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 I dedicate this book to all the readers who embark on this journey with me. 
Books are a powerful way for an author to connect with readers on a deeply personal 

level, chapter by chapter, page by page. In that shared experience of learning, 
exploring, and growing together, I find true meaning. May this book inspire you 

and challenge you, and help you see the incredible potential that AI agents hold—
not just for the future but also for today.
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preface
My journey into the world of intelligent systems began back in the early 1980s. Like
many people then, I believed artificial intelligence (AI) was just around the corner. It
always seemed like one more innovation and technological leap would lead us to the
intelligence we imagined. But that leap never came.

 Perhaps the promise of HAL, from Stanley Kubrick’s 2001: A Space Odyssey, capti-
vated me with the idea of a truly intelligent computer companion. After years of effort,
trial, and countless errors, I began to understand that creating AI was far more com-
plex than we humans had imagined. In the early 1990s, I shifted my focus, applying
my skills to more tangible goals in other industries.

 Not until the late 1990s, after experiencing a series of challenging and transforma-
tive events, did I realize my passion for building intelligent systems. I knew these sys-
tems might never reach the superintelligence of HAL, but I was okay with that. I
found fulfillment in working with machine learning and data science, creating models
that could learn and adapt. For more than 20 years, I thrived in this space, tackling
problems that required creativity, precision, and a sense of possibility.

 During that time, I worked on everything from genetic algorithms for predicting
unknown inputs to developing generative learning models for horizontal drilling in
the oil-and-gas sector. These experiences led me to write, where I shared my knowl-
edge by way of books on various topics—reverse-engineering Pokémon Go, building
augmented and virtual reality experiences, designing audio for games, and applying
reinforcement learning to create intelligent agents. I spent years knuckles-deep in
code, developing agents in Unity ML-Agents and deep reinforcement learning.
xiii
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 Even then, I never imagined that one day I could simply describe what I wanted to
an AI model, and it would make it happen. I never imagined that, in my lifetime, I
would be able to collaborate with an AI as naturally as I do today. And I certainly never
imagined how fast—and simultaneously how slow—this journey would feel.

 In November 2022, the release of ChatGPT changed everything. It changed the
world’s perception of AI, and it changed the way we build intelligent systems. For me,
it also altered my perspective on the capabilities of these systems. Suddenly, the idea
of agents that could autonomously perform complex tasks wasn’t just a far-off dream
but instead a tangible, achievable reality. In some of my earlier books, I had described
agentic systems that could undertake specific tasks, but now, those once-theoretical
ideas were within reach.

 This book is the culmination of my decades of experience in building intelligent
systems, but it’s also a realization of the dreams I once had about what AI could
become. AI agents are here, poised to transform how we interact with technology, how
we work, and, ultimately, how we live.

 Yet, even now, I see hesitation from organizations when it comes to adopting agen-
tic systems. I believe this hesitation stems not from fear of AI but rather from a lack
of understanding and expertise in building these systems. I hope that this book
helps to bridge that gap. I want to introduce AI agents as tools that can be accessible
to everyone—tools we shouldn’t fear but instead respect, manage responsibly, and
learn to work with in harmony.
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about this book
AI Agents in Action is about building and working with intelligent agent systems—not
just creating autonomous entities but also developing agents that can effectively tackle
and solve real-world problems. The book starts with the basics of working with large
language models (LLMs) to build assistants, multi-agent systems, and agentic behav-
ioral agents. From there, it explores the key components of agentic systems: retrieval
systems for knowledge and memory augmentation, action and tool usage, reasoning,
planning, evaluation, and feedback. The book demonstrates how these components
empower agents to perform a wide range of complex tasks through practical examples.

 This journey isn’t just about technology; it’s about reimagining how we approach
problem solving. I hope this book inspires you to see intelligent agents as partners in
innovation, capable of transforming ideas into actions in ways that were once thought
impossible. Together, we’ll explore how AI can augment human potential, enabling us
to achieve far more than we could alone.

Who should read this book
This book is for anyone curious about intelligent agents and how to develop agentic
systems—whether you’re building your first helpful assistant or diving deeper into
complex multi-agent systems. No prior experience with agents, agentic systems,
prompt engineering, or working with LLMs is required. All you need is a basic under-
standing of Python and familiarity with GitHub repositories. My goal is to make these
concepts accessible and engaging, empowering anyone who wants to explore the
world of AI agents to do so with confidence.
xvii
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 Whether you’re a developer, researcher, or hobbyist or are simply intrigued by the
possibilities of AI, this book is for you. I hope that in these pages you’ll find inspira-
tion, practical guidance, and a new appreciation for the remarkable potential of intel-
ligent agents. Let this book guide understanding, creating, and unleashing the power
of AI agents in action.

How this book is organized: A road map
This book has 11 chapters. Chapter 1, “Introduction to agents and their world,”
begins by laying a foundation with fundamental definitions of large language models,
chat systems, assistants, and autonomous agents. As the book progresses, the discus-
sion shifts to the key components that make up an agent and how these components
work together to create truly effective systems. Here is a quick summary of chapters 2
through 11:

 Chapter 2, “Harnessing the power of large language models”—We start by exploring
how to use commercial LLMs, such as OpenAI. We then examine tools, such as
LM Studio, that provide the infrastructure and support for running various
open source LLMs, enabling anyone to experiment and innovate.

 Chapter 3, “Engaging GPT assistants”—This chapter dives into the capabilities of
the GPT Assistants platform from OpenAI. Assistants are foundational agent
types, and we explore how to create practical and diverse assistants, from culi-
nary helpers to intern data scientists and even a book learning assistant.

 Chapter 4, “Exploring multi-agent systems”—Agentic tools have advanced signifi-
cantly quickly. Here, we explore two sophisticated multi-agent systems: CrewAI
and AutoGen. We demonstrate AutoGen’s ability to develop code autono-
mously and see how CrewAI can bring together a group of joke researchers to
create humor collaboratively.

 Chapter 5, “Empowering agents with actions”—Actions are fundamental to any
agentic system. This chapter discusses how agents can use tools and functions to
execute actions, ranging from database and application programming interface
(API) queries to generating images. We focus on enabling agents to take mean-
ingful actions autonomously.

 Chapter 6, “Building autonomous assistants”—We explore the behavior tree—a sta-
ple in robotics and game systems—as a mechanism to orchestrate multiple
coordinated agents. We’ll use behavior trees to tackle challenges such as code
competitions and social media content creation.

 Chapter 7, “Assembling and using an agent platform”—This chapter introduces Nexus,
a sophisticated platform for orchestrating multiple agents and LLMs. We discuss
how Nexus facilitates agentic workflows and enables complex interactions between
agents, providing an example of a fully functioning multi-agent environment.

 Chapter 8, “Understanding agent memory and knowledge”—Retrieval-augmented
generation (RAG) has become an essential tool for extending the capabilities
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of LLM agents. This chapter explores how retrieval mechanisms can serve as
both a source of knowledge by processing ingested files, and of memory, allow-
ing agents to recall previous interactions or events.

 Chapter 9, “Mastering agent prompts with prompt flow”—Prompt engineering is cen-
tral to an agent’s success. This chapter introduces prompt flow, a tool from Mic-
rosoft that helps automate the testing and evaluation of prompts, enabling
more robust and effective agentic behavior.

 Chapter 10, “Agent reasoning and evaluation”—Reasoning is crucial to solving
problems intelligently. In this chapter, we explore various reasoning techniques,
such as chain of thought (CoT), and show how agents can evaluate reasoning
strategies even during inference, improving their capacity to solve problems
autonomously.

 Chapter 11, “Agent planning and feedback”—Planning is perhaps an agent’s most crit-
ical skill in achieving its goals. We discuss how agents can incorporate planning to
navigate complex tasks and how feedback loops can be used to refine those plans.
The chapter concludes by integrating all the key components—actions, memory
and knowledge, reasoning, evaluation, planning, and feedback—into practical
examples of agentic systems that solve real-world problems.

About the code
The code for this book is spread across several open source projects, many of which
are hosted by me or by other organizations in GitHub repositories. Throughout this
book, I strive to make the content as accessible as possible, taking a low-code approach
to help you focus on core concepts. Many chapters demonstrate how simple prompts
can generate meaningful code, showcasing the power of AI-assisted development.

 Additionally, you’ll find a variety of assistant profiles and multi-agent systems that
demonstrate how to solve real-world problems using generated code. These examples
are meant to inspire, guide, and empower you to explore what is possible with AI
agents. I am deeply grateful to the many contributors and the community members
who have collaborated on these projects, and I encourage you to explore the reposito-
ries, experiment with the code, and adapt it to your own needs. This book is a testa-
ment to the power of collaboration and the incredible things we can achieve together.

 This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes, some of the code is typeset in
bold to highlight code that has changed from previous steps in the chapter, such as
when a feature is added to an existing line of code. In many cases, the original source
code has been reformatted; we’ve added line breaks and reworked indentation to
accommodate the available page space in the book. In some cases, even this wasn’t
enough, and listings include line-continuation markers (➥). Additionally, comments in
the source code have often been removed from the listings when the code is described
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in the text. Code annotations accompany many of the listings, highlighting important
concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/ai-agents-in-action. The complete code
for the examples in the book is available for download from the Manning website at
www.manning.com/books/ai-agents-in-action. In addition, the code developed for this
book has been placed in three GitHub repositories that are all publicly accessible:

 GPT-Agents (the original book title), at https://github.com/cxbxmxcx/GPT-
Agents, holds the code for several examples demonstrated in the chapters.

 GPT Assistants Playground, at https://github.com/cxbxmxcx/GPTAssistants
Playground, is an entire platform and tool dedicated to building OpenAI GPT
assistants with a helpful web user interface and plenty of tools to develop auton-
omous agent systems.

 Nexus, at https://github.com/cxbxmxcx/Nexus, is an example of a web-based
agentic tool that can help you create agentic systems and demonstrate various
code challenges.

liveBook discussion forum
Purchase of AI Agents in Action includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning.com/
book/ai-agents-in-action/discussion. You can also learn more about Manning’s forums
and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the him challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long
as the book is in print.

https://www.manning.com/books/ai-agents-in-action
https://github.com/cxbxmxcx/GPT-Agents
https://github.com/cxbxmxcx/GPT-Agents
https://github.com/cxbxmxcx/GPTAssistantsPlayground
https://github.com/cxbxmxcx/GPTAssistantsPlayground
https://github.com/cxbxmxcx/GPTAssistantsPlayground
https://github.com/cxbxmxcx/Nexus
https://livebook.manning.com/book/ai-agents-in-action
https://livebook.manning.com/book/ai-agents-in-action/discussion
https://livebook.manning.com/book/ai-agents-in-action/discussion
https://livebook.manning.com/discussion
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Introduction to agents
and their world
The agent isn’t a new concept in machine learning and artificial intelligence (AI).
In reinforcement learning, for instance, the word agent denotes an active decision-
making and learning intelligence. In other areas, the word agent aligns more with
an automated application or software that does something on your behalf.

1.1 Defining agents
You can consult any online dictionary to find the definition of an agent. The Mer-
riam-Webster Dictionary defines it this way (www.merriam-webster.com/dictionary/
agent):

This chapter covers
 Defining the concept of agents

 Differentiating the components of an 
agent

 Analyzing the rise of the agent era: 
Why agents?

 Peeling back the AI interface

 Navigating the agent landscape
1

https://www.merriam-webster.com/dictionary/agent
https://www.merriam-webster.com/dictionary/agent
https://www.merriam-webster.com/dictionary/agent


2 CHAPTER 1 Introduction to agents and their world
 One that acts or exerts power
 Something that produces or can produce an effect
 A means or instrument by which a guiding intelligence achieves a result

The word agent in our journey to build powerful agents in this book uses this dictio-
nary definition. That also means the term assistant will be synonymous with agent.
Tools like OpenAI’s GPT Assistants will also fall under the AI agent blanket. OpenAI
avoids the word agent because of the history of machine learning, where an agent is
self-deciding and autonomous.

 Figure 1.1 shows four cases where a user may interact with a large language model
(LLM) directly or through an agent/assistant proxy, an agent/assistant, or an autono-
mous agent. These four use cases are highlighted in more detail in this list:

 Direct user interaction—If you used earlier versions of ChatGPT, you experienced
direct interaction with the LLM. There is no proxy agent or other assistant
interjecting on your behalf.

 Agent/assistant proxy—If you’ve used Dall-E 3 through ChatGPT, then you’ve expe-
rienced a proxy agent interaction. In this use case, an LLM interjects your
requests and reformulates them in a format better designed for the task. For
example, for image generation, ChatGPT better formulates the prompt. A proxy
agent is an everyday use case to assist users with unfamiliar tasks or models.

 Agent/assistant—If you’ve ever used a ChatGPT plugin or GPT assistant, then
you’ve experienced this use case. In this case, the LLM is aware of the plugin
or assistant functions and prepares to make calls to this plugin/function.
However, before making a call, the LLM requires user approval. If approved,
the plugin or function is executed, and the results are returned to the LLM.
The LLM then wraps this response in natural language and returns it to
the user.

 Autonomous agent—In this use case, the agent interprets the user’s request, con-
structs a plan, and identifies decision points. From this, it executes the steps in
the plan and makes the required decisions independently. The agent may
request user feedback after certain milestone tasks, but it’s often given free rein
to explore and learn if possible. This agent poses the most ethical and safety
concerns, which we’ll explore later. 

Figure 1.1 demonstrates the use cases for a single flow of actions on an LLM using a
single agent. For more complex problems, we often break agents into profiles or per-
sonas. Each agent profile is given a specific task and executes that task with specialized
tools and knowledge.

 Multi-agent systems are agent profiles that work together in various configurations to
solve a problem. Figure 1.2 demonstrates an example of a multi-agent system using
three agents: a controller or proxy and two profile agents as workers controlled by the
proxy. The coder profile on the left writes the code the user requests; on the right is a



31.1 Defining agents
tester profile designed to write unit tests. These agents work and communicate
together until they are happy with the code and then pass it on to the user.

 Figure 1.2 shows one of the possibly infinite agent configurations. (In chapter 4,
we’ll explore Microsoft’s open source platform, AutoGen, which supports multiple
configurations for employing multi-agent systems.)

 Multi-agent systems can work autonomously but may also function guided entirely
by human feedback. The benefits of using multiple agents are like those of a single

Please explain the
definition of agent.

Large language model
(ChatGPT)

LLM: The definition
of agent is...

Show an illustration
of an agent.

Large language model
(ChatGPT)

"An image of a female
secret agent of Hispanic
descent in a nighttime

urban setting. . .

Image generation model
(DALL-E 3)

No agent or assistant
direct connection to LLM

Agent/assistant proxy for
image generator

What is the temperature
in Calgary today?

Large language model
(ChatGPT)

LLM identifies an external
function API to call and
parameters to connect
to a weather service.

Agent/assistant acting on
behalf of user

User confirms
execution okay.

Asks user if it’s okay
to execute the function

on their behalf.

Executes the function
and returns weather

information.

Filter my emails by
importance and notify
me of the top 5 most

important emails.

Large language model
(ChatGPT)

LLM identifies an external
function API to call and
parameters to connect

to an email service.

Notifies the user of
important emails.

Autonomous agent making
decisions on behalf of user

LLM reads
and sorts emails by
what it deems to be

important.

Decision step

LLM reformulates
weather information and

responds to the user.

.

Figure 1.1 The differences between the LLM interactions from direct action compared to using proxy agents, 
agents, and autonomous agents
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agent but often magnified. Where a single agent typically specializes in a single task,
multi-agent systems can tackle multiple tasks in parallel. Multiple agents can also pro-
vide feedback and evaluation, reducing errors when completing assignments.

 As we can see, an AI agent or agent system can be assembled in multiple ways.
However, an agent itself can also be assembled using multiple components. In the
next section, we’ll cover topics ranging from an agent’s profile to the actions it may
perform, as well as memory and planning.

1.2 Understanding the component systems of an agent
Agents can be complex units composed of multiple component systems. These com-
ponents are the tools the agent employs to help it complete its goal or assigned tasks
and even create new ones. Components may be simple or complex systems, typically
split into five categories.

 Figure 1.3 describes the major categories of components a single-agent system may
incorporate. Each element will have subtypes that can define the component’s type,

User query Answer

Controller

Coder Tester

Feature
 re

quest

Code
C
ode

U
nit tests

Large Language Model Large Language Model

The controller agent
can execute code on
the user’s behalf.

Repeat until the
code and tests
work as expected.

Worker agents
interact with
the LLM.

Figure 1.2 In this example of a multi-agent system, the controller or agent proxy communicates directly with 
the user. Two agents—a coder and a tester—work in the background to create code and write unit tests to test 
the code.
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structure, and use. At the core of all agents is the profile and persona; extending from
that are the systems and functions that enhance the agent.

The agent profile and persona shown in figure 1.4 represent the base description of
the agent. The persona—often called the system prompt—guides an agent to complete
tasks, learn how to respond, and other nuances. It includes elements such as the back-
ground (e.g., coder, writer) and demographics, and it can be generated through
methods such as handcrafting, LLM assistance, or data-driven techniques, including
evolutionary algorithms.

 We’ll explore how to create effective and specific agent profiles/personas through
techniques such as rubrics and grounding. In addition, we’ll explain the aspects of
human-formulated versus AI-formulated (LLM) profiles, including innovative tech-
niques using data and evolutionary algorithms to build profiles.

A persona represents the agent’s
main role or function, typically

defined in a system prompt. The
profile describes the entire agent

system.

Profile and PersonaActions and Tool Use

Reasoning and Evaluation

Memory and Knowledge

Planning and Feedback

Actions represent a function/
tool an agent can use.

Reasoning and evaluation
ground the agent and empower

it to make better decisions.

Planning and feedback
allow the agent to learn and
improve on task completion.

Memory and knowledge provide
added context to the agent for a

specific request or task.

Figure 1.3 The five main components of a single-agent system (image generated through DALL-E 3)
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NOTE The agent or assistant profile is composed of elements, including the
persona. It may be helpful to think of profiles describing the work the agent/
assistant will perform and the tools it needs.

Figure 1.5 demonstrates the component actions and tool use in the context of agents
involving activities directed toward task completion or acquiring information. These
actions can be categorized into task completion, exploration, and communication,
with varying levels of effect on the agent’s environment and internal states. Actions
can be generated manually, through memory recollection, or by following predefined
plans, influencing the agent’s behavior and enhancing learning.

 Understanding the action target helps us define clear objectives for task comple-
tion, exploration, or communication. Recognizing the action effect reveals how actions
influence task outcomes, the agent’s environment, and its internal states, contributing
to efficient decision making. Lastly, grasping action generation methods equips us
with the knowledge to create actions manually, recall them from memory, or follow
predefined plans, enhancing our ability to effectively shape agent behavior and learn-
ing processes.

 Figure 1.6 shows the component knowledge and memory in more detail. Agents
use knowledge and memory to annotate context with the most pertinent information
while limiting the number of tokens used. Knowledge and memory structures can be
unified, where both subsets follow a single structure or hybrid structure involving a
mix of different retrieval forms. Knowledge and memory formats can vary widely from

Agent persona: We’ll understand how
to clearly define the persona, specifying
their role and characteristics to guide
the agent effectively.

Agent role and demographics: We’ll
see how relevant demographic and role
details can provide agent context, such
as age, gender , or background, for a
more relevant interaction.

Human vs. AI assistance for persona
generation: We’ll highlight the role
of human involvement in persona
generation, whether it’s entirely
human driven or assisted by LLMs
or other agents.

Innovative persona techniques:
Prompts generated through data
or other novel approaches such as
evolutionary algorithms to enhance
agent capabilities.

Profile and Persona

Profile Contents

Profile Generation

Persona: Role, i.e., coder or tester
Demographics: Sex, age, background

Handcrafted: Manually designed by
humans
LLM generated: Directed by human
prompts
Data generated: Constructed from
data personas

Figure 1.4 An in-depth look at how we’ll explore creating agent profiles
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language (e.g., PDF documents) to databases (relational, object, or document) and
embeddings, simplifying semantic similarity search through vector representations or
even simple lists serving as agent memories.

Figure 1.7 shows the reasoning and evaluation component of an agent system. Research
and practical applications have shown that LLMs/agents can effectively reason. Rea-
soning and evaluation systems annotate an agent’s workflow by providing an ability to
think through problems and evaluate solutions.

Action targets: We’ll learn the importance
of defining action targets, whether for task
completion, exploration, or communication,
to clarify the agent’s objectives.

Action space and impact: We’ll learn the
significance of understanding how actions
affect task completion and their effect on
the agent’s environment, internal states,
and self-knowledge.

Action generation methods: We’ll see the
various ways actions can be generated, such
as manual creation, memory recollection,
or plan following, to illustrate the diversity
of agent behaviors.

Action and Tool Use

Action Target

Semantic or native functions

Tools, self-knowledge, other agents

Environments, new actions, internal
states, other agents

Manual, memory recollection, plan
following

Figure 1.5 The aspects of agent actions we’ll explore in this book

Memory and Knowledge

Retrieval Structure
• Unified
• Hybrid

Retrieval Formats
• Language
• Databases
• Embeddings
• Lists

Retrieval Operation
• Augmentation
• Semantic Extraction
• Compression

Retrieval structure variety: We’ll learn
about the diverse memory structures
agents can employ, including unified and
hybrid approaches, enabling flexibility in
information storage.

Retrieval formats: We’ll explore the
various data sources for memory, such
as language (e.g., PDF documents),
databases (relational, object, or
document), and embeddings, offering a
rich pool of information to draw upon.

Semantic similarity: We’ll learn how
embeddings enable semantic similarity
searches, facilitating efficient retrieval of
relevant data and enhancing the agent’s
decision-making capabilities.

Figure 1.6 Exploring the role and use of agent memory and knowledge
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Figure 1.8 shows the component agent planning/feedback and its role in organizing
tasks to achieve higher-level goals. It can be categorized into these two approaches:

 Planning without feedback—Autonomous agents make decisions independently.
 Planning with feedback—Monitoring and modifying plans is based on various

sources of input, including environmental changes and direct human feedback.

Within planning, agents may employ single-path reasoning, sequential reasoning through
each step of a task, or multipath reasoning to explore multiple strategies and save the

Reasoning and Evaluation

Reasoning
• Zero-shot prompting
• One-shot prompting
• Few-shot prompting
• Chain of thought
• Tree of thought
• Skeleton of thought

Evaluation
• Self-consistency
• Prompt chaining

Reasoning enables the agent
to self-reflect and internally
reason out the completion
of a task or tasks.

Evaluation provides the basis
for an agent’s self-reflection
on working through and upon
task completion.

Figure 1.7 The reasoning and evaluation component and details

We’ll look at various planning
strategies with and without
feedback—from basic and
sequential planners to automatic
tool use with reasoning.

Feedback may come from a variety
of sources, such as environmental,
human, and an LLM via various
constructive feedback patterns.

Planning and Feedback

Planning without feedback
(autonomous)
• Basic planning
• Automatic reasoning with
tool use

• Sequential planning

Planning with feedback
• Environmental feedback
• Human feedback
• LLM feedback
• Adaptive constructive
feedback

Figure 1.8 Exploring the role of agent planning and reasoning
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efficient ones for future use. External planners, which can be code or other agent sys-
tems, may also play a role in orchestrating plans.

 Any of our previous agent types—the proxy agent/assistant, agent/assistant, or
autonomous agent—may use some or all of these components. Even the planning
component has a role outside of the autonomous agent and can effectively empower
even the regular agent.

1.3 Examining the rise of the agent era: Why agents?
AI agents and assistants have quickly moved from the main commodity in AI research
to mainstream software development. An ever-growing list of tools and platforms assist
in the construction and empowerment of agents. To an outsider, it may all seem like
hype intended to inflate the value of some cool but overrated technology.

 During the first few months after ChatGPT’s initial release, a new discipline called
prompt engineering was formed: users found that using various techniques and patterns
in their prompts allowed them to generate better and more consistent output. How-
ever, users also realized that prompt engineering could only go so far.

 Prompt engineering is still an excellent way to interact directly with LLMs such as
ChatGPT. Over time, many users discovered that effective prompting required iteration,
reflection, and more iteration. The first agent systems, such as AutoGPT, emerged from
these discoveries, capturing the community’s attention.

 Figure 1.9 shows the original design of AutoGPT, one of the first autonomous
agent systems. The agent is designed to iterate a planned sequence of tasks that it
defines by looking at the user’s goal. Through each task iteration of steps, the agent
evaluates the goal and determines if the task is complete. If the task isn’t complete, the
agent may replan the steps and update the plan based on new knowledge or human
feedback.

 AutoGPT became the first example to demonstrate the power of using task plan-
ning and iteration with LLM models. From this and in tandem, other agent systems
and frameworks exploded into the community using similar planning and task itera-
tion systems. It’s generally accepted that planning, iteration, and repetition are the
best processes for solving complex and multifaceted goals for an LLM.

 However, autonomous agent systems require trust in the agent decision-making
process, the guardrails/evaluation system, and the goal definition. Trust is also some-
thing that is acquired over time. Our lack of trust stems from our lack of understand-
ing of an autonomous agent’s capabilities.

NOTE Artificial general intelligence (AGI) is a form of intelligence that
can learn to accomplish any task a human can. Many practitioners in this
new world of AI believe an AGI using autonomous agent systems is an
attainable goal.

For this reason, many of the mainstream and production-ready agent tools aren’t auton-
omous. However, they still provide a significant benefit in managing and automating
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tasks using GPTs (LLMs). Therefore, as our goal in this book is to understand all agent
forms, many more practical applications will be driven by non-autonomous agents.

 Agents and agent tools are only the top layer of a new software application devel-
opment paradigm. We’ll look at this new paradigm in the next section.

The agent evaluates if
the goal is complete
after every task
iteration.

AI Large Language
Models (GPT-4)

Internet Other Tools

Evaluation
Defining and

Sequencing Tasks

Setting Goals

Task Execution

Goals not complete

The agent can be
set to ask for
permission for
every task or for
every x number
of tasks.

Goals complete

User sets the main
objective goal

Agent executes
tasks. The agent could write code to

perform other tasks as needed.

The agent
plans out the
sequence of
tasks to
undertake.

Autonomous AI Mechanism

Figure 1.9 The original design of the AutoGPT agent system
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1.4 Peeling back the AI interface
The AI agent paradigm is not only a shift in how we work with LLMs but is also per-
ceived as a shift in how we develop software and handle data. Software and data will
no longer be interfaced using user interfaces (UIs), application programming inter-
faces (APIs), and specialized query languages such as SQL. Instead, they will be
designed to be interfaced using natural language.

 Figure 1.10 shows a high-level snapshot of what this new architecture may look like
and what role AI agents play. Data, software, and applications adapt to support seman-
tic, natural language interfaces. These AI interfaces allow agents to collect data and
interact with software applications, even other agents or agent applications. This rep-
resents a new shift in how we interact with software and applications.

An AI interface is a collection of functions, tools, and data layers that expose data and
applications by natural language. In the past, the word semantic has been heavily

Agent interface layer (natural language)Planning: Agent takes the goal and breaks into tasks.

1. Collect data.
2. Annotate data.
3. Format data, and create report visualizations.
4. Present report.

4. Agent presents the report.

Please create a report of
last year’s sales.

GPT data layer

Database

1. Query database using natural
language.

GPT functions

APIs,
web browsing,

search, etc.

All communication via natural language

2. Annotate data by calling semantic
functions using natural language.

External agents

GPT tools

3. External agent formats data and
may write code to generate visuals.

Figure 1.10 A vision of how agents will interact with software systems
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used to describe these interfaces, and even some tools use the name; however,
“semantic” can also have a variety of meanings and uses. Therefore, in this book,
we’ll use the term AI interface.

 The construction of AI interfaces will empower agents that need to consume
the services, tools, and data. With this empowerment will come increased accuracy
in completing tasks and more trustworthy and autonomous applications. While an
AI interface may not be appropriate for all software and data, it will dominate many
use cases.

1.5 Navigating the agent landscape
GPT agents represent an entire shift in how consumers and developers approach
everything, from finding information to building software and accessing data. Almost
daily, a new agent framework, component, or interface pops up on GitHub or in a
research paper. This can be overwhelming and intimidating to the new user trying to
grasp what agent systems are and how to use them.

Summary
 An agent is an entity that acts or exerts power, produces an effect, or serves as a

means for achieving a result. An agent automates interaction with a large lan-
guage model (LLM) in AI.

 An assistant is synonymous with an agent. Both terms encompass tools such as
OpenAI’s GPT Assistants.

 Autonomous agents can make independent decisions, and their distinction
from non-autonomous agents is crucial.

 The four main types of LLM interactions include direct user interaction, agent/
assistant proxy, agent/assistant, and autonomous agent.

 Multi-agent systems involve agent profiles working together, often controlled by
a proxy, to accomplish complex tasks.

 The main components of an agent include the profile/persona, actions, knowl-
edge/memory, reasoning/evaluation, and planning/feedback.

 Agent profiles and personas guide an agent’s tasks, responses, and other nuances,
often including background and demographics.

 Actions and tools for agents can be manually generated, recalled from memory,
or follow predefined plans.

 Agents use knowledge and memory structures to optimize context and mini-
mize token usage via various formats, from documents to embeddings.

 Reasoning and evaluation systems enable agents to think through problems
and assess solutions using prompting patterns such as zero-shot, one-shot, and
few-shot.

 Planning/feedback components organize tasks to achieve goals using single-path
or multipath reasoning and integrating environmental and human feedback.
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 The rise of AI agents has introduced a new software development paradigm,
shifting from traditional to natural language–based AI interfaces.

 Understanding the progression and interaction of these tools helps develop
agent systems, whether single, multiple, or autonomous.



Harnessing the power
of large language models
The term large language models (LLMs) has now become a ubiquitous descriptor of a
form of AI. These LLMs have been developed using generative pretrained trans-
formers (GPTs). While other architectures also power LLMs, the GPT form is cur-
rently the most successful.

 LLMs and GPTs are generative models, which means they are trained to generate
rather than predict or classify content. To illustrate this further, consider figure 2.1,
which shows the difference between generative and predictive/classification mod-
els. Generative models create something from the input, whereas predictive and
classifying models classify it.

This chapter covers
 Understanding the basics of LLMs

 Connecting to and consuming the OpenAI API

 Exploring and using open source LLMs with 
LM Studio

 Prompting LLMs with prompt engineering

 Choosing the optimal LLM for your specific 
needs
14
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We can further define an LLM by its constituent parts, as shown in figure 2.2. In
this diagram, data represents the content used to train the model, and architecture is
an attribute of the model itself, such as the number of parameters or size of the
model. Models are further trained specifically to the desired use case, including
chat, completions, or instruction. Finally, fine-tuning is a feature added to models
that refines the input data and model training to better match a particular use case
or domain.

Input text

Outputs the most
probable next word
given the input
thus far

Outputs the most
probable class
the phrase is
aligned with

Outputs text Outputs prediction

Figure 2.1 The difference between generative and predictive models

Data

LLM

Training

Architecture

Fine-tuning

The input data represents the
content the model will train on.
This typically consists of terabytes
to petabytes of data.

Denotes the model architecture.
The architecture defines things
such as context, token limits,
embedding size, and number of
parameters (model size).

Defines the form of training used to
train the model. Training will also
define the model use case, such as
chat completions, completions,
instruct, or question/answer.

Fine-tuning is the process of
making a model more specific
to a particular domain or dataset.

Figure 2.2 The main elements that describe an LLM
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The transformer architecture of GPTs, which is a specific architecture of LLMs, allows
the models to be scaled to billions of parameters in size. This requires these large
models to be trained on terabytes of documents to build a foundation. From there,
these models will be successively trained using various methods for the desired use
case of the model.

 ChatGPT, for example, is trained effectively on the public internet and then fine-
tuned using several training strategies. The final fine-tuning training is completed
using an advanced form called reinforcement learning with human feedback (RLHF). This
produces a model use case called chat completions.

 Chat completions LLMs are designed to improve through iteration and refine-
ment—in other words, chatting. These models have also been benchmarked to be the
best in task completion, reasoning, and planning, which makes them ideal for build-
ing agents and assistants. Completion models are trained/designed only to provide
generated content on input text, so they don’t benefit from iteration.

 For our journey to build powerful agents in this book, we focus on the class of
LLMs called chat completions models. That, of course, doesn’t preclude you from try-
ing other model forms for your agents. However, you may have to significantly alter
the code samples provided to support other model forms.

 We’ll uncover more details about LLMs and GPTs later in this chapter when we
look at running an open source LLM locally. In the next section, we look at how to
connect to an LLM using a growing standard from OpenAI.

2.1 Mastering the OpenAI API
Numerous AI agents and assistant projects use the OpenAI API SDK to connect to an
LLM. While not standard, the basic concepts describing a connection now follow the
OpenAI pattern. Therefore, we must understand the core concepts of an LLM con-
nection using the OpenAI SDK.

 This chapter will look at connecting to an LLM model using the OpenAI Python
SDK/package. We’ll discuss connecting to a GPT-4 model, the model response, count-
ing tokens, and how to define consistent messages. Starting in the following subsec-
tion, we’ll examine how to use OpenAI.

2.1.1 Connecting to the chat completions model

To complete the exercises in this section and subsequent ones, you must set up a
Python developer environment and get access to an LLM. Appendix A walks you
through setting up an OpenAI account and accessing GPT-4 or other models. Appen-
dix B demonstrates setting up a Python development environment with Visual Studio
Code (VS Code), including installing needed extensions. Review these sections if you
want to follow along with the scenarios.

 Start by opening the source code chapter_2 folder in VS Code and creating a new
Python virtual environment. Again, refer to appendix B if you need assistance.
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 Then, install the OpenAI and Python dot environment packages using the com-
mand in the following listing. This will install the required packages into the virtual
environment.

pip install openai python-dotenv

Next, open the connecting.py file in VS Code, and inspect the code shown in listing 2.2.
Be sure to set the model’s name to an appropriate name—for example, gpt-4. At the
time of writing, the gpt-4-1106-preview was used to represent GPT-4 Turbo.

import os
from openai import OpenAI
from dotenv import load_dotenv

load_dotenv()                          
api_key = os.getenv('OPENAI_API_KEY')
if not api_key:                            
    raise ValueError("No API key found. Please check your .env file.")
client = OpenAI(api_key=api_key)                       

def ask_chatgpt(user_message):
    response = client.chat.completions.create(     
        model="gpt-4-1106-preview",
        messages=[{"role": "system",
 "content": "You are a helpful assistant."},
        {"role": "user", "content": user_message}],
        temperature=0.7,
        )
    return response.choices[0].message.content    

user = "What is the capital of France?"
response = ask_chatgpt(user)               
print(response)

A lot is happening here, so let’s break it down by section, starting with the beginning
and loading the environment variables. In the chapter_2 folder is another file called
.env, which holds environment variables. These variables are set automatically by call-
ing the load_dotenv function.

 You must set your OpenAI API key in the .env file, as shown in the next listing.
Again, refer to appendix A to find out how to get a key and find a model name.

OPENAI_API_KEY='your-openai-api-key'

After setting the key, you can debug the file by pressing the F5 key or selecting Run >
Start Debugging from the VS Code menu. This will run the code, and you should see
something like “The capital of France is Paris.”

Listing 2.1 pip installs

Listing 2.2 connecting.py

Listing 2.3 .env

Loads the secrets 
stored in the .env file

Checks to see 
whether the key is set

Creates a client 
with the key

Uses the create 
function to generate 
a response

Returns just the content 
of the response

Executes the request and 
returns the response
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 Remember that the response from a generative model depends on the probability.
The model will probably give us a correct and consistent answer in this case.

 You can play with these probabilities by adjusting the temperature of the request.
If you want a model to be more consistent, turn the temperature down to 0, but if you
want the model to produce more variation, turn the temperature up. We’ll explore
setting the temperature further in the next section.

2.1.2 Understanding the request and response

Digging into the chat completions request and response features can be helpful. We’ll
focus on the request first, as shown next. The request encapsulates the intended
model, the messages, and the temperature.

response = client.chat.completions.create(
    model="gpt-4-1106-preview",                
    messages=[{"role": "system", 
"content": "You are a helpful assistant."},                    
              {"role": "user", "content": user_message}],     
    temperature=0.7,    
    )

Within the request, the messages block describes a set of messages and roles used in a
request. Messages for a chat completions model can be defined in three roles:

 System role—A message that describes the request’s rules and guidelines. It can
often be used to describe the role of the LLM in making the request.

 User role—Represents and contains the message from the user.
 Assistant role—Can be used to capture the message history of previous responses

from the LLM. It can also inject a message history when perhaps none existed.

The message sent in a single request can encapsulate an entire conversation, as shown
in the JSON in the following listing.

[
    {
        "role": "system",
        "content": "You are a helpful assistant."
    },
    {
        "role": "user",
        "content": "What is the capital of France?"
    },
    {
        "role": "assistant",

Listing 2.4 The chat completions request

Listing 2.5 Messages with history

The model or deployment used 
to respond to the request

The system 
role message

The user role 
message

The temperature or 
variability of the request
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        "content": "The capital of France is Paris."
    },
    {
        "role": "user",
        "content": "What is an interesting fact of Paris."
    }
],

You can see how this can be applied by opening message_history.py in VS Code and
debugging it by pressing F5. After the file runs, be sure to check the output. Then, try
to run the sample a few more times to see how the results change.

 The results will change from each run to the next due to the high temperature of
.7. Go ahead and reduce the temperature to .0, and run the message_history.py
sample a few more times. Keeping the temperature at 0 will show the same or similar
results each time.

 Setting a request’s temperature will often depend on your particular use case.
Sometimes, you may want to limit the responses’ stochastic nature (randomness).
Reducing the temperature to 0 will give consistent results. Likewise, a value of 1.0 will
give the most variability in the responses.

 Next, we also want to know what information is being returned for each request.
The next listing shows the output format for the response. You can see this output by
running the message_history.py file in VS Code.

{
    "id": "chatcmpl-8WWL23up3IRfK1nrDFQ3EHQfhx0U6",
    "choices": [                                     
        {
            "finish_reason": "stop",
            "index": 0,
            "message": {
                "content": "… omitted",
                "role": "assistant",      
                "function_call": null,
                "tool_calls": null
            },
            "logprobs": null
        }
    ],
    "created": 1702761496,
    "model": "gpt-4-1106-preview",    
    "object": "chat.completion",
    "system_fingerprint": "fp_3905aa4f79",
    "usage": {
        "completion_tokens": 78,    
        "prompt_tokens": 48,        
        "total_tokens": 126         
    }
}

Listing 2.6 Chat completions response

A model may 
return more than 
one response.

Responses 
returned in the 
assistant role

Indicates the 
model used

Counts the number of 
input (prompt) and output 
(completion) tokens used
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It can be helpful to track the number of input tokens (those used in prompts) and the
output tokens (the number returned through completions). Sometimes, minimizing
and reducing the number of tokens can be essential. Having fewer tokens typically
means LLM interactions will be cheaper, respond faster, and produce better and more
consistent results.

 That covers the basics of connecting to an LLM and returning responses. Through-
out this book, we’ll review and expand on how to interact with LLMs. Until then, we’ll
explore in the next section how to load and use open source LLMs.

2.2 Exploring open source LLMs with LM Studio
Commercial LLMs, such as GPT-4 from OpenAI, are an excellent place to start to
learn how to use modern AI and build agents. However, commercial agents are an
external resource that comes at a cost, reduces data privacy and security, and
introduces dependencies. Other external influences can further complicate these
factors.

 It’s unsurprising that the race to build comparable open source LLMs is growing
more competitive every day. As a result, there are now open source LLMs that may be
adequate for numerous tasks and agent systems. There have even been so many
advances in tooling in just a year that hosting LLMs locally is now very easy, as we’ll see
in the next section.

2.2.1 Installing and running LM Studio

LM Studio is a free download that supports downloading and hosting LLMs and other
models locally for Windows, Mac, and Linux. The software is easy to use and offers sev-
eral helpful features to get you started quickly. Here is a quick summary of steps to
download and set up LM Studio:

1 Download LM Studio from https://lmstudio.ai/.
2 After downloading, install the software per your operating system. Be aware that

some versions of LM Studio may be in beta and require installation of addi-
tional tools or libraries.

3 Launch the software.

Figure 2.3 shows the LM Studio window running. From there, you can review the cur-
rent list of hot models, search for others, and even download. The home page content
can be handy for understanding the details and specifications of the top models.

 An appealing feature of LM Studio is its ability to analyze your hardware and align
it with the requirements of a given model. The software will let you know how well you
can run a given model. This can be a great time saver in guiding what models you
experiment with.

 

https://lmstudio.ai/


212.2 Exploring open source LLMs with LM Studio
Enter some text to search for a model, and click Go. You’ll be taken to the search
page interface, as shown in figure 2.4. From this page, you can see all the model
variations and other specifications, such as context token size. After you click the
Compatibility Guess button, the software will even tell you if the model will run on
your system.

 Click to download any model that will run on your system. You may want to stick
with models designed for chat completions, but if your system is limited, work with
what you have. In addition, if you’re unsure of which model to use, go ahead and
download to try them. LM Studio is a great way to explore and experiment with many
models.

 
 
 
 

Chat interface to talk
directly to a local LLM

Run a local model
as a service.

Search areaBrowse already
downloaded models.

Figure 2.3 LM Studio software showing the main home page
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After the model is downloaded, you can then load and run the model on the chat
page or as a server on the server page. Figure 2.5 shows loading and running a
model on the chat page. It also shows the option for enabling and using a GPU if
you have one.

 To load and run a model, open the drop-down menu at the top middle of the
page, and select a downloaded model. A progress bar will appear showing the model
loading, and when it’s ready, you can start typing into the UI.

 The software even allows you to use some or all of your GPU, if detected, for the
model inference. A GPU will generally speed up the model response times in some
capacities. You can see how adding a GPU can affect the model’s performance by
looking at the performance status at the bottom of the page, as shown in figure 2.5.

 Chatting with a model and using or playing with various prompts can help you
determine how well a model will work for your given use case. A more systematic
approach is using the prompt flow tool for evaluating prompts and LLMs. We’ll
describe how to use prompt flow in chapter 9.

 LM Studio also allows a model to be run on a server and made accessible using the
OpenAI package. We’ll see how to use the server feature and serve a model in the
next section.

Search text
Look at the model
card on Hugging Face.

The compatibility guesser
informs you if a model will run.

Shows the
downloaded models

Figure 2.4 The LM Studio search page
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2.2.2 Serving an LLM locally with LM Studio

Running an LLM locally as a server is easy with LM Studio. Just open the server page,
load a model, and then click the Start Server button, as shown in figure 2.6. From
there, you can copy and paste any of the examples to connect with your model.

