O(n) time."""

response = extension_code_interpreter.execute(
 operation_id = "generate_and_execute",
 operation_params = {"query": CODE_QUERY}
)

print("Generated Code:")
pprint.pprint({response['generated_code']})

The above snippet will generate the following code.
```
Generated Code:
class TreeNode:
  def __init__(self, val=0, left=None, right=None):
    self.val = val
    self.left = left
    self.right = right

Continues next page...



Agents

17September 2024

Python

def invert_binary_tree(root):
    """
    Inverts a binary tree.
    Args:
        root: The root of the binary tree.
    Returns:
        The root of the inverted binary tree.
    """

    if not root:
        return None

    # Swap the left and right children recursively
    root.left, root.right = 
invert_binary_tree(root.right), invert_binary_tree(root.left)

    return root

# Example usage:
# Construct a sample binary tree
root = TreeNode(4)
root.left = TreeNode(2)
root.right = TreeNode(7)
root.left.left = TreeNode(1)
root.left.right = TreeNode(3)
root.right.left = TreeNode(6)
root.right.right = TreeNode(9)

# Invert the binary tree
inverted_root = invert_binary_tree(root)
```

Snippet 1. Code Interpreter Extension can generate and run Python code

Agents

18September 2024

To summarize, Extensions provide a way for agents to perceive, interact, and influence the
outside world in a myriad of ways. The selection and invocation of these Extensions is guided
by the use of Examples, all of which are defined as part of the Extension configuration.

Functions

In the world of software engineering, functions are defined as self-contained modules
of code that accomplish a specific task and can be reused as needed. When a software
developer is writing a program, they will often create many functions to do various tasks.
They will also define the logic for when to call function_a versus function_b, as well as the
expected inputs and outputs.

Functions work very similarly in the world of agents, but we can replace the software
developer with a model. A model can take a set of known functions and decide when to use
each Function and what arguments the Function needs based on its specification. Functions
differ from Extensions in a few ways, most notably:

1. A model outputs a Function and its arguments, but doesn’t make a live API call.

2. Functions are executed on the client-side, while Extensions are executed on
the agent-side.

Using our Google Flights example again, a simple setup for functions might look like the
example in Figure 7.

Agents

19September 2024

Figure 7. How do functions interact with external APIs?

Note that the main difference here is that neither the Function nor the agent interact directly
with the Google Flights API. So how does the API call actually happen?

With functions, the logic and execution of calling the actual API endpoint is offloaded away
from the agent and back to the client-side application as seen in Figure 8 and Figure 9 below.
This offers the developer more granular control over the flow of data in the application. There
are many reasons why a Developer might choose to use functions over Extensions, but a few
common use cases are:

• API calls need to be made at another layer of the application stack, outside of the direct
agent architecture flow (e.g. a middleware system, a front end framework, etc.)

• Security or Authentication restrictions that prevent the agent from calling an API directly
(e.g API is not exposed to the internet, or non-accessible by agent infrastructure)

• Timing or order-of-operations constraints that prevent the agent from making API calls in
real-time. (i.e. batch operations, human-in-the-loop review, etc.)

Agents

20September 2024

• Additional data transformation logic needs to be applied to the API Response that the
agent cannot perform. For example, consider an API endpoint that doesn’t provide a
filtering mechanism for limiting the number of results returned. Using Functions on the
client-side provides the developer additional opportunities to make these transformations.

• The developer wants to iterate on agent development without deploying additional
infrastructure for the API endpoints (i.e. Function Calling can act like “stubbing” of APIs)

While the difference in internal architecture between the two approaches is subtle as seen in
Figure 8, the additional control and decoupled dependency on external infrastructure makes
Function Calling an appealing option for the Developer.

Figure 8. Delineating client vs. agent side control for extensions and function calling

Agents

21September 2024

Use cases

A model can be used to invoke functions in order to handle complex, client-side execution
flows for the end user, where the agent Developer might not want the language model to
manage the API execution (as is the case with Extensions). Let’s consider the following
example where an agent is being trained as a travel concierge to interact with users that want
to book vacation trips. The goal is to get the agent to produce a list of cities that we can use
in our middleware application to download images, data, etc. for the user’s trip planning. A
user might say something like:

I’d like to take a ski trip with my family but I’m not sure where to go.