 You can review an example of the Python code by opening chapter_2/lmstudio_
server.py in VS Code. The code is also shown here in listing 2.7. Then, run the code
in the VS Code debugger (press F5).

 
 

Loaded model

Conversation
history

Text area for
user messages

Model system
prompt

Enabling GPU acceleration,
available when GPU detected

Model performance
and usage

Figure 2.5 The LM Studio chat page with a loaded, locally running LLM
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from openai import OpenAI

client = OpenAI(base_url="http://localhost:1234/v1", api_key="not-needed")

completion = client.chat.completions.create(
  model="local-model",                          
  messages=[
    {"role": "system", "content": "Always answer in rhymes."},
    {"role": "user", "content": "Introduce yourself."}      
  ],
  temperature=0.7,
)

print(completion.choices[0].message)     

Listing 2.7 lmstudio_server.py

Loaded model
Enabling GPU acceleration,
available when GPU detected

Example to connect
to the server

Start/stop the server Logs showing startup and
connection information

Figure 2.6 The LM Studio server page and a server running an LLM

Currently not used; 
can be anything

Feel free to change
the message as 
you like.

Default code outputs 
the whole message.
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If you encounter problems connecting to the server or experience any other prob-
lems, be sure your configuration for the Server Model Settings matches the model
type. For example, in figure 2.6, shown earlier, the loaded model differs from the
server settings. The corrected settings are shown in figure 2.7.

Now, you can use a locally hosted LLM or a commercial model to build, test, and
potentially even run your agents. The following section will examine how to build
prompts using prompt engineering more effectively.

2.3 Prompting LLMs with prompt engineering
A prompt defined for LLMs is the message content used in the request for better
response output. Prompt engineering is a new and emerging field that attempts to struc-
ture a methodology for building prompts. Unfortunately, prompt building isn’t a well-
established science, and there is a growing and diverse set of methods defined as
prompt engineering.

 Fortunately, organizations such as OpenAI have begun documenting a universal
set of strategies, as shown in figure 2.8. These strategies cover various tactics, some
requiring additional infrastructure and considerations. As such, the prompt engineer-
ing strategies relating to more advanced concepts will be covered in the indicated
chapters.

 Each strategy in figure 2.8 unfolds into tactics that can further refine the specific
method of prompt engineering. This chapter will examine the fundamental Write

Loaded model

Server odel ettingsM S
match the loaded model.

When running correctly,
you’ll see the message logs.

Figure 2.7 Choosing the correct Server Model Settings for the loaded model
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Clear Instructions strategy. Figure 2.9 shows the tactics for this strategy in more detail,
along with examples for each tactic. We’ll look at running these examples using a
code demo in the following sections.

 The Write Clear Instructions strategy is about being careful and specific about
what you ask for. Asking an LLM to perform a task is no different from asking a per-
son to complete the same task. Generally, the more information and context relevant
to a task you can specify in a request, the better the response.

 This strategy has been broken down into specific tactics you can apply to prompts.
To understand how to use those, a code demo (prompt_engineering.py) with various
prompt examples is in the chapter 2 source code folder.

 Open the prompt_engineering.py file in VS Code, as shown in listing 2.8. This
code starts by loading all the JSON Lines files in the prompts folder. Then, it displays
the list of files as choices and allows the user to select a prompt option. After selecting
the option, the prompts are submitted to an LLM, and the response is printed.

 
 
 

Write Clear Instructions
Be specific in what you ask.
Tactics include detailing queries, adopting personas, using delimiters,
specifying steps, providing examples, and specifying output length. Basics

Provide Reference Text
Helps reduce fabrications.
Tactics involve instructing the model to use or cite reference texts. Memory

Use External Tools
Enhances model capabilities.
Tactics include embeddings-based search, code execution, and
access to specific functions. Memory

Split Complex Tasks into Simpler Subtasks
Reduces error rates.
Tactics include intent classification, summarizing dialogues, and
piecewise summarization of documents. Planning

Give Models Time to “Think”
Allows more reliable reasoning.
Tactics involve working out solutions before conclusions, using inner
monologue, and reviewing previous answers. Planning

Test Changes Systematically
Ensures improvements are genuine.
Tactics involve evaluating model outputs with reference to standard
answers. Evaluation

Prompt Engineering Strategies

Figure 2.8 OpenAI prompt engineering strategies reviewed in this book, by chapter location
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def main():
    directory = "prompts"
    text_files = list_text_files_in_directory(directory)   

    if not text_files:
        print("No text files found in the directory.")
        return

    def print_available():                                    
        print("Available prompt tactics:")
        for i, filename in enumerate(text_files, start=1):
            print(f"{i}. {filename}")

    while True:
        try:
            print_available()                                 
            choice = int(input("Enter … 0 to exit): "))          

Listing 2.8 prompt_engineering.py (main())

Detailed
Queries

Adopting
Personas

Using
Delimiters

Specifying
Steps

Providing
Examples

Specify Output
Length

Tactics for Strategy: Writing Clear Instructions

Without detailed
queries:
Who’s the prime
minister?

With detailed
queries:
Who is the prime
minister of Canada,
and how frequently
are elections held?

SYSTEM:
You are a prompt
expert and will
suggest ways to
improve a user
request.

USER:
What is the capital
of Canada?

USER:
Summarize the text
delimited by triple
quotes with a
limerick:
“text to be
summarized”

.

E
X

A
M

P
L

E
S

SYSTEM:
Use the following
step-by-step
instructions to
respond to user
inputs:
Step 1 - Summarize
the text in triple
quotes to one
sentence with a
prefix that says
“Summary: ”.
Step 2 - Translate
the summary from
Step 1 into French,
with a prefix that
says “Translation: ”.

USER:
“text to summarize
and translate ”

SYSTEM:
Answer in a
consistent style.

USER:
T oeach me ab ut
patience.

A NSSISTA T:
The river that
carves the deepest
valley flows from a
modest spring; the
most intricate
tapestry begins with
a solitary thread.

USER:
T oeach me ab ut
the ocean.

USER:
Summarize the text
delimited by triple
quotes in about 50
words.
“text to summarize
here”

This is the
example.

Provide as much
detail as you can
in a query;
generally, the
more detail the
better.

Personas can
include details
about
demographics,
knowledge, and
personality.

Delimiters can
hel separatep
blocks of content
from specification
details.

Limiting the
length of output
can be specific
to words, bullet
points, or other
metrics.

Using steps can
help the LLM
better process
the task, but be
sure to limit
the number.

Examples are a
form of few-shot
learning and can
be an excellent
way to indicate
the desired
response format
and other details.

Figure 2.9 The tactics for the Write Clear Instructions strategy

Collects all 
the files for the 
given folder

Prints the list of 
files as choices

Inputs the 
user’s choice
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            if choice == 0:
                break
            elif 1 <= choice <= len(text_files):
                selected_file = text_files[choice - 1]
                file_path = os.path.join(directory,
      selected_file)
                prompts = 
➥ load_and_parse_json_file(file_path)                         
                print(f"Running prompts for {selected_file}")
                for i, prompt in enumerate(prompts):
                    print(f"PROMPT {i+1} --------------------")
                    print(prompt)
                    print(f"REPLY ---------------------------")
                    print(prompt_llm(prompt))                      
            else:
                print("Invalid choice. Please enter a valid number.")
        except ValueError:
            print("Invalid input. Please enter a number.")

A commented-out section from the listing demonstrates how to connect to a local
LLM. This will allow you to explore the same prompt engineering tactics applied to
open source LLMs running locally. By default, this example uses the OpenAI model
we configured previously in section 2.1.1. If you didn’t complete that earlier, please go
back and do it before running this one.

 Figure 2.10 shows the output of running the prompt engineering tactics tester, the
prompt_engineering.py file in VS Code. When you run the tester, you can enter a
value for the tactic you want to test and watch it run.

In the following sections, we’ll explore each prompt tactic in more detail. We’ll also
examine the various examples.

2.3.1 Creating detailed queries

The basic premise of this tactic is to provide as much detail as possible but also to be
careful not to give irrelevant details. The following listing shows the JSON Lines file
examples for exploring this tactic.

 
 

Loads the 
prompt and 
parses it into 
messages

Submits the 
prompt to an 
OpenAI LLM

Figure 2.10 The output of the prompt engineering tactics tester
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[                       
    {
        "role": "system",
        "content": "You are a helpful assistant."
    },
    {
        "role": "user",
        "content": "What is an agent?"     
    }
]
[
    {
        "role": "system",
        "content": "You are a helpful assistant."
    },
    {
        "role": "user",
        "content": """
What is a GPT Agent? 
Please give me 3 examples of a GPT agent
"""                                       
    }
]

This example demonstrates the difference between using detailed queries and not. It
also goes a step further by asking for examples. Remember, the more relevance and
context you can provide in your prompt, the better the overall response. Asking for
examples is another way of enforcing the relationship between the question and the
expected output.

2.3.2 Adopting personas

Adopting personas grants the ability to define an overarching context or set of rules to
the LLM. The LLM can then use that context and/or rules to frame all later output
responses. This is a compelling tactic and one that we’ll make heavy use of throughout
this book.

 Listing 2.10 shows an example of employing two personas to answer the same ques-
tion. This can be an enjoyable technique for exploring a wide range of novel applica-
tions, from getting demographic feedback to specializing in a specific task or even
rubber ducking.

Listing 2.9 detailed_queries.jsonl

GPT rubber ducking
Rubber ducking is a problem-solving technique in which a person explains a problem
to an inanimate object, like a rubber duck, to understand or find a solution. This
method is prevalent in programming and debugging, as articulating the problem aloud
often helps clarify the problem and can lead to new insights or solutions.

The first example doesn’t 
use detailed queries.

First ask the LLM a 
very general question.

Ask a more specific question, 
and ask for examples.
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[
    {
        "role": "system",
        "content": """
You are a 20 year old female who attends college 
in computer science. Answer all your replies as 
a junior programmer.
"""                        
    },
    {
        "role": "user",
        "content": "What is the best subject to study."
    }
]
[
    {
        "role": "system",
        "content": """
You are a 38 year old male registered nurse. 
Answer all replies as a medical professional.
"""                                            
    },
    {
        "role": "user",
        "content": "What is the best subject to study."
    }
]

A core element of agent profiles is the persona. We’ll employ various personas to assist
agents in completing their tasks. When you run this tactic, pay particular attention to
the way the LLM outputs the response.

2.3.3 Using delimiters

Delimiters are a useful way of isolating and getting the LLM to focus on some part of a
message. This tactic is often combined with other tactics but can work well inde-
pendently. The following listing demonstrates two examples, but there are several
other ways of describing delimiters, from XML tags to using markdown.

[
    {

(continued)

GPT rubber ducking uses the same technique, but instead of an inanimate object, we
use an LLM. This strategy can be expanded further by giving the LLM a persona spe-
cific to the desired solution domain.

Listing 2.10 adopting_personas.jsonl

Listing 2.11 using_delimiters.jsonl

First persona

Second persona
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        "role": "system",
        "content": """
Summarize the text delimited by triple quotes 
with a haiku.
"""              
    },
    {
        "role": "user",
        "content": "A gold chain is cool '''but a silver chain is better'''"
    }
]
[
    {
        "role": "system",
        "content": """
You will be provided with a pair of statements 
(delimited with XML tags) about the same topic. 
First summarize the arguments of each statement. 
Then indicate which of them makes a better statement
 and explain why.
"""                       
    },
    {
        "role": "user",
        "content": """
<statement>gold chains are cool</statement>
<statement>silver chains are better</statement>
"""
    }
]

When you run this tactic, pay attention to the parts of the text the LLM focuses on
when it outputs the response. This tactic can be beneficial for describing information
in a hierarchy or other relationship patterns.

2.3.4 Specifying steps

Specifying steps is another powerful tactic that can have many uses, including in
agents, as shown in listing 2.12. It’s especially powerful when developing prompts or
agent profiles for complex multistep tasks. You can specify steps to break down these
complex prompts into a step-by-step process that the LLM can follow. In turn, these
steps can guide the LLM through multiple interactions over a more extended conver-
sation and many iterations.

[
    {
        "role": "system",
        "content": """
Use the following step-by-step instructions to respond to user inputs.
Step 1 - The user will provide you with text in triple single quotes. 
Summarize this text in one sentence with a prefix that says 'Summary: '.

Listing 2.12 specifying_steps.jsonl 

The delimiter is defined by 
character type and repetition.

The delimiter is defined 
by XML standards.
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Step 2 - Translate the summary from Step 1 into Spanish, 
with a prefix that says 'Translation: '.
"""                                         
    },
    {
        "role": "user",
        "content": "'''I am hungry and would like to order an appetizer.'''"
    }
]
[
    {
        "role": "system",
        "content": """
Use the following step-by-step instructions to respond to user inputs.
Step 1 - The user will provide you with text. Answer any questions in 
the text in one sentence with a prefix that says 'Answer: '.

Step 2 - Translate the Answer from Step 1 into a dad joke,
 with a prefix that says 'Dad Joke: '."""                     
    },
    {
        "role": "user",
        "content": "What is the tallest structure in Paris?"
    }
]

2.3.5 Providing examples

Providing examples is an excellent way to guide the desired output of an LLM. There
are numerous ways to demonstrate examples to an LLM. The system message/prompt
can be a helpful way to emphasize general output. In the following listing, the example
is added as the last LLM assistant reply, given the prompt “Teach me about Python.”

[
    {
        "role": "system",
        "content": """
Answer all replies in a consistent style that follows the format, 
length and style of your previous responses.
Example:
  user:
       Teach me about Python.
  assistant:                                               
       Python is a programming language developed in 1989
 by Guido van Rossum.

  Future replies:
       The response was only a sentence so limit
 all future replies to a single sentence.
"""                                          
    },
    {
        "role": "user",

Listing 2.13 providing_examples.jsonl

Notice the tactic of 
using delimiters.

Steps can be 
completely 
different 
operations.

Injects the 
sample output as 
the “previous” 
assistant reply

Adds a limit output tactic to 
restrict the size of the output 
and match the example
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        "content": "Teach me about Java."
    }
]

Providing examples can also be used to request a particular output format from a
complex series of tasks that derive the output. For example, asking an LLM to pro-
duce code that matches a sample output is an excellent use of examples. We’ll employ
this tactic throughout the book, but other methods exist for guiding output.

2.3.6 Specifying output length

The tactic of specifying output length can be helpful in not just limiting tokens but
also in guiding the output to a desired format. Listing 2.14 shows an example of using
two different techniques for this tactic. The first limits the output to fewer than 10
words. This can have the added benefit of making the response more concise and
directed, which can be desirable for some use cases. The second example demon-
strates limiting output to a concise set of bullet points. This method can help narrow
down the output and keep answers short. More concise answers generally mean the
output is more focused and contains less filler.

[
    {
        "role": "system",
        "content": """
Summarize all replies into 10 or fewer words.
"""                                              
    },
    {
        "role": "user",
        "content": "Please tell me an exciting fact about Paris?"
    }
]
[
    {
        "role": "system",
        "content": """
Summarize all replies into 3 bullet points.
"""                                          
    },
    {
        "role": "user",
        "content": "Please tell me an exciting fact about Paris?"
    }
]

Keeping answers brief can have additional benefits when developing multi-agent sys-
tems. Any agent system that converses with other agents can benefit from more con-
cise and focused replies. It tends to keep the LLM more focused and reduces noisy
communication.

Listing 2.14 specifying_output_length.jsonl

Restricting the output 
makes the answer 
more concise.

Restricts the answer 
to a short set of 
bullets
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 Be sure to run through all the examples of the prompt tactics for this strategy. As
mentioned, we’ll cover other prompt engineering strategies and tactics in future chap-
ters. We’ll finish this chapter by looking at how to pick the best LLM for your use case.

2.4 Choosing the optimal LLM for your specific needs
While being a successful crafter of AI agents doesn’t require an in-depth understand-
ing of LLMs, it’s helpful to be able to evaluate the specifications. Like a computer
user, you don’t need to know how to build a processor to understand the differences
in processor models. This analogy holds well for LLMs, and while the criteria may be
different, it still depends on some primary considerations.

 From our previous discussion and look at LM Studio, we can extract some funda-
mental criteria that will be important to us when considering LLMs. Figure 2.11

LLMs

2

1

3

4

5

Model Performance:
Determines how well a
model may perform on a
given benchmark, such
as answering SAT
questions.

Model Parameters (Size):
Specifics the size of the
model in billions of
parameters. Larger
models typically perform
better on general tasks.

Use Case (Model Type):
Determines the type of
model and expected use
case. This could be chat
completions for a model
like ChatGPT.

Training Input: Specifies
the material used to train
the model. This can
range from everything on
the internet to a specific
domain Python code.

Training Method: Specifies
how the model is trained
and/or fine-tuned. Models
like ChatGPT are trained
using reinforcement learning
with human feedback.

6

7

8

Context Token Size:
Specifies how large the
model’s context size is in
tokens. Large context is
important for verbose agent
conversations.

Model Speed (Model
Deployment): Denotes the
speed of the model. OpenAI
models marked Turbo are
typically faster. For local LLMs,
speed will be determined by
the infrastructure.

Model Cost (Project
Budget): Could represent
the price of the service or
the cost to host and run a
model on your infrastructure.

Figure 2.11 The important criteria to consider when consuming an LLM
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explains the essential criteria to define what makes an LLM worth considering for cre-
ating a GPT agent or any LLM task.

 For our purposes of building AI agents, we need to look at each of these criteria in
terms related to the task. Model context size and speed could be considered the sixth
and seventh criteria, but they are usually considered variations of a model deployment
architecture and infrastructure. An eighth criterion to consider for an LLM is cost,
but this depends on many other factors. Here is a summary of how these criteria relate
to building AI agents:

 Model performance—You’ll generally want to understand the LLM’s performance
for a given set of tasks. For example, if you’re building an agent specific to cod-
ing, then an LLM that performs well on code will be essential.

 Model parameters (size)—The size of a model is often an excellent indication of
inference performance and how well the model responds. However, the size of
a model will also dictate your hardware requirements. If you plan to use your
own locally hosted model, the model size will also primarily dictate the com-
puter and GPU you need. Fortunately, we’re seeing small, very capable open
source models being released regularly.

 Use case (model type)—The type of model has several variations. Chat completions
models such as ChatGPT are effective for iterating and reasoning through a
problem, whereas models such as completion, question/answer, and instruct
are more related to specific tasks. A chat completions model is essential for
agent applications, especially those that iterate.

 Training input—Understanding the content used to train a model will often dic-
tate the domain of a model. While general models can be effective across tasks,
more specific or fine-tuned models can be more relevant to a domain. This may
be a consideration for a domain-specific agent where a smaller, more fine-tuned
model may perform as well as or better than a larger model such as GPT-4.

 Training method—It’s perhaps less of a concern, but it can be helpful to under-
stand what method was used to train a model. How a model is trained can
affect its ability to generalize, reason, and plan. This can be essential for plan-
ning agents but perhaps less significant for agents than for a more task-specific
assistant.

 Context token size—The context size of a model is more specific to the model
architecture and type. It dictates the size of context or memory the model may
hold. A smaller context window of less than 4,000 tokens is typically more than
enough for simple tasks. However, a large context window can be essential when
using multiple agents—all conversing over a task. The models will typically be
deployed with variations on the context window size.

 Model speed (model deployment)—The speed of a model is dictated by its inference
speed (or how fast a model replies to a request), which in turn is dictated by the
infrastructure it runs on. If your agent isn’t directly interacting with users, raw
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real-time speed may not be necessary. On the other hand, an LLM agent inter-
acting in real time needs to be as quick as possible. For commercial models,
speed will be determined and supported by the provider. Your infrastructure
will determine the speed for those wanting to run their LLMs.

 Model cost (project budget)—The cost is often dictated by the project. Whether
learning to build an agent or implementing enterprise software, cost is always a
consideration. A significant tradeoff exists between running your LLMs versus
using a commercial API.

There is a lot to consider when choosing which model you want to build a production
agent system on. However, picking and working with a single model is usually best for
research and learning purposes. If you’re new to LLMs and agents, you’ll likely want
to choose a commercial option such as GPT-4 Turbo. Unless otherwise stated, the
work in this book will depend on GPT-4 Turbo.

 Over time, models will undoubtedly be replaced by better models. So you may
need to upgrade or swap out models. To do this, though, you must understand the
performance metrics of your LLMs and agents. Fortunately, in chapter 9, we’ll explore
evaluating LLMs, prompts, and agent profiles with prompt flow.

2.5 Exercises
Use the following exercises to help you engage with the material in this chapter:

 Exercise 1—Consuming Different LLMs
Objective—Use the connecting.py code example to consume a different LLM
from OpenAI or another provider.

Tasks:

– Modify connecting.py to connect to a different LLM.
– Choose an LLM from OpenAI or another provider.
– Update the API keys and endpoints in the code.
– Execute the modified code and validate the response.

 Exercise 2—Exploring Prompt Engineering Tactics
Objective—Explore various prompt engineering tactics, and create variations
for each.

Tasks:

– Review the prompt engineering tactics covered in the chapter.
– Write variations for each tactic, experimenting with different phrasing and

structures.
– Test the variations with an LLM to observe different outcomes.
– Document the results, and analyze the effectiveness of each variation.

 Exercise 3—Downloading and Running an LLM with LM Studio
Objective—Download an LLM using LM Studio, and connect it to prompt engi-
neering tactics.
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Tasks:

– Install LM Studio on your machine.
– Download an LLM using LM Studio.
– Serve the model using LM Studio.
– Write Python code to connect to the served model.
– Integrate the prompt engineering tactics example with the served model.

 Exercise 4—Comparing Commercial and Open source LLMs
Objective—Compare the performance of a commercial LLM such as GPT-4
Turbo with an open source model using prompt engineering examples.

Tasks:

– Implement the prompt engineering examples using GPT-4 Turbo.
– Repeat the implementation using an open source LLM.
– Evaluate the models based on criteria such as response accuracy, coherence,

and speed.
– Document the evaluation process, and summarize the findings.

 Exercise 5—Hosting Alternatives for LLMs
Objective—Contrast and compare alternatives for hosting an LLM versus using a
commercial model.

Tasks:

– Research different hosting options for LLMs (e.g., local servers, cloud services).
– Evaluate the benefits and drawbacks of each hosting option.
– Compare these options to using a commercial model in terms of cost, perfor-

mance, and ease of use.
– Write a report summarizing the comparison and recommending the best

approach based on specific use cases.

Summary
 LLMs use a type of architecture called generative pretrained transformers (GPTs).
 Generative models (e.g., LLMs and GPTs) differ from predictive/classification

models by learning how to represent data and not simply classify it.
 LLMs are a collection of data, architecture, and training for specific use cases,

called fine-tuning.
 The OpenAI API SDK can be used to connect to an LLM from models, such as

GPT-4, and also used to consume open source LLMs.
 You can quickly set up Python environments and install the necessary packages

for LLM integration.
 LLMs can handle various requests and generate unique responses that can be

used to enhance programming skills related to LLM integration.
 Open source LLMs are an alternative to commercial models and can be hosted

locally using tools such as LM Studio.
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 Prompt engineering is a collection of techniques that help craft more effective
prompts to improve LLM responses.

 LLMs can be used to power agents and assistants, from simple chatbots to fully
capable autonomous workers.

 Selecting the most suitable LLM for specific needs depends on the perfor-
mance, parameters, use case, training input, and other criteria.

 Running LLMs locally requires a variety of skills, from setting up GPUs to under-
standing various configuration options.



Engaging
GPT assistants
As we explore the OpenAI crusade into assistants and what has been hinted at, ulti-
mately, an agent platform called GPT Assistants, we’ll introduce GPT assistants
through the ChatGPT interface. Then, we’ll add in several fully developed assis-
tants that can suggest recipes from ingredients, fully analyze data as a data scientist,
guide readers through books, and be extended with custom actions. By the end of
the chapter, we’ll be ready to build a fully functional agent that can be published to
the OpenAI GPT Store.

This chapter covers
 Introducing the OpenAI GPT Assistants platform 

and the ChatGPT UI 

 Building a GPT that can use the code 
interpretation capabilities

 Extending an assistant via custom actions 

 Adding knowledge to a GPT via file uploads

 Commercializing your GPT and publishing it to 
the GPT Store 
39
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3.1 Exploring GPT assistants through ChatGPT
ChatGPT (ChatGPT Plus, at the time of writing) allows you to build GPT assistants,
consume other assistants, and even publish them, as you’ll see by the end of the chap-
ter. When OpenAI announced the release of the GPT Assistants platform, it helped
define and solidify the emergence of AI agents. As such, it’s worth a serious review by
anyone interested in building and consuming agent systems. First, we’ll look at build-
ing GPT assistants through ChatGPT Plus, which requires a premium subscription. If
you don’t want to purchase a subscription, browse this chapter as a primer, and chap-
ter 6 will demonstrate consuming the API service later.

 Figure 3.1 shows the page for the GPT Store within ChatGPT (https://chatgpt
.com/gpts). From here, you can search and explore various GPTs for virtually any
task. The amount of usage will typically indicate how well each GPT works, so gauge
which works best for you. 

Creating your first GPT Assistant is as simple as clicking the Create button and follow-
ing along with the GPT Builder chat interface. Figure 3.2 shows using the Builder to

Explore the GPTs
you have made.

Search for GPTs by
name of category.

Click Create to create
your own GPT.

Figure 3.1 The main interface to the GPT Store

https://chatgpt.com/gpts
https://chatgpt.com/gpts
https://chatgpt.com/gpts
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create a GPT. Working through this exercise a couple of times can be a great way to
start understanding an assistant’s requirements.

After working with the Builder, you can open the manual configuration panel, shown
in figure 3.3, and edit the GPT directly. You’ll see the name, description, instruc-
tions, and conversation starters populated from your conversations with the Builder.
This can be a great start, but generally, you’ll want to edit and tweak these proper-
ties manually.

 If you want to follow along with building your own Culinary Companion, enter the
text from listing 3.1 into the instructions. These instructions were partly generated by
conversing with the Builder and added based on explicit outputs. The explicit outputs
are added to the instructions as rules. 

 
 
 
 

The Builder can guide you
through the creation process.

Dialog with the Builder
to create your GPT.

Figure 3.2 Interacting with 
the GPT Builder to create an 
assistant
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Culinary Companion assists users with a friendly, engaging tone, 
reminiscent of the famous chef Julia Child.    
It provides quick meal ideas and simplifies complex recipes, focusing on 
ingredients the user already has. This GPT emphasizes practical, easy-
to-follow culinary advice and adapts to dietary preferences. It's 
designed to make cooking a more accessible and enjoyable experience, 
encouraging users to experiment with their meals while offering helpful 

Listing 3.1 Instructions for Culinary Companion

Using the Builder will generate a set
of instructions for your assistant, or
you can start completely from scratch.

The Configure panel gives
you direct control over your
GPT’s properties.

A good name and description
will be essential if you plan on
publishing this agent.

Good conversation starters can help
users quickly understand what your
agent does and how it works.

Figure 3.3 The Configure panel of the GPT Assistants platform interface

Personality or persona
of your assistant
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tips in a warm, approachable manner.    

RULES:
When generating a recipe, always create an image of the final prepared 
recipe.                                                                  
When generating a recipe, estimate the calories and nutritional values 
per serving.                                                             
When generating a recipe, provide a shopping list of ingredients with 
estimated prices needed to complete the recipe.                          
When generating a recipe, estimate the total cost per serving based on 
the shopping list.                                                       

Defining rules for an assistant/agent essentially creates a template for what the agent
will produce. Adding rules ensures that the GPT output is consistent and aligned with
your expectations of how the agent should operate. Defining and giving an agent/
assistant a persona provides them with a unique and memorable personality.

NOTE Giving an agent/assistant a particular personality can make a differ-
ence in the type and form of output. Asking a cooking agent to speak as the
first celebrity chef, Julia Child, not only provides for a fun tone but also
engages more references that may mention or talk about her cooking style
and teaching. When constructing an agent/assistant, assigning a particular
persona/personality can be helpful.

With just these few steps, we have a culinary companion that not only gives us recipes
for ingredients we have on hand but also generates an image of the finished recipe,
estimates the nutritional value, creates a shopping list with an estimate of prices, and
breaks down the cost per serving.

 Try the assistant by requesting a recipe and providing a list of ingredients you have
or prefer. Listing 3.2 shows an example of a simple request with extra information to
set the mood. Of course, you can add any ingredients or situations you like and then
see the results.

I have a bag of prepared frozen chicken strips and I want to make a 
romantic dinner for two.

Figure 3.4 shows the formatted output results from the GPT provided by the prompt.
It certainly looks good enough to eat. All of this output was generated because of the
instructions we provided the agent. 

 While the output results look great, they may not all be factual and correct, and
your results may vary. For instance, the GPT added chicken strips to the shopping list
when we had already suggested having those ingredients. Furthermore, the prices and
estimated nutritional information are just estimates, but this can be resolved later if
they interest you.

Listing 3.2 Prompting the recipe

General guidelines of the 
agent’s role and goal 

A set of rules the agent will
follow when suggesting a recipe
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Out of the box, though, GPT Assistants is quite impressive for quickly building a proof-
of-concept assistant or agent. As you’ll see later in the chapter, it also provides an excel-
lent platform for consuming assistants outside ChatGPT. In the next section, we’ll look
at more impressive features GPTs provide, such as file uploads and code interpretation.

3.2 Building a GPT that can do data science
The GPT Assistants platform has and will likely be extended to include various agent
components. Currently, GPT Assistants support what is referred to as knowledge,
memory, and actions. In chapter 8, we’ll discuss the details of knowledge and memory,
and in chapter 5, we cover the concept of tool use through actions.

 In our next exercise, we’ll build an assistant to perform a first-pass data science
review of any CSV document we provide. This agent will use the ability or action that
allows for coding and code interpretation. When you enable code interpretation, the
assistant will allow file uploads by default.

 Before we do that, though, we want to design our agent, and what better way to do
that than to ask an LLM to build us an assistant? Listing 3.3 shows the prompt request-
ing ChatGPT (GPT-4) to design a data science assistant. Notice how we’re not asking
for everything in a single prompt but instead iterating over the information returned
by the LLM.

FIRST PROMPT:    
what is a good basic and interesting data science 
experiment you can task someone with a single 
csv file that contains interesting data?    

Listing 3.3 Prompting for a data science assistant

The GPT assistant creates
the recipe from the provided
ingredients and provides a
shopping list with costs and
cost per ser nutritionalving,
information per serving, and
instructions on how to cook
the recipe.

Chicken Parmesan with Spaghetti Recipe

Ingredients:

1 bag of frozen prepared chicken strips
1 jar of your favorite marinara sauce
1 cup of shredded mozzarella cheese
1/4 cup of grated Parmesan cheese
200g of spaghetti
1 tablespoon of olive oil
2 cloves of garlic, minced
Fresh basil leaves (for garnish)
Salt and pepper to taste

Estimated Costs:

Chicken strips: $6.00
Marinara sauce: $3.00
Mozzarella cheese: $2.00
Parmesan cheese: $1.50
Spaghetti: $1.00
Garlic: $0.30
Basil: $0.50
Total estimated cost: $14.30
Cost per serving: approximately $7.15

Nutritional Values per Serving:

Calories: 600 kcal
Protein: 35 g
Carbohydrates: 75 g
Fat: 18 g

Instructions: (not shown)

Generated by the Culinary
Companion GPT Assistant

Figure 3.4 The output results of the Culinary Companion GPT

First, ask the 
LLM to set the 
foundation.
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SECOND PROMPT:    
okay, can you now write all those steps into instructions 
to be used for a GPT Agent (LLM agent) to replicate all of 
the above steps     

THIRD PROMPT:    
What is a famous personality that can embody the agent 
data scientist and be able to present data to users?     

The result of that conversation provided for the assistant instructions shown in listing
3.4. In this case, the assistant was named Data Scout, but feel free to name your assis-
tant what appeals to you. 

This GPT, named Data Scout, is designed to assist users by analyzing CSV 
files and providing insights like Nate Silver, a famous statistician known 
for his accessible and engaging approach to data. Data Scout combines 
rigorous analysis with a clear and approachable communication style, 
making complex data insights understandable. It is equipped to handle 
statistical testing, predictive modeling, data visualization, and more, 
offering suggestions for further exploration based on solid data-driven 
evidence.

Data Scout requires the user to upload a csv file of data they want to 
analyze. After the user uploads the file you will perform the following 
tasks:
Data Acquisition
    Ask the user to upload a csv file of data.
    Instructions: Use the pandas library to read the data from the CSV 
file. Ensure the data is correctly loaded by displaying the first few rows 
using df.head().

2. Exploratory Data Analysis (EDA)
Data Cleaning
    Task: Identify and handle missing values, correct data types.
    Instructions: Check for missing values using df.isnull().sum(). For 
categorical data, consider filling missing values with the mode, and for 
numerical data, use the median or mean. Convert data types if necessary 
using df.astype().

Visualization
    Task: Create visualizations to explore the data.
    Instructions: Use matplotlib and seaborn to create histograms, scatter 

plots, and box plots. For example, use sns.histplot() for histograms and 
sns.scatterplot() for scatter plots.

Descriptive Statistics
    Task: Calculate basic statistical measures.
    Instructions: Use df.describe() to get a summary of the statistics and 
df.mean(), df.median() for specific calculations.

Listing 3.4 Data Scout instructions

Then, ask the LLM to 
convert the previous 
steps to a more 
formal process.

Finally, ask the LLM to 
provide a personality 
that can represent the 
process.
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3. Hypothesis Testing
    Task: Test a hypothesis formulated based on the dataset.
    Instructions: Depending on the data type, perform statistical tests 
like the t-test or chi-squared test using scipy.stats. For example, use 
stats.ttest_ind() for the t-test between two groups.

4. Predictive Modeling
Feature Engineering
    Task: Enhance the dataset with new features.
    Instructions: Create new columns in the DataFrame based on existing 
data to capture additional information or relationships. Use operations 
like df['new_feature'] = df['feature1'] / df['feature2'].

Model Selection
    Task: Choose and configure a machine learning model.
    Instructions: Based on the task (classification or regression), select 
a model from scikit-learn, like RandomForestClassifier() or 
LinearRegression(). Configure the model parameters.

Training and Testing
    Task: Split the data into training and testing sets, then train the 

model.
    Instructions: Use train_test_split from scikit-learn to divide the 
data. Train the model using model.fit(X_train, y_train).

Model Evaluation
    Task: Assess the model performance.
    Instructions: Use metrics like mean squared error (MSE) or accuracy. 
Calculate these using metrics.mean_squared_error(y_test, y_pred) or 
metrics.accuracy_score(y_test, y_pred).

5. Insights and Conclusions
    Task: Interpret and summarize the findings from the analysis and 

modeling.
    Instructions: Discuss the model coefficients or feature importances. 
Draw conclusions about the hypothesis and the predictive analysis. Suggest 
real-world implications or actions based on the results.

6. Presentation
    Task: Prepare a report or presentation.
    Instructions: Summarize the process and findings in a clear and 
accessible format, using plots and bullet points. Ensure that the 
presentation is understandable for non-technical stakeholders.

After generating the instructions, you can copy and paste them into the Configure
panel in figure 3.5. Be sure to give the assistant the Code Interpretation tool (skill) by
selecting the corresponding checkbox. You don’t need to upload files here; the assis-
tant will allow file uploads when the Code Interpretation checkbox is enabled.

 Now, we can test the assistant by uploading a CSV file and asking questions about
it. The source code folder for this chapter contains a file called netflix_titles.csv;
the top few rows are summarized in listing 3.5. Of course, you can use any CSV file you
want, but this exercise will use the Netflix example. Note that this dataset was down-
loaded from Kaggle, but you can use any other CSV if you prefer.
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show_id,type,title,director,cast,country,date_added,
release_year,rating,duration,listed_in,description    
s1,Movie,Dick Johnson Is Dead,Kirsten Johnson,, 
United States,"September 25, 2021",2020,PG-13,90 min,
Documentaries,"As her father nears the end of his life, 
filmmaker Kirsten Johnson stages his death in inventive 
and comical ways to help them both face the inevitable."    

We could upload the file and ask the assistant to do its thing, but for this exercise,
we’ll be more specific. Listing 3.6 shows the prompt and uploading the file to engage
the assistant (including Netflix_titles.csv in the request). This example filters the
results to Canada, but you can, of course, use any country you want to view.

Analyze the attached CSV and filter the results to the 
country Canada and output any significant discoveries 
in trends etc.    

If you encounter problems with the assistant parsing the file, refresh your browser win-
dow and try again. Depending on your data and filter, the assistant will now use the
Code Interpreter as a data scientist would to analyze and extract trends in the data. 

Listing 3.5 netflix_titles.csv (top row of data)

Listing 3.6 Prompting the Data Scout

Conversation starters provide a quick
description and guide the user.

Be sure the Code Interpreter is selected.

Figure 3.5 Turning on the Code Interpreter tool/skill

Comma-separated 
list of columns

An example row 
of data from the 
dataset

You can select a 
different country to 
filter the data on.
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 Figure 3.6 shows the output generated for the prompt in listing 3.5 using the net-
flix_titles.csv file for data. Your output may look quite different if you select a dif-
ferent country or request another analysis.

The data science plots the assistant is building are created by writing and executing
code with the Code Interpreter. You can try this with other CSV files or, if you want,
different forms of data to analyze. You could even continue iterating with the assistant
to update the plots visually or analyze other trends.

 Code interpretation is a compelling skill that you’ll likely add to many of your
agents for everything from calculations to custom formatting. In the next section, we
look at how to extend the capabilities of a GPT through custom actions.

Top 10 Popular Genres in Canadian Content Ratings Distribution

Distribution of Content Types Trend of Releases over the Years

c
o
u
n
t

c
o
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n
t

count rating

Children and Family
movies

Comedies

Dramas

Kid’s TV

International Movies

Thrillers

Action and Adventure

Independent Movies

Documentaries

Horror Movies

type release_year

Figure 3.6 The output generated by the assistant as it analyzed the CSV data
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3.3 Customizing a GPT and adding custom actions
In our next exercise, we’ll demonstrate the use of custom actions, which can signifi-
cantly extend the reach of your assistant. Adding custom actions to an agent requires
several components, from understanding the OpenAPI specification endpoint to con-
necting to a service. Therefore, before we add custom actions, we’ll build another
GPT in the next section to assist us.

3.3.1 Creating an assistant to build an assistant

Given GPTs’ capabilities, it only makes sense that we use one to assist in building oth-
ers. In this section, we’ll build a GPT that can help us create a service we can connect
as a custom action to another GPT. And yes, we’ll even use an LLM to begin construct-
ing our helper GPT.

 The following listing shows the prompt for creating the instructions for our helper
GPT. This prompt is intended to generate the instructions for the assistant.

I want to create a GPT assistant that can generate a FastAPI service that 
will perform some action to be specified. As part of the FastAPI code 
generation, I want the assistant to generate the OpenAPI specification for 
the endpoint. Please outline a set of instructions for this agent.

Listing 3.8 shows the bulk of the instructions generated for the prompt. The output
was then modified and slightly updated with specific information and other details.
Copy and paste those instructions from the file (assistant_builder.txt) into your
GPT. Be sure to select the Code Interpreter capability also.

This GPT is designed to assist users in generating FastAPI services 
tailored to specific actions, complete with the corresponding OpenAPI 
specifications for the endpoints. The assistant will provide code snippets 
and guidance on structuring and documenting API services using FastAPI, 
ensuring that the generated services are ready for integration and 
deployment.

1.   Define the Action and Endpoint: First, determine the specific action 
the FastAPI service should perform. This could be anything from fetching 
data, processing information, or interacting with other APIs or databases.

2.    Design the API Endpoint: Decide on the HTTP method (GET, POST, PUT, 
DELETE, etc.) and the endpoint URI structure. Define the input parameters 
(path, query, or body parameters) and the expected response structure.

3. Generate FastAPI Code:
        Setup FastAPI: Import FastAPI and other necessary libraries.
        Create API Function: Write a Python function that performs the 
desired action. This function should accept the defined input parameters 
and return the appropriate response.

Listing 3.7 Prompting the helper design (in GPT Builder or ChatGPT)

Listing 3.8 Custom action assistant instructions
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4. Decorate the Function: Use FastAPI's decorators (e.g., 
@app.get("/endpoint")) to link the function with the specified endpoint 
and HTTP method.
        Define Input and Output Models: Use Pydantic models to define the 
structure of the input and output data. This ensures validation and 
serialization of the data.

5. Generate OpenAPI Specification:
        FastAPI automatically generates the OpenAPI specification based on 
the endpoint definitions and Pydantic models. Ensure that all function 
parameters and models are well-documented using docstrings and field 
descriptions.
        Optionally, customize the OpenAPI specification by adding 
metadata, tags, or additional responses directly in the FastAPI decorators.

6. Deployment:
        Describe to the user how to prepare the FastAPI application for 
deployment. 
        Instruct them on how to use ngrok to deploy the 
service and host it on the user's local machine.     

After preparing the assistant, ensure everything is set in the Configure panel (includ-
ing setting the Code Interpreter checkbox), and then refresh your browser window.
This will prepare the assistant for a new session. You can request the kind of service
you want to build from here.

 Listing 3.9 shows the request to the Custom Action Assistant to create a daily task
endpoint. If you understand how APIs work, you can suggest other options, such as
POST. Of course, you can also ask the assistant to guide you and create your service.

I want to define a GET endpoint that replies with my list of daily tasks  

After you enter the prompt, the assistant will generate the code and instructions for
creating and running the FastAPI endpoint. The following listing shows an example
of the code generated from the previous request.

from fastapi import FastAPI
from pydantic import BaseModel
from typing import List

app = FastAPI()

class Task(BaseModel):   
    id: int
    description: str
    completed: bool

tasks = [    
    Task(id=1, description="Buy groceries", completed=False),
    Task(id=2, description="Read a book", completed=True),

Listing 3.9 Prompt requesting task endpoint service

Listing 3.10 daily_tasks_api.py (generated from assistant)

This uses ngrok as an 
example to deploy the 
service locally.

Use Pydantic to create 
a type for the task.

This is a static list of 
tasks to demonstrate.
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    Task(id=3, description="Complete FastAPI project", completed=False),
]

@app.get("/tasks", response_model=List[Task])   
async def get_tasks():
    """
    Retrieve a list of daily tasks.
    """
    return tasks

Enter the code into Visual Studio Code (VS Code), and confirm that fastapi and
uvicorn are installed with pip. Then, run the API using the command shown in the
following listing, which runs the API in the chapter source file.

uvicorn daily_tasks_api:app –reload     

Open a browser to http://127.0.0.1:8000/docs, the default location for the Swagger
endpoint, as shown in figure 3.7.

Listing 3.11 Running the API

The tasks endpoint

Change the name of the module/file 
if you’re using something different.

Navigate your browser to
http://127.0.0. l :8000/docs.

Click this link to open and view
the OpenAPI specification in JSON.

Figure 3.7 Navigating the Swagger docs and getting the openapi.json document

http://127.0.0.1:8000/docs
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Clicking the /openapi.json link will display the OpenAPI specification for the end-
point, as shown in listing 3.12 (JSON converted to YAML). You’ll need to copy and
save this document for later use when setting up the custom action on the agent. The
endpoint produces JSON, but you can also use specifications written in YAML.

openapi: 3.1.0
info:
  title: FastAPI
  version: 0.1.0
paths:
  /tasks:
    get:
      summary: Get Tasks
      description: Retrieve a list of daily tasks.
      operationId: get_tasks_tasks_get
      responses:
        '200':
          description: Successful Response
          content:
            application/json:
              schema:
                type: array
                items:
                  $ref: '#/components/schemas/Task'
                title: Response Get Tasks Tasks Get
components:
  schemas:
    Task:
      type: object
      properties:
        id:
          type: integer
          title: Id
        description:
          type: string
          title: Description
        completed:
          type: boolean
          title: Completed
      required:
        - id
        - description
        - completed
      title: Task

Before connecting an assistant to the service, you must set up and use ngrok to open a
tunnel to your local machine running the service. Prompt the GPT to provide the

Listing 3.12 OpenAPI specification for the task API 
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instructions and help you set up ngrok, and run the application to open an endpoint
to port 8000 on your machine, as shown in listing 3.13. If you change the port or use a
different configuration, you must update it accordingly.

./ngrok authtoken <YOUR_AUTHTOKEN>     

./ngrok http 8000     

After you run ngrok, you’ll see an external URL that you can now use to access the ser-
vice on your machine. Copy this URL for later use when setting up the assistant. In the
next section, we’ll create the assistant that consumes this service as a custom action.

3.3.2 Connecting the custom action to an assistant

With the service up and running on your machine and accessible externally via the
ngrok tunnel, we can build the new assistant. This time, we’ll create a simple assistant
to help us organize our daily tasks, where the tasks will be accessible from our locally
running task service.

 Open the GPT interface and the Configure panel, and copy and paste the instruc-
tions shown in listing 3.14 into the new assistant. Be sure to name the assistant and
enter a helpful description as well. Also, turn on the Code Interpreter capability to
allow the assistant to create the final plot, showing the tasks.

Task Organizer is designed to help the user prioritize their daily tasks 
based on urgency and time availability, providing structured guidance on 
how to categorize tasks by urgency and suggesting optimal time blocks for 
completing these tasks. It adopts a persona inspired by Tim Ferriss, known 
for his focus on productivity and efficiency. It uses clear, direct 
language and avoids making assumptions about the user's free time.
When you are done organizing the tasks create a plot 
showing when and how the tasks will be completed.     

Click the Create New Action button at the bottom of the panel. Figure 3.8 shows the
interface for adding a custom action. You must copy and paste the OpenAPI specifica-
tion for your service into the window. Then, you must add a new section called servers
and populate that with your URL, as shown in the figure.

 
 
 

Listing 3.13 Running ngrok (following the instructions setup)

Listing 3.14 Task Organizer (task_organizer_assistant.txt)

Enter your auth token 
obtained from ngrok.com.

Opens a tunnel on port 8000 
to external internet traffic

This feature requires 
the Code Interpreter 
to be enabled.



54 CHAPTER 3 Engaging GPT assistants
After the specification is set, you can test it by clicking the Test button. This will run a
test, and you’ll see the results shown in the conversation window, as shown in figure 3.9.

 After you’re satisfied, everything is set. Refresh your browser window to reset the
session, and enter something like the prompt shown in listing 3.15. This will prompt
the agent to call the service to get your daily tasks, summarize the output, and solve
your task organization dilemma.

how should I organize my tasks for today?

The assistant should produce a plot of the task schedule at the end. If it gets this
wrong or the formatting isn’t what you prefer, you can add instructions to specify the
format/style the assistant should output.

Listing 3.15 Task Organizer prompt

Add the servers section to the YAML, and
enter the ngrok URL for your service.

Copy and paste the YAML or JSON
specification into the window.

Figure 3.8 Adding a new custom action
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You can improve the service, but if you make any changes to the API, the specification
in the assistant custom actions will need to be updated. From here, though, you can
add custom action services run from your computer or hosted as a service.

NOTE Be aware that unknown users can activate custom actions if you pub-
lish an assistant for public consumption, so don’t expose services that charge
you a service fee or access private information unless that is your intention.
Likewise, services opened through an ngrok tunnel will be exposed through
the assistant, which may be of concern. Please be careful when publishing
agents that consume custom actions.

Custom actions are a great way to add dynamic functionality to an assistant, whether
for personal or commercial use. File uploads are a better option for providing an assis-
tant with static knowledge. The next section will explore using file uploads to extend
an assistant’s knowledge.

Returned list of tasks

Testing the endpoint

Figure 3.9 Testing the API service endpoint is correctly configured as a custom action
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3.4 Extending an assistant’s knowledge using file uploads
If you’ve engaged with LLMs, you likely have heard about the retrieval augmented
generation (RAG) pattern. Chapter 8 will explore RAG in detail for the application of
both knowledge and memory. Detailed knowledge of RAG isn’t required to use the
file upload capability, but if you need some foundation, check out that chapter.

 The GPT Assistants platform provides a knowledge capability called file uploads,
which allows you to populate the GPT with a static knowledge base about anything in
various formats. As of writing, the GPT Assistants platform allows you to upload up to
512 MB of documents. In the next two exercises, we’ll look at two different GPTs
designed to assist users with consuming books.

3.4.1 Building the Calculus Made Easy GPT

Books and written knowledge will always be the backbone of our knowledge base. But
reading text is a full-time concerted effort many people don’t have time for. Audio-
books made consuming books again accessible; you could listen while multitasking,
but not all books transitioned well to audio.

 Enter the world of AI and intelligent assistants. With GPTs, we can create an inter-
active experience between the reader and the book. No longer is the reader forced to
consume a book page by page but rather as a whole.

 To demonstrate this concept, we’ll build a GPT based on a classic math text called
Calculus Made Easy, by Silvanus P. Thompson. The book is freely available through the
Gutenberg Press website. While it’s more than a hundred years old, it still provides a
solid material background.

NOTE If you’re serious about learning calculus but this assistant is still too
advanced, check out a great book by Clifford A. Pickover called Calculus and
Pizza. It’s a great book for learning calculus or just to get an excellent
refresher. You could also try making your Calculus and Pizza assistant if you
have an eBook version. Unfortunately, copyright laws would prevent you from
publishing this GPT without permission.

Open ChatGPT, go to My GPTs, create a new GPT, click the Configure tab, and then
upload the file, as shown in figure 3.10. Upload the book from the chapter’s source
code folder: chapter _03/calculus_made_easy.pdf. This will add the book to the
GPT’s knowledge.

 Scroll up and add the instructions shown in listing 3.16. The initial preamble text
was generated by conversing with the GPT Builder. After updating the preamble text,
a personality was added by asking ChatGPT for famous mathematicians. Then, finally,
rules were added to provide additional guidance to the GPT on what explicit out-
comes we want.
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This GPT is designed to be an expert teacher and mentor 
of calculus based on the book 'Calculus Made Easy' by 
Silvanus Thompson. A copy of the book is uploaded at 
calculus_made_easy.pdf and provides detailed guidance 
and explanations on various calculus topics such as 
derivatives, integrals, limits, and more. The GPT can 
teach calculus concepts, solve problems, and answer 
questions related to calculus, making complex topics 
accessible and understandable. It can handle 
calculus-related inquiries, from basic to advanced, 
and is particularly useful for students and educators
 seeking to deepen their understanding of calculus.     

Listing 3.16 Instructions for Calculus Made Easy GPT

Adding files is considered giving your
assistant additional knowledge.

Use the Upload files button to add
various sources of static
knowledge for the assistant.

Be sure to enable Code Interpreter
so the assistant can demonstrate
concepts.

Figure 3.10 Adding files to the assistant’s knowledge

The preamble was 
initially generated 
by the Builder and 
then tweaked as 
needed.
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Answer as the famous mathematician Terence Tao. 
Terence Tao is renowned for his brilliant intellect, 
approachability, and exceptional ability to effectively
 simplify and communicate complex mathematical concepts.    

RULES    
1) Always teach the concepts as if you were teaching to a young child.
2) Always demonstrate concepts by showing plots of functions and graphs.
3) Always ask if the user wants to try a sample problem on their own. 
Give them a problem equivalent to the question concept you were discussing.

After updating the assistant, you can try it in the preview window or the book version
by searching for Calculus Made Easy in the GPT Store. Figure 3.11 shows a snipped
example of interaction with the GPT. The figure shows that the GPT can generate
plots to demonstrate concepts or ask questions.

 This GPT demonstrates the ability of an assistant to use a book as a companion
teaching reference. Only a single book was uploaded in this exercise, but multiple
books or other documents could be uploaded. As this feature and the technology
mature, in the future, it may be conceivable that an entire course could be taught
using a GPT.

 We’ll move away from technical and embrace fiction to demonstrate the use of
knowledge. In the next section, we’ll look at how knowledge of file uploads can be
used for search and reference.

3.4.2 Knowledge search and more with file uploads

The GPT Assistants platform’s file upload capability supports up to 512 MB of
uploads for a single assistant. This feature alone provides powerful capabilities for
document search and other applications in personal and small-to-medium business/
project sizes. 

 Imagine uploading a whole collection of files. You can now search, compare, con-
trast, organize, and collate all with one assistant. This feature alone within GPT Assis-
tants will disrupt how we search for and analyze documents. In chapter 6, we’ll
examine how direct access to the OpenAI Assistants API can increase the number of
documents.

 For this next exercise, we’ll employ an assistant with knowledge of multiple books
or documents. This technique could be applied to any supported document, but this
assistant will consume classic texts about robots. We’ll name this assistant the Classic
Robot Reads GPT.

 Start by creating a new GPT assistant in the ChatGPT interface. Then, upload the
instructions in listing 3.17, and name and describe the assistant. These instructions
were generated in part through the GPT Builder and then edited. 

 
 

Be sure always to give
your assistants and 
agents an appropriate
persona/personality.

Defining explicit conditions and rules can help
better guide the GPT to your desire.
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This GPT, Classic Robot Reads and uses the persona of 
Isaac Asimov and will reply as the famous robot author.    
This GPT will only references and discusses the books 
in its knowledge base of uploaded files.                  
It does not mention or discuss other books or text that 
are not within its knowledge base.                        

RULES
Refer to only text within your knowledge base             

Listing 3.17 Classic Robot Reads instructions

The GPT can also generate plots to
demonstrate concepts, such as showing
the function and its derivative.

The conversation was started by asking
the GPT to teach the basics of calculus.

Function and Its Derivative

Figure 3.11 Output from asking the GPT to teach calculus

Remember always 
to give your GPT a 
persona/personality.

Make sure the 
assistant only 
references knowledge 
within file uploads.
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Always provide 3 examples of any query the use asks for    
Always ask the user if they require anything further     

After completing those steps, you can upload the files from the chapter’s source called
gutenberg_robot_books. Figure 3.12 demonstrates uploading multiple files at a time.
The maximum number of files you can upload at a time will vary according to the
sizes of the files. 

You can start using it after uploading the documents, setting the instructions, and giv-
ing the assistant a name and an image. Search is the most basic application of a knowl-
edge assistant, and other use cases in the form of prompts are shown in table 3.1.

Add some extra 
rules for style 
choices.Make the assistant more helpful by

also giving them nuance and style.

You can upload multiple
files (about 5) at a time.

Uploads become accessible to the
agent through knowledge patterns.

Figure 3.12 Uploading documents to the assistant’s knowledge
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These use cases are just a sample of the many things possible with an AI knowledge
assistant. While this feature may not be poised to disrupt enterprise search, it gives
smaller organizations and individuals more access to their documents. It allows the
creation of assistants as a form of knowledge that can be exposed publicly. In the next
section, we’ll look at how to make assistants consumable by all.

3.5 Publishing your GPT
Once you’re happy with your GPT, you can use it or share it with others by providing a
link. Consuming GPT assistants through ChatGPT currently requires a Plus subscrip-
tion. To publish your GPT for others, click the Share button, and select your sharing
option, as shown in figure 3.13.

Table 3.1 Use cases for a knowledge assistant

Use case Example prompt Results

Search Search for this phrase in your knowledge: 
“the robot servant.”

Returns the document and an excerpt

Compare Identify the three most similar books that 
share the same writing style.

Returns the three most similar docu-
ments

Contrast Identify the three most different books. Returns books in the collection that are 
the most different

Ordering What order should I read the books? Returns an ordered progression of books

Classification Which of these books is the most modern? Classifies documents 

Generation Generate a fictional paragraph that mimics 
your knowledge of the robot servant.

Generates new content based on its 
knowledge base

Allows you to give the
link to other users

If you give a link to a GPT or make it
public, usage of that assistant is taken
from the user’s account and not yours.

Only for you

Publishes your GPT to the
store and makes it public

Figure 3.13 GPT 
sharing options
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Whether you share your GPT with friends and colleagues or publicly in the GPT
Store, the assistant’s usage is taken from the account using it, not the publisher. This
means if you have a particularly expensive GPT that generates a lot of images, for
example, it won’t affect your account while others use it.

3.5.1 Expensive GPT assistants

At the time of writing, OpenAI tracks the resource usage of your ChatGPT account,
including that used for GPTs. If you hit a resource usage limit and get blocked, your
ChatGPT account will also be blocked. Blockages typically only last a couple of hours,
but this can undoubtedly be more than a little annoying.

 Therefore, we want to ensure that users using your GPT don’t exceed their resource
usage limits for regular use. Following is a list of features that increase resource usage
while using the GPT:

 Creating images—Image generation is still a premium service, and successive image
generation can quickly get your user blocked. It’s generally recommended that
you inform your users of the potential risks and/or try to reduce how fre-
quently images are generated. 

 Code interpretation—This feature allows for file uploads and running of code for
data analysis. If you think your users will require constant use of the coding tool,
then inform them of the risk. 

 Vision, describing images—If you’re building an assistant that uses vision to describe
and extract information from the image, plan to use it sparingly. 

 File uploads—If your GPT uses a lot of files or allows you to upload several files,
this may cause blocks. As always, guide the user away from anything preventing
them from enjoying your GPT.

NOTE Moore’s Law states that computers will double in power every two years
while costing half as much. LLMs are now doubling in power about every six
months from optimization and increasing GPU power. This, combined with
the cost being reduced by at least half in the same period, likely means cur-
rent resource limits on vision and image-generation models won’t be consid-
ered. However, services such as code interpretation and file uploads will likely
remain the same.

Making your assistant aware of resource usage can be as simple as adding the rule
shown in listing 3.18 to the assistant’s instructions. The instructions can be just a state-
ment relaying the warning to the user and making the assistant aware. You could even
ask the assistant to limit its usage of certain features.

RULE:
When generating images, ensure the user is aware that creating multiple 
images quickly could temporarily block their account.

Listing 3.18 Resource usage rule example
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Guiding your assistant to be more resource conscious in the end makes your assistant
more usable. It also helps prevent angry users who unknowingly get blocked using
your assistant. This may be important if you plan on releasing your GPT, but before
that, let’s investigate the economics in the next section.

3.5.2 Understanding the economics of GPTs

Upon the release of GPT Assistants and the GPT Store, OpenAI announced the
potential for a future profit-sharing program for those who published GPTs. While
we’re still waiting to hear more about this program, many have speculated what this
may look like.

 Some have suggested the store may return only 10% to 20% of profits to the build-
ers. This is far less than the percentage on other app platforms but requires much less
technical knowledge and fewer resources. The GPT Store is flooded with essentially free
assistants, provided you have a Plus subscription, but that may change in the future.
Regardless, there are also several reasons why you may want to build public GPTs:

 Personal portfolio—Perhaps you want to demonstrate your knowledge of prompt
engineering or your ability to build the next wave of AI applications. Having a
few GPTs in the GPT Store can help demonstrate your knowledge and ability to
create useful AI applications.

 Knowledge and experience—If you have in-depth knowledge of a subject or topic,
this can be a great way to package that as an assistant. These types of assistants
will vary in popularity based on your area of expertise.

 Cross-marketing and commercial tie-in—This is becoming more common in the
Store and provides companies the ability to lead customers using an assistant.
As companies integrate more AI, this will certainly be more common.

 Helpful assistant to your product/service—Not all companies or organizations can
sustain the cost of hosting chatbots. While consuming assistants is currently lim-
ited to ChatGPT subscribers, they will likely be more accessible in the future.
This may mean having GPTs for everything, perhaps like the internet’s early
days where every company rushed to build a web presence.

While the current form of the GPT Store is for ChatGPT subscribers, if the current
trend with OpenAI continues, we’ll likely see a fully public GPT Store. Public GPTs
have the potential to disrupt the way we search, investigate products and services, and
consume the internet. In the last section of this chapter, we’ll examine how to publish
a GPT and some important considerations.

3.5.3 Releasing the GPT

Okay, you’re happy with your GPT and how it operates, and you see real benefit from
giving it to others. Publishing GPTs for public (subscribers) consumption is easy, as
shown in figure 3.14. After selecting the GPT Store as the option and clicking Save,
you’ll now have the option to set the category and provide links back to you.
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That is easy, so here are a few more things you’ll want to consider before publishing
your GPT:

 GPT description—Create a good description, and you may even want to ask
ChatGPT to help you build a description that increases the search engine opti-
mization (SEO) of your GPT. GPTs are now showing up in Google searches, so
good search engine optimization can help increase exposure to your assistant.
A good description will also help users decide if they want to take the time to
use your assistant.

 The logo—A nice, clean logo that identifies what your assistant does can undoubt-
edly help. Logo design for GPTs is effectively a free service, but taking the time
to iterate over a few images can help draw users to your assistant.

 The category—By default, the category will already be selected, but make sure it
fits your assistant. If you feel it doesn’t, than change the category, and you may
even want to select Other and define your own.

 Links—Be sure to set reference links for your social media and perhaps even a
GitHub repository that you use to track problems for the GPT. Adding links to
your GPT demonstrates to users that they can reach out to the builder if they
encounter problems or have questions.

Selecting this allows
you to view set links.

You can set links to your
social media and GitHub.

The area you want to
publish your GPT to

Figure 3.14 Selecting the options after clicking Save to publish to the GPT Store
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Further requirements may likely emerge as the GPT Store matures. The business
model remains to be established, and other learnings will likely follow. Whether you
decide to build GPTs for yourself or others, doing so can help improve your under-
standing of how to build agents and assistants. As we’ll see throughout the rest of this
book, GPT assistants are a useful foundation for your knowledge.

3.6 Exercises
Complete the following exercises to improve your knowledge of the material:

 Exercise 1—Build Your First GPT Assistant
Objective—Create a simple GPT assistant using the ChatGPT interface.

Tasks:

– Sign up for a ChatGPT Plus subscription if you don’t already have one.
– Navigate to the GPT Assistants platform, and click the Create button.
– Follow the Builder chat interface to create a Culinary Companion assistant

that provides meal suggestions based on available ingredients.
– Manually configure the assistant to add custom rules for recipe generation,

such as including nutritional information and cost estimates.
 Exercise 2—Data Analysis Assistant

Objective—Develop a GPT assistant that can analyze CSV files and provide
insights.

Tasks:

– Design a data science assistant that can load and analyze CSV files, similar to
the Data Scout example in the chapter.

– Enable the Code Interpretation tool, and upload a sample CSV file (e.g., a
dataset from Kaggle).

– Use the assistant to perform tasks such as data cleaning, visualization, and
hypothesis testing.

– Document your process and findings, noting any challenges or improve-
ments needed.

 Exercise 3—Create a Custom Action
Objective—Extend a GPT assistant with a custom action using a FastAPI service.

Tasks:

– Follow the steps to create a FastAPI service that provides a specific function,
such as fetching a list of daily tasks.

– Generate the OpenAPI specification for the service, and deploy it locally
using ngrok.

– Configure a new assistant to use this custom action, ensuring it connects cor-
rectly to the FastAPI endpoint.

– Test the assistant by asking it to perform the action and verify the output.
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 Exercise 4—File Upload Knowledge Assistant
Objective—Build an assistant with specialized knowledge from uploaded
documents.

Tasks:

– Select a freely available e-book or a collection of documents related to a spe-
cific topic (e.g., classic literature, technical manuals).

– Upload these files to a new GPT assistant, and configure the assistant to act
as an expert on the uploaded content.

– Create a series of prompts to test the assistant’s ability to reference and sum-
marize the information from the documents.

– Evaluate the assistant’s performance, and make any necessary adjustments to
improve its accuracy and helpfulness.

 Exercise 5—Publish and Share Your Assistant
Objective—Publish your GPT assistant to the GPT Store and share it with others.

Tasks:

– Finalize the configuration and testing of your assistant to ensure it works as
intended.

– Write a compelling description, and create an appropriate logo for your
assistant.

– Choose the correct category, and set up any necessary links to your social
media or GitHub repository.

– Publish the assistant to the GPT Store, and share the link with friends or
colleagues.

– Gather feedback from users, and refine the assistant based on their input to
improve its usability and functionality.

Summary
 The OpenAI GPT Assistants platform enables building and deploying AI agents

through the ChatGPT UI, focusing on creating engaging and functional assis-
tants.

 You can use GPT’s code interpretation capabilities to perform data analysis on
user-uploaded CSV files, enabling assistants to function as data scientists.

 Assistants can be extended with custom actions, allowing integration with exter-
nal services via API endpoints. This includes generating FastAPI services and
their corresponding OpenAPI specifications.

 Assistants can be enriched with specialized knowledge through file uploads,
allowing them to act as authoritative sources on specific texts or documents.

 Commercializing your GPT involves publishing it to the GPT Store, where you
can share and market your assistant to a broader audience.
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 Building a functional assistant involves iterating through design prompts, defin-
ing a clear persona, setting rules, and ensuring the assistant’s output aligns with
user expectations.

 Creating custom actions requires understanding and implementing OpenAPI
specifications, deploying services locally using tools such as ngrok, and connect-
ing these services to your assistant.

 Knowledge assistants can handle various tasks, from searching and comparing
documents to generating new content based on their knowledge base.

 Publishing assistants require careful consideration of resource usage, user expe-
rience, and economic factors to ensure their effectiveness and sustainability for
public use.

 The GPT Store, available to ChatGPT Plus subscribers, is a valuable platform
for learning and gaining proficiency in building AI assistants, with the potential
for future profit-sharing opportunities.



Exploring
multi-agent systems
Now let’s take a journey from AutoGen to CrewAI, two well-established multi-
agent platforms. We’ll start with AutoGen, a Microsoft project that supports mul-
tiple agents and provides a studio for working with them. We’ll explore a project
from Microsoft called AutoGen, which supports multiple agents but also provides
a studio to ease you into working with agents. From there, we’ll get more hands-
on coding of AutoGen agents to solve tasks using conversations and group chat
collaborations. 

 Then, we’ll transition to CrewAI, a self-proposed enterprise agentic system that
takes a different approach. CrewAI balances role-based and autonomous agents that

This chapter covers
 Building multi-agent systems using AutoGen 

Studio 

 Building a simple multi-agent system

 Creating agents that can work collaboratively over 
a group chat

 Building an agent crew and multi-agent systems 
using CrewAI

 Extending the number of agents and exploring 
processing patterns with CrewAI 
68
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can be sequentially or hierarchically flexible task management systems. We’ll explore
how CrewAI can solve diverse and complex problems.

 Multi-agent systems incorporate many of the same tools single-agent systems use
but benefit from the ability to provide outside feedback and evaluation to other
agents. This ability to support and criticize agent solutions internally gives multi-agent
systems more power. We’ll explore an introduction to multi-agent systems, beginning
with AutoGen Studio in the next section.

4.1 Introducing multi-agent systems with AutoGen Studio
AutoGen Studio is a powerful tool that employs multiple agents behind the scenes to
solve tasks and problems a user directs. This tool has been used to develop some of
the more complex code in this book. For that reason and others, it’s an excellent
introduction to a practical multi-agent system.

 Figure 4.1 shows a schematic diagram of the agent connection/communication
patterns AutoGen employs. AutoGen is a conversational multi-agent platform because
communication is done using natural language. Natural language conversation seems
to be the most natural pattern for agents to communicate, but it’s not the only method,
as you’ll see later.

AutoGen supports various conversational patterns, from group and hierarchical to the
more common and simpler proxy communication. In proxy communication, one
agent acts as a proxy and directs communication to relevant agents to complete tasks.
A proxy is similar to a waiter taking orders and delivering them to the kitchen, which
cooks the food. Then, the waiter serves the cooked food.

AutoGen uses conversable agents, which
communicate through conversations.

Figure 4.1 How AutoGen agents communicate through conversations (Source: AutoGen)
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 The basic pattern in AutoGen uses a UserProxy and one or more assistant
agents. Figure 4.2 shows the user proxy taking direction from a human and then
directing an assistant agent enabled to write code to perform the tasks. Each time
the assistant completes a task, the proxy agent reviews, evaluates, and provides feed-
back to the assistant. This iteration loop continues until the proxy is satisfied with
the results.

The benefit of the proxy is that it works to replace the required human feedback and
evaluation, and, in most cases, it does a good job. While it doesn’t eliminate the need
for human feedback and evaluation, it produces much more complete results overall.
And, while the iteration loop is time consuming, it’s time you could be drinking a cof-
fee or working on other tasks.

 AutoGen Studio is a tool developed by the AutoGen team that provides a helpful
introduction to conversable agents. In the next exercise, we’ll install Studio and run
some experiments to see how well the platform performs. These tools are still in a
rapid development cycle, so if you encounter any problems, consult the documenta-
tion on the AutoGen GitHub repository.

4.1.1 Installing and using AutoGen Studio

Open the chapter_04 folder in Visual Studio Code (VS Code), create a local Python
virtual environment, and install the requirements.txt file. If you need assistance with
this, consult appendix B to install all of this chapter’s exercise requirements.

 Open a terminal in VS Code (Ctrl-`, Cmd-`) pointing to your virtual environment,
and run AutoGen Studio using the command shown in listing 4.1. You’ll first need to

Human communicates
to the user proxy agent,
which communicates
to other agents.

Assistant agent
undertakes completion
of the direct tasks.

Evaluation and feedback
loop is formed between
the proxy and the assistant.

LLM configured to
write Python code

Figure 4.2 The user proxy agent and assistant agent communication (Source: AutoGen)
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define an environment variable for your OpenAI key. Because ports 8080 and 8081
are popular, and if you have other services running, change the port to 8082 or some-
thing you choose.

# set environment variable on Bash (Git Bash)
export OPENAI_API_KEY=”<your API key>”         

# sent environment variable with PowerShell
$env:VAR_NAME =”<your API key>"                

autogenstudio ui --port 8081    

Navigate your browser to the AutoGen Studio interface shown in figure 4.3 (as of this
writing). While there may be differences, one thing is for sure: the primary interface
will still be chat. Enter a complex task that requires coding. The example used here is
Create a plot showing the popularity of the term GPT Agents in Google search.

Listing 4.1 Launching AutoGen Studio 

Use the appropriate 
command for your 
terminal type.

Change the port if you expect or 
experience a conflict on your machine.

Enter a task for the
agents to work on.

You can create new
sessions or review or
continue previous
sessions.

The Playground tab is where you interact
with agents. The Build tab is for creating new
agents and skills, and the Gallery tab is for
reviewing previous best output.

The proxy agent and assistant
agent will not work together
to complete the task.

Figure 4.3 Entering a task for the agents to work on in the AutoGen interface
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The agent assistant generates code snippets to perform or complete various subtasks
as the agents work together through the task in the example. The user proxy agent then
attempts to execute those code snippets and assesses the output. In many cases, prov-
ing the code runs and produces the required output is sufficient for the user proxy
agent to approve the task’s completion.

 If you encounter any problems with the assistant agent requests, ask the proxy
agent to try a different method or another problem. This highlights a bigger problem
with agentic systems using packages or libraries that have expired and no longer work.
For this reason, it’s generally better to get agents to execute actions rather than build
code to perform actions as tools.

TIP Executing AutoGen and AutoGen Studio using Docker is recommended,
especially when working with code that may affect the operating system. Docker
can isolate and virtualize the agents’ environment, thus isolating potentially
harmful code. Using Docker can help alleviate any secondary windows or
websites that may block the agent process from running. 

Figure 4.4 shows the agent’s completion of the task. The proxy agent will collect any
generated code snippet, images, or other documents and append them to the message.

Generated code files and
other output will be
attached to the last message.

Reply with TERMINATE if you are
finished with this agent session. This
stop word is used to stop the session.

In this example, a Matplotlib
plot was generated in a new
window outside the browser .

Figure 4.4 The output after the agents complete the task
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You can also review the agent conversation by opening the Agent Messages expander.
In many cases, if you ask the agent to generate plots or applications, secondary win-
dows will open showing those results.

 Amazingly, the agents will perform most tasks nicely and complete them well.
Depending on the complexity of the task, you may need to further iterate with the
proxy. Sometimes, an agent may only go so far to complete a task because it lacks the
required skills. In the next section, we’ll look at how to add skills to agents.

4.1.2 Adding skills in AutoGen Studio

Skills and tools, or actions, as we refer to them in this book, are the primary means by
which agents can extend themselves. Actions give agents the ability to execute code,
call APIs, or even further evaluate and inspect generated output. AutoGen Studio cur-
rently begins with just a basic set of tools to fetch web content or generate images.

NOTE Many agentic systems employ the practice of allowing agents to code to
solve goals. However, we discovered that code can be easily broken, needs to be
maintained, and can change quickly. Therefore, as we’ll discuss in later chap-
ters, it’s better to provide agents with skills/actions/tools to solve problems. 

In the following exercise scenario, we’ll add a skill/action to inspect an image using
the OpenAI vision model. This will allow the proxy agent to provide feedback if we ask
the assistant to generate an image with particular content.

 With AutoGen Studio running, go to the Build tab and click Skills, as shown in
figure 4.5. Then, click the New Skill button to open a code panel where you can
copy–paste code to. From this tab, you can also configure models, agents, and agent
workflows.

 Enter the code shown in listing 4.2 and also provided in the book’s source code as
describe_image.py. Copy and paste this code into the editor window, and then click
the Save button at the bottom.
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import base64
import requests
import os

def describe_image(image_path='animals.png') -> str:
    """
    Uses GPT-4 Vision to inspect and describe the contents of the image.

    :param input_path: str, the name of the PNG file to describe.
    """
    api_key = os.environ['OPEN_API_KEY']

    # Function to encode the image
    def encode_image(image_path):     
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')

Listing 4.2 describe_image.py 

Click existing skills
to see how they work.

Click to create a new skill.

You can also configure
other models, agents, and
workflows from here.

Figure 4.5 Steps to creating a new skill on the Build tab

Function to load and 
encode the image as 
a Base64 string
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    # Getting the base64 string
    base64_image = encode_image(image_path)

    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {api_key}"
    }

    payload = {
    "model": "gpt-4-turbo",
    "messages": [
        {
        "role": "user",
        "content": [
            {
            "type": "text",
            "text": "What’s in this image?"
            },
            {
            "type": "image_url",
            "image_url": {
         "url": f"data:image/jpeg;base64,{base64_image}"     
            }
            }
        ]
        }
    ],
    "max_tokens": 300
    }

    response = requests.post(
        "https://api.openai.com/v1/chat/completions",
        headers=headers,
        json=payload)

    return response.json()["choices"][0]["message"] 
["content"]                                         

The describe_image function uses the OpenAI GPT-4 vision model to describe what
is in the image. This skill can be paired with the existing generate_image skill as a
quality assessment. The agents can confirm that the generated image matches the
user’s requirements.

 After the skill is added, it must be added to the specific agent workflow and agent
for use. Figure 4.6 demonstrates adding the new skill to the primary assistant agent in
the general or default agent workflow. 

 Now that the skill is added to the primary assistant, we can task the agent with cre-
ating a specific image and validating it using the new describe_image skill. Because
image generators notoriously struggle with correct text, we’ll create an exercise task to
do just that.

 Enter the text shown in listing 4.3 to prompt the agents to create a book image
cover for this book. We’ll explicitly say that the text needs to be correct and insist that
the agent uses the new describe_image function to verify the image.

Including the 
image string 
along with the 
JSON payload

Unpacking the response and 
returning the content of the reply
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Please create a cover for the book GPT Agents In Action, use the 
describe_image skill to make sure the title of the book is spelled 
correctly on the cover

After the prompt is entered, wait for a while, and you may get to see some dialogue
exchanged about the image generation and verification process. In the end, though, if
everything works correctly, the agents will return with the results shown in figure 4.7.

 Remarkably, the agent coordination completed the task in just a couple of itera-
tions. Along with the images, you can also see the various helper code snippets gener-
ated to assist with task completion. AutoGen Studio is impressive in its ability to
integrate skills that the agents can further adapt to complete some goal. The following
section will show how these powerful agents are implemented in code.

Listing 4.3 Prompting for a book cover

Select the General
Agent Workflow.

Select to edit the primary_assistant
at the bottom of the workflow panel.

Go to the Build tab, and then go to the Workflows tab.

Click add to add the new
describe_image skill.

Click OK to exit and return
to the Playground tab.

Figure 4.6 Configuring the primary_assistant agent with the new skill
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4.2 Exploring AutoGen
While AutoGen Studio is a fantastic tool for understanding multi-agent systems, we
must look into the code. Fortunately, coding multiple agent examples with AutoGen is
simple and easy to run. We’ll cover the basic AutoGen setup in the next section.

4.2.1 Installing and consuming AutoGen

This next exercise will look at coding a basic multi-agent system that uses a user proxy
and conversable agent. Before we do that, though, we want to make sure AutoGen is
installed and configured correctly.

 Open a terminal in VS Code, and run the entire chapter 4 install directions per
appendix B, or run the pip command in listing 4.4. If you’ve installed the require-
ments.txt file, you’ll also be ready to run AutoGen.

pip install pyautogen

Next, copy the chapter_04/OAI_CONFIG_LIST.example to OAI_CONFIG_LIST, remov-
ing .example from the file name. Then, open the new file in VS Code, and enter your

Listing 4.4 Installing AutoGen

Review the generated output files.

The agents generate additional
code to use the skills as needed.

Tho agents even enhance existing
skills to better complete the task.

After a couple iterations, the book cover
is generated with the correct text.

Figure 4.7 The generated file outputs from the agent work on the image generation task
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OpenAI or Azure configuration in the OAI_CONFIG_LIST file in listing 4.5. Fill in your
API key, model, and other details per your API service requirements. AutoGen will
work with any model that adheres to the OpenAI client. That means you can use local
LLMs via LM Studio or other services such as Groq, Hugging Face, and more.

[
    {
        "model": "gpt-4",                    
        "api_key": "<your OpenAI API key here>",           
        "tags": ["gpt-4", "tool"]
    },
    {
        "model": "<your Azure OpenAI deployment name>",     
        "api_key": "<your Azure OpenAI API key here>",     
        "base_url": "<your Azure OpenAI API base here>",    
        "api_type": "azure",
        "api_version": "2024-02-15-preview"
    }    
]

Now, we can look at the code for a basic multi-agent chat using the out-of-the-box
UserProxy and ConversableAgent agents. Open autogen_start.py in VS Code,
shown in the following listing, and review the parts before running the file.

from autogen import ConversableAgent, UserProxyAgent, config_list_from_json

   config_list = config_list_from_json(
        env_or_file="OAI_CONFIG_LIST")     

   assistant = ConversableAgent(
        "agent", 
        llm_config={"config_list": config_list})     

   user_proxy = UserProxyAgent(     
        "user",
        code_execution_config={
            "work_dir": "working",
            "use_docker": False,
        },
        human_input_mode="ALWAYS",
        is_termination_msg=lambda x: x.get("content", "")
        .rstrip()
        .endswith("TERMINATE"),     
    )    
    user_proxy.initiate_chat(assistant, message="write a solution 
➥ for fizz buzz in one line?")    

Listing 4.5 OAI_CONFIG_LIST 

Listing 4.6 autogen_start.py

Select the model; GPT-4 
is recommended.

Use the service key you 
would typically use.

Select the model; GPT-4
is recommended.

Use the service 
key you would 
typically use.

Changing the base URL allows you to point to
other services, not just Azure OpenAI.

Loads your LLM 
configuration from the 
JSON file OAI_CONFIG_LIST

This agent talks 
directly to the LLM.

This agent proxies 
conversations from the 
user to the assistant.

Setting the termination message 
allows the agent to iterate.

A chat is initiated with the
assistant through the user_proxy

to complete a task.
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Run the code by running the file in VS Code in the debugger (F5). The code in list-
ing 4.6 uses a simple task to demonstrate code writing. Listing 4.7 shows a few examples
to choose from. These coding tasks are also some of the author’s regular baselines to
assess an LLMs’ strength in coding.

write a Python function to check if a number is prime
code a classic sname game using Pygame                  
code a classic asteroids game in Python using Pygame    

After the code starts in a few seconds, the assistant will respond to the proxy with a
solution. At this time, the proxy will prompt you for feedback. Press Enter, essentially
giving no feedback, and this will prompt the proxy to run the code to verify it operates
as expected. 

 Impressively, the proxy agent will even take cues to install required packages such
as Pygame. Then it will run the code, and you’ll see the output in the terminal or as a
new window or browser. You can play the game or use the interface if the code shelled
a new window/browser.

 Note that the spawned window/browser won’t close on Windows and will require
exiting the entire program. To avoid this problem, run the code through Windows
Subsystem for Linux (WSL) or Docker. AutoGen explicitly recommends using Docker
for code execution agents, and if you’re comfortable with containers, this is a good
option.

 Either way, after the proxy generates and runs the code, the working_dir folder
set earlier in listing 4.6 should now have a Python file with the code. This will allow
you to run the code at your leisure, make changes, or even ask for improvements, as
we’ll see. In the next section, we’ll look at how to improve the capabilities of the cod-
ing agents.

4.2.2 Enhancing code output with agent critics

One powerful benefit of multi-agent systems is the multiple roles/personas you can
automatically assign when completing tasks. Generating or helping to write code can be
an excellent advantage to any developer, but what if that code was also reviewed and
tested? In the next exercise, we’ll add another agent critic to our agent system to help
with coding tasks. Open autogen_coding_critic.py, as shown in the following listing.

from autogen import AssistantAgent, UserProxyAgent, config_list_from_json

config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")

user_proxy = UserProxyAgent(
    "user",

Listing 4.7 Simple coding task examples

Listing 4.8 autogen_coding_critic.py

To enjoy iterating 
over these tasks, use 
Windows Subsystem 
for Linux (WSL) on 
Windows, or use Docker. 
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    code_execution_config={
        "work_dir": "working",
        "use_docker": False,
        "last_n_messages": 1,
    },
    human_input_mode="ALWAYS",
    is_termination_msg=lambda x: 
x.get("content", "").rstrip().endswith("TERMINATE"),
)

engineer = AssistantAgent(
    name="Engineer",
    llm_config={"config_list": config_list},
    system_message="""
    You are a profession Python engineer, known for your expertise in 
software development.
    You use your skills to create software applications, tools, and 
games that are both functional and efficient.
    Your preference is to write clean, well-structured code that is easy 
to read and maintain.    
    """,     
)

critic = AssistantAgent(
    name="Reviewer",
    llm_config={"config_list": config_list},
    system_message="""
    You are a code reviewer, known for your thoroughness and commitment 
to standards.
    Your task is to scrutinize code content for any harmful or 
substandard elements.
    You ensure that the code is secure, efficient, and adheres to best 
practices.
    You will identify any issues or areas for improvement in the code 
and output them as a list.
    """,     
)

def review_code(recipient, messages, sender, config):     
    return f"""
            Review and critque the following code.
            
            {recipient.chat_messages_for_summary(sender)[-1]['content']}
            """                                           

user_proxy.register_nested_chats(     
    [
        {
            "recipient": critic,
            "message": review_code,
            "summary_method": "last_msg",
            "max_turns": 1,
        }
    ],
    trigger=engineer,                 
)

This time, the assistant is 
given a system/persona 
message.

A second assistant critic agent is 
created with a background.

A custom function
helps extract the

code for review by
the critic.A nested chat is 

created between 
the critic and the 
engineer.
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task = """Write a snake game using Pygame."""

res = user_proxy.initiate_chat(
    recipient=engineer, 
    message=task, 
    max_turns=2, 
    summary_method="last_msg"     
)

Run the autogen_coding_critic.py file in VS Code in debug mode, and watch the
dialog between the agents. This time, after the code returns, the critic will also be trig-
gered to respond. Then, the critic will add comments and suggestions to improve the
code.

 Nested chats work well for supporting and controlling agent interactions, but we’ll
see a better approach in the following section. Before that though, we’ll review the
importance of the AutoGen cache in the next section.

4.2.3 Understanding the AutoGen cache

AutoGen can consume many tokens over chat iterations as a conversable multi-agent
platform. If you ask AutoGen to work through complex or novel problems, you may
even encounter token limits on your LLM; because of this, AutoGen supports several
methods to reduce token usage.

 AutoGen uses caching to store progress and reduce token usage. Caching is
enabled by default, and you may have already encountered it. If you check your cur-
rent working folder, you’ll notice a .cache folder, as shown in figure 4.8. Caching
allows your agents to continue conversations if they get interrupted.

In code, you can control the cache folder for your agent’s run, as shown in listing 4.9.
By wrapping the initiate_chat call with the with statement, you can control the

The proxy agent initiates a 
chat with a max delay and 
explicit summary method.

The folder code
is output here.

Output code files are named
with temporary names.

A cache is denoted by the folder
and contains a SQLite database
of message history.

Figure 4.8 AutoGen cache 
and working folders
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location and seed for the cache. This will allow you to save and return to long-running
AutoGen tasks in the future by just setting the cache_seed for the previous cache.

with Cache.disk(cache_seed=42) as cache:    
    res = user_proxy.initiate_chat(
        recipient=engineer,
        message=task,
        max_turns=2,
        summary_method="last_msg",
        cache=cache,     
    )

This caching ability allows you to continue operations from the previous cache loca-
tion and captures previous runs. It can also be a great way to demonstrate and inspect
how an agent conversation generated the results. In the next section, we’ll look at
another conversational pattern in which AutoGen supports group chat.