In a typical prompt to the model, the output might look like the following:

Sure, here’s a list of cities that you can consider for family ski trips:

• Crested Butte, Colorado, USA

• Whistler, BC, Canada

• Zermatt, Switzerland

While the above output contains the data that we need (city names), the format isn’t ideal
for parsing. With Function Calling, we can teach a model to format this output in a structured
style (like JSON) that’s more convenient for another system to parse. Given the same input
prompt from the user, an example JSON output from a Function might look like Snippet
5 instead.

Agents

22September 2024

Unset

function_call {
 name: "display_cities"
 args: {
 "cities": ["Crested Butte", "Whistler", "Zermatt"],
 "preferences": "skiing"
 }
}

Snippet 5. Sample Function Call payload for displaying a list of cities and user preferences

This JSON payload is generated by the model, and then sent to our Client-side server to do
whatever we would like to do with it. In this specific case, we’ll call the Google Places API to
take the cities provided by the model and look up Images, then provide them as formatted
rich content back to our User. Consider this sequence diagram in Figure 9 showing the above
interaction in step by step detail.

Agents

23September 2024

Figure 9. Sequence diagram showing the lifecycle of a Function Call

The result of the example in Figure 9 is that the model is leveraged to “fill in the blanks” with
the parameters required for the Client side UI to make the call to the Google Places API. The
Client side UI manages the actual API call using the parameters provided by the model in the
returned Function. This is just one use case for Function Calling, but there are many other
scenarios to consider like:

• You want a language model to suggest a function that you can use in your code, but you
don't want to include credentials in your code. Because function calling doesn't run the
function, you don't need to include credentials in your code with the function information.

Agents

24September 2024

• You are running asynchronous operations that can take more than a few seconds. These
scenarios work well with function calling because it's an asynchronous operation.

• You want to run functions on a device that's different from the system producing the
function calls and their arguments.

One key thing to remember about functions is that they are meant to offer the developer
much more control over not only the execution of API calls, but also the entire flow of data
in the application as a whole. In the example in Figure 9, the developer chose to not return
API information back to the agent as it was not pertinent for future actions the agent might
take. However, based on the architecture of the application, it may make sense to return the
external API call data to the agent in order to influence future reasoning, logic, and action
choices. Ultimately, it is up to the application developer to choose what is right for the
specific application.

Function sample code

To achieve the above output from our ski vacation scenario, let’s build out each of the
components to make this work with our gemini-1.5-flash-001 model.

First, we’ll define our display_cities function as a simple Python method.

Agents

25September 2024

Python

def display_cities(cities: list[str], preferences: Optional[str] = None):
 """Provides a list of cities based on the user's search query and preferences.

 Args:
 preferences (str): The user's preferences for the search, like skiing,
 beach, restaurants, bbq, etc.
 cities (list[str]): The list of cities being recommended to the user.

 Returns:
 list[str]: The list of cities being recommended to the user.
 """

 return cities

Snippet 6. Sample python method for a function that will display a list of cities.

Next, we’ll instantiate our model, build the Tool, then pass in our user’s query and tools to
the model. Executing the code below would result in the output as seen at the bottom of the
code snippet.

Agents

26September 2024

Python

from vertexai.generative_models import GenerativeModel, Tool, FunctionDeclaration

model = GenerativeModel("gemini-1.5-flash-001")

display_cities_function = FunctionDeclaration.from_func(display_cities)
tool = Tool(function_declarations=[display_cities_function])

message = "I’d like to take a ski trip with my family but I’m not sure where
to go."

res = model.generate_content(message, tools=[tool])

print(f"Function Name: {res.candidates[0].content.parts[0].function_call.name}")
print(f"Function Args: {res.candidates[0].content.parts[0].function_call.args}")

> Function Name: display_cities
> Function Args: {'preferences': 'skiing', 'cities': ['Aspen', 'Vail',
'Park City']}

Snippet 7. Building a Tool, sending to the model with a user query and allowing the function call to take place

In summary, functions offer a straightforward framework that empowers application
developers with fine-grained control over data flow and system execution, while effectively
leveraging the agent/model for critical input generation. Developers can selectively choose
whether to keep the agent “in the loop” by returning external data, or omit it based on
specific application architecture requirements.