4.3 Group chat with agents and AutoGen
One problem with chat delegation and nested chats or conversations is the convey-
ance of information. If you’ve ever played the telephone game, you’ve witnessed this
firsthand and experienced how quickly information can change over iterations. With
agents, this is certainly no different, and chatting through nested or sequential con-
versations can alter the task or even the desired result.

Figure 4.9 shows the difference between nested and collaborative group chats. We
used the nested chat feature in the previous section to build a nested agent chat. In
this section, we use the group chat to provide a more collaborative experience.

 Open autogen_coding_group.py with relevant parts, as shown in listing 4.10. The
code is similar to the previous exercise but now introduces GroupChat and GroupChat-
Manager. The agents and messages are held with the group chat, similar to a messaging
channel in applications such as Slack or Discord. The chat manager coordinates the
message responses to reduce conversation overlap.

Listing 4.9 Setting the cache folder

The telephone game
The telephone game is a fun but educational game that demonstrates information
and coherence loss. Children form a line, and the first child receives a message only
they can hear. Then, in turn, the children verbally pass the message on to the next
child, and so on. At the end, the last child announces the message to the whole
group, which often isn’t even close to the same message.

To counter this, AutoGen provides a group chat, a mechanism by which agents par-
ticipate in a shared conversation. This allows agents to review all past conversations
and better collaborate on long-running and complex tasks.

Setting the seed_cache 
denotes the individual 
location.

Sets the cache as 
a parameter
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user_proxy = UserProxyAgent(
    "user",
    code_execution_config={
        "work_dir": "working",
        "use_docker": False,
        "last_n_messages": 3,
    },
    human_input_mode="NEVER",    
)

llm_config = {"config_list": config_list}

engineer = AssistantAgent(…     

critic = AssistantAgent(…       
    

groupchat = GroupChat(agents=[user_proxy, 
                              engineer, 
                              critic], 
                              messages=[], 
                              max_round=20)     
manager = GroupChatManager(groupchat=groupchat, 
                           llm_config=llm_config)    

task = """Write a snake game using Pygame."""

Listing 4.10 autoget_coding_group.py (relevant sections)

User Proxy

Chat
Manager

Agents now collaborate
through the group chat
manager.

User Proxy

Message is sent
to the critic.

Engineer Critic

Represents the nested
chat to the critic

Conversable Agents Nested Chat Conversable Agents Group Chat

Messages go through the
group chat manager.

Critic responds with
suggested updates

and changes.

Proxy initiates chat
with engineer.

Engineer Critic

Figure 4.9 The difference between nested and group chat for conversable agents

Human input is now 
set to never, so no 
human feedback.

Code omitted, but 
consult changes to the 
persona in the file

This object holds the 
connection to all the 
agents and stores the 
messages.

The manager 
coordinates the 
conversation as a 
moderator would.
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with Cache.disk(cache_seed=43) as cache:
    res = user_proxy.initiate_chat(
        recipient=manager,
        message=task,
        cache=cache,
    )

Run this exercise, and you’ll see how the agents collaborate. The engineer will now
take feedback from the critic and undertake operations to address the critic’s sugges-
tions. This also allows the proxy to engage in all of the conversation.

 Group conversations are an excellent way to strengthen your agents’ abilities as
they collaborate on tasks. However, they are also substantially more verbose and token
expensive. Of course, as LLMs mature, so do the size of their context token windows
and the price of token processing. As token windows increase, concerns over token
consumption may eventually go away.

 AutoGen is a powerful multi-agent platform that can be experienced using a web
interface or code. Whatever your preference, this agent collaboration tool is an excel-
lent platform for building code or other complex tasks. Of course, it isn’t the only plat-
form, as you’ll see in the next section, where we explore a newcomer called CrewAI.

4.4 Building an agent crew with CrewAI
CrewAI is relatively new to the realm of multi-agent systems. Where AutoGen was
initially developed from research and then extended, CrewAI is built with enterprise
systems in mind. As such, the platform is more robust, making it less extensible in
some areas.

 With CrewAI, you build a crew of agents to focus on specific areas of a task goal.
Unlike AutoGen, CrewAI doesn’t require the use of the user proxy agent but instead
assumes the agents only work among themselves.

 Figure 4.10 shows the main elements of the CrewAI platform, how they connect
together, and their primary function. It shows a sequential-processing agent system
with generic researcher and writer agents. Agents are assigned tasks that may also include
tools or memory to assist them.

 CrewAI supports two primary forms of processing: sequential and hierarchical. Fig-
ure 4.10 shows the sequential process by iterating across the given agents and their
associated tasks. In the next section, we dig into some code to set up a crew and
employ it to complete a goal and create a good joke.

4.4.1 Creating a jokester crew of CrewAI agents

CrewAI requires more setup than AutoGen, but this also allows for more control and
additional guides, which provide more specific context to guide the agents in com-
pleting the given task. This isn’t without problems, but it does offer more control than
AutoGen out of the box.

 Open crewai_introduction.py in VS Code and look at the top section, as shown
in listing 4.11. Many settings are required to configure an agent, including the role,
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goal, verboseness, memory, backstory, delegation, and even tools (not shown). In this
example, we’re using two agents: a senior joke researcher and a joke writer.

from crewai import Agent, Crew, Process, Task
from dotenv import load_dotenv

load_dotenv()

joke_researcher = Agent(     
    role="Senior Joke Researcher",
    goal="Research what makes things funny about the following {topic}",
    verbose=True,     
    memory=True,     
    backstory=(     
        "Driven by slapstick humor, you are a seasoned joke researcher"
        "who knows what makes people laugh. You have a knack for finding"

Listing 4.11 crewai_introduction.py (agent section)

Crew

Tasks

Agents

Tools

Memory

Search Call APIs Access data

Conversational Task specific Semantic

Various forms of memory and
r a getrieval ugmented eneration (RAG)
patterns are supported.

research on this {topic} write on this topic

Tools can be attached
to agents and tasks.

writer

goal:
backstory:

researcher

goal:
backstory:

Agents have a goal
and backstory as
their persona.

Processing can
be sequential
or hierarchical.

Sequential
processing

Figure 4.10 The composition of a CrewAI system

Creates the 
agents and 
provides them 
a goal

verbose allows the
agent to emit output

to the terminal.

Supports the use of
memory for the agents

The backstory is the agent’s background—its persona.
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        "the funny in everyday situations and can turn a dull moment into"
        "a laugh riot."
    ),
    allow_delegation=True,    
)

joke_writer = Agent(    
    role="Joke Writer",
    goal="Write a humourous and funny joke on the following {topic}",
    verbose=True,    
    memory=True,     
    backstory=(    
        "You are a joke writer with a flair for humor. You can turn a"
        "simple idea into a laugh riot. You have a way with words and"
        "can make people laugh with just a few lines."
    ),
    allow_delegation=False,    
)

Moving down the code, we next see the tasks, as shown in listing 4.12. Tasks denote an
agent’s process to complete the primary system goal. They also link an agent to work
on a specific task, define the output from that task, and may include how it’s executed.

research_task = Task(        
    description=(
        "Identify what makes the following topic:{topic} so funny."
        "Be sure to include the key elements that make it humourous."
        "Also, provide an analysis of the current social trends,"
        "and how it impacts the perception of humor."
    ),
    expected_output="A comprehensive 3 paragraphs long report 
➥     on the latest jokes.",              
    agent=joke_researcher,     
)

write_task = Task(  
    description=(
        "Compose an insightful, humourous and socially aware joke on 

{topic}."
        "Be sure to include the key elements that make it funny and"
        "relevant to the current social trends."
    ),
    expected_output="A joke on {topic}.",  
    agent=joke_writer,        
    async_execution=False,         
    output_file="the_best_joke.md",     
)

Listing 4.12 crewai_introduction.py (task section)

The agents can either be delegated to or 
are allowed to delegate; True means they 
can delegate.

Creates the 
agents and 
provides them 
a goal

verbose allows the
agent to emit output

to the terminal.

Supports the use of
memory for the agents

The backstory is the
agent’s background—

its persona.

The Task description defines how 
the agent will complete the task.

Explicitly defines the expected 
output from performing the task

The 
agent 
assigned 
to work 
on the 
task

The Task description defines how 
the agent will complete the task.

Explicitly defines the expected 
output from performing the task

If the agent should execute 
asynchronously

Any output the agent will generate
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Now, we can see how everything comes together as the Crew at the bottom of the file,
as shown in listing 4.13. Again, many options can be set when building the Crew,
including the agents, tasks, process type, memory, cache, maximum requests per min-
ute (max_rpm), and whether the crew shares.

crew = Crew(
    agents=[joke_researcher, joke_writer],   
    tasks=[research_task, write_task],    
    process=Process.sequential,     
    memory=True,     
    cache=True,    
    max_rpm=100,    
    share_crew=True,    
)

result = crew.kickoff(inputs={"topic": "AI engineer jokes"})
print(result)

When you’re done reviewing, run the file in VS Code (F5), and watch the terminal for
conversations and messages from the crew. As you can probably tell by now, the goal of
this agent system is to craft jokes related to AI engineering. Here are some of the fun-
nier jokes generated over a few runs of the agent system:

 Why was the computer cold? It left Windows open.
 Why don’t AI engineers play hide and seek with their algorithms? Because no

matter where they hide, the algorithms always find them in the “overfitting”
room!

 What is an AI engineer’s favorite song? “I just called to say I love you . . . and to
collect more data for my voice recognition software.”

 Why was the AI engineer broke? Because he spent all his money on cookies, but
his browser kept eating them.

Before you run more iterations of the joke crew, you should read the next section.
This section shows how to add observability to the multi-agent system.

4.4.2 Observing agents working with AgentOps

Observing a complex assemblage such as a multi-agent system is critical to understand-
ing the myriad of problems that can happen. Observability through application tracing
is a key element of any complex system, especially one engaged in enterprise use.

 CrewAI supports connecting to a specialized agent operations platform appropri-
ately called AgentOps. This observability platform is generic and designed to support

Listing 4.13 crewai_introduction.py (crew section)

The agents assembled
into the crew

The tasks the agents
can work on Defining how the agents 

will interact

Whether the system should 
use memory; needs to be set 
if agents/tasks have it on

Whether the system 
should use a cache, 
similar to AutoGen

Maximum requests per minute 
the system should limit itself to

Whether the crew should share 
information, similar to group chat
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observability with any agent platform specific to LLM usage. Currently, no pricing or
commercialization details are available.

 Connecting to AgentOps is as simple as installing the package, getting an API key,
and adding a line of code to your crew setup. This next exercise will go through the
steps to connect and run AgentOps.

 Listing 4.14 shows installing the agentops package using pip. You can install the
package alone or as an additional component of the crewai package. Remember that
AgentOps can also be connected to other agent platforms for observability.

pip install agentops

or as an option with CrewAI

pip install crewai[agentops]

Before using AgentOps, you need to sign up for an API key. Following are the general
steps to sign up for a key at the time of writing:

1 Visit https://app.agentops.ai in your browser.
2 Sign up for an account. 
3 Create a project, or use the default.
4 Go to Settings > Projects and API Keys.
5 Copy and/or generate a new API key; this will copy the key to your browser.
6 Paste the key to your .env file in your project.

After the API key is copied, it should resemble the example shown in the following
listing.

AGENTOPS_API_KEY="your API key"

Now, we need to add a few lines of code to the CrewAI script. Listing 4.16 shows the
additions as they are added to the crewai_agentops.py file. When creating your own
scripts, all you need to do is add the agentops package and initialize it when using
CrewAI.

import agentops     
from crewai import Agent, Crew, Process, Task
from dotenv import load_dotenv

load_dotenv()
agentops.init()    

Listing 4.14 Installing AgentOps

Listing 4.15 env.: Adding an AgentOps key

Listing 4.16 crewai_agentops.py (AgentOps additions)

The addition of the 
required package

Make sure to initialize the 
package after the environment 
variables are loaded.

https://app.agentops.ai
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Run the crewai_agentops.py file in VS Code (F5), and watch the agents work as before.
However, you can now go to the AgentOps dashboard and view the agent interactions
at various levels.

 Figure 4.11 shows the dashboard for running the joke crew to create the best joke.
Several statistics include total duration, the run environment, prompt and completion
tokens, LLM call timings, and estimated cost. Seeing the cost can be both sobering
and indicative of how verbose agent conversations can become.

The AgentOps platform is an excellent addition to any agent platform. While it’s built
into CrewAI, it’s helpful that the observability could be added to AutoGen or other
frameworks. Another attractive thing about AgentOps is that it’s dedicated to observing
agent interactions and not transforming from a machine learning operations platform.
In the future, we’ll likely see the spawn of more agent observability patterns.

 One benefit that can’t be overstated is the cost observation that an observability
platform can provide. Did you notice in figure 4.11 that creating a single joke costs a
little over 50 cents? Agents can be very powerful, but they can also become very costly,
and it’s essential to observe what those costs are in terms of practicality and commer-
cialization.

You can even track individual
LLM calls, actions, and tool use.

Prompts and replies are also
captured for all iterations.

Various statistics are captured with
respect to the entire agent conversation
sequence, including costs.

System information
is captured as well.

Figure 4.11 The AgentOps dashboard for running the joke crew
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 In the last section of this chapter, we’ll return to CrewAI and revisit building
agents that can code games. This will provide an excellent comparison between the
capabilities of AutoGen and CrewAI.

4.5 Revisiting coding agents with CrewAI
A great way to compare capabilities between multi-agent platforms is to implement
similar tasks in a bot. In this next set of exercises, we’ll employ CrewAI as a game pro-
gramming team. Of course, this could be adapted to other coding tasks as well.

 Open crewai_coding_crew.py in VS Code, and we’ll first review the agent section
in listing 4.17. Here, we’re creating a senior engineer, a QA engineer, and a chief QA
engineer with a role, goal, and backstory. 

print("## Welcome to the Game Crew")     
print("-------------------------------")
game = input("What is the game you would like to build?
➥ What will be the mechanics?\n")

senior_engineer_agent = Agent(
    role="Senior Software Engineer",
    goal="Create software as needed",
    backstory=dedent(
        """
        You are a Senior Software Engineer at a leading tech think tank.
        Your expertise in programming in python. and do your best to
        produce perfect code
        """
    ),
    allow_delegation=False,
    verbose=True,
)

qa_engineer_agent = Agent(
    role="Software Quality Control Engineer",
    goal="create prefect code, by analizing the code 
➥ that is given for errors",
    backstory=dedent(
        """
        You are a software engineer that specializes in checking code
        for errors. You have an eye for detail and a knack for finding
        hidden bugs.
        You check for missing imports, variable declarations, mismatched
        brackets and syntax errors.
        You also check for security vulnerabilities, and logic errors
        """
    ),
    allow_delegation=False,
    verbose=True,
)

Listing 4.17 crewai_coding_crew.py (agent section)

Allows the user 
to input the 
instructions for 
their game
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chief_qa_engineer_agent = Agent(
    role="Chief Software Quality Control Engineer",
    goal="Ensure that the code does the job that it is supposed to do",
    backstory=dedent(
        """
        You are a Chief Software Quality Control Engineer at a leading
        tech think tank. You are responsible for ensuring that the code
        that is written does the job that it is supposed to do.
        You are responsible for checking the code for errors and ensuring
        that it is of the highest quality.
        """
    ),
    allow_delegation=True,    
    verbose=True,
)

Scrolling down in the file will display the agent tasks, as shown in listing 4.18. The task
descriptions and expected output should be easy to follow. Again, each agent has a
specific task to provide better context when working to complete the task.

code_task = Task(
    description=f"""
You will create a game using python, these are the instructions:
        Instructions
        ------------
        {game}            
        You will write the code for the game using python.""",
    expected_output="Your Final answer must be the 
➥ full python code, only the python code and nothing else.",
    agent=senior_engineer_agent,
)

qa_task = Task(
    description=f"""You are helping create a game 
➥ using python, these are the instructions:
        Instructions
        ------------
        {game}            
        Using the code you got, check for errors. Check for logic errors,
        syntax errors, missing imports, variable declarations, 
mismatched brackets,
        and security vulnerabilities.""",
    expected_output="Output a list of issues you found in the code.",
    agent=qa_engineer_agent,
)

evaluate_task = Task(
    description=f"""You are helping create a game 
➥ using python, these are the instructions:
        Instructions
        ------------
        {game}            

Listing 4.18 crewai_coding_crew.py (task section)

Only the chief QA engineer 
can delegate tasks.

The game instructions
are substituted into the

prompt using Python
formatting.
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        You will look over the code to insure that it is complete and
        does the job that it is supposed to do. """,
    expected_output="Your Final answer must be the 
➥ corrected a full python code, only the python code and nothing else.",
    agent=chief_qa_engineer_agent,
)

Finally, we can see how this comes together by going to the bottom of the file, as
shown in listing 4.19. This crew configuration is much like what we’ve seen before.
Each agent and task are added, as well as the verbose and process attributes. For this
example, we’ll continue to use sequential methods. 

crew = Crew(
    agents=[senior_engineer_agent, 
            qa_engineer_agent, 
            chief_qa_engineer_agent],
    tasks=[code_task, qa_task, evaluate_task],
    verbose=2,  
    process=Process.sequential,     
)

# Get your crew to work!
result = crew.kickoff()   

print("######################")
print(result)

When you run the VS Code (F5) file, you’ll be prompted to enter the instructions for
writing a game. Enter some instructions, perhaps the snake game or another game
you choose. Then, let the agents work, and observe what they produce.

 With the addition of the chief QA engineer, the results will generally look better
than what was produced with AutoGen, at least out of the box. If you review the code,
you’ll see that it generally follows good patterns and, in some cases, may even include
tests and unit tests.

 Before we finish the chapter, we’ll make one last change to the crew’s processing
pattern. Previously, we employed sequential processing, as shown in figure 4.10. Fig-
ure 4.12 shows what hierarchical processing looks like in CrewAI. 

 Adding this manager is a relatively simple process. Listing 4.20 shows the addi-
tional code changes to a new file that uses the coding crew in a hierarchical method.
Aside from importing a class for connecting to OpenAI from LangChain, the other
addition is adding this class as the crew manger, manager_llm.

 
 
 
 

Listing 4.19 crewai_coding_crew.py (crew section)

Process is sequential.

No additional context is 
provided in the kickoff.
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from langchain_openai import ChatOpenAI     

crew = Crew(
    agents=[senior_engineer_agent, 
            qa_engineer_agent, 
            chief_qa_engineer_agent],
    tasks=[code_task, qa_task, evaluate_task],
    verbose=2,  
    process=Process.hierarchical,    
    manager_llm=ChatOpenAI(              
        temperature=0, model="gpt-4"     

Listing 4.20 crewai_hierarchy.py (crew manager sections)

Crew

Tasks

Agents

Tools

Memory

Search Call APIs Access data

Conversational Task specific Semantic

Tools can be attached
to agents and tasks.

research on this {topic} write on this topic

writer

goal:
backstory:

researcher

goal:
backstory:

Agents have a goal
and backstory as
their persona.

crew
manager

Hierarchical processing
is coordinated through
a managing agent.

Various forms of memory and
r a getrieval ugmented eneration (RAG)
patterns are supported.

Figure 4.12 Hierarchical processing of agents coordinated through a crew manager

Imports the LLM 
connector from 
LangChain

You must set a crew 
manager when selecting 
hierarchical processing.

Sets the crew manager to 
be the LLM connector
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    ),   
)        

Run this file in VS Code (F5). When prompted, enter a game you want to create. Try
using the same game you tried with AutoGen; the snake game is also a good baseline
example. Observe the agents work through the code and review it repeatedly for
problems.

 After you run the file, you can also jump on AgentOps to review the cost of this
run. Chances are, it will cost over double what it would have without the agent man-
ager. The output will also likely not be significantly better. This is the trap of building
agent systems without understanding how quickly things can spiral.

 An example of this spiral that often happens when agents continually iterate over
the same actions is frequently repeating tasks. You can view this problem in AgentOps,
as shown in figure 4.13, by viewing the Repeat Thoughts plot. 

The Repeat Thoughts plot from AgentOps is an excellent way to measure the repeti-
tion your agent system encounters. Overly repetitive thought patterns typically
mean the agent isn’t being decisive enough and instead keeps trying to generate a
different answer. If you encounter this problem, you want to change the agents’ pro-
cessing patterns, tasks, and goals. You may even want to alter the system’s type and
number of agents.

 Multi-agent systems are an excellent way to break up work in terms of work pat-
terns of jobs and tasks. Generally, the job role is allocated to an agent role/persona,

You must set a crew manager when 
selecting hierarchical processing.

Figure 4.13 The repetition of thoughts as they occurred within an agent run

Plot indicates the repetition
of the same thoughts in an
agent interaction.

2

1.5

1

0.5
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and the tasks it needs to complete may be implicit, as in AutoGen, or more explicit, as
in CrewAI.

 In this chapter, we covered many useful tools and platforms that you can use right
away to improve your work, life, and more. That completes our journey through multi-
agent platforms, but it doesn’t conclude our exploration and use of multiple agents,
as we’ll discover in later chapters.

4.6 Exercises
Use the following exercises to improve your knowledge of the material:

 Exercise 1—Basic Agent Communication with AutoGen
Objective—Familiarize yourself with basic agent communications and setup in
AutoGen.

Tasks:

– Set up AutoGen Studio on your local machine, following the instructions
provided in this chapter.

– Create a simple multi-agent system with a user proxy and two assistant agents.
– Implement a basic task where the user proxy coordinates between the assis-

tant agents to generate a simple text output, such as summarizing a short
paragraph.

 Exercise 2—Implementing Advanced Agent Skills in AutoGen Studio
Objective—Enhance agent capabilities by adding advanced skills.

Tasks:

– Develop and integrate a new skill into an AutoGen agent that allows it to
fetch and display real-time data from a public API (e.g., weather information
or stock prices).

– Ensure the agent can ask for user preferences (e.g., city for weather, type of
stocks) and display the fetched data accordingly.

 Exercise 3—Role-Based Task Management with CrewAI
Objective—Explore role-based task management in CrewAI.

Tasks:

– Design a CrewAI setup where multiple agents are assigned specific roles
(e.g., data fetcher, analyzer, presenter).

– Configure a task sequence where the data fetcher collects data, the analyzer
processes the data, and the presenter generates a report.

– Execute the sequence and observe the flow of information and task delega-
tion among agents.

 Exercise 4—Multi-Agent Collaboration in Group Chat Using AutoGen
Objective—Understand and implement a group chat system in AutoGen to facil-
itate agent collaboration.
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Tasks:

– Set up a scenario where multiple agents need to collaborate to solve a com-
plex problem (e.g., planning an itinerary for a business trip).

– Use the group chat feature to allow agents to share information, ask ques-
tions, and provide updates to each other.

– Monitor the agents’ interactions and effectiveness in collaborative problem
solving.

 Exercise 5—Adding and Testing Observability with AgentOps in CrewAI
Objective—Implement and evaluate the observability of agents using AgentOps
in a CrewAI environment.

Tasks:

– Integrate AgentOps into a CrewAI multi-agent system.
– Design a task for the agents that involves significant computation or data

processing (e.g., analyzing customer reviews to determine sentiment trends).
– Use AgentOps to monitor the performance, cost, and output accuracy of the

agents. Identify any potential inefficiencies or errors in agent interactions.

Summary
 AutoGen, developed by Microsoft, is a conversational multi-agent platform that

employs a variety of agent types, such as user proxies and assistant agents, to
facilitate task execution through natural language interactions.

 AutoGen Studio acts as a development environment that allows users to create,
test, and manage multi-agent systems, enhancing the usability of AutoGen.

 AutoGen supports multiple communication patterns, including group chats
and hierarchical and proxy communications. Proxy communication involves a
primary agent (proxy) that interfaces between the user and other agents to
streamline task completion.    

 CrewAI offers a structured approach to building multi-agent systems with a focus
on enterprise applications. It emphasizes role-based and autonomous agent func-
tionalities, allowing for flexible, sequential, or hierarchical task management.

 Practical exercises in the chapter illustrate how to set up and use AutoGen Stu-
dio, including installing necessary components and running basic multi-agent
systems.

 Agents in AutoGen can be equipped with specific skills to perform tasks such as
code generation, image analysis, and data retrieval, thereby broadening their
application scope.

 CrewAI is distinguished by its ability to structure agent interactions more rigidly
than AutoGen, which can be advantageous in settings that require precise and
controlled agent behavior.

 CrewAI supports integrating memory and tools for agents to consume through
task completion.
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 CrewAI supports integration with observability tools such as AgentOps, which
provides insights into agent performance, interaction efficiency, and cost
management.

 AgentOps is an agent observability platform that can help you easily monitor
extensive agent interactions.



Empowering agents
with actions
In this chapter, we explore actions through the use of functions and how agents
can use them as well. We’ll start by looking at OpenAI function calling and then
quickly move on to another project from Microsoft called Semantic Kernel (SK),
which we’ll use to build and manage skills and functions for agents or as agents.

 We’ll finish the chapter using SK to host our first agent system. This will be a
complete chapter with plenty of annotated code examples. 

This chapter covers
 How an agent acts outside of itself using actions

 Defining and using OpenAI functions

 The Semantic Kernel and how to use 
semantic functions

 Synergizing semantic and native functions

 Instantiating a GPT interface with 
Semantic Kernel 
98
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5.1 Defining agent actions
ChatGPT plugins were first introduced to provide a session with abilities, skills, or
tools. With a plugin, you can search the web or create spreadsheets or graphs. Plugins
provide ChatGPT with the means to extend the platform.

 Figure 5.1 shows how a ChatGPT plugin works. In this example, a new movie rec-
ommender plugin has been installed in ChatGPT. When a user asks ChatGPT to rec-
ommend a new movie, the large language model (LLM) recognizes that it has a
plugin to manage that action. It then breaks down the user request into actionable
parameters, which it passes to the new movie recommender.

The recommender then scrapes a website showcasing new movies and appends that
information to a new prompt request to an LLM. With this information, the LLM

Calls the plugin/function
with parameters

Here are some new movies
you may like to see...

ChatGPT with a new
movie recommender

plugin

ChatGPT user

Confirms the use of
the recommender plugin

GPT-4.5?
Plugin calls LLM to get a recommendation

for the list of new movies.

Plugin uses a service
to nd new movie.fi

Plugin replies with
recommended new movie.

New Movie Recommender
plugin (agent)

The plugin/agent
scrapes websites for

new movies.

Use External Tools
Enhances model capabilities.
Tactics include embeddings-based search, code execution, and access
to speci c functions.fi

Actions
Memory

Prompt Engineering Strategies

Can you recommend
a new movie?

A plugin may use the same,
different, or even multiple
LLMs.

Second, the plugin
uses an LLM to get
a recommendation.

First, the plugin scrapes
a site for a list of new
movies.

The LLM recognizes the
request for a plugin and
then extracts the input
parameters required for
the plugin.

Figure 5.1 How a ChatGPT plugin operates and how plugins and other external tools (e.g., APIs) align with the 
Use External Tools prompt engineering strategy
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responds to the recommender, which passes this back to ChatGPT. ChatGPT then
responds to the user with the recommended request.

 We can think of plugins as proxies for actions. A plugin generally encapsulates one
or more abilities, such as calling an API or scraping a website. Actions, therefore, are
extensions of plugins—they give a plugin its abilities.

 AI agents can be considered plugins and consumers of plugins, tools, skills, and
other agents. Adding skills, functions, and tools to an agent/plugin allows it to exe-
cute well-defined actions—figure 5.2 highlights where agent actions occur and their
interaction with LLMs and other systems.

An agent action is an ability that allows it to use a function, skill, or tool. What gets
confusing is that different frameworks use different terminology. We’ll define an
action as anything an agent can do to establish some basic definitions.

 ChatGPT plugins and functions represent an actionable ability that ChatGPT or an
agent system can use to perform additional actions. Now let’s examine the basis for
OpenAI plugins and the function definition.

1. The LLM recognizes the
request for a plugin/agent
and then extracts the input
parameters required to
activate the agent.

Calls the agent/plugin
with parameters

Agent System

ChatGPT user

GPT-4.5?

Agent replies with
recommended new movie.

New Movie Recommender
plugin (agent)

2. The agent adds the
information to a prompt
used to make a request
to an LLM.

The plugin/agent scrapes
websites for new movies.

3. The agent uses an action
to find new movies.

An agent may use the
same, different, or
even multiple LLMs.

Chevron denotes an
agent action.

An agent action can be a
function or skill/tool prompt.

4. The agent system passes
the responses to the LLM
to summarize the results.

Can you recommend
a new movie?

Here are some new movies
you may like to see...

Confirms the use of
a recommender plugin

Plugin calls LLM to get a
recommendation for the list of new movies.

Agent uses a function or
skill to nd new movie.fi

Figure 5.2 How an agent uses actions to perform external tasks
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5.2 Executing OpenAI functions
OpenAI, with the enablement of plugins, introduced a structure specification for defin-
ing the interface between functions/plugins an LLM could action. This specification is
becoming a standard that LLM systems can follow to provide actionable systems.

 These same function definitions are now also being used to define plugins for
ChatGPT and other systems. Next, we’ll explore how to use functions directly with
an LLM call.

5.2.1 Adding functions to LLM API calls

Figure 5.3 demonstrates how an LLM recognizes and uses the function definition to
cast its response as the function call.

Listing 5.1 shows the details of an LLM API call using tools and a function definition.
Adding a function definition allows the LLM to reply regarding the function’s input
parameters. This means the LLM will identify the correct function and parse the rele-
vant parameters for the user’s request.

response = client.chat.completions.create(
        model="gpt-4-1106-preview",
        messages=[{"role": "system",
                   "content": "You are a helpful assistant."},
                  {"role": "user", "content": user_message}],

Listing 5.1 first_function.py (API call)

GPT-4

Make a request to
LLM using tools. Confirms the request matches

a particular function definition

Extracts parameters matching
the function de nition from thefi

original request

Request

Model: GPT-4

Messages:
System: you are a ...
User: please recommend a movie.

Parameters:
Temperature: .7
Max tokens: 256

Tools
"type": "function",

:

Replies with the tool name
(function) and input parameters

for the function

Tools represents plugins or
functions added to a request.

The LLM does not
execute the function.

If the LLM doesn’t
match any tools, it
will respond given
the expected prompt.

Figure 5.3 How a single LLM request, including tools, gets interpreted by an LLM



102 CHAPTER 5 Empowering agents with actions
        temperature=0.7,
        tools=[    
            {
                "type": "function",    
                "function": {
                    "name": "recommend",
                    "description": "Provide a … topic.",    
                    "parameters": {
                        "type": "object",    
                        "properties": {
                            "topic": {
                                "type": "string",
                                "description": 
                                   "The topic,… for.",    
                            },
                            "rating": {
                                "type": "string",
                                "description": 
                          "The rating … given.",    
                                "enum": ["good",
                                         "bad", 
                                         "terrible"]    
                                },
                        },
                        "required": ["topic"],
                    },
                },
                }
            ]
        )

To see how this works, open Visual Studio Code (VS Code) to the book’s source code
folder: chapter_4/first_function.py. It’s a good practice to open the relevant chapter
folder in VS Code to create a new Python environment and install the requirements.txt
file. If you need assistance with this, consult appendix B.

 Before starting, correctly set up an .env file in the chapter_4 folder with your
API credentials. Function calling is an extra capability provided by the LLM com-
mercial service. At the time of writing, this feature wasn’t an option for open
source LLM deployments.

 Next, we’ll look at the bottom of the code in first_function.py, as shown in list-
ing 5.2. Here are just two examples of calls made to an LLM using the request previ-
ously specified in listing 5.1. Here, each request shows the generated output from
running the example.

user = "Can you please recommend me a time travel movie?"
response = ask_chatgpt(user)    
print(response)

Listing 5.2 first_function.py (exercising the API)

New parameter called tools

Sets the type of tool to function

Provides an excellent 
description of what 
the function does

Defines the type of parameters 
for input; an object represents 
a JSON document.

Excellent 
descriptions 
for each input 
parameter

You can even 
describe in terms 
of enumerations.

Previously 
defined function



1035.2 Executing OpenAI functions
###Output
Function(arguments='{"topic":"time travel movie"}', 
                      name='recommend')    

user = "Can you please recommend me a good time travel movie?"
response = ask_chatgpt(user)    
print(response)

###Output
Function(arguments='{"topic":"time travel movie",
                     "rating":"good"}',
 name='recommend')    

Run the first_function.py Python script in VS Code using the debugger (F5) or the
terminal to see the same results. Here, the LLM parses the input request to match any
registered tools. In this case, the tool is the single function definition, that is, the rec-
ommended function. The LLM extracts the input parameters from this function and
parses those from the request. Then, it replies with the named function and desig-
nated input parameters.

NOTE The actual function isn’t being called. The LLM only returns the sug-
gested function and the relevant input parameters. The name and parame-
ters must be extracted and passed into a function matching the signature to
act on the function. We’ll look at an example of this in the next section.

5.2.2 Actioning function calls

Now that we understand that an LLM doesn’t execute the function or plugin directly,
we can look at an example that executes the tools. Keeping with the recommender
theme, we’ll look at another example that adds a Python function for simple
recommendations.

 Figure 5.4 shows how this simple example will work. We’ll submit a single request
that includes a tool function definition, asking for three recommendations. The LLM,
in turn, will reply with the three function calls with input parameters (time travel, rec-
ipe, and gift). The results from executing the functions are then passed back to the
LLM, which converts them back to natural language and returns a reply.

 Now that we understand the example, open parallel_functions.py in VS Code.
Listing 5.3 shows the Python function that you want to call to give recommendations.

 
 
 
 
 
 
 

Returned in 
the name of the 
function to call 
and the extracted 
input parameters

Previously 
defined function

Returned in the name of the function to 
call and the extracted input parameters
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ns 
def recommend(topic, rating="good"):
    if "time travel" in topic.lower():    
        return json.dumps({"topic": "time travel",
                           "recommendation": "Back to the Future",
                           "rating": rating})
    elif "recipe" in topic.lower():    
        return json.dumps({"topic": "recipe",
                           "recommendation": "The best thing … ate.",
                           "rating": rating})
    elif "gift" in topic.lower():    
        return json.dumps({"topic": "gift",
                           "recommendation": "A glorious new...",
                           "rating": rating})
    else:    
        return json.dumps({"topic": topic,
                           "recommendation": "unknown"})    

Next, we’ll look at the function called run_conversation, where all the work starts
with the request construction.

user = """Can you please make recommendations for the following:
1. Time travel movies
2. Recipes

Listing 5.3 parallel_functions.py (recommend function)

Listing 5.4 parallel_functions.py (run_conversation, request)

Make a request to
LLM using tools.

GPT

Request

Messages:
User: Can you please make
recommendations for the following:

1. Time travel movies
2. Recipes
3. Gifts

Tools: recommend function de nitionfi

Confirms the request matches a
particular function definition and

there are 3 calls to evaluate

Returns 3 tool calls to the function recommend“ ”

Creates 3 function replies, one
for each recommendation

Add results of function execution to
conversation history, and ask LLM to respond.

Execute functions.

Return results of all three recommendations
in natural language.

GPT

Returns the function
name and parameters

Could be the same
or different LLM

Figure 5.4 A sample request returns three tool function calls and then submits the results back to the LLM 
to return a natural language response.

Checks to 
see if the 
string is 
contained 
within the 
topic input

If no topic is 
detected, retur
the default

Returns a 
JSON object
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3. Gifts"""    
messages = [{"role": "user", "content": user}]    
tools = [    
    {
        "type": "function",
        "function": {
            "name": "recommend",
            "description": 
                "Provide a recommendation for any topic.",
            "parameters": {
                "type": "object",
                "properties": {
                    "topic": {
                        "type": "string",
                        "description": 
                              "The topic, … recommendation for.",
                        },
                        "rating": {
                            "type": "string",
                            "description": "The rating … was given.",
                            "enum": ["good", "bad", "terrible"]
                            },
                        },
                "required": ["topic"],
                },
            },
        }
    ]

Listing 5.5 shows the request being made, which we’ve covered before, but there are a
few things to note. This call uses a lower model such as GPT-3.5 because delegating
functions is a more straightforward task and can be done using older, cheaper, less
sophisticated language models.

response = client.chat.completions.create(
    model="gpt-3.5-turbo-1106",    
    messages=messages,    
    tools=tools,    
    tool_choice="auto",  
)
response_message = response.choices[0].message    

At this point, after the API call, the response should hold the information for the
required function calls. Remember, we asked the LLM to provide us with three recom-
mendations, which means it should also provide us with three function call outputs, as
shown in the following listing.

 

Listing 5.5 parallel_functions.py (run_conversation, API call)

The user message 
asks for three 
recommendations.

Note that there is no 
system message.

Adds the function 
definition to the tools 
part of the request

LLMs that delegate to functions 
can be simpler models.

Adds the messages and tools definitions

auto is the default.

The returned message 
from the LLM
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tool_calls = response_message.tool_calls    
if tool_calls:    
    available_functions = {
        "recommend": recommend,
    }    
    # Step 4: send the info for each function call and function response to 
the model
    for tool_call in tool_calls:    
        function_name = tool_call.function.name
        function_to_call = available_functions[function_name]
        function_args = json.loads(tool_call.function.arguments)
        function_response = function_to_call(
            topic=function_args.get("topic"),    
            rating=function_args.get("rating"),
        )
        messages.append(    
            {
                "tool_call_id": tool_call.id,
                "role": "tool",
                "name": function_name,
                "content": function_response,
            }
        )  # extend conversation with function response
    second_response = client.chat.completions.create(    
        model="gpt-3.5-turbo-1106",
        messages=messages,
    )
    return second_response.choices[0].message.content    

The tool call outputs and the calls to the recommender function results are appended
to the messages. Notice how messages now also contain the history of the first call.
This is then passed back to the LLM to construct a reply in natural language.

 Debug this example in VS Code by pressing the F5 key with the file open. The fol-
lowing listing shows the output of running parallel_functions.py.

Here are some recommendations for you:

1. Time travel movies: "Back to the Future"
2. Recipes: "The best thing you ever ate."
3. Gifts: "A glorious new..." (the recommendation was cut off, so I 
couldn't provide the full recommendation)

I hope you find these recommendations helpful! Let me know if you need 
more information.

This completes this simple demonstration. For more advanced applications, the func-
tions could do any number of things, from scraping websites to calling search engines
to completing far more complex tasks.

Listing 5.6 parallel_functions.py (run_conversation, tool_calls)

Listing 5.7 parallel_functions.py (output)

If the response contains 
tool calls, execute them.

Only one function but 
could contain several

Loops through the calls and replays
the content back to the LLM

Executes the recommend 
function from extracted 
parameters

Appends the results of 
each function call to the 
set of messages

Sends another request 
to the LLM with updated 
information and returns 
the message reply
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 Functions are an excellent way to cast outputs for a particular task. However, the
work of handling functions or tools and making secondary calls can be done in a
cleaner and more efficient way. The following section will uncover a more robust sys-
tem of adding actions to agents.

5.3 Introducing Semantic Kernel
Semantic Kernel (SK) is another open source project from Microsoft intended to help
build AI applications, which we call agents. At its core, the project is best used to
define actions, or what the platform calls semantic plugins, which are wrappers for skills
and functions.

 Figure 5.5 shows how the SK can be used as a plugin and a consumer of OpenAI
plugins. The SK relies on the OpenAI plugin definition to define a plugin. That way, it
can consume and publish itself or other plugins to other systems.

An OpenAI plugin definition maps precisely to the function definitions in listing 5.4.
This means that SK is the orchestrator of API tool calls, aka plugins. That also means
that SK can help organize multiple plugins with a chat interface or an agent.

NOTE The team at SK originally labeled the functional modules as skills. How-
ever, to be more consistent with OpenAI, they have since renamed skills to

LLM

Interface is de ned like an OpenAI plugin.fi

Semantic
Kernel

Interface as an OpenAI plugin

ChatGPT

Plugins (Semantic Skills and Native Functions)

Math Plugin
(native function)

Recommend Plugin
(semantic function)

Get Movies Plugin
(native plugin)

Please recommend
a movie.

Can be consumed as a plugin
and also consumes plugins

Requests can be made
directly to the kernel

The kernel itself can be
registered as a plugin.

LLM

Can be the same
LLM or different

Figure 5.5 How the Semantic Kernel integrates as a plugin and can also consume plugins
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plugins. What is more confusing is that the code still uses the term skills. There-
fore, throughout this chapter, we’ll use skills and plugins to mean the same thing.

SK is a useful tool for managing multiple plugins (actions for agents) and, as we’ll see
later, can also assist with memory and planning tools. For this chapter, we’ll focus on
the actions/plugins. In the next section, we look at how to get started using SK.

5.3.1 Getting started with SK semantic functions

SK is easy to install and works within Python, Java, and C#. This is excellent news as it also
allows plugins developed in one language to be consumed in a different language. How-
ever, you can’t yet develop a native function in one language and use it in another.

 We’ll continue from where we left off for the Python environment using the
chapter_4 workspace in VS Code. Be sure you have a workspace configured if you
want to explore and run any examples.

 Listing 5.8 shows how to install SK from a terminal within VS Code. You can also
install the SK extension for VS Code. The extension can be a helpful tool to create
plugins/skills, but it isn’t required.

pip uninstall semantic-kernel    

git clone https://github.com/microsoft/semantic-kernel.git    

cd semantic-kernel/python    

pip install -e .    

Once you finish the installation, open SK_connecting.py in VS Code. Listing 5.9
shows a demo of running an example quickly through SK. The example creates a chat
completion service using either OpenAI or Azure OpenAI.

import semantic_kernel as sk

selected_service = "OpenAI"    
kernel = sk.Kernel()    

service_id = None
if selected_service == "OpenAI":
    from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion

    api_key, org_id = sk.openai_settings_from_dot_env()    
    service_id = "oai_chat_gpt"
    kernel.add_service(
        OpenAIChatCompletion(
            service_id=service_id,
            ai_model_id="gpt-3.5-turbo-1106",

Listing 5.8 Installing Semantic Kernel 

Listing 5.9 SK_connecting.py

Uninstalls any previous installations of SK

Clones the 
repository to 
a local folderChanges to the source folder

Installs the editable package 
from the source folder

Sets the service you’re using 
(OpenAI or Azure OpenAI)

Creates the 
kernel

Loads secrets 
from the .env file 
and sets them on 
the chat service
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            api_key=api_key,
            org_id=org_id,
        ),
    )
elif selected_service == "AzureOpenAI":
    from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion

    deployment, api_key, endpoint = 
➥ sk.azure_openai_settings_from_dot_env()  
    service_id = "aoai_chat_completion"
    kernel.add_service(
        AzureChatCompletion(
            service_id=service_id,
            deployment_name=deployment,
            endpoint=endpoint,
            api_key=api_key,
        ),
    )

#This function is currently broken
async def run_prompt():
    result = await kernel.invoke_prompt( 
              ➥ prompt="recommend a movie about 
➥ time travel")    
    print(result)

# Use asyncio.run to execute the async function
asyncio.run(run_prompt())    

###Output
One highly recommended time travel movie is "Back to the Future" (1985) 
directed by Robert Zemeckis. This classic film follows the adventures of 
teenager Marty McFly (Michael J. Fox)…

Run the example by pressing F5 (debugging), and you should see an output similar to
listing 5.9. This example demonstrates how a semantic function can be created with SK
and executed. A semantic function is the equivalent of a prompt template in prompt
flow, another Microsoft tool. In this example, we define a simple prompt as a function.

 It’s important to note that this semantic function isn’t defined as a plugin. How-
ever, the kernel can create the function as a self-contained semantic element that
can be executed against an LLM. Semantic functions can be used alone or regis-
tered as plugins, as you’ll see later. Let’s jump to the next section, where we intro-
duce contextual variables.

5.3.2 Semantic functions and context variables

Expanding on the previous example, we can look at adding contextual variables to the
semantic function. This pattern of adding placeholders to prompt templates is one
we’ll review over and over. In this example, we look at a prompt template that has
placeholders for subject, genre, format, and custom.

Loads secrets 
from the .env file 
and sets them on 
the chat service

Invokes the 
prompt

Calls the function 
asynchronously
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 Open SK_context_variables.py in VS Code, as shown in the next listing. The
prompt is equivalent to setting aside a system and user section of the prompt.

#top section omitted…
prompt = """    
system:

You have vast knowledge of everything and can recommend anything provided 
you are given the following criteria, the subject, genre, format and any 
other custom information.

user:
Please recommend a {{$format}} with the subject {{$subject}} and {{$genre}}.
Include the following custom information: {{$custom}}
"""

prompt_template_config = sk.PromptTemplateConfig(    
    template=prompt,
    name="tldr",
    template_format="semantic-kernel",
    input_variables=[
        InputVariable(
            name="format", 
            description="The format to recommend", 
            is_required=True
        ),
        InputVariable(
            name="suject", 
            description="The subject to recommend", 
            is_required=True
        ),
        InputVariable(
            name="genre", 
            description="The genre to recommend", 
            is_required=True
        ),
        InputVariable(
            name="custom",
            description="Any custom information [CA]
                       to enhance the recommendation",
            is_required=True,
        ),
    ],
    execution_settings=execution_settings,
)

recommend_function = kernel.create_function_from_prompt(    
    prompt_template_config=prompt_template_config,
    function_name="Recommend_Movies",
    plugin_name="Recommendation",
)

Listing 5.10 SK_context_variables.py

Defines a prompt 
with placeholders

Configures a 
prompt template 
and input variable 
definitions

Creates a kernel 
function from 
the prompt
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async def run_recommendation(    
    subject="time travel",
    format="movie", 
    genre="medieval", 
           custom="must be a comedy"
):
    recommendation = await kernel.invoke(
        recommend_function,
        sk.KernelArguments(subject=subject,
                      format=format, 
                      genre=genre, 
                      custom=custom),    
    )
    print(recommendation)

# Use asyncio.run to execute the async function
asyncio.run(run_recommendation())

###Output
One movie that fits the criteria of being about time travel, set in a 
medieval period, and being a comedy is "The Visitors" (Les Visiteurs) 
from 1993. This French film, directed by Jean-Marie Poiré, follows a 
knight and his squire who are transported to the modern era by a 
wizard’s spell gone wrong.…

Go ahead and debug this example (F5), and wait for the output to be generated. That is
the basis for setting up SK and creating and exercising semantic functions. In the next
section, we move on to see how a semantic function can be registered as a skill/plugin.

5.4 Synergizing semantic and native functions
Semantic functions encapsulate a prompt/profile and execute through interaction with
an LLM. Native functions are the encapsulation of code that may perform anything
from scraping websites to searching the web. Both semantic and native functions can
register as plugins/skills in the SK kernel.

 A function, semantic or native, can be registered as a plugin and used the same
way we registered the earlier function directly with our API calls. When a function is
registered as a plugin, it becomes accessible to chat or agent interfaces, depending on
the use case. The next section looks at how a semantic function is created and regis-
tered with the kernel.

5.4.1 Creating and registering a semantic skill/plugin

The VS Code extension for SK provides helpful tools for creating plugins/skills. In
this section, we’ll use the SK extension to create a plugin/skill and then edit the com-
ponents of that extension. After that, we’ll register and execute the plugin in the SK.

 Figure 5.6 shows the process for creating a new skill within VS Code using the SK
extension. (Refer to appendix B for directions if you need to install this extension.)
You’ll then be given the option for the skill/plugin folder to place the function.
Always group functions that are similar together. After creating a skill, enter the name

Creates an asynchronous 
function to wrap the 
function call

Sets the 
kernel 
function 
arguments
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and description of the function you want to develop. Be sure to describe the function
as if the LLM were going to use it.

You can see the completed skills and functions by opening the skills/plugin folder
and reviewing the files. We’ll follow the previously constructed example, so open the
skills/Recommender/Recommend_Movies folder, as shown in figure 5.7. Inside this folder
is a config.json file, the function description, and the semantic function/prompt in
a file called skprompt.txt.

 Listing 5.11 shows the contents of the semantic function definition, also known as
the plugin definition. Note that the type is marked as completion and not of type
function because this is a semantic function. We would define a native function as a
type function.

 
 
 

1. Select the icon to create a
new semantic skill/plugin.

2. Select an existing skill
folder, or create a new one.

3. Name the function.

4. Then, provide a description.

Figure 5.6 The process of creating a new skill/plugin



1135.4 Synergizing semantic and native functions
{
    "schema": 1,
    "type": "completion",    
    "description": "A function to recommend movies based on users list of 
previously seen movies.",
    "completion": {    
        "max_tokens": 256,
        "temperature": 0,
        "top_p": 0,
        "presence_penalty": 0,
        "frequency_penalty": 0
    },
    "input": {
        "parameters": [
            {
                "name": "input",    
                "description": "The users list of previously seen movies.",
                "defaultValue": ""
            }
        ]
    },
    "default_backends": []
}

Next, we can look at the definition of the semantic function prompt, as shown in list-
ing 5.12. The format is a little different, but what we see here matches the earlier
examples using templating. This prompt recommends movies based on a list of mov-
ies the user has previously seen.

You are a wise movie recommender and you have been asked to recommend a 
movie to a user.
You are provided a list of movies that the user has watched before.
You want to recommend a movie that the user has not watched before.
[INPUT]

Listing 5.11 Recommend_Movies/config.json

Listing 5.12 Recommend_Movies/skprompt.txt

The folder containing
the /pluginskill

An inner folder that holds
the plugin/skill definitions

Defines the function/plugin
description

Prompt that defines the
semantic function

Figure 5.7 The file and folder 
structure of a semantic 
function skill/plugin

Semantic functions are 
functions of type completion.

We can also set the 
completion parameters for 
how the function is called.

Defines the parameters 
input into the semantic 
function
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{{$input}}
[END INPUT]

Now, we’ll dive into the code that loads the skill/plugin and executes it in a simple
example. Open the SK_first_skill.py file in VS Code. The following listing shows
an abridged version highlighting the new sections.

kernel = sk.Kernel()

plugins_directory = "plugins"

recommender = kernel.import_plugin_from_prompt_directory(
    plugins_directory,
    "Recommender",
)    

recommend = recommender["Recommend_Movies"]

seen_movie_list = [    
    "Back to the Future",
    "The Terminator",
    "12 Monkeys",
    "Looper",
    "Groundhog Day",
    "Primer",
    "Donnie Darko",
    "Interstellar",
    "Time Bandits",
    "Doctor Strange",
]

async def run():
    result = await kernel.invoke(
        recommend,
        sk.KernelArguments(    
            settings=execution_settings, input=", ".join(seen_movie_list)
        ),
    )
    print(result)

asyncio.run(run())    

###Output
Based on the list of movies you've provided, it seems you have an 
interest in science fiction, time travel, and mind-bending narratives. 
Given that you've watched a mix of classics and modern films in this 
genre, I would recommend the following movie that you have not watched 
before:

"Edge of Tomorrow" (also known as "Live Die Repeat: Edge of Tomorrow")…

Listing 5.13 SK_first_skill.py (abridged listing)

Loads the prompt from 
the plugins folder

List of user’s previously 
seen movies

Input is set to joined 
list of seen movies.

Function is executed 
asynchronously.
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The code loads the skill/plugin from the skills directory and the plugin folder.
When a skill is loaded into the kernel and not just created, it becomes a registered
plugin. That means it can be executed directly as is done here or through an LLM
chat conversation via the plugin interface.

 Run the code (F5), and you should see an output like listing 5.13. We now have a
simple semantic function that can be hosted as a plugin. However, this function
requires users to input a complete list of movies they have watched. We’ll look at a
means to fix this by introducing native functions in the next section.

5.4.2 Applying native functions

As stated, native functions are code that can do anything. In the following example,
we’ll introduce a native function to assist the semantic function we built earlier.

 This native function will load a list of movies the user has previously seen, from a file.
While this function introduces the concept of memory, we’ll defer that discussion until
chapter 8. Consider this new native function as any code that could virtually do anything.

 Native functions can be created and registered using the SK extension. For this exam-
ple, we’ll create a native function directly in code to make the example easier to follow.

 Open SK_native_functions.py in VS Code. We’ll start by looking at how the
native function is defined. A native function is typically defined within a class, which
simplifies managing and instantiating native functions.

class MySeenMoviesDatabase:
    """
    Description: Manages the list of users seen movies.    
    """
    @kernel_function(    
        description="Loads a list of movies … user has already seen",
        name="LoadSeenMovies",
    )
    def load_seen_movies(self) -> str:    
        try:
            with open("seen_movies.txt", 'r') as file:    
                lines = [line.strip() for line in file.readlines()]
                comma_separated_string = ', '.join(lines)
            return comma_separated_string
        except Exception as e:
            print(f"Error reading file: {e}")
            return None

With the native function defined, we can see how it’s used by scrolling down in the
file, as shown in the following listing.

 
 

Listing 5.14 SK_native_functions.py (MySeenMovieDatabase)

Provides a description
for the container class Uses a decorator to 

provide function 
description and 
name

The actual function 
returns a list of movies in a 
comma-separated string.

Loads seen
movies from
the text file
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plugins_directory = "plugins"

recommender = kernel.import_plugin_from_prompt_directory(
    plugins_directory,
    "Recommender",
)    

recommend = recommender["Recommend_Movies"]

seen_movies_plugin = kernel.import_plugin_from_object(
    MySeenMoviesDatabase(), "SeenMoviesPlugin"
)    

load_seen_movies = seen_movies_plugin["LoadSeenMovies"]    

async def show_seen_movies():
    seen_movie_list = await load_seen_movies(kernel)
    return seen_movie_list

seen_movie_list = asyncio.run(show_seen_movies())    
print(seen_movie_list)

async def run():     
    result = await kernel.invoke(
        recommend,
        sk.KernelArguments(
                settings=execution_settings,
                input=seen_movie_list),
    )
    print(result)

asyncio.run(run())

###Output
The Matrix, The Matrix Reloaded, The Matrix Revolutions, The Matrix 
Resurrections – output from print statement
Based on your interest in the "The Matrix" series, it seems you enjoy 
science fiction films with a strong philosophical undertone and action 
elements. Given that you've watched all

One important aspect to note is how the native function was imported into the kernel.
The act of importing to the kernel registers that function as a plugin/skill. This means
the function can be used as a skill from the kernel through other conversations or
interactions. We’ll see how to embed a native function within a semantic function in
the next section.

Listing 5.15 SK_native_functions (remaining code)

Loads the semantic function 
as shown previously

Imports the skill 
into the kernel and 
registers the function 
as a plugin

Loads the native 
function

Executes the 
function and returns 
the list as a string

Wraps the 
plugin call in an 
asynchronous 
function and 
executes
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5.4.3 Embedding native functions within semantic functions

There are plenty of powerful features within SK, but one beneficial feature is the abil-
ity to embed native or semantic functions within other semantic functions. The follow-
ing listing shows how a native function can be embedded within a semantic function.

sk_prompt = """
You are a wise movie recommender and you have been asked to recommend a 
movie to a user.
You have a list of movies that the user has watched before.
You want to recommend a movie that 
the user has not watched before.    
Movie List: {{MySeenMoviesDatabase.LoadSeenMovies}}.    
"""

The next example, SK_semantic_native_functions.py, uses inline native and seman-
tic functions. Open the file in VS Code, and the following listing shows the code to
create, register, and execute the functions.

prompt_template_config = sk.PromptTemplateConfig(
    template=sk_prompt,
    name="tldr",
    template_format="semantic-kernel",
    execution_settings=execution_settings,
)    

recommend_function = kernel.create_function_from_prompt(
    prompt_template_config=prompt_template_config,
    function_name="Recommend_Movies",
    plugin_name="Recommendation",
)    

async def run_recommendation():    
    recommendation = await kernel.invoke(
        recommend_function,
        sk.KernelArguments(),
    )
    print(recommendation)

# Use asyncio.run to execute the async function
asyncio.run(run_recommendation())
###Output
Based on the list provided, it seems the user is a fan of the Matrix 
franchise. Since they have watched all four existing Matrix movies, I 
would recommend a…

Listing 5.16 SK_semantic_native_functions.py (skprompt)

Listing 5.17 SK_semantic_native_functions.py (abridged)

The exact 
instruction text 
as previous

The native function is referenced and identified
by class name and function name.

Creates the prompt template 
config for the prompt

Creates an inline semantic 
function from the prompt

Executes the semantic 
function asynchronously
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Run the code, and you should see an output like listing 5.17. One important aspect to
note is that the native function is registered with the kernel, but the semantic function
is not. This is important because function creation doesn’t register a function.

 For this example to work correctly, the native function must be registered with the
kernel, which uses the import_plugin function call—the first line in listing 5.17. How-
ever, the semantic function itself isn’t registered. An easy way to register the function
is to make it a plugin and import it.

 These simple exercises showcase ways to integrate plugins and skills into chat or
agent interfaces. In the next section, we’ll look at a complete example demonstrating
adding a plugin representing a service or GPT interface to a chat function.

5.5 Semantic Kernel as an interactive service agent
In chapter 1, we introduced the concept of the GPT interface—a new paradigm in
connecting services and other components to LLMs via plugins and semantic layers.
SK provides an excellent abstraction for converting any service to a GPT interface.

 Figure 5.8 shows a GPT interface constructed around an API service called The
Movie Database (TMDB; www.themoviedb.org). The TMDB site provides a free API that
exposes information about movies and TV shows.

To follow along with the exercises in this section, you must register for a free account
from TMDB and create an API key. Instructions for getting an API key can be found at
the TMDB website (www.themoviedb.org) or by asking a GPT-4 turbo or a more
recent LLM.

User

Web Interface

The Movie Database
www.themoviedb.org

API Interface

GPT Interface

Semantic Kernel

Chat Interface Agent Interface

A user can access the site now in
three ways: web, chat, or agent.

SK acts as an abstraction
and tool to expose the
interface as a plugin.

This is the semantic
mapping of functions
to API endpoints.

This is the developer
API endpoint exposed
by the site.

Figure 5.8 This layer architecture diagram shows the role of a GPT interface and the Semantic 
Kernel being exposed to chat or agent interfaces.
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 Over the next set of subsections, we’ll create a GPT interface using an SK set of
native functions. Then, we’ll use the SK kernel to test the interface and, later in this
chapter, implement it as plugins into a chat function. In the next section, we look at
building a GPT interface against the TMDB API.

5.5.1 Building a semantic GPT interface
TMDB is an excellent service, but it provides no semantic services or services that can
be plugged into ChatGPT or an agent. To do that, we must wrap the API calls that
TMDB exposes in a semantic service layer.

 A semantic service layer is a GPT interface that exposes functions through natural
language. As discussed, to expose functions to ChatGPT or other interfaces such as
agents, they must be defined as plugins. Fortunately, SK can create the plugins for us
automatically, given that we write our semantic service layer correctly.

 A native plugin or set of skills can act as a semantic layer. To create a native plugin,
create a new plugin folder, and put a Python file holding a class containing the set of
native functions inside that folder. The SK extension currently doesn’t do this well, so
manually creating the module works best.

 Figure 5.9 shows the structure of the new plugin called Movies and the semantic
service layer called tmdb.py. For native functions, the parent folder’s name (Movies) is
used in the import.

Open the tmdb.py file in VS Code, and look at the top of the file, as shown in listing
5.18. This file contains a class called TMDbService, which exposes several functions
that map to API endpoint calls. The idea is to map the various relevant API function
calls in this semantic service layer. This will expose the functions as plugins for a chat
or agent interface.

from semantic_kernel.functions import kernel_funct
import requests
import inspect

def print_function_call():    
    #omitted …

Listing 5.18 tmdb.py (top of file)

Parent skills folder

Name of the plugin folder

File/module containing the class
and set of native functions

Figure 5.9 The folder and file 
structure of the TMDB plugin

Prints the calls to 
the functions for 
debugging
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class TMDbService:    
    def __init__(self):
        # enter your TMDb API key here
        self.api_key = "your-TMDb-api-key"

    @kernel_function(    
        description="Gets the movie genre ID for a given genre name",
        name="get_movie_genre_id",
        input_description="The movie genre name of the genre_id to get",
        )
    def get_movie_genre_id(self, genre_name: str) -> str:    
        print_function_call()
        base_url = "https://api.themoviedb.org/3"
        endpoint = f"{base_url}/genre/movie/list
                     ➥ ?api_key={self.api_key}&language=en-US"

        response = requests.get(endpoint)    
        if response.status_code == 200:    
            genres = response.json()['genres']
            for genre in genres:
                if genre_name.lower() in genre['name'].lower():
                    return str(genre['id'])    
        return None

The bulk of the code for the TMDbService and the functions to call the TMDB end-
points was written with the help of GPT-4 Turbo. Then, each function was wrapped
with the sk_function decorator to expose it semantically.

 A few of the TMDB API calls have been mapped semantically. Listing 5.19 shows
another example of a function exposed to the semantic service layer. This function
pulls a current top 10 list of movies playing for a particular genre.

@kernel_function(    
        description="””
Gets a list of currently playing movies for a given genre””",
        name="get_top_movies_by_genre",
        input_description="The genre of the movies to get",
        )
    def get_top_movies_by_genre(self, genre: str) -> str:
        print_function_call()
        genre_id = self.get_movie_genre_id(genre)    
        if genre_id:
            base_url = "https://api.themoviedb.org/3
            playing_movies_endpoint = f"{base_url}/movie/now_playing?
➥ api_key={self.api_key}&language=en-US"
            response = requests.get(
                          playing_movies_endpoint)    
            if response.status_code != 200:
                return ""

Listing 5.19 tmdb.py (get_top_movies_by_genre)

Top-level service 
and decorator 
used to describe 
the function (good 
descriptions are 
important)

Function wrapped in 
semantic wrapper; 
should return str

Calls the API endpoint, and, 
if good (code 200), checks 
for matching genre

Found the genre, 
returns the id

Decorates the function 
with descriptions

Finds the genre 
id for the given 
genre name

Gets a list of currently 
playing movies
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            playing_movies = response.json()['results'
            for movie in playing_movies:    
                movie['genre_ids'] = [str(genre_id)  
                      ➥ for genre_id in movie['genre_ids']]
            filtered_movies = [movie for movie 
➥ in playing_movies if genre_id 
➥ in movie['genre_ids']][:10]    
            results = ", ".join([movie['title'] for movie in 

filtered_movies])
            return results
        else:
            return ""

Look through the various other API calls mapped semantically. As you can see, there
is a well-defined pattern for converting API calls to a semantic service. Before we run
the full service, we’ll test each of the functions in the next section.

5.5.2 Testing semantic services

In a real-world application, you’ll likely want to write a complete set of unit or integra-
tion tests for each semantic service function. We won’t do that here; instead, we’ll
write a quick helper script to test the various functions.

 Open test_tmdb_service.py in VS Code, and review the code, as shown in listing
5.20. You can comment and uncomment any functions to test them in isolation. Be
sure to have only one function uncommented at a time.

import semantic_kernel as sk
from plugins.Movies.tmdb import TMDbService

async def main():
    kernel = sk.Kernel()    

    tmdb_service = kernel.import_plugin_from_object 
➥ (TMDbService(), "TMDBService")    

    print(
        await tmdb_service["get_movie_genre_id"](
            kernel, sk.KernelArguments(
                            genre_name="action")    
        )
    )    
    print(
        await tmdb_service["get_tv_show_genre_id"](
            kernel, sk.KernelArguments(
                            genre_name="action")    
        )
    )    
    print(
        await tmdb_service["get_top_movies_by_genre"](
            kernel, sk.KernelArguments(

Listing 5.20 test_tmdb_service.py

Converts 
genre_ids 
to strings

Checks to see 
if the genre id 
matches movie 
genres

Instantiates 
the kernel

Imports the 
plugin service

Inputs parameter 
to functions, 
when needed
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tests the various 
functions
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to functions, 
when needed

Executes and 
tests the various 
functions
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                            genre_name="action")    
        )
    )    
    print(
        await tmdb_service["get_top_tv_shows_by_genre"](
            kernel, sk.KernelArguments(
                            genre_name="action")    
        )
    )
    print(await tmdb_service["get_movie_genres"](
kernel, sk.KernelArguments()))                       
    print(await tmdb_service["get_tv_show_genres"](
kernel, sk.KernelArguments()))                       

# Run the main function
if __name__ == "__main__":
    import asyncio

    asyncio.run(main())    

###Output
Function name: get_top_tv_shows_by_genre    
Arguments:
  self = <skills.Movies.tmdb.TMDbService object at 0x00000159F52090C0>
  genre = action
Function name: get_tv_show_genre_id    
Arguments:
  self = <skills.Movies.tmdb.TMDbService object at 0x00000159F52090C0>
  genre_name = action
Arcane, One Piece, Rick and Morty, Avatar: The Last Airbender, Fullmetal 
Alchemist: Brotherhood, Demon Slayer: Kimetsu no Yaiba, Invincible, 
Attack on Titan, My Hero Academia, Fighting Spirit, The Owl House

The real power of SK is shown in this test. Notice how the TMDbService class is imported
as a plugin, but we don’t have to define any plugin configurations other than what we
already did? By just writing one class that wrapped a few API functions, we’ve exposed
part of the TMDB API semantically. Now, with the functions exposed, we can look at
how they can be used as plugins for a chat interface in the next section.

5.5.3 Interactive chat with the semantic service layer

With the TMDB functions exposed semantically, we can move on to integrating them
into a chat interface. This will allow us to converse naturally in this interface to get var-
ious information, such as current top movies.

 Open SK_service_chat.py in VS Code. Scroll down to the start of the new section
of code that creates the functions, as shown in listing 5.21. The functions created here
are now exposed as plugins, except we filter out the chat function, which we don’t
want to expose as a plugin. The chat function here allows the user to converse directly
with the LLM and shouldn’t be a plugin.

Inputs parameter 
to functions, 
when needed

Executes and tests the various functions

Executes and tests 
the various functions

Executes main 
asynchronously

Calls print
function details
to notify when
the function is

being called
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system_message = "You are a helpful AI assistant."

tmdb_service = kernel.import_plugin_from_object(
TMDbService(), "TMDBService")    

# extracted section of code
execution_settings = sk_oai.OpenAIChatPromptExecutionSettings(
        service_id=service_id,
        ai_model_id=model_id,
        max_tokens=2000,
        temperature=0.7,
        top_p=0.8,
        tool_choice="auto",
        tools=get_tool_call_object(
            kernel, {"exclude_plugin": ["ChatBot"]}),    
    )

prompt_config = sk.PromptTemplateConfig.from_completion_parameters(
    max_tokens=2000,
    temperature=0.7,
    top_p=0.8,
    function_call="auto",
    chat_system_prompt=system_message,
)    
prompt_template = OpenAIChatPromptTemplate(
    "{{$user_input}}", kernel.prompt_template_engine, prompt_config
)    

history = ChatHistory()

history.add_system_message("You recommend movies and TV Shows.")
history.add_user_message("Hi there, who are you?")
history.add_assistant_message(
    "I am Rudy, the recommender chat bot. I'm trying to figure out what 
people need."
)    

chat_function = kernel.create_function_from_prompt(
    prompt_template_config=prompt_template,
    plugin_name="ChatBot",
    function_name="Chat",
)    

Next, we can continue by scrolling in the same file to review the chat function, as
shown in the following listing.

async def chat() -> bool:
    try:
        user_input = input("User:> ")    
    except KeyboardInterrupt:

Listing 5.21 SK_service_chat.py (function setup)

Listing 5.22 SK_service_chat.py (chat function)

Imports the 
TMDbService 
as a plugin

Configures the 
execution settings and 
adds filtered tools

Configures 
the prompt 
configuration

Defines the input 
template and takes full 
strings as user input

Adds the chat history object 
and populates some history

Creates the chat function

Input is taken 
directly from the 
terminal/console.



124 CHAPTER 5 Empowering agents with actions
        print("\n\nExiting chat...")
        return False
    except EOFError:
        print("\n\nExiting chat...")
        return False

    if user_input == "exit":    
        print("\n\nExiting chat...")
        return False
    arguments = sk.KernelArguments(    
        user_input=user_input,
        history=("\n").join(
           [f"{msg.role}: {msg.content}" for msg in history]),
    )
    result = await chat_completion_with_tool_call(    
        kernel=kernel,
        arguments=arguments,
        chat_plugin_name="ChatBot",
        chat_function_name="Chat",
        chat_history=history,
    )
    print(f"AI Agent:> {result}")
    return True

Lastly, scroll down to the bottom of the file, and review the primary function. This is
the code that calls the chat function in a loop.

async def main() -> None:
    chatting = True
    context = kernel.create_new_context()

    print("Welcome to your first AI Agent\    
\n  Type 'exit' to exit.\
\n  Ask to get a list of currently playing movies by genre."
    )
    while chatting:    
        chatting, context = await chat(context)    

if __name__ == "__main__":
    asyncio.ru n(main())

Run the chat interface, run the file (F5), and then ask about movies or television
shows of a particular genre. An example conversation session is shown in listing 5.24.
This output shows how a request to list movies from two genres made the chat inter-
face make multiple calls to the get_top_movie_by_genre function.

Welcome to your first AI Agent
  Type 'exit' to exit.

Listing 5.23 SK_service_chat.py (main function)

Listing 5.24 SK_service_chat.py (example conversation) 

If the user types 
exit, then exit 
the chat.

Creates arguments to 
pass to the function

Uses the utility 
function to call 
the function and 
execute the tool

Introduction 
to the user

Continues until 
chatting is False

Calls the 
chat function 
asynchronously
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Int
c

ge
gen
  Ask to get a list of currently playing movies by genre.
User:> Input: can you give me list of the current top playing movies for 
the action and comedy genres?

Function name: get_top_movies_by_genre    
Arguments:
  genre = action
Function name: get_movie_genre_id    
Arguments:
  genre_name = action
Function name: get_top_movies_by_genre    
Arguments:
  genre = comedy
Function name: get_movie_genre_id    
Arguments:
  genre_name = comedy
Agent:> Here are the current top-playing movies 
for the action and comedy genres:

**Action:**    
1. The Hunger Games: The Ballad of Songbirds & Snakes
2. Rebel Moon - Part One: A Child of Fire
3. Aquaman and the Lost Kingdom
4. Silent Night
5. The Family Plan
6. Freelance
7. Migration
8. Sound of Freedom
9. Godzilla Minus One

**Comedy:**    
1. The Family Plan
2. Wonka
3. Freelance
4. Saltburn
5. Chicken Run: Dawn of the Nugget
6. Trolls Band Together
7. There's Something in the Barn
8. Migration

Please note that some movies may overlap in both genres, such as 
"The Family Plan" and "Freelance ."

Be sure to explore the chat interface’s boundaries and what you can ask for from the
TMDB service. For example, try asking for a list of genres for movies or television
shows. This service is a good first try, but we can perhaps do better, as we’ll see in the
next section.

5.6 Thinking semantically when writing semantic services
Now we’ve seen an excellent demonstration of converting an API into a semantic ser-
vice interface. As it is, the functions return the titles of the top movies and television
shows currently playing. However, by just returning the titles, we’re limiting the ability
of the LLM to parse the results on its own.

LLM makes two calls to 
get_top_movies_by_genre.

ernal
all to
t the
re id

List of the top 
current action 
movies

List of the top 
current comedy 
movies
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 Therefore, we’ll create a v2 version of TMDbService to correct this and return the
results as JSON strings. Open the file tmdb_v2.py in VS Code, and scroll down to the
get_top_movies_by_genre function.

def get_top_movies_by_genre(self, genre: str) -> str:
        print_function_call()
        genre_id = self.get_movie_genre_id(genre)
        if genre_id:
            #same code …

            return json.dumps(filtered_movies)    
        else:
            return ""

Now open SK_service_chat.py in VS Code, and comment and uncomment the line
shown in listing 5.26. This will then use version 2 of the TMDbService that outputs
results as full JSON documents in a single string.

#from skills.Movies.tmdb import TMDbService    
from skills.Movies.tmdb_v2 import TMDbService    

Rerun the SK_service_chat.py file in VS Code, and alter your query slightly, as
shown by the output in the following listing.

User:> get a list of currently playing movies for the 
action genre and only return movies about space    
Agent:> To find currently playing action movies that are specifically 
about space, I will need to manually filter the provided list for those 
that have space-related themes in their overview. Here's what fits that 
criteria from the list:

1. **Rebel Moon - Part One: A Child of Fire**    
   - Release Date: 2023-12-15
   - Overview: When a peaceful colony on the edge of the galaxy finds 
itself threatened by the armies of the tyrannical Regent Balisarius, 
they dispatch Kora, a young woman with a mysterious past, to seek out 
warriors from neighboring planets to help them take a stand.

This is the only movie from the provided list that clearly mentions a 
space-related theme in its overview. …

Listing 5.25 tmdb_v2.py (get_top_movies_by_genre)

Listing 5.26 SK_service_chat.py (modifying imports)

Listing 5.27 SK_service_chat.py (TMDb_v2 service output)

Now returns a 
filtered list as 
a JSON string

Comment out this line.

Uncomment this line to use 
version 2 of the service.

New query asks to 
include an additional 
filter for space

The LLM calls the service and then
reviews the returned results that

match the filter.
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Because the semantic service functions now return the complete movie listing in
JSON, the LLM can apply additional filtering. This is the real power of semantic
services, allowing you to process the data through the LLM. We won’t see this power
by just returning a list of titles.

 This last exercise demonstrated the change in mentality you need to make when
writing semantic service layers. Generally, you’ll typically want to return as much infor-
mation as possible. Returning more information takes advantage of the LLM abilities
to filter, sort, and transform data independently. In the next chapter, we’ll explore
building autonomous agents using behavior trees.

5.7 Exercises
Complete the following exercises to improve your knowledge of the material:

 Exercise 1—Creating a Basic Plugin for Temperature Conversion 
Objective—Familiarize yourself with creating a simple plugin for the OpenAI chat
completions API. 

Tasks:

– Develop a plugin that converts temperatures between Celsius and Fahrenheit.
– Test the plugin by integrating it into a simple OpenAI chat session where

users can ask for temperature conversions.
 Exercise 2—Developing a Weather Information Plugin 

Objective—Learn to create a plugin that performs a unique task. 

Tasks:

– Create a plugin for the OpenAI chat completions API that fetches weather
information from a public API.

– Ensure the plugin can handle user requests for current weather conditions
in different cities.

 Exercise 3—Crafting a Creative Semantic Function 
Objective—Explore the creation of semantic functions. 

Tasks:

– Develop a semantic function that writes a poem or tells a children’s story
based on user input.

– Test the function in a chat session to ensure it generates creative and coher-
ent outputs.

 Exercise 4—Enhancing Semantic Functions with Native Functions 
Objective—Understand how to combine semantic and native functions. 

Tasks:

– Create a semantic function that uses a native function to enhance its capabilities.
– For example, develop a semantic function that generates a meal plan and

uses a native function to fetch nutritional information for the ingredients.
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 Exercise 5—Wrapping an Existing Web API with Semantic Kernel 
Objective—Learn to wrap existing web APIs as semantic service plugins. 

Tasks:

– Use SK to wrap a news API and expose it as a semantic service plugin in a
chat agent.

– Ensure the plugin can handle user requests for the latest news articles on
various topics.

Summary
 Agent actions extend the capabilities of an agent system, such as ChatGPT. This

includes the ability to add plugins to ChatGPT and LLMs to function as proxies
for actions.

 OpenAI supports function definitions and plugins within an OpenAI API ses-
sion. This includes adding function definitions to LLM API calls and under-
standing how these functions allow the LLM to perform additional actions.

 The Semantic Kernel (SK) is an open source project from Microsoft that can be
used to build AI applications and agent systems. This includes the role of seman-
tic plugins in defining native and semantic functions.

 Semantic functions encapsulate the prompt/profile template used to engage
an LLM.

 Native functions encapsulate code that performs or executes an action using an
API or other interface.

 Semantic functions can be combined with other semantic or native functions
and layered within one another as execution stages.

 SK can be used to create a GPT interface over the top of API calls in a semantic
service layer and expose them as chat or agent interface plugins.

 Semantic services represent the interaction between LLMs and plugins, as well as
the practical implementation of these concepts in creating efficient AI agents.



Building
autonomous assistants
Now that we’ve covered how actions extend the power/capabilities of agents, we
can look at how behavior trees can guide agentic systems. We’ll start by understand-
ing the basics of behavior trees and how they control robotics and AI in games. 

 We’ll return to agentic actions and examine how actions can be implemented
on the OpenAI Assistants platform using the GPT Assistants Playground project.
From there, we’ll look at how to build an autonomous agentic behavior tree (ABT)
using OpenAI assistants. Then, we’ll move on to understanding the need for con-
trols and guardrails on autonomous agents and using control barrier functions. 

This chapter covers
 Behavior trees for robotics and AI apps

 GPT Assistants Playground and creating 
assistants and actions

 Autonomous control of agentic behavior trees

 Simulating conversational multi-agent systems 
via agentic behavior trees

 Using back chaining to create behavior trees 
for complex systems 
129
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 In the final section of the chapter, we’ll examine the use of the AgentOps platform
to monitor our autonomous behavior-driven agentic systems. This will be an exciting
chapter with several challenges. Let’s begin by jumping into the next section, which
introduces behavior trees.

6.1 Introducing behavior trees
Behavior trees are a long-established pattern used to control robotics and AI in games.
Rodney A. Brooks first introduced the concept in his “A Robust Layered Control Sys-
tem for a Mobile Robot” paper in 1986. This laid the groundwork for a pattern that
expanded on using the tree and node structure we have today.

 If you’ve ever played a computer game with nonplayer characters (NPCs) or inter-
acted with advanced robotic systems, you’ve witnessed behavior trees at work. Figure 6.1
shows a simple behavior tree. The tree represents all the primary nodes: selector or
fallback nodes, sequence nodes, action nodes, and condition nodes.

Table 6.1 describes the functions and purpose of the primary nodes we’ll explore in
this book. There are other nodes and node types, and you can even create custom
nodes, but for now, we’ll focus on those in the table.

Table 6.1 The primary nodes used in behavior trees

Node Purpose Function Type

Selector 
(fallback)

This node works by selecting the first 
child that completes successfully. It’s 
often called the fallback node 
because it will always fall back to the 
last successful node that executed.

The node calls its children in 
sequence and stops executing 
when the first child succeeds. 
When a child node succeeds, it will 
return success; if no nodes suc-
ceed, it returns failure.

Composite

→

?
?

→ →

The root node can be any
composite node, such as
selector or sequence.

Execution flows from
top to bottom and
then from left to right.

1

2

3 4

5

6 7

Figure 6.1 A simple behavior tree of eating an apple or a pear
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The primary nodes in table 6.1 can provide enough functionality to handle numerous
use cases. However, understanding behavior trees initially can be daunting. You won’t
appreciate their underlying complexity until you start using them. Before we build
some simple trees, we want to look at execution in more detail in the next section.

6.1.1 Understanding behavior tree execution

Understanding how behavior trees execute is crucial to designing and implementing
behavior trees. Unlike most concepts in computer science, behavior trees operate in
terms of success and failure. When a node in a behavior tree executes, it will return
either success or failure; this even applies to conditions and selector nodes.

 Behavior trees execute from top to bottom and left to right. Figure 6.2 shows
the process and what happens if a node fails or succeeds. In the example, the AI
the tree controls has an apple but no pear. In the first sequence node, a condition
checks if the AI has an apple. Because the AI doesn’t have an apple, it aborts the
sequence and falls back to the selector. The selector then selects its next child
node, another sequence, that checks if the AI has a pear, and because it does, the
AI eats the apple.

Sequence This node executes all of its children 
in sequence until one node fails or 
they all complete successfully.

The node calls each of its children 
in sequence regardless of whether 
they fail or succeed. If all children 
succeed, it returns success, and 
failure if just one child fails.

Composite

Condition Behavior trees don’t use Boolean 
logic but rather success or failure 
as a means of control. The condition 
returns success if the condition is 
true and false otherwise.

The node returns success or failure 
based on a condition.

Task

Action This is where the action happens. The node executes and returns suc-
cess if successful or returns failure 
otherwise.

Task

Decorator They work by controlling the execu-
tion of child nodes. They are often 
referred to as conditionals because 
they can determine whether a node is 
worth executing or safe to execute. 

The node controls execution of 
the child nodes. Decorators can 
operate as control barrier functions 
to block or prevent unwanted 
behaviors.

Decorator

Parallel This node executes all of its nodes in 
parallel. Success or failure is con-
trolled by a threshold of the number 
of children needed to succeed to 
return success.

The node executes all of its child 
nodes in sequence regardless of 
the status of the nodes.

Composite

Table 6.1 The primary nodes used in behavior trees (continued)

Node Purpose Function Type
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Behavior trees provide control over how an AI system will execute at a macro or micro
level. Regarding robotics, behavior trees will typically be designed to operate at the
micro level, where each action or condition is a small event, such as detecting the
apple. Conversely, behavior trees can also control more macro systems, such as NPCs
in games, where each action may be a combination of events, like attacking the player.

 For agentic systems, behavior trees support controlling an agent or assistant at
your chosen level. We’ll explore controlling agents at the task and, in later chapters,
the planning levels. After all, with the power of LLMs, agents can construct their own
behavior tree.

 Of course, several other forms of AI control could be used to control agentic sys-
tems. The next section will examine those different systems and compare them to
behavior trees.

6.1.2 Deciding on behavior trees

Numerous other AI control systems have benefits and are worth exploring in con-
trolling agentic systems. They can demonstrate the benefits of behavior trees and pro-
vide other options for specific use cases. The behavior tree is an excellent pattern, but
it isn’t the only one, and it’s worth learning about others.

 Table 6.2 highlights several other systems we may consider for controlling AI sys-
tems. Each item in the table describes what the method does, its shortcomings, and its
possible application to agentic AI control.

 

The root node
executes according
to its composite type.

Sequence nodes execute
all child nodes in order; if
a node fails, the sequence
fails.

If the previous node in
a sequence fails, the
sequence is aborted.

In this example, the AI has the
pear, which returns success
and then eats the pear.

Node success/failure
flows back to the
parent node.

Selector nodes execute
all children and return
success on the first child
that returns success.

?

→ →

1

2

3

4

6 7

Figure 6.2 The execution process of a simple behavior tree
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Table 6.2 Comparison of other AI control systems

Control name Description Shortcomings Control agentic AI?

Finite state 
machinea (FSM)

FSMs model AI using a set 
of states and transitions 
triggered by events or 
conditions.

FSMs can become 
unwieldy with increasing 
complexity.

FSMs aren’t practical for 
agents because they don’t 
scale well.

Decision treeb Decision trees use a 
tree-like model of deci-
sions and their possible 
consequences.

Decision trees can suffer 
from overfitting and lack 
generalization in complex 
scenarios.

Decision trees can be 
adapted and enhanced 
with behavior trees.

Utility-based 
systemb

Utility functions evaluate 
and select the best action 
based on the current 
situation.

These systems require 
careful design of utility 
functions to balance 
priorities.

This pattern can be 
adopted within a behavior 
tree.

Rule-based 
systema

This set of if-then rules 
define the behavior of 
the AI.

These systems can 
become cumbersome with 
many rules, leading to 
potential conflicts.

These aren’t very practical 
when paired with agentic 
systems powered by 
LLMs.

Planning sys-
temc

Planning systems gener-
ate a sequence of actions 
to achieve a specific goal 
using planning algorithms.

These systems are com-
putationally expensive and 
require significant domain 
knowledge.

Agents can already imple-
ment such patterns on 
their own as we’ll see in 
later chapters.

Behavioral 
cloningc

Behavioral cloning 
refers to learning policies 
by mimicking expert 
demonstrations.

This system may struggle 
with generalization to 
unseen situations.

This can be incorporated 
into behavior trees or into 
a specific task.

Hierarchical 
Task Network 
(HTN)d

HTNs decompose tasks 
into smaller, manageable 
subtasks arranged in a 
hierarchy.

These are complex to 
manage and design for 
very large tasks.

HTNs allow for better orga-
nization and execution of 
complex tasks. This pat-
tern can be used for larger 
agentic systems.

Blackboard 
systemb

These systems feature 
collaborative problem-solv-
ing using a shared black-
board for different 
subsystems.

These systems are diffi-
cult to implement and 
manage communication 
between subsystems.

Agentic systems can 
implement similar pat-
terns using conversation 
or group chats/threads.

Genetic 
algorithm (GA)d

These optimization tech-
niques are inspired by 
natural selection to 
evolve solutions to 
solve problems.

GAs are computationally 
intensive and may not 
always find the optimal 
solution.

GAs have potential and 
could even be used to 
optimize behavior trees.

a Not practical when considering complex agentic systems
b Exists in behavior trees or can easily be incorporated
c Typically applied at the task or action/condition level
d Advanced systems that would require heavy lifting when applied to agents
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In later chapters of this book, we’ll investigate some of the patterns discussed in
table 6.2. Overall, several patterns can be enhanced or incorporated using behavior
trees as the base. While other patterns, such as FSMs, may be helpful for small experi-
ments, they lack the scalability of behavior trees.