Agents

27September 2024

Data stores

Imagine a language model as a vast library of books, containing its training data. But unlike
a library that continuously acquires new volumes, this one remains static, holding only the
knowledge it was initially trained on. This presents a challenge, as real-world knowledge is
constantly evolving. Data Stores address this limitation by providing access to more dynamic
and up-to-date information, and ensuring a model’s responses remain grounded in factuality
and relevance.

Consider a common scenario where a developer might need to provide a small amount of
additional data to a model, perhaps in the form of spreadsheets or PDFs.

Figure 10. How can Agents interact with structured and unstructured data?

Agents

28September 2024

Data Stores allow developers to provide additional data in its original format to an agent,
eliminating the need for time-consuming data transformations, model retraining, or fine-
tuning. The Data Store converts the incoming document into a set of vector database
embeddings that the agent can use to extract the information it needs to supplement its next
action or response to the user.

Figure 11. Data Stores connect Agents to new real-time data sources of various types.

Implementation and application

In the context of Generative AI agents, Data Stores are typically implemented as a vector
database that the developer wants the agent to have access to at runtime. While we won’t
cover vector databases in depth here, the key point to understand is that they store data
in the form of vector embeddings, a type of high-dimensional vector or mathematical
representation of the data provided. One of the most prolific examples of Data Store usage
with language models in recent times has been the implementation of Retrieval Augmented

Agents

29September 2024

Generation (RAG) based applications. These applications seek to extend the breadth and
depth of a model’s knowledge beyond the foundational training data by giving the model
access to data in various formats like:

• Website content

• Structured Data in formats like PDF, Word Docs, CSV, Spreadsheets, etc.

• Unstructured Data in formats like HTML, PDF, TXT, etc.

Figure 12. 1-to-many relationship between agents and data stores, which can represent various types of
pre-indexed data

The underlying process for each user request and agent response loop is generally modeled
as seen in Figure 13.

1. A user query is sent to an embedding model to generate embeddings for the query

2. The query embeddings are then matched against the contents of the vector database
using a matching algorithm like SCaNN

3. The matched content is retrieved from the vector database in text format and sent back to
the agent

4. The agent receives both the user query and retrieved content, then formulates a response
or action

Agents

30September 2024

5. A final response is sent to the user

Figure 13. The lifecycle of a user request and agent response in a RAG based application

The end result is an application that allows the agent to match a user’s query to a known data
store through vector search, retrieve the original content, and provide it to the orchestration
layer and model for further processing. The next action might be to provide a final answer to
the user, or perform an additional vector search to further refine the results.

A sample interaction with an agent that implements RAG with ReAct reasoning/planning can
be seen in Figure 14.

Agents

31September 2024

Figure 14. Sample RAG based application w/ ReAct reasoning/planning

Agents

32September 2024

Tools recap

To summarize, extensions, functions and data stores make up a few different tool types
available for agents to use at runtime. Each has their own purpose and they can be used
together or independently at the discretion of the agent developer.

Extensions Function Calling Data Stores

Execution Agent-Side Execution Client-Side Execution Agent-Side Execution

Use Case • Developer wants
agent to control
interactions with the
API endpoints

• Useful when
leveraging native pre-
built Extensions (i.e.
Vertex Search, Code
Interpreter, etc.)

• Multi-hop planning
and API calling
(i.e. the next agent
action depends on
the outputs of the
previous action /
API call)

• Security or
Authentication
restrictions prevent the
agent from calling an
API directly

• Timing constraints or
order-of-operations
constraints that
prevent the agent
from making API calls
in real-time. (i.e. batch
operations, human-in-
the-loop review, etc.)