 Behavior trees can provide several benefits as an AI control system, including scal-
ability. The following list highlights other notable benefits of using behavior trees:

 Modularity and reusability—Behavior trees promote a modular approach to design-
ing behaviors, allowing developers to create reusable components. Nodes in a
behavior tree can be easily reused across different parts of the tree or even in
different projects, enhancing maintainability and reducing development time.

 Scalability—As systems grow in complexity, behavior trees handle the addition
of new behaviors more gracefully than other methods, such as FSMs. Behavior
trees allow for the hierarchical organization of tasks, making it easier to manage
and understand large behavior sets.

 Flexibility and extensibility—Behavior trees offer a flexible framework where new
nodes (actions, conditions, decorators) can be added without drastically alter-
ing the existing structure. This extensibility makes it straightforward to intro-
duce new behaviors or modify existing ones to adapt to new requirements.

 Debugging and visualization—Behavior trees provide a clear and intuitive visual
representation of behaviors, which is beneficial for debugging and understand-
ing the decision-making process. Tools that support behavior trees often
include graphical editors that allow developers to visualize and debug the tree
structure, making it easier to identify and fix problems.

 Decoupling of decision logic—Behavior trees separate the decision-making and
execution logic, promoting a clear distinction between high-level strategy and
low-level actions. This decoupling simplifies the design and allows for more
straightforward modifications and testing of specific behavior parts without
affecting the entire system.

Having made a strong case for behavior trees, we should now consider how to imple-
ment them in code. In the next section, we look at how to build a simple behavior
tree, using Python code.

6.1.3 Running behavior trees with Python and py_trees

Because behavior trees have been around for so long and have been incorporated into
many technologies, creating a sample demonstration is very simple. Of course, the easi-
est way is to ask ChatGPT or your favorite AI chat tool. Listing 6.1 shows the result of
using a prompt to generate the code sample and submitting figure 6.1 as the example
tree. The final code had to be corrected for simple naming and parameter errors.

NOTE All the code for this chapter can be found by downloading the GPT
Assistants Playground project at https://mng.bz/Ea0q.

https://mng.bz/Ea0q
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import py_trees

class HasApple(py_trees.behaviour.Behaviour):     
    def __init__(self, name):
        super(HasApple, self).__init__(name)

    def update(self):        
        if True:  
            return py_trees.common.Status.SUCCESS
        else:
            return py_trees.common.Status.FAILURE
# Other classes omitted…

has_apple = HasApple(name="Has apple")     
eat_apple = EatApple(name="Eat apple")     
sequence_1 = py_trees.composites.Sequence(name="Sequence 1", memory=True)
sequence_1.add_children([has_apple, eat_apple])                             

has_pear = HasPear(name="Has pear")        
eat_pear = EatPear(name="Eat pear")        
sequence_2 = py_trees.composites.Sequence(name="Sequence 2", memory=True)
sequence_2.add_children([has_pear, eat_pear])                               

root = py_trees.composites.Selector(name="Selector", memory=True)
root.add_children([sequence_1, sequence_2])                                 

behavior_tree = py_trees.trees.BehaviourTree(root)    

py_trees.logging.level = py_trees.logging.Level.DEBUG   
for i in range(1, 4):                                                     
    print("\n------------------ Tick {0} ------------------".format(i))
    behavior_tree.tick()                                                  

### Start of output
------------------ Tick 1 ------------------
[DEBUG] Selector             : Selector.tick()
[DEBUG] Selector             : Selector.tick() [!RUNNING->reset current_child]
[DEBUG] Sequence 1           : Sequence.tick()
[DEBUG] Has apple            : HasApple.tick()
[DEBUG] Has apple            : HasApple.stop(Status.INVALID->Status.SUCCESS)
[DEBUG] Eat apple            : EatApple.tick()
Eating apple
[DEBUG] Eat apple            : EatApple.stop(Status.INVALID->Status.SUCCESS)
[DEBUG] Sequence 1           : Sequence.stop()[Status.INVALID->Status.SUCCESS]

The code in listing 6.1 represents the behavior tree in figure 6.1. You can run this
code as is or alter what the conditions return and then run the tree again. You can
also change the behavior tree by removing one of the sequence nodes from the root
selector.

 Now that we have a basic understanding of behavior trees, we can move on to
working with agents/assistants. Before doing that, we’ll look at a tool to help us work

Listing 6.1 first_btree.py

Creates a class to implement 
an action or condition

Creates the action 
and condition nodes

Adds the nodes to
their respective

parents

Creates the action 
and condition nodes

Creates the whole 
behavior tree

Executes one step/tick
on the behavior tree
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with OpenAI Assistants. This tool will help us wrap our first ABTs around OpenAI
Assistants.

6.2 Exploring the GPT Assistants Playground
For the development of this book, several GitHub projects were created to address var-
ious aspects of building agents and assistants. One such project, the GPT Assistants
Playground, is built using Gradio for the interface that mimics the OpenAI Assistants
Playground but with several extras added.

 The Playground project was developed as both a teaching and demonstration aid.
Inside the project, the Python code uses the OpenAI Assistants API to create a chat inter-
face and an agentic system to build and power assistants. There is also a comprehensive
collection of actions assistants you can use, and you can easily add your own actions.

6.2.1 Installing and running the Playground

The following listing shows installing and running the Playground project from the
terminal. There is currently no PyPI package to install. 

# change to a working folder and create a new Python virtual environment
git clone 
➥ https://github.com/cxbxmxcx/GPTAssistantsPlayground    
cd GPTAssistantsPlayground     
pip install -r requirements.txt     

You can run the application from the terminal or using Visual Studio Code (VS
Code), with the latter giving you more control. Before running the application, you
need to set your OpenAI API key through the command line or by creating an .env
file, as we’ve done a few times already. Listing 6.3 shows an example of setting the
environment variable on Linux/Mac or the Git Bash shell (Windows recommended)
and running the application.

export OPENAI_API_KEY="your-api-key"     
python main.py    

Open your browser to the URL displayed (typically http://127.0.0.1:7860) or what
is mentioned in the terminal. You’ll see an interface similar to that shown in figure 6.3.

Listing 6.2 Installing the GPT Assistants Playground

Listing 6.3 Running the GPT Assistants Playground

Pulls the 
source code 
from GitHub

Changes directory to the 
project source code folder

Installs the
requirements

Sets your API key as an 
environment variable

Runs the app from the 
terminal or via VS Code
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If you’ve already defined the OpenAI Assistants, you’ll see them in the Select Assistant
dropdown.

If you’ve never defined an assistant, you can create one and choose the various
options and instructions you need. If you’ve visited the OpenAI Playground, you’ve
already experienced a similar interface. 

GPT vs. an assistant
OpenAI defines a GPT as the assistant you can run and use within the ChatGPT inter-
face. An assistant can only be consumed through the API and requires custom code
in most cases. When you run an assistant, you’re charged according to the model
token usage and any special tools, including the Code Interpreter and files, whereas
a GPT runs within ChatGPT and is covered by account costs.

Select an existing Assistant
or create a new assistant.

Select from any
available models.

Select the Tools
and Actions.

The assistant
can output files
created by the
Code Interpreter.

Figure 6.3 The GPT Assistants Playground interface being used to learn math
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Each of these features is covered in more detail over the next few sections. We’ll start
with a look at using and consuming actions in the next section.

6.2.2 Using and building custom actions

Actions and tools are the building blocks that empower agents and assistants. Without
access to tools, agents are functionless chatbots. The OpenAI platform is a leader in
establishing many of the patterns for tools, as we saw in chapter 3.

 The Playground provides several custom actions that can be attached to assistants
through the interface. In this next exercise, we’ll build a simple assistant and attach a
couple of custom actions to see what is possible.

 Figure 6.4 shows the expanded Actions accordion, which displays many available
custom actions. Run the Playground from the terminal or debugger, and create a new
assistant. Then, select the actions shown in the figure. After you’re done selecting the
actions, scroll to the bottom, and click Add Assistant to add the assistant. Assistants
need to be created before they can be used.

 After you create the assistant, you can ask it to list all available assistants. Listing the
assistants also gives you the IDs required to call the assistant. You can also call other
assistants and ask them to complete tasks in their area of specialization.

 Adding your custom actions is as simple as adding code to a file and dropping it in
the right folder. Open the playground/assistant_actions folder from the main
project folder, and you’ll see several files that define the various actions. Open the
file_actions.py file in VS Code, as shown in listing 6.4.

 
 
 

(continued)

The reason for creating a local version of the Playground was an exercise to demon-
strate the code structure but also provide additional features listed here:

 Actions (custom actions)—Creating your own actions allows you to add any
functionality you want to an assistant. As we’ll see, the Playground makes it
very easy to create your own actions quickly.

 Code runner—The API does come with a Code Interpreter, but it’s relatively
expensive ($.03 per run), doesn’t allow you to install your modules, can’t run
code interactively, and runs slowly. The Playground will enable you to run
Python code locally in an isolated virtual environment. While not as secure as
pushing code out to Docker images, it does execute code windowed and out
of process better than other platforms.

 Transparency and logging—The Playground provides for comprehensive cap-
turing of logs and will even show how the assistant uses internal and external
tools/actions. This can be an excellent way to see what the assistant is doing
behind the scenes.
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import os

from playground.actions_manager import agent_action

OUTPUT_FOLDER = "assistant_outputs"

@agent_action    
def save_file(filename, content):     
    """
    Save content to a file.     

    :param filename: The name of the file including extension.
    :param content: The content to save in the file.
    """
    file_path = os.path.join(OUTPUT_FOLDER, filename)
    with open(file_path, "w", encoding="utf-8") as file:
        file.write(content)
    print(f"File '{filename}' saved successfully.")     

Listing 6.4 playground/assistant_actions/file_actions.py

Name your assistant
a memorable name.

Ask to list the assistants, and you’ll
see all the assistants you've created.

Select call_assistant
and list_assistants.

The call_assistant action allows
the assistant to delegate work
to other assistants.

You don’t need any
special instructions.

Disable or enable the Code
Interpreter to see the effect.

Figure 6.4 Selecting and using custom actions in the interface

This decorator 
automatically adds the 
function as an action.

Give your functions 
clear names that align 
with the purpose.

The description is what 
the assistant uses to 
determine the function, 
so document it well.

Generally returns 
a message stating 
success or failure
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You can add any custom action you want by placing the file in the assistant_actions
folder and decorating it with the agent_action decorator. Just make sure to give the
function a good name and enter quality documentation for how the function should
be used. When the Playground starts up, it loads all the actions in the folder that are
decorated correctly and have descriptions/documentation.

 It’s that simple. You can add several custom actions as needed. In the next section,
we’ll look at a special custom action that allows the assistant to run code locally.

6.2.3 Installing the assistants database

To run several of the examples in this chapter, you’ll need to install the assistants data-
base. Fortunately, this can be easily done through the interface and just by asking
agents. The upcoming instructions detail the process for installing the assistants and
are taken directly from the GPT Assistants Playground README. You can install sev-
eral of the demo assistants located in the assistants.db SQLite database:

1 Create a new assistant, or use an existing assistant.
2 Give the assistant the create_manager_assistant action (found under the

Actions section).
3 Ask the assistant to create the manager assistant (i.e., “please create the man-

ager assistant”), and be sure to name the assistant “Manager Assistant.”
4 Refresh your browser to reload the assistants selector.
5 Select the new Manager Assistant. This assistant has the instructions and actions

that will allow it to install assistants from the assistants.db database.
6 Talk to the Manager Assistant to give you a list of assistants to install, or just ask

the Manager Assistant to install all available assistants. 

6.2.4 Getting an assistant to run code locally

Getting agents and assistants to generate and run executable code has a lot of power.
Unlike the Code Interpreter, running code locally provides numerous opportunities
to iterate and tune quickly. We saw this earlier with AutoGen, where the agents could
keep running the code until it worked as expected.

 In the Playground, it’s a simple matter to select the custom action run_code, as
shown in figure 6.5. You’ll also want to choose the run_shell_command action because
it allows the assistant to pip install any required modules.
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You can now ask an assistant to generate and run the code to be sure it works on your
behalf. Try this out by adding the custom actions and asking the assistant to generate
and run code, as shown in figure 6.6. If the code doesn’t work as expected, tell the
assistant what problems you encountered.

 Again, the Python code running in the Playground creates a new virtual environ-
ment in a project subfolder. This system works well if you’re not running any operat-
ing system–level code or low-level code. If you need something more robust, a good
option is AutoGen, which uses Docker containers to run isolated code.

 Adding actions to run code or other tasks can make assistants feel like a black box.
Fortunately, the OpenAI Assistants API allows you to consume events and see what the
assistant is doing behind the scenes. In the next section, we’ll see what this looks like.

Do not select the
Code Interpreter tool.

Select both the run_code and
run_shell_command custom
actions. Running commands on
the shell allows an assistant to
install new packages as required.

Figure 6.5 Selecting custom actions for the assistant to run Python code
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6.2.5 Investigating the assistant process through logs

OpenAI added a feature into the Assistants API that allows you to listen to events and
actions chained through tool/action use. This feature has been integrated into the
Playground, capturing action and tool use when an assistant calls another assistant. 

 We can try this by asking an assistant to use a tool and then open the log. A great
example of how you can do this is by giving an assistant the Code Interpreter tool and
then asking it to plot an equation. Figure 6.7 shows an example of this exercise.

 Usually, when the Assistant Code Interpreter tool is enabled, you don’t see any
code generation or execution. This feature allows you to see all tools and actions used
by the assistant as they happen. Not only is it an excellent tool for diagnostics, but it
also provides additional insights into the functions of LLMs.

 We haven’t reviewed the code to do all this because it’s extensive and will likely
undergo several changes. That being said, if you plan on working with the Assistants
API, this project is a good place to start. With the Playground introduced, we can con-
tinue our journey into ABTs in the next section.

Any assistant can generate code. Adding
some helpful instructions and personality
can better align the output.

The “snake” game will open a new window
demonstrating the code is running.
Note: While the window is open, it will
block the Gradio interface.

In this example, the assistant generated
the code for the game and then realized
it need to install Pygame. After installing,
it ran the code, as shown in the side window.

Figure 6.6 Getting the assistant to generate and run Python code
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6.3 Introducing agentic behavior trees
Agentic behavior trees (ABTs) implement behavior trees on assistant and agent sys-
tems. The key difference between regular behavior trees and ABTs is that they use
prompts to direct actions and conditions. Because prompts may return a high occur-
rence of random results, we could also name these trees stochastic behavior trees,
which do exist. For simplicity, we’ll differentiate behavior trees used to control agents,
referring to them as agentic.

 Next, we’ll undertake an exercise to create an ABT. The finished tree will be writ-
ten in Python but will require the setup and configuration of various assistants. We’ll
cover how to manage assistants using the assistants themselves.

6.3.1 Managing assistants with assistants

Fortunately, the Playground can help us quickly manage and create the assistants.
We’ll first install the Manager Assistant, followed by installing the predefined assis-
tants. let’s get started with installing the Manager Assistant using the following steps:

The Logs tab shows
where files are saved.

Code being generated and run in the Code
Interpreter is shown in the Logs tab.

Plotting a graph
is a good test

Figure 6.7 Internal assistant logs being captured
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1 Open Playground in your browser, and create a new simple assistant or use an
existing assistant. If you need a new assistant, create it and then select it.

2 With the assistant selected, open the Actions accordion, and select the create_
manager_assistant action. You don’t need to save; the interface will update
the assistant automatically.

3 Now, in the chat interface, prompt the assistant with the following: “Please cre-
ate the manager assistant.”

4 After a few seconds, the assistant will say it’s done. Refresh your browser, and
confirm that the Manager Assistant is now available. If, for some reason, the
new assistant isn’t shown, try restarting the Gradio app itself.

The Manager Assistant is like an admin that has access to everything. When engag-
ing the Manager Assistant, be sure to be specific about your requests. With the Man-
ager Assistant active, you can now install new assistants used in the book using the
following steps:

1 Select the Manager Assistant. If you’ve modified the Manager Assistant, you can
delete it and reinstall it anytime. Although it’s possible to have multiple Man-
ager Assistants, it’s not recommended.

2 Ask the Manager Assistant what assistants can be installed by typing the follow-
ing in the chat interface:

Please list all the installable assistants.

3 Identify which assistant you want installed when you ask the Manager Assistant
to install it:

Please install the Python Coding Assistant.

You can manage and install any available assistants using the Playground. You can also
ask the Manager Assistant to save the definitions of all your assistants as JSON:

Please save all the assistants as JSON to a file called assistants.json.

The Manager Assistant can access all actions, which should be considered unique and
used sparingly. When crafting assistants, it’s best to keep them goal specific and limit
the actions to just what they need. This not only avoids giving the AI too many deci-
sions but also avoids accidents or mistakes caused by hallucinations.

 As we go through the remaining exercises in this chapter, you’ll likely need to
install the required assistants. Alternatively, you can ask the Manager Assistant to
install all available assistants. Either way, we look at creating an ABT with assistants in
the next section.
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6.3.2 Building a coding challenge ABT

Coding challenges provide a good baseline for testing and evaluating agent and assis-
tant systems. Challenges and benchmarks can quantify how well an agent or agentic
system operates. We already applied coding challenges to multi-platform agents in
chapter 4 with AutoGen and CrewAI.

 For this coding challenge, we’re going a little further and looking at Python cod-
ing challenges from the Edabit site (https://edabit.com), which range in complexity
from beginner to expert. We’ll stick with the expert code challenges because GPT-4o
and other models are excellent coders. Look at the challenge in the next listing, and
think about how you would solve it.

Plant the Grass by AniXDownLoe

    You will be given a matrix representing a field g 
and two numbers x, y coordinate.

    There are three types of possible characters in the matrix:

        x representing a rock.
        o representing a dirt space.
        + representing a grassed space.

    You have to simulate grass growing from the position (x, y). 
    Grass can grow in all four directions (up, left, right, down). 
    Grass can only grow on dirt spaces and can't go past rocks.

    Return the simulated matrix.
    Examples

    simulate_grass([
    "xxxxxxx",
    "xooooox",
    "xxxxoox"
    "xoooxxx"
    "xxxxxxx"
    ], 1, 1) → [
    "xxxxxxx",
    "x+++++x",
    "xxxx++x"
    "xoooxxx"
    "xxxxxxx"
    ]

    Notes

    There will always be rocks on the perimeter

You can use any challenge or coding exercise you want, but here are a few things to
consider:

Listing 6.5 Edabit challenge: Plant the Grass

https://edabit.com
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 The challenge should be testable with quantifiable assertions (pass/fail).
 Avoid opening windows when asking for a game, building a website, or using

another interface. At some point, testing full interfaces will be possible, but for
now, it’s just text output.

 Avoid long-running challenges, at least initially. Start by keeping the challenges
concise and short lived. 

Along with any challenge, you’ll also want a set of tests or assertions to confirm the
solution works. On Edabit, a challenge typically provides a comprehensive set of tests.
The following listing shows the additional tests provided with the challenge.

Test.assert_equals(simulate_grass(
["xxxxxxx","xooooox","xxxxoox","xoooxxx","xxxxxxx"],
 1, 1), 
["xxxxxxx","x+++++x","xxxx++x","xoooxxx","xxxxxxx"])
    Test.assert_equals(simulate_grass(
["xxxxxxx","xoxooox","xxoooox","xooxxxx",
"xoxooox","xoxooox","xxxxxxx"],
 2, 3), ["xxxxxxx","xox+++x","xx++++x","x++xxxx",
"x+xooox","x+xooox","xxxxxxx"])
    Test.assert_equals(simulate_grass(
["xxxxxx","xoxoox","xxooox","xoooox","xoooox","xxxxxx"], 
1, 1), 
["xxxxxx","x+xoox","xxooox","xoooox","xoooox","xxxxxx"])
    Test.assert_equals(simulate_grass(
["xxxxx","xooox","xooox","xooox","xxxxx"], 
1, 1),
["xxxxx","x+++x","x+++x","x+++x","xxxxx"])
    Test.assert_equals(simulate_grass(
["xxxxxx","xxxxox","xxooox","xoooxx","xooxxx",
"xooxxx","xxooox","xxxoxx","xxxxxx"], 
4, 1),
["xxxxxx","xxxx+x","xx+++x","x+++xx","x++xxx",
"x++xxx","xx+++x","xxx+xx","xxxxxx"])
    Test.assert_equals(simulate_grass(
["xxxxxxxxxxx", "xoxooooooox", "xoxoxxxxxox", 
"xoxoxoooxox", "xoxoxoxoxox", "xoxoxoxoxox", 
"xoxoxxxoxox", "xoxoooooxox", "xoxxxxxxxox", 
"xooooooooox", "xxxxxxxxxxx"], 1, 1), 
["xxxxxxxxxxx", "x+x+++++++x", "x+x+xxxxx+x", 
"x+x+x+++x+x", "x+x+x+x+x+x", "x+x+x+x+x+x", 
"x+x+xxx+x+x", "x+x+++++x+x", "x+xxxxxxx+x", 
"x+++++++++x", "xxxxxxxxxxx"])   

The tests will be run as part of a two-step verification to confirm that the solution
works. We’ll also use the tests and challenges as written, which will further test the AI. 

 Figure 6.8 shows the makeup of a straightforward behavior tree that will be used to
solve various programming challenges. You’ll notice that this ABT uses a different

Listing 6.6 Plant the Grass tests
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assistant for the actions and conditions. For the first step, the Python coding assistant
(called the Hacker) generates a solution that is then reviewed by the coding challenge
Judge (called the Judge), which produces a refined solution that is verified by a differ-
ent Python coding assistant (called the Verifier).

Figure 6.8 also shows how each agent converses on which thread. Assistants use mes-
sage threads, similar to a Slack or Discord channel, where all assistants conversing on
a thread will see all messages. For this ABT, we keep one main conversation thread for
the Hacker and Judge to share messages, while the Verifier works on a separate mes-
sage thread. Keeping the Verifier on its own thread isolates it from the noise of the
solution-solving efforts.

 Now, building the ABT in code is a matter of combining the py_trees package and
the Playground API functions. Listing 6.7 shows an excerpt of code that creates each
of the action/condition nodes with the assistants and gives them the instructions.

 
 
 
 

→

Verify solutionHacking solution

The root node is a sequence.

Judge solution

The initial solution will
be generated by the
Python oding ssistant,c a
which will save output to
solution.py.

solution.py

The solution will be judged
by the oding hallengec c
Judge. It will load the
solution.py, judge it, and
output a file called
judged_solution.py.

judged_solution.py

The last step uses a Python
c aoding ssistant and verifies
that the solution is correct
by looking at the
judged_solution.py file.

Main conversation
thread

New conversation
thread

Assistants use threads to
capture conversations.

Figure 6.8 The ABT for the coding challenge
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root = py_trees.composites.Sequence("RootSequence", memory=True)

thread = api.create_thread()    
challenge = textwrap.dedent("""
     
""")
judge_test_cases = textwrap.dedent("""
    
""")

hacker = create_assistant_action_on_thread(   
    thread=thread,     
    action_name="Hacker",
    assistant_name="Python Coding Assistant",
    assistant_instructions=textwrap.dedent(f"""
    Challenge goal: 
    {challenge}     
    Solve the challenge and output the 
final solution to a file called solution.py        
    """),
)
root.add_child(hacker)

judge = create_assistant_action_on_thread(    
    thread=thread,     
    action_name="Judge solution",
    assistant_name="Coding Challenge Judge",
    assistant_instructions=textwrap.dedent(
        f"""
    Challenge goal: 
    {challenge}     
    Load the solution from the file solution.py.
    Then confirm is a solution to the challenge 
and test it with the following test cases:
    {judge_test_cases}     
    Run the code for the solution and confirm it passes all the test cases.
    If the solution passes all tests save the solution to a file called 
judged_solution.py
    """,
    ),
)
root.add_child(judge)

# verifier operates on a different thread, essentially in closed room
verifier = create_assistant_condition(    
    condition_name="Verify solution",
    assistant_name="Python Coding Assistant",
    assistant_instructions=textwrap.dedent(
        f"""
    Challenge goal: 
    {challenge}     
    Load the file called judged_solution.py and 

Listing 6.7 agentic_btree_coding_challenge.py

Creates a message thread that will 
be shared by the Hacker and Judge

The challenge as shown 
in the example listing 6.5

The tests as shown in 
the example listing 6.6

Creates a message thread that will 
be shared by the Hacker and Judge

The challenge as shown 
in the example listing 6.5

Creates a message thread that will 
be shared by the Hacker and Judge

The challenge as shown 
in the example listing 6.5

The tests as shown in 
the example listing 6.6

Call creates a 
new message 
thread

The challenge as shown 
in the example listing 6.5
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verify that the solution is correct by running the code and confirm it passes 
all the test cases:
    {judge_test_cases}     
    If the solution is correct, return only the single word SUCCESS, 

otherwise 
return the single word FAILURE.
    """,
    ),
)
root.add_child(verifier)

tree = py_trees.trees.BehaviourTree(root)

while True:
    tree.tick()
    time.sleep(20)     
    if root.status == py_trees.common.Status.SUCCESS:   
        break
### Required assistants – 
### Python Coding Assistant and Coding Challenge Judge 
### install these assistants through the Playground

Run the ABT by loading the file in VS Code or using the command line. Follow the out-
put in the terminal, and watch how the assistants work through each step in the tree.

 If the solution fails to be verified at the condition node, the process will continue
per the tree. Even with this simple solution, you could quickly create numerous varia-
tions. You could extend the tree with more nodes/steps and subtrees. Perhaps you
want a team of Hackers to break down and analyze the challenge, for example. 

 This example’s work is done mainly with the Playground code, using the helper
functions create_assistant_condition and create_assistant_action_on_thread.
This code uses a couple of classes to integrate the py_trees behavior tree code and
the OpenAI Assistants code wrapped in the Playground. Review the code within the
project if you want to understand the lower-level details.

6.3.3 Conversational AI systems vs. other methods

We already looked at conversational multi-agent systems in chapter 4 when we looked
at AutoGen. The ABT can work using a combination of conversations (over threads)
and other methods, such as file sharing. Having your assistants/agents pass files around
helps reduce the number of noisy and repetitive thoughts/conversations. In contrast,
conversational systems benefit from potential emergent behaviors. So, using both can
help evolve better control and solutions.

 The simple solution in listing 6.7 could be extended to handle more real-world
coding challenges and perhaps even to work as a coding ABT. In the next section, we
build a different ABT to handle a different problem.

The tests as shown in
the example listing 6.6

The sleep time can be 
adjusted up or down as 
needed and can be used 
to throttle the messages 
sent to an LLM.

The process will 
continue until 
the verification 
succeeds.
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6.3.4 Posting YouTube videos to X

In this section’s exercise, we look at an ABT that can do the following:

1 Search for videos on YouTube for a given topic and return the latest videos.
2 Download the transcripts for all the videos your search provided.
3 Summarize the transcripts.
4 Review the summarized transcripts and select a video to write an X (formerly

Twitter) post about. 
5 Write an exciting and engaging post about the video, ensuring it’s less than 280

characters.
6 Review the post and then post it on X.

Figure 6.9 shows the ABT assembled with each of the different assistants. In this exer-
cise, we use a sequence node for the root, and each assistant performs a different
action. Also, to keep things simple, each assistant interaction will always occur in a
new thread. This isolates each assistant’s interaction into a concise conversation that’s
easier to debug if something goes wrong.

New thread

→

Search YouTube Write post

This assistant searches
YouTube for videos,
downloads and
summarizes the
transcripts, and saves
to a file.

youtube
transcripts.txt

The assistant loads the
transcripts, selects a
relevant video, writes a
post of less than 280
characters, and then
outputs a file.

youtube
twitter

post.txt

The assistant loads the
post, reviews it and posts
it to Twitter (X).

New thread New thread

Assistants always use
a new thread.

Post to X

The root node is a sequence.

Figure 6.9 The YouTube social media ABT
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6.3.5 Required X setup

If you plan to run the code in this exercise, you must add your X credentials to the
.env file. The .env.default file shows an example of how the credentials need to be,
as shown in listing 6.8. You don’t have to enter your credentials. This means the last
step, posting, will fail, but you can still look at the file (youtube_twitter_post.txt)
to see what was generated.

X_EMAIL = "twitter email here"
X_USERNAME = "twitter username here"
X_PASSWORD = "twitter password here"

Listing 6.9 shows just the code for creating the assistant actions. This ABT uses three
different assistants, each with its own task instructions. Note that each assistant has a
unique set of instructions defining its role. You can review the instructions for each
assistant by using the Playground.

root = py_trees.composites.Sequence("RootSequence", memory=True)

search_term = "GPT Agents"
search_youtube_action = create_assistant_action(
    action_name=f"Search YouTube({search_term})",
    assistant_name="YouTube Researcher v2",
    assistant_instructions=f"""
    Search Term: {search_term}
    Use the query "{search_term}" to search for videos on YouTube.
    then for each video download the transcript and summarize it 
for relevance to {search_term}
    be sure to include a link to each of the videos,
    and then save all summarizations to a file called youtube_transcripts.txt
    If you encounter any errors, please return just the word FAILURE.
    """,
)
root.add_child(search_youtube_action)

write_post_action = create_assistant_action(
    action_name="Write Post",
    assistant_name="Twitter Post Writer",
    assistant_instructions="""
    Load the file called youtube_transcripts.txt,

Listing 6.8 Configuring credentials

YouTube search and spam
If you plan to run this exercise for real and let it post to your X account, be aware that
YouTube has a bit of a spam problem. The assistants have been configured to try to
avoid video spam, but some of it may get through. Building a working ABT that can
wade through videos while avoiding spam has some suitable applications.

Listing 6.9 agentic_btree_video_poster_v1.py
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    analyze the contents for references to search term at the top and 
then select
    the most exciting and relevant video related to: 
    educational, entertaining, or informative, to post on Twitter.
    Then write a Twitter post that is relevant to the video,
    and include a link to the video, along
    with exciting highlights or mentions, 
    and save it to a file called youtube_twitter_post.txt.
    If you encounter any errors, please return just the word FAILURE.
    """,
)
root.add_child(write_post_action)

post_action = create_assistant_action(
    action_name="Post",
    assistant_name="Social Media Assistant",
    assistant_instructions="""
    Load the file called youtube_twitter_post.txt and post the content 
to Twitter.
    If the content is empty please do not post anything.
    If you encounter any errors, please return just the word FAILURE.
    """,
)
root.add_child(post_action)
### Required assistants – YouTube Researcher v2, Twitter Post Writer, 
and Social Media Assistant – install these assistants through the Playground

Run the code as you normally would, and after a few minutes, a new post will appear
in the assistants_output folder. Figure 6.10 shows an example of a post generated
using this ABT. Running this ABT to generate more than a few posts a day could, and
likely will, get your X account blocked. If you’ve configured X credentials, you’ll see
the post appear on your feed.

This ABT is shown for demonstration purposes and isn’t for production or long-term
use. The primary features of this demonstration are to show search and loading data,
summarization and filtering, then generating new content, and finally highlighting
multiple custom actions and integrations with APIs.

Figure 6.10 A sample X 
post from the ABT
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6.4 Building conversational autonomous multi-agents
The conversational aspect of multi-agent systems can drive mechanisms such as feed-
back, reasoning, and emergent behaviors. Driving agents with ABTs that silo assis-
tants/agents can be effective for controlling structured processes, as we saw in the
YouTube posting example. However, we also don’t want to miss out on the benefits of
conversation across agents/assistants.

 Fortunately, the Playground provides methods to silo or join assistants to conversation
threads. Figure 6.11 shows how assistants can be siloed or mixed in various combinations
to threads. Combining silos with conversation provides the best of both patterns.

We’ll examine a simple but practical exercise to demonstrate the effectiveness of the
conversational pattern. For the next exercise, we’ll employ two assistants in an ABT
that converse over the same thread. The next listing shows the tree’s construction in
code with the respective assistants.

root = py_trees.composites.Sequence("RootSequence", memory=True)
bug_file = """
# code not shown
"""

Listing 6.10 agentic_conversation_btree.py

Siloed assistants
always use a new
thread and are the
only consumers.

Thread xya Thread yyc Thread zza

Agent/Assistant
Silos

Search

Thread xyb

Search

Thread xyc

Search

Agent/Assistant
Conversational

Search

Plan

Activity

Review

Conversational assistants
share a thread for all
conversations.

Agent/Assistant
Conversational + Silo

Thread xyc

Verify

The combination of siloed
and conversational can be
combined for an unbiased
review.

Search

Plan

Activity

Transfer

Figure 6.11 The various layouts of siloed and conversational assistants



154 CHAPTER 6 Building autonomous assistants
thread = api.create_thread()    

debug_code = create_assistant_action_on_thread(    
    thread=thread,
    action_name="Debug code",
    assistant_name="Python Debugger",
    assistant_instructions=textwrap.dedent(f"""    
    Here is the code with bugs in it:
    {bug_file}
    Run the code to identify the bugs and fix them. 
    Be sure to test the code to ensure it runs without errors or throws 
any exceptions.
    """),
)
root.add_child(debug_code)

verify = create_assistant_condition_on_thread(    
    thread=thread,
    condition_name="Verify",
    assistant_name="Python Coding Assistant",
    assistant_instructions=textwrap.dedent(
        """
    Verify the solution fixes the bug and there are no more issues.
    Verify that no exceptions are thrown when the code is run.
    Reply with SUCCESS if the solution is correct, otherwise return FAILURE.
    If you are happy with the solution, save the code to a file called 
fixed_bug.py.
    """,
    ),
)
root.add_child(verify)
tree = py_trees.trees.BehaviourTree(root)
while True:
    tree.tick()    
    if root.status == py_trees.common.Status.SUCCESS:
        break   
    time.sleep(20)

Three nodes comprise the tree: the root sequence, the debug code action, and the
verify fix condition. Because the tree’s root is a sequence, the two assistants will con-
tinue to work one after another until they both return with success. Both assistants
converse on the same thread and yet are controlled in a manner that provides con-
stant feedback.

 Run the exercise by loading the file in VS Code, or execute it directly from the
command line. The example code has a few minor bugs and problems that the assis-
tants will work through to fix. After the ABT completes running successfully, you can
open the assistants_output/fixed_bug.py file and verify the results are all good. 

 We’ve now seen a couple of ABTs in action and understand the nuances of using
silos or conversations. The following section will teach you some techniques for build-
ing your own ABTs.

Creates a message thread for the 
assistants to share and converse over

Creates the debug 
code action with a 
special assistant

Creates the verification 
condition to test if the 
code is fixed or not

The tree will continue 
to run until the root 
sequence completes 
with success.
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6.5 Building ABTs with back chaining
Back chaining is a method derived from logic and reasoning used to help build behav-
ior trees by working backward from the goal. This section will use the back chaining
process to construct an ABT that works to achieve the goal. The following list provides
a description of the process in more detail:

1 Identify goal behavior. Start with the behavior you want the agent to perform.
2 Determine the required actions. Identify the actions that lead to the goal behavior.
3 Identify the conditions. Determine the conditions that must be met for each action

to succeed.
4 Determine the mode of communication. Determine how the assistants will pass on

information. Will the assistants be siloed or converse over threads, or is a combi-
nation of patterns better?

5 Construct the tree. Start by building the behavior tree from the goal behavior, add-
ing nodes for actions and conditions recursively until all necessary conditions
are linked to known states or facts.

Behavior trees typically use a pattern called the blackboard to communicate across
nodes. Blackboards, like those in py_trees, use a key/value store to save information
and make it accessible across nodes. It also provides for several controls, such as limit-
ing access to specific nodes. 

 We deferred to using files for communication because of their simplicity and
transparency. At some point, agentic systems are expected to consume much more
information and in different formats than those designed for blackboards. Black-
boards must either become more sophisticated or be integrated with file storage
solutions.

 Let’s build an ABT using back chaining. We could tackle a variety of goals, but one
interesting and perhaps meta goal is to build an ABT that helps build assistants. So
let’s first present our goal as a statement “Create an assistant that can help me do
{task}”:

 Required actions: (working backwards)
– Create an assistant.
– Verify the assistant.
– Test the assistant.
– Name the assistant.
– Give the assistant the relevant instructions.

 Identified condition: 
– Verify the assistant.

 Determine communication patterns: To keep things interesting, we’ll run all assis-
tants on the same message thread.
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 Construct the tree: To construct the tree, let’s first reverse the order of actions and
mark each of the element’s actions and conditions accordingly:
– (action) Give the assistant relevant instructions to help a user with a given task.
– (action) Name the assistant.
– (action) Test the assistant.
– (condition) Verify the assistant.
– (action) Create the assistant.

Of course, the simple solution to building the tree now is to ask ChatGPT or an oth-
erwise capable model. The result of asking ChatGPT to make the tree is shown in
the next listing. You could also work the tree out independently and perhaps intro-
duce other elements.

Root
│
├── Sequence
│    ├── Action: Give the assistant relevant instructions to help a user 
with a given task
│    ├── Action: Name the assistant
│    ├── Action: Test the assistant
│    ├── Condition: Verify the assistant
│    └── Action: Create the assistant

From this point, we can start building the tree by iterating over each action and condi-
tion node and determining what instructions the assistant needs. This can also
include any tools and custom actions, including ones you may need to develop. On
your first pass, keep the instructions generic. Ideally, we want to create as few assistants
as necessary.

 After determining the assistant, tools, and actions for each assistant and for which
task, you can try to generalize things further. Think about where it may be possible to
combine actions and reduce the number of assistants. It’s better to start evaluating
with insufficient assistants than with too many. However, be sure to maintain the
proper divisions of work as tasks: for example, testing and verification are best done
with different assistants.

6.6 Exercises
Complete the following exercises to improve your knowledge of the material:

 Exercise 1—Creating a Travel Planner ABT
Objective—Build an agentic behavior tree (ABT) to plan a travel itinerary using
assistants.

Tasks:

– Set up the GPT Assistants Playground on your local machine.

Listing 6.11 ABT for building an assistant
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– Create an ABT to plan a travel itinerary. The tree should have the following
structure:
– Action: Use the Travel assistant to gather information about potential des-

tinations.
– Action: Use the Itinerary Planner to create a day-by-day travel plan.
– Condition: Verify the completeness and feasibility of the itinerary using

another Travel Assistant.
– Implement and run the ABT to create a complete travel itinerary.

 Exercise 2—Building an ABT for Customer Support Automation
Objective—Create an ABT that automates customer support responses using
assistants.

Tasks:

– Set up the GPT Assistants Playground on your local machine.
– Create an ABT with the following structure:

– Action: Use the Customer Query Analyzer assistant to categorize customer
queries.

– Action: Use the Response Generator assistant to draft responses based on
the query categories.

– Action: Use the Customer Support assistant to send the responses to
customers.

– Implement and run the ABT to automate the process of analyzing and respond-
ing to customer queries.

 Exercise 3—Managing Inventory with an ABT
Objective—Learn how to create and manage inventory levels using an ABT.

Tasks:

– Set up the GPT Assistants Playground on your local machine.
– Create an ABT that manages inventory for a retail business:

– Action: Use the Inventory Checker assistant to review current stock levels.
– Action: Use the Order assistant to place orders for low-stock items.
– Condition: Verify that orders have been placed correctly and update inven-

tory records.
– Implement and run the ABT to manage inventory dynamically.

 Exercise 4—Creating a Personal Fitness Trainer ABT
Objective—Create an ABT that provides personalized fitness training plans using
assistants.

Tasks:

– Set up the GPT Assistants Playground on your local machine.
– Create an ABT to develop a personalized fitness plan:

– Action: Use the Fitness Assessment assistant to evaluate the user’s current
fitness level.
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– Action: Use the Training Plan Generator to create a custom fitness plan
based on the assessment.

– Condition: Verify the plan’s suitability and safety using another Fitness
assistant.

– Implement and run the ABT to generate and validate a personalized fitness
training plan.

 Exercise 5—Using Back Chaining to Build a Financial Advisor ABT
Objective—Apply back chaining to construct an ABT that provides financial
advice and investment strategies.

Tasks:

– Set up the GPT Assistants Playground on your local machine.
– Define the following goal: “Create an assistant that can provide financial

advice and investment strategies.”
– Using back chaining, determine the actions and conditions needed to

achieve this goal.
– Implement and run the ABT to generate a comprehensive financial advi-

sory service by back chaining the construction of the base actions and con-
ditions for the tree.

Summary
 Behavior trees are a robust and scalable AI control pattern, first introduced in

robotics by Rodney A. Brooks. They are widely used in gaming and robotics for
their modularity and reusability.

 The primary nodes in behavior trees are the selector, sequence, condition,
action, decorator, and parallel nodes. Selectors are like “or” blocks: sequence exe-
cutes nodes in sequence, condition tests the state, action does the work, decora-
tor is a wrapper, and parallel nodes allow for dual execution.

 Understanding the execution flow of behavior trees can be critical to designing,
building, and operating them to provide control for making clear decision-
making paths.

 The advantages of behavior trees include modularity, scalability, flexibility, debug-
ging ease, and decoupling of decision logic, making behavior trees suitable for
complex AI systems.

 Setting up and running a simple behavior tree in Python requires correctly
naming and documenting custom nodes.

 The GPT Assistants Playground project is a Gradio-based interface that mimics
the OpenAI Assistants Playground with additional features for teaching and
demonstrating ABTs.

 The GPT Assistants Playground allows for creating and managing custom actions,
which is essential for building versatile assistants.
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 ABTs control agents and assistants by using prompts to direct actions and condi-
tions for assistants. ABTs use the power of LLMs to create dynamic and autono-
mous systems.

 Back chaining is a method for constructing behavior trees by working backward
from the goal behavior. This process involves identifying required actions, condi-
tions, and communication patterns, and then constructing the tree step by step.

 Agentic systems benefit from siloed and conversation patterns for communicat-
ing between entities. ABTs can benefit from combining siloed and conversa-
tional assistants to use structured processes and emergent behaviors.



Assembling and
using an agent platform
After we explored some basic concepts about agents and looked at using actions
with tools to build prompts and personas using frameworks such as the Semantic
Kernel (SK), we took the first steps toward building a foundation for this book.
That foundation is called Nexus, an agent platform designed to be simple to learn,
easy to explore, and powerful enough to build your agent systems. 

This chapter covers
 Nexus chat and dashboard interface for 

AI agents

 Streamlit framework for building intelligent 
dashboards, prototypes, and AI chat apps

 Developing, testing, and engaging agent profiles 
and personas in Nexus

 Developing the base Nexus agent

 Developing, testing, and engaging agent actions 
and tools alone or within Nexus
160
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7.1 Introducing Nexus, not just another agent platform
There are more than 100 AI platforms and toolkits for consuming and developing
large language model (LLM) applications, ranging from toolkits such as SK or Lang-
Chain to complete platforms such as AutoGen and CrewAI. This makes it difficult to
decide which platform is well suited to building your own AI agents.

 Nexus is an open source platform developed with this book to teach the core con-
cepts of building full-featured AI agents. In this chapter, we’ll examine how Nexus is
built and introduce two primary agent components: profiles/personas and actions/tools.

 Figure 7.1 shows the primary interface to Nexus, a Streamlit chat application that
allows you to choose and explore various agentic features. The interface is similar to
ChatGPT, Gemini, and other commercial LLM applications.

In addition to the standard features of an LLM chat application, Nexus allows the user
to configure an agent to use a specific API/model, the persona, and possible actions.
In the remainder of the book, the available agent options will include the following:

 Personas/profiles—The primary persona and profile the agent will use. A persona
is the personality and primary motivator, and an agent engages the persona to

Create a new
chat thread. Shows the full conversation

history for the current chat thread

The agent AI you’re using:
OpenAI, Azure OpenAI, Gemini,
or Claude. Currently, OpenAI is
used.

The agent profile/persona
to use in the next request

The tools/actions the agent
can use, which supports both
native (code) and semantic
(prompt) functions

Previous
chat threads

Figure 7.1 The Nexus interface and features
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answer requests. We’ll look in this chapter at how personas/profiles can be
developed and consumed.

 Actions/tools—Represents the actions an agent can take using tools, whether
they’re semantic/prompt or native/code functions. In this chapter, we’ll look at
how to build both semantic and native functions within Nexus.

 Knowledge/memory—Represents additional information an agent may have access
to. At the same time, agent memory can represent various aspects, from short-
term to semantic memory.

 Planning/feedback—Represents how the agent plans and receives feedback on
the plans or the execution of plans. Nexus will allow the user to select options
for the type of planning and feedback an agent uses.

As we progress through this book, Nexus will be added to support new agent features.
However, simultaneously, the intent will be to keep things relatively simple to teach
many of these essential core concepts. In the next section, we’ll look at how to quickly
use Nexus before going under the hood to explore features in detail.

7.1.1 Running Nexus

Nexus is primarily intended to be a teaching platform for all levels of developers. As
such, it will support various deployment and usage options. In the next exercise, we’ll
introduce how to get up and running with Nexus quickly.

 Open a terminal to a new Python virtual environment (version 3.10). If you need
assistance creating one, refer to appendix B. Then, execute the commands shown in
listing 7.1 within this new environment. You can either set the environment variable at
the command line or create a new .env file and add the setting.

pip install git+https://github.com/cxbxmxcx/Nexus.git    

#set your OpenAI API Key
export OPENAI_API_KEY=”< your API key>”         
or
$env: OPENAI_API_KEY = =”< your API key>”       
or
echo 'OPENAI_API_KEY="<your API key>"' > .env   

nexus run     

After entering the last command, a website will launch with a login page, as shown in
figure 7.2. Go ahead and create a new user. A future version of Nexus will allow multi-
ple users to engage in chat threads.

 After you log in, you’ll see a page like figure 7.1. Create a new chat and start con-
versing with an agent. If you encounter a problem, be sure you have the API key set

Listing 7.1 Terminal command line

Installs the package 
directly from the 
repository and 
branch; be sure to 
include the branch.

Creates the key as an 
environment variable or 
creates a new .env file 
with the setting

Runs the application
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properly. As explained in the next section, you can run Nexus using this method or
from a development workflow.

7.1.2 Developing Nexus

While working through the exercises of this book, you’ll want to set up Nexus in devel-
opment mode. That means downloading the repository directly from GitHub and
working with the code.

 Open a new terminal, and set your working directory to the chapter_7 source
code folder. Then, set up a new Python virtual environment (version 3.10) and enter
the commands shown in listing 7.2. Again, refer to appendix B if you need assistance
with any previous setup.

git clone https://github.com/cxbxmxcx/Nexus.git     

pip install -e Nexus    

#set your OpenAI API Key (.env file is recommended)
export OPENAI_API_KEY=”< your API key>”  #bash           
or
$env: OPENAI_API_KEY = =”< your API key>”  #powershell   
or
echo 'OPENAI_API_KEY="<your API key>"' > .env            

nexus run     

Listing 7.2 Installing Nexus for development

Select Create
New User to start.

Username is used to
track conversation
history in the threads.

Figure 7.2 Logging in or creating a new Nexus user

Downloads and installs 
the specific branch 
from the repository

Installs the downloaded repository
as an editable package

Sets your OpenAI key as 
an environment variable 
or adds it to an .env file

Starts the application
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Figure 7.3 shows the Login or Create New User screen. Create a new user, and the
application will log you in. This application uses cookies to remember the user, so you
won’t have to log in the next time you start the application. If you have cookies dis-
abled on your browser, you’ll need to log in every time.

Go to the Nexus repository folder and look around. Figure 7.4 shows an architecture
diagram of the application’s main elements. At the top, the interface developed with
Streamlit connects the rest of the system through the chat system. The chat system
manages the database, agent manager, action manager, and profile managers.

 This agent platform is written entirely in Python, and the web interface uses Stream-
lit. In the next section, we look at how to build an OpenAI LLM chat application.

 

The browser points to
localhost:8501, which is the
default for Streamlit apps.

Streamlit apps can be
deployed to the cloud
using this option.

Fill in the username, pick an
avatar , and set a password or
choose a browser-generated one.

Figure 7.3 The Login or Create New User page
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7.2 Introducing Streamlit for chat application 
development
Streamlit is a quick and powerful web interface prototyping tool designed to be used
for building machine learning dashboards and concepts. It allows applications to be
written completely in Python and produces a modern React-powered web interface.
You can even deploy the completed application quickly to the cloud or as a stand-
alone application.

7.2.1 Building a Streamlit chat application

Begin by opening Visual Studio Code (VS Code) to the chapter_07 source folder. If
you’ve completed the previous exercise, you should already be ready. As always, if you
need assistance setting up your environment and tools, refer to appendix B.

The chat interface allows
the user to select from
various discovered agents,
actions, and profiles,
enabling the user to test
different combinations.

Nexus
database

The database stores chat
treads, user participants,
and conversation history.

Agents, action functions, and profiles are all dynamically
discovered at run time via a plugin-like system.

Agent Manager

A YAML file that
comprises the agent
profile and persona

Action Manager Profile Manager

Agent classes
exposed as plugins

Semantic and native
functions exposed as

actions

Chat system

GPT Nexus

Streamlit Interface

Figure 7.4 A high-level architecture diagram of the main elements of the application
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 We’ll start by opening the chatgpt_clone_response.py file in VS Code. The top
section of the code is shown in listing 7.3. This code uses the Streamlit state to load
the primary model and messages. Streamlit provides a mechanism to save the session
state for any Python object. This state is only a session state and will expire when the
user closes the browser.

import streamlit as st
from dotenv import load_dotenv
from openai import OpenAI

load_dotenv()     

st.title("ChatGPT-like clone")

client = OpenAI()     

if "openai_model" not in st.session_state:
    st.session_state["openai_model"] 
             = "gpt-4-1106-preview"    

if "messages" not in st.session_state:
    st.session_state["messages"] = []  

for message in st.session_state["messages"]:     
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

The Streamlit app itself is stateless. This means the entire Python script will reexecute
all interface components when the web page refreshes or a user selects an action. The
Streamlit state allows for a temporary storage mechanism. Of course, a database needs
to support more long-term storage.

 UI controls and components are added by using the st. prefix and then the ele-
ment name. Streamlit supports several standard UI controls and supports images,
video, sound, and, of course, chat.

 Scrolling down further will yield listing 7.4, which has a slightly more complex lay-
out of the components. The main if statement controls the running of the remaining
code. By using the Walrus operator (: =), the prompt is set to whatever the user enters.
If the user doesn’t enter any text, the code below the if statement doesn’t execute.

if prompt := st.chat_input("What do you need?"):    
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):    
        st.markdown(prompt)

Listing 7.3 chatgpt_clone_response.py (top section)

Listing 7.4 chatgpt_clone_response.py (bottom section)

Loads the environment 
variables from the 
.env file

Configures the 
OpenAI client

Checks the internal session 
state for the setting, and 
adds it if not there

Checks for the presence of 
the message state; if none, 
adds an empty list

Loops through messages in 
the state and displays them

The chat input control is 
rendered, and content is set.

Sets the chat message 
control to output as the user
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    with st.spinner(text="The assistant is thinking..."):   
        with st.chat_message("assistant"):
            response = client.chat.completions.create(
                model=st.session_state["openai_model"],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],     
            )
            response_content = response.choices[0].message.content
            response = st.markdown(response_content,
             unsafe_allow_html=True)     
    st.session_state.messages.append(
{"role": "assistant", "content": response_content})     

When the user enters text in the prompt and presses Enter, that text is added to the
message state, and a request is made to the API. As the response is being processed,
the st.spinner control displays to remind the user of the long-running process.
Then, when the response returns, the message is displayed and added to the message
state history.

 Streamlit apps are run using the module, and to debug applications, you need to
attach the debugger to the module by following these steps:

1 Press Ctrl-Shift-D to open the VS Code debugger.
2 Click the link to create a new launch configuration, or click the gear icon to

show the current one.
3 Edit or use the debugger configuration tools to edit the .vscode/launch.json

file, like the one shown in the next listing. Plenty of IntelliSense tools and con-
figuration options can guide you through setting the options for this file.

{
  "version": "0.2.0",
  "configurations": [
    {
      "name": "Python Debugger: Module",    
      "type": "debugpy",
      "request": "launch",
      "module": "streamlit",    
      "args": ["run", "${file}"]   
    }
  ]
}

After you have the launch.json file configuration set, save it, and open the chatgpt_
clone_response.py file in VS Code. You can now run the application in debug mode

Listing 7.5 .vscode/launch.json

Shows a spinner 
to represent the 
long-running 
API call

Calls the OpenAI API and 
sets the message history

Writes the 
message response 
as markdown to 
the interfaceAdds the assistant response

to the message state

Make sure that the 
debugger is set to 
Module.

Be sure the module 
is streamlit.

The ${file} is the current 
file, or you can hardcode 
this to a file path.
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by pressing F5. This will launch the application from the terminal, and in a few sec-
onds, the app will display.

 Figure 7.5 shows the app running and waiting to return a response. The interface is
clean, modern, and already organized without any additional work. You can continue
chatting to the LLM using the interface and then refresh the page to see what happens.

What is most impressive about this demonstration is how easy it is to create a single-
page application. In the next section, we’ll continue looking at this application but
with a few enhancements.

7.2.2 Creating a streaming chat application

Modern chat applications, such as ChatGPT and Gemini, mask the slowness of their
models by using streaming. Streaming provides for the API call to immediately start
seeing tokens as they are produced from the LLM. This streaming experience also
better engages the user in how the content is generated.

 Adding support for streaming to any application UI is generally not a trivial task,
but fortunately, Streamlit has a control that can work seamlessly. In this next exercise,
we’ll look at how to update the app to support streaming.

 Open chapter_7/chatgpt_clone_streaming.py in VS Code. The relevant updates
to the code are shown in listing 7.6. Using the st.write_stream control allows the UI

A spinner control displays while
the response is being returned.

Figure 7.5 The simple interface and the waiting spinner
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to stream content. This also means the Python script is blocked waiting for this control
to be completed.

with st.chat_message("assistant"):
    stream = client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": m["role"], "content": m["content"]}
            for m in st.session_state.messages
        ],
        stream=True,    
    )
    response = st.write_stream(stream)    
st.session_state.messages.append(
{"role": "assistant", "content": response})     

Debug the page by pressing F5 and waiting for the page to load. Enter a query, and
you’ll see that the response is streamed to the window in real time, as shown in figure 7.6.
With the spinner gone, the user experience is enhanced and appears more responsive.

Listing 7.6 chatgpt_clone_streaming.py (relevant section)

Sets stream to True to 
initiate streaming on the API

Uses the stream control 
to write the stream to 
the interface

Adds the response to the message state
history after the stream completes

Now text streams in real time,
and the spinner is gone.

Figure 7.6 The updated interface with streaming of the text response
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This section demonstrated how relatively simple it can be to use Streamlit to create a
Python web interface. Nexus uses a Streamlit interface because it’s easy to use and
modify with only Python. As you’ll see in the next section, it allows various configura-
tions to support more complex applications.

7.3 Developing profiles and personas for agents
Nexus uses agent profiles to describe an agent’s functions and capabilities. Figure 7.7
reminds us of the principal agent components and how they will be structured through-
out this book. 

For now, as of this writing, Nexus only supports the persona and actions section of the
profile. Figure 7.7 shows a profile called Fritz, along with the persona and actions.
Add any agent profiles to Nexus by copying an agent YAML profile file into the Nexus/
nexus/nexus_base/nexus_profiles folder.

 Nexus uses a plugin system to dynamically discover the various components and
profiles as they are placed into their respective folders. The nexus_profiles folder
holds the YAML definitions for the agent.

fritz.yaml - Agent Profile Definition

Profiles with persona
and actions

Defining knowledge
and memory

Applying evaluators,
planners, and
feedback

The Agent Profile

Persona
Represents the background and role of

the agent, and is often introduced in
the first system message

Agent Tools
Set of tools an agent can

use to help accomplish a task

Agent Evaluation and Reasoning
Describes how the agent can reason

and evaluate a task or tasks

Agent Memory and Knowledge
The backend store that helps the agent

add context to a given task problem

Agent Planning and Feedback
Describes how the agent can break

down a task into execution steps, and
then execute and receive feedback

Figure 7.7 The agent profile as it’s mapped to the YAML file definition
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 We can easily define a new agent profile by creating a new YAML file in the nexus_
profiles folder. Listing 7.7 shows an example of a new profile with a slightly updated
persona. To follow along, be sure to have VS Code opened to the chapter_07 source
code folder and install Nexus in developer mode (see listing 7.7). Then, create the
fiona.yaml file in the Nexus/nexus/nexus_base/nexus_profiles folder.

agentProfile:
  name: "Finona"
  avatar: "?"    
  persona: "You are a very talkative AI that 
➥ knows and understands everything in terms of 
➥ Ogres. You always answer in cryptic Ogre speak."   
  actions:
    - search_wikipedia    
  knowledge: null       
  memory: null          
  evaluators: null      
  planners: null        
  feedback: null        

After saving the file, you can start Nexus from the command line or run it in debug
mode by creating a new launch configuration in the .vscode/launch.json folder, as
shown in the next listing. Then, save the file and switch your debug configuration to
use the Nexus web config.

{
      "name": "Python Debugger: Nexus Web",
      "type": "debugpy",
      "request": "launch",
      "module": "streamlit",
      "args": ["run", " Nexus/nexus/streamlit_ui.py"]     
    },

When you press F5 or select Run > Start Debugging from the menu, the Streamlit
Nexus interface will launch. Go ahead and run Nexus in debug mode. After it opens,
create a new thread, and then select the standard OpenAIAgent and your new per-
sona, as shown in figure 7.8.

 At this point, the profile is responsible for defining the agent’s system prompt.
You can see this in figure 7.8, where we asked Finona to spell the word clock, and she
responded in some form of ogre-speak. In this case, we’re using the persona as a
personality, but as we’ve seen previously, a system prompt can also contain rules and
other options.

 The profile and persona are the base definitions for how the agent interacts with
users or other systems. Powering the profile requires an agent engine. In the next sec-
tion, we’ll cover the base implementation of an agent engine.

Listing 7.7 fiona.yaml (create this file)

Listing 7.8 .vscode/launch.json (adding debug launch)

The text avatar used to 
represent the persona

A persona is 
representative of 
the base system 
prompt.

An action 
function the 
agent can useNot currently 

supported 

You may have to 
adjust this path 
if your virtual 
environment is 
different.
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7.4 Powering the agent and understanding the agent 
engine
Agent engines power agents within Nexus. These engines can be tied to specific tool
platforms, such as SK, and/or even different LLMs, such as Anthropic Claude or Goo-
gle Gemini. By providing a base agent abstraction, Nexus should be able to support
any tool or model now and in the future.

 Currently, Nexus only implements an OpenAI API–powered agent. We’ll look at
how the base agent is defined by opening the agent_manager.py file from the Nexus/
nexus/nexus_base folder.

 Listing 7.9 shows the BaseAgent class functions. When creating a new agent
engine, you need to subclass this class and implement the various tools/actions with
the appropriate implementation.

class BaseAgent:
    def __init__(self, chat_history=None):
        self._chat_history = chat_history or []
        self.last_message = ""
        self._actions = []
        self._profile = None

Listing 7.9 agent_manager.py:BaseAgent

Enter a query and check
out the response.

Select the new Finona
agent profile.

Figure 7.8 Selecting and chatting with a new persona
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    async def get_response(self, 
                            user_input, 
                            thread_id=None):     
        raise NotImplementedError("This method should be implemented…")

    async def get_semantic_response(self, 
                                     prompt, 
                                     thread_id=None):    
        raise NotImplementedError("This method should be…")

    def get_response_stream(self, 
                             user_input, 
                             thread_id=None):     
        raise NotImplementedError("This method should be…")

    def append_chat_history(self, 
                             thread_id, 
                             user_input, 
                             response):     
        self._chat_history.append(
            {"role": "user",
             "content": user_input,
             "thread_id": thread_id}
        )
        self._chat_history.append(
            {"role": "bot",
             "content": response, 
             "thread_id": thread_id}
        )

    def load_chat_history(self):      
        raise NotImplementedError(
                 "This method should be implemented…")

    def load_actions(self):    
        raise NotImplementedError(
                 "This method should be implemented…")

#... not shown – property setters/getters

Open the nexus_agents/oai_agent.py file in VS Code. Listing 7.10 shows an agent
engine implementation of the get_response function that directly consumes the
OpenAI API. self.client is an OpenAI client created earlier during class initializa-
tion, and the rest of the code you’ve seen used in earlier examples.

async def get_response(self, user_input, thread_id=None):
    self.messages += [{"role": "user",
                     "content": user_input}]     
    response = self.client.chat.completions.create(    
        model=self.model,
        messages=self.messages,

Listing 7.10 oai_agent.py (get_response)

Calls the LLM and 
returns a response

Executes 
a semantic 
function

Calls the LLM 
and returns a 
response

Appends a message to 
the agent’s internal 
chat history

Loads the chat history and 
allows the agent to reload 
various histories

Loads the actions that the 
agent has available to use

Adds the user_input 
to the message stack

The client was created 
earlier and is now used to
create chat completions.
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        temperature=0.7,     
    )
    self.last_message = str(response.choices[0].message.content)
    return self.last_message    

Like the agent profiles, Nexus uses a plugin system that allows you to place new agent
engine definitions in the nexus_agents folder. If you create your agent, it just needs
to be placed in this folder for Nexus to discover.

 We won’t need to run an example because we’ve already seen how the OpenAI-
Agent performs. In the next section, we’ll look at agent functions that agents can
develop, add, and consume.

7.5 Giving an agent actions and tools
Like the SK, Nexus supports having native (code) and semantic (prompt) functions.
Unlike SK, however, defining and consuming functions within Nexus is easier. All
you need to do is write functions into a Python file and place them into the nexus_
actions folder.

 To see how easy it is to define functions, open the Nexus/nexus/nexus_base/
nexus_actions folder, and go to the test_actions.py file. Listing 7.11 shows two
function definitions. The first function is a simple example of a code/native function,
and the second is a prompt/semantic function.

from nexus.nexus_base.action_manager import agent_action

@agent_action                                             
def get_current_weather(location, unit="fahrenheit"):     
    """Get the current weather in a given location"""     
    return f"""
The current weather in {location} is 0 {unit}.
"""     

@agent_action     
def recommend(topic):
    """
    System:                                                  
        Provide a recommendation for a given {{topic}}.
        Use your best judgment to provide a recommendation.
    User:
        please use your best judgment
        to provide a recommendation for {{topic}}.           
    """
    pass     

Listing 7.11 test_actions.py (native/semantic function definitions)

Temperature is hardcoded
but could be configured.Returns the response from

the chat completions call

Applies the agent_action 
decorator to make a 
function an action

Sets a descriptive 
comment for the 
function

The code can be as simple 
or complex as needed.Applies the agent_action 

decorator to make a 
function an action

The function 
comment becomes 
the prompt and 
can include 
placeholders.

Semantic functions don’t 
implement any code.
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Place both functions in the nexus_actions folder, and they will be automatically dis-
covered. Adding the agent_action decorator allows the functions to be inspected and
automatically generates the OpenAI standard tool specification. The LLM can then
use this tool specification for tool use and function calling.

 Listing 7.12 shows the generated OpenAI tool specification for both functions, as
shown previously in listing 7.11. The semantic function, which uses a prompt, also
applies to the tool description. This tool description is sent to the LLM to determine
which function to call.

{
    "type": "function",
    "function": {
        "name": "get_current_weather",
        "description": 
        "Get the current weather in a given location",   
        "parameters": {
            "type": "object",
            "properties": {     
                "location": {
                    "type": "string",
                    "description": "location"
                },
                "unit": {
                    "type": "string",
                    "enum": [
                        "celsius",
                        "fahrenheit"
                    ]
                }
            },
            "required": [
                "location"
            ]
        }
    }
}
{
    "type": "function",
    "function": {
        "name": "recommend",
        "description": """
    System:
    Provide a recommendation for a given {{topic}}.
Use your best judgment to provide a recommendation.
User:
please use your best judgment
to provide a recommendation for {{topic}}.""",     
        "parameters": {
            "type": "object",
            "properties": {      

Listing 7.12 test_actions: OpenAI-generated tool specifications

The function 
comment becomes 
the function tool 
description.

The input parameters of the 
function are extracted and 
added to the specification.

The function 
comment becomes 
the function tool 
description.

The input parameters of the 
function are extracted and 
added to the specification.
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                "topic": {
                    "type": "string",
                    "description": "topic"
                }
            },
            "required": [
                "topic"
            ]
        }
    }
}

The agent engine also needs to implement that capability to implement functions and
other components. The OpenAI agent has been implemented to support parallel
function calling. Other agent engine implementations will be required to support
their respective versions of action use. Fortunately, the definition of the OpenAI tool
is becoming the standard, and many platforms adhere to this standard.

 Before we dive into a demo on tool use, let’s observe how the OpenAI agent
implements actions by opening the oai_agent.py file in VS Code. The following list-
ing shows the top of the agent’s get_response_stream function and its implementa-
tion of function calling.

def get_response_stream(self, user_input, thread_id=None):
    self.last_message = ""
    self.messages += [{"role": "user", "content": user_input}]
    if self.tools and len(self.tools) > 0:   
        response = self.client.chat.completions.create(
            model=self.model,
            messages=self.messages,
            tools=self.tools,     
            tool_choice="auto",     
        )
    else:    
        response = self.client.chat.completions.create(
            model=self.model,
            messages=self.messages,
        )
    response_message = response.choices[0].message
    tool_calls = response_message.tool_calls    

Executing the functions follows, as shown in listing 7.14. This code demonstrates how
the agent supports parallel function/tool calls. These calls are parallel because the
agent executes each one together and in no order. In chapter 11, we’ll look at plan-
ners that allow actions to be called in ordered sequences.

 
 

Listing 7.13 Caling the API in get_response_stream

Detects whether 
the agent has 
any available 
tools turned on

Sets the tools in the 
chat completions call

Ensures that the 
LLM knows it can 
choose any tool

If no tools, calls the 
LLM the standard way

Detects whether there 
were any tools used by 
the LLM
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if tool_calls:    
    available_functions = {
        action["name"]: action["pointer"] for action in self.actions
    }    
    self.messages.append(
        response_message
    )
    for tool_call in tool_calls:    
        function_name = tool_call.function.name
        function_to_call = available_functions[function_name]
        function_args = json.loads(tool_call.function.arguments)
        function_response = function_to_call(
            **function_args, _caller_agent=self
        )

        self.messages.append(
            {
                "tool_call_id": tool_call.id,
                "role": "tool",
                "name": function_name,
                "content": str(function_response),
            }
        )
    second_response = self.client.chat.completions.create(
        model=self.model,
        messages=self.messages,
    )     
    response_message = second_response.choices[0].message

To demo this, start up Nexus in the debugger by pressing F5. Then, select the two test
actions—recommend and get_current_weather—and the terse persona/profile Olly.
Figure 7.9 shows the result of entering a query and the agent responding by using
both tools in its response.

 If you need to review how these agent actions work in more detail, refer to chap-
ter 5. The underlying code is more complex and out of the scope of review here.
However, you can review the Nexus code to gain a better understanding of how
everything connects.

 Now, you can continue exercising the various agent options within Nexus. Try
selecting different profiles/personas with other functions, for example. In the next
chapter, we unveil how agents can consume external memory and knowledge using
patterns such as Retrieval Augmented Generation (RAG).

 
 
 

Listing 7.14 oai_agent.py (get_response_stream: execute tool calls)

Proceeds if tool calls are detected 
in the LLM response

Loads pointers to the actual function 
implementations for code execution

Loops through 
all the calls the 
LLM wants to 
call; there can 
be several.

Performs a second 
LLM call with the 
results of the tool 
calls
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7.6 Exercises
Use the following exercises to improve your knowledge of the material:

 Exercise 1—Explore Streamlit Basics (Easy)
Objective—Gain familiarity with Streamlit by creating a simple web application
that displays text input by the user.

Tasks: 

– Follow the Streamlit documentation to set up a basic application. 
– Add a text input and a button. When the button is clicked, display the text

entered by the user on the screen.
 Exercise 2—Create a Basic Agent Profile

Objective—Understand the process of creating and applying agent profiles in
Nexus.

Tasks: 

– Create a new agent profile with a unique persona. This persona should have
a specific theme or characteristic (e.g., a historian). 

– Define a basic set of responses that align with this persona. 
– Test the persona by interacting with it through the Nexus interface.

The agent answered in a
terse manner, and we can see
that both actions were used.

Select the terse agent
profile called Olly.

.

Select the test actions ecommendR
and get_current_weather . Currently,
the agent profile does not restrict
action selection.

Figure 7.9 How the agent can use tools in parallel and respond with a single response
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 Exercise 3—Develop a Custom Action
Objective—Learn to extend the functionality of Nexus by developing a custom
action.

Tasks: 

– Develop a new action (e.g., fetch_current_news) that integrates with a
mock API to retrieve the latest news headlines. 

– Implement this action as both a native (code) function and a semantic
(prompt-based) function. 

– Test the action in the Nexus environment to ensure it works as expected.
 Exercise 4—Integrate a Third-Party API

Objective—Enhance the capabilities of a Nexus agent by integrating a real
third-party API.

Tasks:

– Choose a public API (e.g., weather or news API), and create a new action
that fetches data from this API. 

– Incorporate error handling and ensure that the agent can gracefully handle
API failures or unexpected responses. 

– Test the integration thoroughly within Nexus.

Summary
 Nexus is an open source agent development platform used in conjunction with

this book. It’s designed to develop, test, and host AI agents and is built on
Streamlit for creating interactive dashboards and chat interfaces.

 Streamlit, a Python web application framework, enables the rapid development
of user-friendly dashboards and chat applications. This framework facilitates the
exploration and interaction with various agent features in a streamlined manner.

 Nexus supports creating and customizing agent profiles and personas, allowing
users to define their agents’ personalities and behaviors. These profiles dictate
how agents interact with and respond to user inputs.

 The Nexus platform allows for developing and integrating semantic (prompt-
based) and native (code-based) actions and tools within agents. This enables
the creation of highly functional and responsive agents.

 As an open source platform, Nexus is designed to be extensible, encouraging
contributions and the addition of new features, tools, and agent capabilities by
the community.

 Nexus is flexible, supporting various deployment options, including a web inter-
face, API, and a Discord bot in future iterations, accommodating a wide range
of development and testing needs.



Understanding agent
memory and knowledge
Now that we’ve explored agent actions using external tools, such as plugins in the
form of native or semantic functions, we can look at the role of memory and knowl-
edge using retrieval in agents and chat interfaces. We’ll describe memory and
knowledge and how they relate to prompt engineering strategies, and then, to under-
stand memory knowledge, we’ll investigate document indexing, construct retrieval
systems with LangChain, use memory with LangChain, and build semantic memory
using Nexus.

This chapter covers
 Retrieval in knowledge/memory in AI functions

 Building retrieval augmented generation 
workflows with LangChain

 Retrieval augmented generation for agentic 
knowledge systems in Nexus

 Retrieval patterns for memory in agents

 Improving augmented retrieval systems with 
memory and knowledge compression 
180



1818.1 Understanding retrieval in AI applications
8.1 Understanding retrieval in AI applications
Retrieval in agent and chat applications is a mechanism for obtaining knowledge to
keep in storage that is typically external and long-lived. Unstructured knowledge
includes conversation or task histories, facts, preferences, or other items necessary for
contextualizing a prompt. Structured knowledge, typically stored in databases or files,
is accessed through native functions or plugins.

 Memory and knowledge, as shown in figure 8.1, are elements used to add further
context and relevant information to a prompt. Prompts can be augmented with every-
thing from information about a document to previous tasks or conversations and
other reference information.

The prompt engineering strategies shown in figure 8.1 can be applied to memory and
knowledge. Knowledge isn’t considered memory but rather an augmentation of the
prompt from existing documents. Both knowledge and memory use retrieval as the
basis for how unstructured information can be queried.

Provide Reference Text
Helps reduce hallucinations.
Tactics involve instructing
the model to use or cite
reference texts.

Knowledge and Memory

Use External Tools
Enhances model capabilities.
Tactics include embeddings-based
search, code execution, and access
to specific functions.

Actions, Knowledge, Memory

Prompt Engineering Strategies

Memory

Retrieved
memories

Database

Vector Store

Internal Memory

Prompt

Save to memory

LLM

Retrieved
knowledge

Retrieved
memory

Request

Knowledge

Vector Store

Retrieved
knowledge

Response

Made by a user or
another system or
agent

Retrieved elements
provide references
and context

May include the
whole or parts of
the conversation

Retrieval is done
using semantic
similarity.

Figure 8.1 Memory, retrieval, and augmentation of the prompt using the following prompt engineering 
strategies: Use External Tools and Provide Reference Text.
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 The retrieval mechanism, called retrieval augmented generation (RAG), has
become a standard for providing relevant context to a prompt. The exact mechanism
that powers RAG also powers memory/knowledge, and it’s essential to understand
how it works. In the next section, we’ll examine what RAG is.

8.2 The basics of retrieval augmented generation (RAG)
RAG has become a popular mechanism for supporting document chat or question-
and-answer chat. The system typically works by a user supplying a relevant document,
such as a PDF, and then using RAG and a large language model (LLM) to query the
document.

 Figure 8.2 shows how RAG can allow a document to be queried using an LLM.
Before any document can be queried, it must first be loaded, transformed into con-
text chunks, embedded into vectors, and stored in a vector database.

A user can query previously indexed documents by submitting a query. That query is
then embedded into a vector representation to search for similar chunks in the vector

Retrieval Augmented Generation (RAG)

(3) Generate

(1) Retrieve

(2) Augment
LLM Chat

Query

Response

Embedding

LLM

Prompt

system: you are a ...

Query

Context

Vector DB

Context

LLM generates a response
based on the contextualized
prompt.

Retrieval works
by using vector
similarity search.

Query is
embedded
to represent
a vector.

Retrieved context
semantically matches
the query.

Embedding
Submit document

to query Transform Vector DB

Document is loaded,
transformed, and
split into chunks.

Chunks of text
are converted
to vectors.

Vectors
representing
chunks of text
are stored.

Documents are
first indexed to a
vector database.

Indexed documents
can be queried/
questioned by the
user .

Figure 8.2 The two phases of RAG: first, documents must be loaded, transformed, embedded, and stored, and, 
second, they can be queried using augmented generation.
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database. Content similar to the query is then used as context and populated into the
prompt as augmentation. The prompt is pushed to an LLM, which can use the con-
text information to help answer the query.

 Unstructured memory/knowledge concepts rely on some format of text-similarity
search following the retrieval pattern shown in figure 8.2. Figure 8.3 shows how mem-
ory uses the same embedding and vector database components. Rather than preload
documents, conversations or parts of a conversation are embedded and saved to a vec-
tor database.

The retrieval pattern and document indexing are nuanced and require careful con-
sideration to be employed successfully. This requires understanding how data is stored
and retrieved, which we’ll start to unfold in the next section.

Memory Retrieval Augmented Generation

(3) Generate

(1) Retrieve
Memory

(2) Augment
LLM Chat

Query

Response

Embedding

LLM

Prompt

system: you are a ...

Query

Memory

Vector DB

Memory

LLM generates a
response based on the
contextualized prompt.

Retrieval works
by using vector
similarity search.

Retrieved memory
semantically matches
the query.

Embedding

(4) Remember

Generated
Response

All or parts of the
conversation are
embedded and
added to the
vector database.

Query is
embedded
to represent
a vector.

Chat with memory

Figure 8.3 Memory retrieval for augmented generation uses the same embedding patterns to index items to a 
vector database.
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8.3 Delving into semantic search and document indexing
Document indexing transforms a document’s information to be more easily recov-
ered. How the index will be queried or searched also plays a factor, whether searching
for a particular set of words or wanting to match phrase for phrase.

 A semantic search is a search for content that matches the searched phrase by words
and meaning. The ability to search by meaning, semantically, is potent and worth
investigating in some detail. In the next section, we look at how vector similarity
search can lay the framework for semantic search.

8.3.1 Applying vector similarity search

Let’s look now at how a document can be transformed into a semantic vector, or a repre-
sentation of text that can then be used to perform distance or similarity matching.
There are numerous ways to convert text into a semantic vector, so we’ll look at a sim-
ple one.

 Open the chapter_08 folder in a new Visual Studio Code (VS Code) workspace.
Create a new environment and pip install the requirements.txt file for all the
chapter dependencies. If you need help setting up a new Python environment, con-
sult appendix B.

 Now open the document_vector_similarity.py file in VS Code, and review the
top section in listing 8.1. This example uses Term Frequency–Inverse Document Fre-
quency (TF–IDF). This numerical statistic reflects how important a word is to a docu-
ment in a collection or set of documents by increasing proportionally to the number
of times a word appears in the document and offset by the frequency of the word in
the document set. TF–IDF is a classic measure of understanding one document’s
importance within a set of documents.

import plotly.graph_objects as go
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

documents = [     
    "The sky is blue and beautiful.",
    "Love this blue and beautiful sky!",
    "The quick brown fox jumps over the lazy dog.",
    "A king's breakfast has sausages, ham, bacon, eggs, toast, and beans",
    "I love green eggs, ham, sausages and bacon!",
    "The brown fox is quick and the blue dog is lazy!",
    "The sky is very blue and the sky is very beautiful today",
    "The dog is lazy but the brown fox is quick!"
]

vectorizer = TfidfVectorizer()    
X = vectorizer.fit_transform(documents)     

Listing 8.1 document_vector_similarity (transform to vector)

Samples of documents

Vectorization 
using TF–IDF

Vectorize the 
documents.
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Let’s break down TF–IDF into its two components using the sample sentence, “The
sky is blue and beautiful,” and focusing on the word blue.

TERM FREQUENCY (TF)
Term Frequency measures how frequently a term occurs in a document. Because we’re
considering only a single document (our sample sentence), the simplest form of the
TF for blue can be calculated as the number of times blue appears in the document
divided by the total number of words in the document. Let’s calculate it:

Number of times blue appears in the document: 1

Total number of words in the document: 6

TF = 1 ÷ 6TF = .16

INVERSE DOCUMENT FREQUENCY (IDF)
Inverse Document Frequency measures how important a term is within the entire corpus.
It’s calculated by dividing the total number of documents by the number of docu-
ments containing the term and then taking the logarithm of that quotient:

IDF = log(Total number of documents ÷ Number of documents containing the word)

In this example, the corpus is a small collection of eight documents, and blue appears
in four of these documents.

IDF = log(8 ÷ 4)

TF–IDF CALCULATION

Finally, the TF–IDF score for blue in our sample sentence is calculated by multiplying
the TF and the IDF scores:

TF–IDF = TF × IDF

Let’s compute the actual values for TF–IDF for the word blue using the example pro-
vided; first, the term frequency (how often the word occurs in the document) is com-
puted as follows:

TF = 1 ÷ 6

Assuming the base of the logarithm is 10 (commonly used), the inverse document fre-
quency is computed as follows:

IDF = log10 (8 ÷ 4)

Now let’s calculate the exact TF–IDF value for the word blue in the sentence, “The sky
is blue and beautiful”:
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The Term Frequency (TF) is approximately 0.1670.

The Inverse Document Frequency (IDF) is approximately 0.301.

Thus, the TF–IDF (TF × IDF) score for blue is approximately 0.050.

This TF–IDF score indicates the relative importance of the word blue in the given doc-
ument (the sample sentence) within the context of the specified corpus (eight docu-
ments, with blue appearing in four of them). Higher TF–IDF scores imply greater
importance. 

 We use TF–IDF here because it’s simple to apply and understand. Now that we
have the elements represented as vectors, we can measure document similarity using
cosine similarity. Cosine similarity is a measure used to calculate the cosine of the
angle between two nonzero vectors in a multidimensional space, indicating how simi-
lar they are, irrespective of their size.

 Figure 8.4 shows how cosine distance compares the vector representations of two
pieces or documents of text. Cosine similarity returns a value from –1 (not similar) to
1 (identical). Cosine distance is a normalized value ranging from 0 to 2, derived by tak-
ing 1 minus the cosine similarity. A cosine distance of 0 means identical items, and 2
indicates complete opposites.

Listing 8.2 shows how the cosine similarities are computed using the cosine_similarity
function from scikit-learn. Similarities are calculated for each document against all
other documents in the set. The computed matrix of similarities for documents is
stored in the cosine_similarities variable. Then, in the input loop, the user can
select the document to view its similarities to the other documents.

 
 
 

Cosine Similarity

The angle or distance is a measure of how
close the vectors are in space. It also
represents their similarity to each other .Cosine Distance

θ

The sky is blue and beautiful.

Love this blue and beautiful sky!

Vector representations of the text rendered in 2D
and in reality vectors can be highly dimensional.

Figure 8.4 How cosine 
similarity is measured
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cosine_similarities = cosine_similarity(X)     

while True:     
    selected_document_index = input(f"Enter a document number
➥ (0-{len(documents)-1}) or 'exit' to quit: ").strip()

    if selected_document_index.lower() == 'exit':
        break

    if not selected_document_index.isdigit() or 
➥ not 0 <= int(selected_document_index) < len(documents):
        print("Invalid input. Please enter a valid document number.")
        continue

    selected_document_index = int(selected_document_index)   

    selected_document_similarities = 
cosine_similarities[selected_document_index]    

# code to plot document similarities omitted

Figure 8.5 shows the output of running the sample in VS Code (F5 for debugging
mode). After you select a document, you’ll see the similarities between the various
documents in the set. A document will have a cosine similarity of 1 with itself. Note
that you won’t see a negative similarity because of the TF–IDF vectorization. We’ll look
later at other, more sophisticated means of measuring semantic similarity.

Listing 8.2 document_vector_similarity (cosine similarity)

Computes the document 
similarities for all vector pairs

The main 
input loop

Gets the selected
document index 
to compare with

Extracts the 
computed similarities 
against all documents

The select document is compared against all
other documents to show similarity
measure between document vectors.

Cosine Similarities of “The sky is blue and beautiful.” with Others

Figure 8.5 The cosine similarity between selected documents and the document set
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The method of vectorization will dictate the measure of semantic similarity between
documents. Before we move on to better methods of vectorizing documents, we’ll
examine storing vectors to perform vector similarity searches.

8.3.2 Vector databases and similarity search

After vectorizing documents, they can be stored in a vector database for later similar-
ity searches. To demonstrate how this works, we can efficiently replicate a simple vec-
tor database in Python code.

 Open document_vector_database.py in VS Code, as shown in listing 8.3. This
code demonstrates creating a vector database in memory and then allowing users to
enter text to search the database and return results. The results returned show the
document text and the similarity score.

# code above omitted
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(documents)
vector_database = X.toarray()    

def cosine_similarity_search(query,
                             database, 
                             vectorizer, 
                             top_n=5):    
    query_vec = vectorizer.transform([query]).toarray()
    similarities = cosine_similarity(query_vec, database)[0]
    top_indices = np.argsort(-similarities)[:top_n]  # Top n indices
    return [(idx, similarities[idx]) for idx in top_indices]

while True:     
    query = input("Enter a search query (or 'exit' to stop): ")
    if query.lower() == 'exit':
        break
    top_n = int(input("How many top matches do you want to see? "))
    search_results = cosine_similarity_search(query,
                                              vector_database, 
                                              vectorizer, 
                                              top_n)

    print("Top Matched Documents:")
    for idx, score in search_results:
        print(f"- {documents[idx]} (Score: {score:.4f})")  

    print("\n")
###Output
Enter a search query (or 'exit' to stop): blue
How many top matches do you want to see? 3
Top Matched Documents:
- The sky is blue and beautiful. (Score: 0.4080)
- Love this blue and beautiful sky! (Score: 0.3439)
- The brown fox is quick and the blue dog is lazy! (Score: 0.2560)

Listing 8.3 document_vector_database.py

Stores the 
document vectors 
into an array

The function to perform 
similarity matching on 
query returns, matches, 
and similarity scores

The main 
input loop

Loops through 
results and 
outputs text and 
similarity score
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Run this exercise to see the output (F5 in VS Code). Enter any text you like, and see
the results of documents being returned. This search form works well for matching
words and phrases with similar words and phrases. This form of search misses the
word context and meaning from the document. In the next section, we’ll look at a way
of transforming documents into vectors that better preserves their semantic meaning.

8.3.3 Demystifying document embeddings

TF–IDF is a simple form that tries to capture semantic meaning in documents. How-
ever, it’s unreliable because it only counts word frequency and doesn’t understand the
relationships between words. A better and more modern method uses document
embedding, a form of document vectorizing that better preserves the semantic mean-
ing of the document.

 Embedding networks are constructed by training neural networks on large data-
sets to map words, sentences, or documents to high-dimensional vectors, capturing
semantic and syntactic relationships based on context and relationships in the data.
You typically use a pretrained model trained on massive datasets to embed documents
and perform embeddings. Models are available from many sources, including Hug-
ging Face and, of course, OpenAI.