• API that is not exposed
to the internet, or
non-accessible by
Google systems

Developer wants to
implement Retrieval
Augmented Generation
(RAG) with any of the
following data types:

• Website Content from
pre-indexed domains
and URLs

• Structured Data in
formats like PDF,
Word Docs, CSV,
Spreadsheets, etc.

• Relational / Non-
Relational Databases

• Unstructured Data in
formats like HTML, PDF,
TXT, etc.

Agents

33September 2024

Enhancing model performance with
targeted learning
A crucial aspect of using models effectively is their ability to choose the right tools when
generating output, especially when using tools at scale in production. While general training
helps models develop this skill, real-world scenarios often require knowledge beyond the
training data. Imagine this as the difference between basic cooking skills and mastering
a specific cuisine. Both require foundational cooking knowledge, but the latter demands
targeted learning for more nuanced results.

To help the model gain access to this type of specific knowledge, several approaches exist:

• In-context learning: This method provides a generalized model with a prompt, tools, and
few-shot examples at inference time which allows it to learn ‘on the fly' how and when to
use those tools for a specific task. The ReAct framework is an example of this approach in
natural language.

• Retrieval-based in-context learning: This technique dynamically populates the model
prompt with the most relevant information, tools, and associated examples by retrieving
them from external memory. An example of this would be the ‘Example Store’ in Vertex AI
extensions or the data stores RAG based architecture mentioned previously.

• Fine-tuning based learning: This method involves training a model using a larger dataset
of specific examples prior to inference. This helps the model understand when and how to
apply certain tools prior to receiving any user queries.

To provide additional insights on each of the targeted learning approaches, let’s revisit our
cooking analogy.

Agents

34September 2024

• Imagine a chef has received a specific recipe (the prompt), a few key ingredients (relevant
tools) and some example dishes (few-shot examples) from a customer. Based on this
limited information and the chef’s general knowledge of cooking, they will need to figure
out how to prepare the dish ‘on the fly’ that most closely aligns with the recipe and the
customer’s preferences. This is in-context learning.

• Now let’s imagine our chef in a kitchen that has a well-stocked pantry (external data
stores) filled with various ingredients and cookbooks (examples and tools). The chef is now
able to dynamically choose ingredients and cookbooks from the pantry and better align
to the customer’s recipe and preferences. This allows the chef to create a more informed
and refined dish leveraging both existing and new knowledge. This is retrieval-based
in-context learning.

• Finally, let’s imagine that we sent our chef back to school to learn a new cuisine or set of
cuisines (pre-training on a larger dataset of specific examples). This allows the chef to
approach future unseen customer recipes with deeper understanding. This approach is
perfect if we want the chef to excel in specific cuisines (knowledge domains). This is fine-
tuning based learning.

Each of these approaches offers unique advantages and disadvantages in terms of speed,
cost, and latency. However, by combining these techniques in an agent framework, we can
leverage the various strengths and minimize their weaknesses, allowing for a more robust and
adaptable solution.

Agents

35September 2024

Agent quick start with LangChain
In order to provide a real-world executable example of an agent in action, we’ll build a quick
prototype with the LangChain and LangGraph libraries. These popular open source libraries
allow users to build customer agents by “chaining” together sequences of logic, reasoning,
and tool calls to answer a user’s query. We’ll use our gemini-1.5-flash-001 model and
some simple tools to answer a multi-stage query from the user as seen in Snippet 8.

The tools we are using are the SerpAPI (for Google Search) and the Google Places API. After
executing our program in Snippet 8, you can see the sample output in Snippet 9.

Agents

36September 2024

Python

from langgraph.prebuilt import create_react_agent
from langchain_core.tools import tool
from langchain_community.utilities import SerpAPIWrapper
from langchain_community.tools import GooglePlacesTool

os.environ["SERPAPI_API_KEY"] = "XXXXX"
os.environ["GPLACES_API_KEY"] = "XXXXX"

@tool
def search(query: str):
 """Use the SerpAPI to run a Google Search."""
 search = SerpAPIWrapper()
 return search.run(query)

@tool
def places(query: str):
 """Use the Google Places API to run a Google Places Query."""
 places = GooglePlacesTool()
 return places.run(query)

model = ChatVertexAI(model="gemini-1.5-flash-001")
tools = [search, places]

query = "Who did the Texas Longhorns play in football last week? What is the
address of the other team's stadium?"

agent = create_react_agent(model, tools)
input = {"messages": [("human", query)]}

for s in agent.stream(input, stream_mode="values"):
 message = s["messages"][-1]
 if isinstance(message, tuple):
 print(message)
 else:
 message.pretty_print()

Snippet 8. Sample LangChain and LangGraph based agent with tools

Agents

37September 2024

Unset

=============================== Human Message ================================
Who did the Texas Longhorns play in football last week? What is the address
of the other team's stadium?
================================= Ai Message =================================
Tool Calls: search
Args:
 query: Texas Longhorns football schedule
================================ Tool Message ================================
Name: search
{...Results: "NCAA Division I Football, Georgia, Date..."}
================================= Ai Message =================================
The Texas Longhorns played the Georgia Bulldogs last week.
Tool Calls: places
Args:
 query: Georgia Bulldogs stadium
================================ Tool Message ================================
Name: places

{...Sanford Stadium Address: 100 Sanford...}
================================= Ai Message =================================
The address of the Georgia Bulldogs stadium is 100 Sanford Dr, Athens, GA
30602, USA.

Snippet 9. Output from our program in Snippet 8

While this is a fairly simple agent example, it demonstrates the foundational components
of Model, Orchestration, and tools all working together to achieve a specific goal. In the
final section, we’ll explore how these components come together in Google-scale managed
products like Vertex AI agents and Generative Playbooks.

Agents

38September 2024

Production applications with Vertex
AI agents
While this whitepaper explored the core components of agents, building production-grade
applications requires integrating them with additional tools like user interfaces, evaluation
frameworks, and continuous improvement mechanisms. Google’s Vertex AI platform
simplifies this process by offering a fully managed environment with all the fundamental
elements covered earlier. Using a natural language interface, developers can rapidly
define crucial elements of their agents - goals, task instructions, tools, sub-agents for task
delegation, and examples - to easily construct the desired system behavior. In addition, the
platform comes with a set of development tools that allow for testing, evaluation, measuring
agent performance, debugging, and improving the overall quality of developed agents. This
allows developers to focus on building and refining their agents while the complexities of
infrastructure, deployment and maintenance are managed by the platform itself.

In Figure 15 we’ve provided a sample architecture of an agent that was built on the Vertex
AI platform using various features such as Vertex Agent Builder, Vertex Extensions, Vertex
Function Calling and Vertex Example Store to name a few. The architecture includes many of
the various components necessary for a production ready application.

Agents

39September 2024

Figure 15. Sample end-to-end agent architecture built on Vertex AI platform

You can try a sample of this prebuilt agent architecture from our official documentation.

Agents

40September 2024

Summary
In this whitepaper we’ve discussed the foundational building blocks of Generative AI
agents, their compositions, and effective ways to implement them in the form of cognitive
architectures. Some key takeaways from this whitepaper include:

1. Agents extend the capabilities of language models by leveraging tools to access real-
time information, suggest real-world actions, and plan and execute complex tasks
autonomously. agents can leverage one or more language models to decide when and
how to transition through states and use external tools to complete any number of
complex tasks that would be difficult or impossible for the model to complete on its own.

2. At the heart of an agent’s operation is the orchestration layer, a cognitive architecture that
structures reasoning, planning, decision-making and guides its actions. Various reasoning
techniques such as ReAct, Chain-of-Thought, and Tree-of-Thoughts, provide a framework
for the orchestration layer to take in information, perform internal reasoning, and generate
informed decisions or responses.

3. Tools, such as Extensions, Functions, and Data Stores, serve as the keys to the outside
world for agents, allowing them to interact with external systems and access knowledge
beyond their training data. Extensions provide a bridge between agents and external APIs,
enabling the execution of API calls and retrieval of real-time information. functions provide
a more nuanced control for the developer through the division of labor, allowing agents
to generate Function parameters which can be executed client-side. Data Stores provide
agents with access to structured or unstructured data, enabling data-driven applications.

The future of agents holds exciting advancements and we’ve only begun to scratch the
surface of what is possible. As tools become more sophisticated and reasoning capabilities
are enhanced, agents will be empowered to solve increasingly complex problems.
Furthermore, the strategic approach of ‘agent chaining’ will continue to gain momentum. By

Agents

41September 2024

combining specialized agents - each excelling in a particular domain or task - we can create
a ‘mixture of agent experts’ approach, capable of delivering exceptional results across
various industries and problem areas.

It’s important to remember that building complex agent architectures demands an iterative
approach. Experimentation and refinement are key to finding solutions for specific business
cases and organizational needs. No two agents are created alike due to the generative nature
of the foundational models that underpin their architecture. However, by harnessing the
strengths of each of these foundational components, we can create impactful applications
that extend the capabilities of language models and drive real-world value.

Agents

42September 2024

Endnotes

1. Shafran, I., Cao, Y. et al., 2022, 'ReAct: Synergizing Reasoning and Acting in Language Models'. Available at:
https://arxiv.org/abs/2210.03629

2. Wei, J., Wang, X. et al., 2023, 'Chain-of-Thought Prompting Elicits Reasoning in Large Language Models'.
Available at: https://arxiv.org/pdf/2201.11903.pdf.

3. Wang, X. et al., 2022, 'Self-Consistency Improves Chain of Thought Reasoning in Language Models'.
Available at: https://arxiv.org/abs/2203.11171.

4. Diao, S. et al., 2023, 'Active Prompting with Chain-of-Thought for Large Language Models'. Available at:
https://arxiv.org/pdf/2302.12246.pdf.

5. Zhang, H. et al., 2023, 'Multimodal Chain-of-Thought Reasoning in Language Models'. Available at:
https://arxiv.org/abs/2302.00923.

6. Yao, S. et al., 2023, 'Tree of Thoughts: Deliberate Problem Solving with Large Language Models'. Available at:
https://arxiv.org/abs/2305.10601.

7. Long, X., 2023, 'Large Language Model Guided Tree-of-Thought'. Available at:
https://arxiv.org/abs/2305.08291.

8. Google. 'Google Gemini Application'. Available at: http://gemini.google.com.

9. Swagger. 'OpenAPI Specification'. Available at: https://swagger.io/specification/.

10. Xie, M., 2022, 'How does in-context learning work? A framework for understanding the differences from
traditional supervised learning'. Available at: https://ai.stanford.edu/blog/understanding-incontext/.

11. Google Research. 'ScaNN (Scalable Nearest Neighbors)'. Available at:
https://github.com/google-research/google-research/tree/master/scann.

12. LangChain. 'LangChain'. Available at: https://python.langchain.com/v0.2/docs/introduction/.

https://arxiv.org/abs/2210.03629
https://arxiv.org/pdf/2201.11903.pdf
https://arxiv.org/abs/2203.11171
https://arxiv.org/pdf/2302.12246.pdf
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.08291
http://gemini.google.com
https://swagger.io/specification/
https://ai.stanford.edu/blog/understanding-incontext/
https://github.com/google-research/google-research/tree/master/scann
https://python.langchain.com/v0.2/docs/introduction/

	Introduction
	What is an agent?
	The model
	The tools
	The orchestration layer
	Agents vs. models
	Cognitive architectures: How agents operate

	Tools: Our keys to the outside world
	Extensions
	Sample Extensions
	Functions
	Use cases
	Function sample code

	Data stores
	Implementation and application

	Tools recap

	Enhancing model performance with targeted learning
	Agent quick start with LangChain
	Production applications with Vertex AI agents
	Summary
	Endnotes