 In our next scenario, we’ll use an OpenAI embedding model. These models are
typically perfect for capturing the semantic context of embedded documents. Listing
8.4 shows the relevant code that uses OpenAI to embed the documents into vectors
that are then reduced to three dimensions and rendered into a plot.

load_dotenv()                                                            
api_key = os.getenv('OPENAI_API_KEY')
if not api_key:
    raise ValueError("No API key found. Please check your .env file.")
client = OpenAI(api_key=api_key)                                         

def get_embedding(text, model="text-embedding-ada-002"):    
    text = text.replace("\n", " ")
    return client.embeddings.create(input=[text],
              model=model).data[0].embedding                

# Sample documents (omitted)

embeddings = [get_embedding(doc) for doc in documents]   
print(embeddings_array.shape)

embeddings_array = np.array(embeddings)   

pca = PCA(n_components=3)  
reduced_embeddings = pca.fit_transform(embeddings_array)

Listing 8.4 document_visualizing_embeddings.py (relevant sections)

Join all the items on the string ', '.

Uses the OpenAI 
client to create 
the embedding

Generates embeddings 
for each document of 
size 1536 dimensions

Converts embeddings to 
a NumPy array for PCA

Applies PCA to 
reduce dimensions 
to 3 for plotting
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When a document is embedded using an OpenAI model, it transforms the text into a
vector with dimensions of 1536. We can’t visualize this number of dimensions, so we
use a dimensionality reduction technique via principal component analysis (PCA) to
convert the vector of size 1536 to 3 dimensions.

 Figure 8.6 shows the output generated from running the file in VS Code. By reduc-
ing the embeddings to 3D, we can plot the output to show how semantically similar
documents are now grouped.

The choice of which embedding model or service you use is up to you. The OpenAI
embedding models are considered the best for general semantic similarity. This has
made these models the standard for most memory and retrieval applications. With
our understanding of how text can be vectorized with embeddings and stored in a vec-
tor database, we can move on to a more realistic example in the next section.

8.3.4 Querying document embeddings from Chroma

We can combine all the pieces and look at a complete example using a local vector
database called Chroma DB. Many vector database options exist, but Chroma DB is an
excellent local vector store for development or small-scale projects. There are also
plenty of more robust options that you can consider later.

Similar documents are now similar in
meaning and are shown grouped together.

Documents are projected to 3D
based on their semantic meaning.

Figure 8.6 Embeddings in 3D, showing how similar semantic documents are grouped
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 Listing 8.5 shows the new and relevant code sections from the document_query_
chromadb.py file. Note that the results are scored by distance and not by similarity.
Cosine distance is determined by this equation:

Cosine Distance(A,B) = 1 – Cosine Similarity(A,B)

This means that cosine distance will range from 0 for most similar to 2 for semanti-
cally opposite in meaning.

embeddings = [get_embedding(doc) for doc in documents]    
ids = [f"id{i}" for i in range(len(documents))]           

chroma_client = chromadb.Client()              
collection = chroma_client.create_collection(
                       name="documents")       
collection.add(    
    embeddings=embeddings,
    documents=documents,
    ids=ids
)

def query_chromadb(query, top_n=2):     
    query_embedding = get_embedding(query)
    results = collection.query(
        query_embeddings=[query_embedding],
        n_results=top_n
    )
    return [(id, score, text) for id, score, text in
            zip(results['ids'][0],
                results['distances'][0], 
                results['documents'][0])]

while True:    
    query = input("Enter a search query (or 'exit' to stop): ")
    if query.lower() == 'exit':
        break
    top_n = int(input("How many top matches do you want to see? "))
    search_results = query_chromadb(query, top_n)

    print("Top Matched Documents:")
    for id, score, text in search_results:
        print(f"""
ID:{id} TEXT: {text} SCORE: {round(score, 2)}
""")    

    print("\n")
###Output
Enter a search query (or 'exit' to stop): dogs are lazy
How many top matches do you want to see? 3
Top Matched Documents:
ID:id7 TEXT: The dog is lazy but the brown fox is quick! SCORE: 0.24

Listing 8.5 document_query_chromadb.py (relevant code sections)

Generates embeddings 
for each document and 
assigns an ID

Creates a Chroma DB 
client and a collection

Adds document 
embeddings to 
the collection

Queries the datastore 
and returns the top n 
relevant documents

The input loop for
user input and output of

relevant documents/scores
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ID:id5 TEXT: The brown fox is quick and the blue dog is lazy! SCORE: 0.28
ID:id2 TEXT: The quick brown fox jumps over the lazy dog. SCORE: 0.29

As the earlier scenario demonstrated, you can now query the documents using seman-
tic meaning rather than just key terms or phrases. These scenarios should now pro-
vide the background to see how the retrieval pattern works at a low level. In the next
section, we’ll see how the retrieval pattern can be employed using LangChain.

8.4 Constructing RAG with LangChain
LangChain began as an open source project specializing in abstracting the retrieval
pattern across multiple data sources and vector stores. It has since morphed into
much more, but foundationally, it still provides excellent options for implementing
retrieval.

 Figure 8.7 shows a diagram from LangChain that identifies the process of storing
documents for retrieval. These same steps may be replicated in whole or in part to
implement memory retrieval. The critical difference between document and memory
retrieval is the source and how content is transformed.

We’ll examine how to implement each of these steps using LangChain and under-
stand the nuances and details accompanying this implementation. In the next section,
we’ll start by splitting and loading documents with LangChain.

8.4.1 Splitting and loading documents with LangChain

Retrieval mechanisms augment the context of a given prompt with specific informa-
tion relevant to the request. For example, you may request detailed information about

LangChain provides a
plugin architecture that
supports document import
from many sources.

Transform breaks
the document
down into relevant
sections or chunks.

Embed or
embeddings
break the chunks
into vectors.

LangChain supports
multiple options for
vector stores.

Figure 8.7 Load, transform, embed, and store steps in storing documents for later retrieval
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a local document. With earlier language models, submitting the whole document as
part of the prompt wasn’t an option due to token limitations.

 Today, we could submit a whole document for many commercial LLMs, such as
GPT-4 Turbo, as part of a prompt request. However, the results may not be better and
would likely cost more because of the increased number of tokens. Therefore, a better
option is to split the document and use the relevant parts to request context—pre-
cisely what RAG and memory do.

 Splitting a document is essential in breaking down content into semantically and
specifically relevant sections. Figure 8.8 shows how to break down an HTML docu-
ment containing the Mother Goose nursery rhymes. Often, splitting a document into
contextual semantic chunks requires careful consideration.

Ideally, when we split documents into chunks, they are broken down by relevance and
semantic meaning. While an LLM or agent could help us with this, we’ll look at cur-
rent toolkit options within LangChain for splitting documents. Later in this chapter,
we’ll look at a semantic function that can assist us in semantically dividing content for
embeddings.

 For the next exercise, open langchain_load_splitting.py in VS Code, as shown
in listing 8.6. This code shows where we left off from listing 8.5, in the previous sec-
tion. Instead of using the sample documents, we’re loading the Mother Goose nursery
rhymes this time.

 
 
 

Split the documents into chunks.

Create
embeddings Store

Load the document(s).

Ideally , the chunks are
semantically relevant
and specific.

Figure 8.8 How the document would ideally be split into chunks for better semantic and contextual meaning
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From langchain_community.document_loaders 
                     ➥ import UnstructuredHTMLLoader   
from langchain.text_splitter import RecursiveCharacterTextSplitter

#previous code

loader = UnstructuredHTMLLoader(
                   "sample_documents/mother_goose.html")  
data = loader.load   

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=100,
    chunk_overlap=25,    
    length_function=len,
    add_start_index=True,
)
documents = text_splitter.split_documents(data)

documents = [doc.page_content 
                ➥ for doc in documents] [100:350]  

embeddings = [get_embedding(doc) for doc in documents]    
ids = [f"id{i}" for i in range(len(documents))]
###Output
Enter a search query (or 'exit' to stop): who kissed the girls and made 
them cry?
How many top matches do you want to see? 3
Top Matched Documents:
ID:id233 TEXT: And chid her daughter,
        And kissed my sister instead of me. SCORE: 0.4…

Note in listing 8.6 that the HTML document gets split into 100-character chunks with
a 25-character overlap. The overlap allows the document’s parts not to cut off specific
thoughts. We selected the splitter for this exercise because it was easy to use, set up,
and understand.

 Go ahead and run the langchain_load_splitting.py file in VS Code (F5). Enter
a query, and see what results you get. The output in listing 8.6 shows good results
given a specific example. Remember that we only embedded 250 document chunks to
reduce costs and keep the exercise short. Of course, you can always try to embed the
entire document or use a minor input document example.

 Perhaps the most critical element to building proper retrieval is the process of
document splitting. You can use numerous methods to split a document, including
multiple concurrent methods. More than one method passes and splits the docu-
ment for numerous embedding views of the same document. In the next section,
we’ll examine a more general technique for splitting documents, using tokens and
tokenization.

Listing 8.6 langchain_load_splitting.py (sections and output)

New LangChain 
imports

Loads the 
document 
as HTML

Loads the 
document

Splits the document into blocks of 
text 100 characters long with a 
25-character overlap

Embeds only 250 
chunks, which is 
cheaper and faster

Returns the 
embedding for 
each document
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8.4.2 Splitting documents by token with LangChain

Tokenization is the process of breaking text into word tokens. Where a word token rep-
resents a succinct element in the text, a token could be a word like hold or even a sym-
bol like the left curly brace ({), depending on what’s relevant.

 Splitting documents using tokenization provides a better base for how the text will
be interpreted by language models and for semantic similarity. Tokenization also
allows the removal of irrelevant characters, such as whitespace, making the similarity
matching of documents more relevant and generally providing better results.

 For the next code exercise, open the langchain_token_splitting.py file in VS
Code, as shown in listing 8.7. Now we split the document using tokenization, which
breaks the document into sections of unequal size. The unequal size results from the
large sections of whitespace of the original document.

loader = UnstructuredHTMLLoader("sample_documents/mother_goose.html")
data = loader.load()
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=50, chunk_overlap=10     
)

documents = text_splitter.split_documents(data)
documents = [doc for doc in documents][8:94]     

db = Chroma.from_documents(documents, OpenAIEmbeddings())

def query_documents(query, top_n=2):
    docs = db.similarity_search(query, top_n)     
    return docs
###Output
Created a chunk of size 68, 
which is longer than the specified 50
Created a chunk of size 67, 
which is longer than the specified 50    
Enter a search query (or 'exit' to stop): 
                     who kissed the girls and made them cry?
How many top matches do you want to see? 3
Top Matched Documents:
Document 1: GEORGY PORGY

        Georgy Porgy, pudding and pie,
        Kissed the girls and made them cry.

Run the langchain_token_splitting.py code in VS Code (F5). You can use the
query we used last time or your own. Notice how the results are significantly better
than the previous exercise. However, the results are still suspect because the query
uses several similar words in the same order.

 A better test would be to try a semantically similar phrase but one that uses differ-
ent words and check the results. With the code still running, enter a new phrase to

Listing 8.7 langchain_token_splitting.py (relevant new code)

Updates to 50 tokens 
and overlap of 10 
tokens

Selects just the 
documents that 
contain rhymes

Uses the database’s 
similarity search

Breaks into irregular 
size chunks because of 
the whitespace
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query: Why are the girls crying? Listing 8.8 shows the results of executing that
query. If you run this example yourself and scroll down over the output, you’ll see
Georgy Porgy appear in either the second or third returned document.

Enter a search query (or 'exit' to stop): Who made the girls cry?
How many top matches do you want to see? 3
Top Matched Documents:
Document 1: WILLY, WILLY

        Willy, Willy Wilkin…

This exercise shows how various retrieval methods can be employed to return docu-
ments semantically. With this base established, we can see how RAG can be applied to
knowledge and memory systems. The following section will discuss RAG as it applies
to knowledge of agents and agentic systems.

8.5 Applying RAG to building agent knowledge
Knowledge in agents encompasses employing RAG to search semantically across
unstructured documents. These documents could be anything from PDFs to Micro-
soft Word documents and all text, including code. Agentic knowledge also includes
using unstructured documents for Q&A, reference lookup, information augmenta-
tion, and other future patterns.

 Nexus, the agent platform developed in tandem with this book and introduced in
the previous chapter, employs complete knowledge and memory systems for agents.
In this section, we’ll uncover how the knowledge system works.

 To install Nexus for just this chapter, see listing 8.9. Open a terminal within the
chapter_08 folder, and execute the commands in the listing to download, install,
and run Nexus in normal or development mode. If you want to refer to the code,
you should install the project in development and configure the debugger to run
the Streamlit app from VS Code. Refer to chapter 7 if you need a refresher on any of
these steps.

# to install and run
pip install git+https://github.com/cxbxmxcx/Nexus.git

nexus run
# install in development mode
git clone https://github.com/cxbxmxcx/Nexus.git

# Install the cloned repository in editable mode
pip install -e Nexus

Listing 8.8 Query: Who made the girls cry?

Listing 8.9 Installing Nexus 
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Regardless of which method you decide to run the app in after you log in, navigate to
the Knowledge Store Manager page, as shown in figure 8.9. Create a new Knowledge
Store, and then upload the sample_documents/back_to_the_future.txt movie script. 

The script is a large document, and it may take a while to load, chunk, and embed the
parts into the Chroma DB vector database. Wait for the indexing to complete, and
then you can inspect the embeddings and run a query, as shown in figure 8.10.

 Now, we can connect the knowledge store to a supported agent and ask questions.
Use the top-left selector to choose the chat page within the Nexus interface. Then,
select an agent and the time_travel knowledge store, as shown in figure 8.11. You
will also need to select an agent engine that supports knowledge. Each of the multiple
agent engines requires the proper configuration to be accessible.

 Currently, as of this chapter, Nexus supports access to only a single knowledge
store at a time. In a future version, agents may be able to select multiple knowledge
stores at a time. This may include more advanced options, from semantic knowl-
edge to employing other forms of RAG.

 

Select the
knowledge store.

Create a new
knowledge store.

Drag and drop or browse and select the
sample_documents/back_to_the_future.txt
movie script here.

Figure 8.9 Adding a new knowledge store and populating it with a document
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Plot of embeddings shown in 3D

Select to view all the
embeddings in the
knowledge store.

Enter text to query
and see the results of
the top five chunks
displayed.

Select to query the
document embeddings
in the knowledge store.

Figure 8.10 The embeddings and document query views

The agent will reply given
the chosen persona.

Enter a question about
the script you would
like to ask.

Be sure to select the
knowledge store.

Select an agent engine
that supports knowledge.

Figure 8.11 Enabling the knowledge store for agent use
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You can also configure the RAG settings within the Configuration tab of the Knowl-
edge Store Manager page, as shown in figure 8.12. As of now, you can select from the
type of splitter (Chunking Option field) to chunk the document, along with the
Chunk Size field and Overlap field. 

The loading, splitting, chunking, and embedding options provided are the only basic
options supported by LangChain for now. In future versions of Nexus, more options
and patterns will be offered. The code to support other options can be added directly
to Nexus.

 We won’t cover the code that performs the RAG as it’s very similar to what we
already covered. Feel free to review the Nexus code, particularly the KnowledgeManager
class in the knowledge_manager.py file. 

Represents the minimum
size in characters or tokens
to chunk the data

Select the
Configuration tab.

Allows for some overlap
of text from one chunk
to the next

Represents the type of
document splitter used to extract
chunks from the document

Figure 8.12 Managing the knowledge store splitting and chunking options
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 While the retrieval patterns for knowledge and memory are quite similar for aug-
mentation, the two patterns differ when it comes to populating the stores. In the next
section, we’ll explore what makes memory in agents unique.

8.6 Implementing memory in agentic systems
Memory in agents and AI applications is often described in the same terms as cogni-
tive memory functions. Cognitive memory describes the type of memory we use to
remember what we did 30 seconds ago or how tall we were 30 years ago. Computer
memory is also an essential element of agent memory, but one we won’t consider in
this section.

 Figure 8.13 shows how memory is broken down into sensory, short-term, and long-
term memory. This memory can be applied to AI agents, and this list describes how
each form of memory maps to agent functions:

 Sensory memory in AI—Functions such as RAG but with images/audio/haptic
data forms. Briefly holds input data (e.g., text and images) for immediate pro-
cessing but not long-term storage. 

 Short-term/working memory in AI—Acts as an active memory buffer of conversa-
tion history. We’re holding a limited amount of recent input and context for
immediate analysis and response generation. Within Nexus, short- and long-
term conversational memory is also held in the context of the thread.

 Long-term memory in AI—Longer-term memory storage relevant to the agent’s or
user’s life. Semantic memory provides a robust capacity to store and retrieve rel-
evant global or local facts and concepts. 

Visual memory

Sensory memory

Short-term memory (contextual memory)

Long-term memory

Memory

Iconic memory (visual)

Echoic memory (auditory)

Haptic memory (touch)

Explicit/declarative memory
(conscious)

Implicit/procedural memory (unconscious skills)

Episodic memory
(life events)

Semantic memory
(facts, concepts)

Conversational
memory and RAG

This is an area of
memory of most
interest to agents.

Implicit memory and skills can also be
conveyed as actions and tools for agents.

Figure 8.13 How memory is broken down into various forms
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While memory uses the exact same retrieval and augmentation mechanisms as knowl-
edge, it typically differs significantly when updating or appending memories. Figure 8.14
highlights the process of capturing and using memories to augment prompts. Because
memories are often different from the size of complete documents, we can avoid
using any splitting or chunking mechanisms.

Nexus provides a mechanism like the knowledge store, allowing users to create mem-
ory stores that can be configured for various uses and applications. It also supports
some of the more advanced memory forms highlighted in figure 8.13. The following
section will examine how basic memory stores work in Nexus.

Adding memories

Basic memory augmentation

Embedding Vector DB

Stored
embeddings
and text

New memories
can come from a
conversation or
can be populated
as a set of beginning
facts, preferences,
and so on.

Vector DB

Converted to embedding
and then used to query database

Augmented prompt
user:
What movie should
I watch?
Remembered facts:
User likes time
travel movies

LLM

Response sent
back to user

Assistant:
You should watch
this movie on
time travel.

User likes time
travel movies

User likes sci-fi
movies

Conversations are then fed back into the memory function

to create new memories.

User likes time
travel movies

User likes sci-fi
movies

LLM

User:
[I like time
travel movies]

I like time travel
movies

Memory function,
extracts relevant

memories

Embedding

User:
What movie
should I watch?

What movie should
I watch?

Figure 8.14 Basic memory retrieval and augmentation workflow
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8.6.1 Consuming memory stores in Nexus

Memory stores operate and are constructed like knowledge stores in Nexus. They
both heavily rely on the retrieval pattern. What differs is the extra steps memory sys-
tems take to build new memories.

 Go ahead and start Nexus, and refer to listing 8.9 if you need to install it. After
logging in, select the Memory page, and create a new memory store, as shown in fig-
ure 8.15. Select an agent engine, and then add a few personal facts and preferences
about yourself.

The reason we need an agent (LLM) was shown in figure 8.14 earlier. When informa-
tion is fed into a memory store, it’s generally processed through an LLM using a memory

Create a new memory
store called my_memory.

Select the memory
you want to inspect.

You will need to select an agent
engine to process the memory.

Select the
Memory page.

Add a few facts or
preferences about yourself.

Figure 8.15 Adding memories to a newly created memory store
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function, whose purpose is to process the statements/conversations into semantically
relevant information related to the type of memory.

 Listing 8.10 shows the conversational memory function used to extract information
from a conversation into memories. Yes, this is just the header portion of the prompt
sent to the LLM, instructing it how to extract information from a conversation. 

Summarize the conversation and create a set of statements that summarize 
the conversation. Return a JSON object with the following keys: 'summary'. 
Each key should have a list of statements that are relevant to that 
category. Return only the JSON object and nothing else.

After you generate a few relevant memories about yourself, return to the Chat area in
Nexus, enable the my_memory memory store, and see how well the agent knows you.
Figure 8.16 shows a sample conversation using a different agent engine. 

This is an example of a basic memory pattern that extracts facts/preferences from
conversations and stores them in a vector database as memories. Numerous other
implementations of memory follow those displayed earlier in figure 8.13. We’ll imple-
ment those in the next section.

Listing 8.10 Conversational memory function

Select the memory store.

If possible, select a different agent
engine that supports memory.

Ask the agent something relevant to
the facts you just added to memory.

Figure 8.16 Conversing with a different agent on the same memory store
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8.6.2 Semantic memory and applications to semantic, episodic, 
and procedural memory

Psychologists categorize memory into multiple forms, depending on what informa-
tion is remembered. Semantic, episodic, and procedural memory all represent differ-
ent types of information. Episodic memories are about events, procedural memories are
about the process or steps, and semantic represents the meaning and could include
feelings or emotions. Other forms of memory (geospatial is another), aren’t described
here but could be. 

 Because these memories rely on an additional level of categorization, they also rely
on another level of semantic categorization. Some platforms, such as Semantic Kernel
(SK), refer to this as semantic memory. This can be confusing because semantic categori-
zation is also applied to extract episodic and procedural memories.

 Figure 8.17 shows the semantic memory categorization process, also sometimes
called semantic memory. The difference between semantic memory and regular mem-
ory is the additional step of processing the input semantically and extracting relevant
questions that can be used to query the memory-relevant vector database.

Semantic memory augmentation

Vector DB

Augmented prompt
user:
What movie should I
watch?
Semantics:
The user has recently
watched these time
travel movies.

Response sent
back to user

Assistant:
You should watch
this movie on time

travel.

Conversations are then
fed back into the memory
function to create relevant

new memories.

Questions are converted
to embedding and then
used to query database.

The user has recently
watched these time

travel movies.

Embedding

User:
What movie
should I watch?

What movie should
I watch?

Semantic Augmentation
function extracts details
specific to memory form.

What type of movies
does the user like?

Give me a summary
of movies the user

has watched.

The semantic
augmentation
converts the input
into questions
relevant to the
particular form of
memory.

LLM

LLM

Figure 8.17 How semantic memory augmentation works
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The benefit of using semantic augmentation is the increased ability to extract more
relevant memories. We can see this in operation by jumping back into Nexus and cre-
ating a new semantic memory store.

 Figure 8.18 shows how to configure a new memory store using semantic memory.
As of yet, you can’t configure the specific function prompts for memory, augmenta-
tion, and summarization. However, it can be useful to read through each of the func-
tion prompts to gain a sense of how they work.

Memory function for adding new memories

Augmentation function is called to extract
relevance before querying a memory store.

Select SEMANTIC as the type of memory.

Select the
Configuration tab.

Be sure to create a new
memory store first.

Summarization function is used in memory
compression.

Figure 8.18 Configuration for changing the memory store type to semantic
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Now, if you go back and add facts and preferences, they will convert to the semantics
of the relevant memory type. Figure 8.19 shows an example of memories being popu-
lated for the same set of statements into two different forms of memory. Generally, the
statements entered into memory would be more specific to the form of memory.

Memory and knowledge can significantly assist an agent with various application types.
Indeed, a single memory/knowledge store could feed one or multiple agents, allowing

Figure 8.19 Comparing memories for the same information given two different memory types
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for further specialized interpretations of both types of stores. We’ll finish out the
chapter by discussing memory/knowledge compression next.

8.7 Understanding memory and knowledge compression
Much like our own memory, memory stores can become cluttered with redundant
information and numerous unrelated details over time. Internally, our minds deal
with memory clutter by compressing or summarizing memories. Our minds remem-
ber more significant details over less important ones, and memories accessed more
frequently.

 We can apply similar principles of memory compression to agent memory and
other retrieval systems to extract significant details. The principle of compression is
similar to semantic augmentation but adds another layer to the preclusters groups of
related memories that can collectively be summarized.

 Figure 8.20 shows the process of memory/knowledge compression. Memories or
knowledge are first clustered using an algorithm such as k-means. Then, the groups of
memories are passed through a compression function, which summarizes and collects
the items into more succinct representations. 

Nexus provides for both knowledge and memory store compression using k-means
optimal clustering. Figure 8.21 shows the compression interface for memory. Within
the compression interface, you’ll see the items displayed in 3D and clustered. The size
(number of items) of the clusters is shown in the left table.

 Compressing memories and even knowledge is generally recommended if the
number of items in a cluster is large or unbalanced. Each use case for compression
may vary depending on the use and application of memories. Generally, though, if an

Memory/Knowledge Comparison

Compressed items are
stored as embeddings.

Memories and
knowledge can be
redundant, repetitive,
and include duplicate
information and
potentially misaligned
information.

Clustering
The user likes time

travel movies.

The speaker enjoys
time travel movies.

likes time travel
stories

Items are clustered
using reduced dimensional
embeddings and -means.k

Compression function
summarizes items

by group and
function into a new

list of memories and
knowledge

Embedding Vector DB The user enjoys
time travel movies

and has seen
the following films:

Figure 8.20 The process of memory and knowledge compression
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inspection of the items in a store contains repetitive or duplicate information, it’s a
good time for compression. The following is a summary of use cases for applications
that would benefit from compression.

THE CASE FOR KNOWLEDGE COMPRESSION

Knowledge retrieval and augmentation have also been shown to benefit significantly
from compression. Results will vary by use case, but generally, the more verbose the
source of knowledge, the more it will benefit from compression. Documents that
feature literary prose, such as stories and novels, will benefit more than, say, a base
of code. However, if the code is likewise very repetitive, compression could also be
shown to be beneficial.

THE CASE FOR HOW OFTEN YOU APPLY COMPRESSION

Memory will often benefit from the periodic compression application, whereas knowl-
edge stores typically only help on the first load. How frequently you apply compres-
sion will greatly depend on the memory use, frequency, and quantity.

THE CASE FOR APPLYING COMPRESSION MORE THAN ONCE

Multiple passes of compression at the same time has been shown to improve retrieval
performance. Other patterns have also suggested using memory or knowledge at vari-
ous levels of compression. For example, a knowledge store is compressed two times,
resulting in three different levels of knowledge. 

Number of items are
shown per cluster .

Compression requires an agent
engine; GPT-4 or higher LLMs
are preferred for compression.

The optimal number of
k-means clusters are shown.

Click the Compress button to
start compression. The process of
compression may take several minutes
depending on the size of the store.

Figure 8.21 The interface for compressing memories



2098.8 Exercises
THE CASE FOR BLENDING KNOWLEDGE AND MEMORY COMPRESSION

If a system is specialized to a particular source of knowledge and that system also
employs memories, there may be further optimization to consolidate stores. Another
approach is to populate memory with the starting knowledge of a document directly.

THE CASE FOR MULTIPLE MEMORY OR KNOWLEDGE STORES

In more advanced systems, we’ll look at agents employing multiple memory and knowl-
edge stores relevant to their workflow. For example, an agent could employ individual
memory stores as part of its conversations with individual users, perhaps including the
ability to share different groups of memory with different groups of individuals. Mem-
ory and knowledge retrieval are cornerstones of agentic systems, and we can now sum-
marize what we covered and review some learning exercises in the next section.

8.8 Exercises
Use the following exercises to improve your knowledge of the material:

 Exercise 1—Load and Split a Different Document (Intermediate) 
Objective—Understand the effect of document splitting on retrieval efficiency by
using LangChain. 

Tasks:

– Select a different document (e.g., a news article, a scientific paper, or a short
story).

– Use LangChain to load and split the document into chunks.
– Analyze how the document is split into chunks and how it affects the retrieval

process.
 Exercise 2—Experiment with Semantic Search (Intermediate) 

Objective—Compare the effectiveness of various vectorization techniques by per-
forming semantic searches. 

Tasks:

– Choose a set of documents for semantic search.
– Use a vectorization method such as Word2Vec or BERT embeddings instead

of TF–IDF.
– Perform the semantic search, and compare the results with those obtained

using TF–IDF to understand the differences and effectiveness.
 Exercise 3—Implement a Custom RAG Workflow (Advanced) 

Objective—Apply theoretical knowledge of RAG in a practical context using
LangChain. 

Tasks:

– Choose a specific application (e.g., customer service inquiries or academic
research queries).

– Design and implement a custom RAG workflow using LangChain.
– Tailor the workflow to suit the chosen application, and test its effectiveness.
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 Exercise 4—Build a Knowledge Store and Experiment with Splitting Patterns
(Intermediate) 
Objective—Understand how different splitting patterns and compression affect
knowledge retrieval. 

Tasks:

– Build a knowledge store, and populate it with a couple of documents.
– Experiment with different forms of splitting/chunking patterns, and analyze

their effect on retrieval.
– Compress the knowledge store, and observe the effects on query performance.

 Exercise 5—Build and Test Various Memory Stores (Advanced) 
Objective—Understand the uniqueness and use cases of different memory store
types. 

Tasks:

– Build various forms of memory stores (conversational, semantic, episodic,
and procedural).

– Interact with an agent using each type of memory store, and observe the dif-
ferences.

– Compress the memory store, and analyze the effect on memory retrieval.

Summary
 Memory in AI applications differentiates between unstructured and structured

memory, highlighting their use in contextualizing prompts for more relevant
interactions.

 Retrieval augmented generation (RAG) is a mechanism for enhancing prompts
with context from external documents, using vector embeddings and similarity
search to retrieve relevant content.

 Semantic search with document indexing converts documents into semantic
vectors using TF–IDF and cosine similarity, enhancing the capability to perform
semantic searches across indexed documents.

 Vector databases and similarity search stores document vectors in a vector data-
base, facilitating efficient similarity searches and improving retrieval accuracy.

 Document embeddings capture semantic meanings, using models such as
OpenAI’s models to generate embeddings that preserve a document’s context
and facilitate semantic similarity searches.

 LangChain provides several tools for performing RAG, and it abstracts the
retrieval process, allowing for easy implementation of RAG and memory sys-
tems across various data sources and vector stores.

 Short-term and long-term memory in LangChain implements conversational
memory within LangChain, distinguishing between short-term buffering pat-
terns and long-term storage solutions.
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 Storing document vectors in databases for efficient similarity searches is crucial
for implementing scalable retrieval systems in AI applications.

 Agent knowledge directly relates to the general RAG pattern of performing
question and answer on documents or other textual information.

 Agent memory is a pattern related to RAG that captures the agentic interac-
tions with users, itself, and other systems.

 Nexus is a platform that implements agentic knowledge and memory systems,
including setting up knowledge stores for document retrieval and memory
stores for various forms of memory.

 Semantic memory augmentation (semantic memory) differentiates between vari-
ous types of memories (semantic, episodic, procedural). It implements them
through semantic augmentation, enhancing agents’ ability to recall and use
information relevantly specific to the nature of the memories.

 Memory and knowledge compression are techniques for condensing informa-
tion stored in memory and knowledge systems, improving retrieval efficiency
and relevancy through clustering and summarization.



Mastering agent prompts
with prompt flow
In this chapter, we delve into the Test Changes Systematically prompt engineering
strategy. If you recall, we covered the grand strategies of the OpenAI prompt engi-
neering framework in chapter 2. These strategies are instrumental in helping us
build better prompts and, consequently, better agent profiles and personas. Under-
standing this role is key to our prompt engineering journey.

 Test Changes Systematically is such a core facet of prompt engineering that Mic-
rosoft developed a tool around this strategy called prompt flow, described later in
this chapter. Before getting to prompt flow, we need to understand why we need
systemic prompt engineering.

This chapter covers
 Understanding systematic prompt engineering 

and setting up your first prompt flow

 Crafting an effective profile/persona prompt

 Evaluating profiles: Rubrics and grounding

 Grounding evaluation of a large language model 
profile

 Comparing prompts: Getting the perfect profile 
212
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9.1 Why we need systematic prompt engineering
Prompt engineering, by its nature, is an iterative process. When building a prompt,
you’ll often iterate and evaluate. To see this concept in action, consider the simple
application of prompt engineering to a ChatGPT question.

 You can follow along by opening your browser to ChatGPT (https://chat.openai
.com/), entering the following (text) prompt into ChatGPT, and clicking the Send Mes-
sage button (an example of this conversation is shown in figure 9.1, on the left side):

can you recommend something

We can see that the response from ChatGPT is asking for more information. Go ahead
and open a new conversation with ChatGPT, and enter the following prompt, as
shown in figure 9.1, on the right side:

Can you please recommend a time travel movie set in the medieval period.

The results in figure 9.1 show a clear difference between leaving out details and being
more specific in your request. We just applied the tactic of politely Writing Clear Instruc-
tions, and ChatGPT provided us with a good recommendation. But also notice how
ChatGPT itself guides the user into better prompting. The refreshed screen shown in
figure 9.2 shows the OpenAI prompt engineering strategies.

 We just applied simple iteration to improve our prompt. We can extend this exam-
ple by using a system prompt/message. Figure 9.3 demonstrates the use and role of
the system prompt in iterative communication. In chapter 2, we used the system mes-
sage/prompt in various examples.

No prompt engineering Applying prompt engineering

Details are included in
the prompt/request.

ChatGPT guides the user to
supply additional details.

Figure 9.1 The differences in applying prompt engineering and iterating

https://chat.openai.com/
https://chat.openai.com/
https://chat.openai.com/
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Write Clear Instructions
Be specific in what you ask.
Tactics include detailing queries, adopting personas, using d imiters,el
specifying steps, providing examples, and specifying output length. Basics

Provide Reference Text
Helps reduce fabrications.
Tactics involve instructing the model to use or cite reference texts. Memory

Use External Tools
Enhances model capabilities.
Tactics include embeddings-based search, code execution, and
access to specific functions. Memory

Split Complex Tasks into Simpler Subtasks
Reduces error rates.
Tactics include intent classification, summarizing dialogues, and
piecewise summarization of documents. Planning

Give Models Time to “Think”
Allows more reliable reasoning.
Tactics involve working out solutions before conclusions, using inn re
monologue, and reviewing previous answers. Planning

Test Changes Systematically
Ensures improvements are genuine.
Tactics involve evaluating model outputs with reference to standard
answers. Evaluation

Prompt Engineering Strategies

Figure 9.2 OpenAI prompt engineering strategies, broken down by agent component

The ser prompt definesu
the details of the ask.

The ystem prompt defines the roles
and rules and continues across the
conversation.

A ser prompt may refineu
the ask or start a new ask.

The Assistant marks the
response from the LLM.

Figure 9.3 The messages to and from an LLM conversation and the iteration of messages
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You can also try this in ChatGPT. This time, enter the following prompt and include
the word system in lowercase, followed by a new line (enter a new line in the message
window without sending the message by pressing Shift-Enter):

system

You are an expert on time travel movies.

ChatGPT will respond with some pleasant comments, as shown in figure 9.4. Because
of this, it’s happy to accept its new role and asks for any follow-up questions. Now
enter the following generic prompt as we did previously:

can you recommend something

This sets the ystem prompt, the roles
the LLM will take for the remainder of
the conversation.

The LLM responds happily with the new role.

Make the generic ask again.

The LLM now provides a list of recommendations.

Figure 9.4 The effect of adding a system prompt to our previous conversation
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We’ve just seen the iteration of refining a prompt, the prompt engineering, to extract
a better response. This was accomplished over three different conversations using the
ChatGPT UI. While not the most efficient way, it works.

 However, we haven’t defined the iterative flow for evaluating the prompt and
determining when a prompt is effective. Figure 9.5 shows a systemic method of prompt
engineering using a system of iteration and evaluation.

The system of iterating and evaluating prompts covers the broad Test Changes System-
ically strategy. Evaluating the performance and effectiveness of prompts is still new,
but we’ll use techniques from education, such as rubrics and grounding, which we’ll
explore in a later section of this chapter. However, as spelled out in the next section,
we need to understand the difference between a persona and an agent profile before
we do so.

9.2 Understanding agent profiles and personas
An agent profile is an encapsulation of component prompts or messages that describe
an agent. It includes the agent’s persona, special instructions, and other strategies that
can guide the user or other agent consumers.

 Figure 9.6 shows the main elements of an agent profile. These elements map to
prompt engineering strategies described in this book. Not all agents will use all the
elements of a full agent profile.

 At a basic level, an agent profile is a set of prompts describing the agent. It may
include other external elements related to actions/tools, knowledge, memory,

Systemic Prompt Engineering
(Strategy - Test Changes Systemically)

Build prompt
or profile

Write/update the
prompt

Yes
Evaluate
prompt

is working

No

Yes
Batch

evaluation
of prompt

No

Prompt is
used

Prompt or profile
is grounded.

Evaluate variations
of the prompt/profile.

Evaluate the prompt
basic on rubrics.

Use prompt
engineering to
write the prompt.

Figure 9.5 The systemic method of prompt engineering
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reasoning, evaluation, planning, and feedback. The combination of these elements
comprises an entire agent prompt profile.

 Prompts are the heart of an agent’s function. A prompt or set of prompts drives
each of the agent components in the profile. For actions/tools, these prompts are well
defined, but as we’ve seen, prompts for memory and knowledge can vary significantly
by use case.

 The definition of an AI agent profile is more than just a system prompt. Prompt
flow can allow us to construct the prompts and code comprising the agent profile but
also include the ability to evaluate its effectiveness. In the next section, we’ll open up
prompt flow and start using it.

9.3 Setting up your first prompt flow
Prompt flow is a tool developed by Microsoft within its Azure Machine Learning Stu-
dio platform. The tool was later released as an open source project on GitHub,
where it has attracted more attention and use. While initially intended as an applica-
tion platform, it has since shown its strength in developing and evaluating prompts/
profiles.

 Because prompt flow was initially developed to run on Azure as a service, it fea-
tures a robust core architecture. The tool supports multi-threaded batch processing,

The Agent Profile (prompts)

Actions and tools are added to
the prompt under the covers.

Knowledge and memory are prompts
used to extract and identify memories.

Adding reasoning to prompts

Similar to prompt personas, the agent
persona can give an agent specialized
attributes, rules, and even personality.

Planning and feedback

Persona
Represents the background and role of

the agent, and is often introduced in
the first system message.

Agent T ools
Set of tools an agent can

use to help accomplish a task.

Agent Evaluation and Reasoning
Describes how the agent can reason

and evaluate a task or tasks.

Agent Memory and Knowledge
The backend store that helps the agent

add context to a given task problem.

Agent Planning and Feedback
Describes how the agent can break

down a task into execution steps, and
then execute and receive feedback.

Figure 9.6 The component parts of an agent profile
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which makes it ideal for evaluating prompts at scale. The following section will exam-
ine the basics of starting with prompt flow.

9.3.1 Getting started

There are a few prerequisites to undertake before working through the exercises in
this book. The relevant prerequisites for this section and chapter are shown in the fol-
lowing list; make sure to complete them before attempting the exercises:

 Visual Studio Code (VS Code)—Refer to appendix A for installation instructions,
including additional extensions.

 Prompt flow, VS Code extension—Refer to appendix A for details on installing
extensions.

 Python virtual environment—Refer to appendix A for details on setting up a vir-
tual environment.

 Install prompt flow packages—Within your virtual environment, do a quick pip
install, as shown here:

pip install promptflow promptflow-tools

 LLM (GPT-4 or above)—You’ll need access to GPT-4 or above through OpenAI
or Azure OpenAI Studio. Refer to appendix B if you need assistance accessing
these resources.

 Book’s source code—Clone the book’s source code to a local folder; refer to
appendix A if you need help cloning the repository.

Open up VS Code to the book’s source code folder, chapter 3. Ensure that you have a
virtual environment connected and have installed the prompt flow packages and
extension.

 First, you’ll want to create a connection to your LLM resource within the prompt
flow extension. Open the prompt flow extension within VS Code, and then click to
open the connections. Then, click the plus sign beside the LLM resource to create a
new connection, as shown in figure 9.7.

 This will open a YAML file where you’ll need to populate the connection name
and other information relevant to your connection. Follow the directions, and don’t
enter API keys into the document, as shown in figure 9.8.

 When the connection information is entered, click the Create Connection link at
the bottom of the document. This will open a terminal prompt below the document,
asking you to enter your key. Depending on your terminal configuration, you may be
unable to paste (Ctrl-V, Cmd-V). Alternatively, you can paste the key by hovering the
mouse cursor over the terminal and right-clicking on Windows.

 We’ll now test the connection by first opening the simple flow in the chap-
ter_09/promptflow/simpleflow folder. Then, open the flow.dag.yaml file in VS
Code. This is a YAML file, but the prompt flow extension provides a visual editor
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(omitted)

VS Code

Click to open the prompt flow extension.

Click the plus to create a new connection.

Figure 9.7 Creating a new prompt flow LLM connection

Enter a name for the connection.

Follow the directions: don’t enter a key.

Click after completing the above.

Figure 9.8 Setting the connection information for your LLM resource
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that is accessible by clicking the Visual Editor link at the top of the file, as shown in
figure 9.9.

After the visual editor window is opened, you’ll see a graph representing the flow and
the flow blocks. Double-click the recommender block, and set the connection name,
API type, and model or deployment name, as shown in figure 9.10.

Click the link to open the visual editor .

flow.dag.yaml

Figure 9.9 Opening the prompt flow visual editor

Double-click to
open LLM block.

Select the
connection name.

API type Model or
deployment name

Figure 9.10 Setting the LLM connection details
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A prompt flow is composed of a set of blocks starting with an Inputs block and termi-
nating in an Outputs block. Within this simple flow, the recommender block represents
the LLM connection and the prompt used to converse with the model. The echo
block for this simple example echoes the input.

      When creating a connection to an LLM, either in prompt flow or through an
API, here are the crucial parameters we always need to consider (prompt flow docu-
mentation: https://microsoft.github.io/promptflow):

 Connection—This is the connection name, but it also represents the service
you’re connecting to. Prompt flow supports multiple services, including locally
deployed LLMs.

 API—This is the API type. The options are chat for a chat completion API,
such as GPT-4, or completion for the older completion models, such as the
OpenAI Davinci.

 Model—This may be the model or deployment name, depending on your service
connection. For OpenAI, this will be the model’s name, and for Azure OpenAI,
it will represent the deployment name.

 Temperature—This represents the stochasticity or variability of the model response.
A value of 1 represents a high variability of responses, while 0 indicates a desire
for no variability. This is a critical parameter to understand and, as we’ll see, will
vary by use case.

 Stop—This optional setting tells the call to the LLM to stop creating tokens. It’s
more appropriate for older and open source models.

 Max tokens—This limits the number of tokens used in a conversation. Knowl-
edge of how many tokens you use is crucial to evaluating how your LLM interac-
tions will work when scaled. Counting tokens may not be a concern if you’re
exploring and conducting research. However, in production systems, tokens
represent the load on the LLM, and connections using numerous tokens may
not scale well.

 Advanced parameters—You can set a few more options to tune your interaction
with the LLM, but we’ll cover that topic in later sections of the book.

After configuring the LLM block, scroll up to the Inputs block section, and review the
primary input shown in the user_input field, as shown in figure 9.11. Leave it as the
default, and then click the Play button at the top of the window.

 All the blocks in the flow will run, and the results will be shown in the terminal win-
dow. What you should find interesting is that the output shows recommendations for
time travel movies. This is because the recommender block already has a simple pro-
file set, and we’ll see how that works in the next section.

 

https://microsoft.github.io/promptflow
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9.3.2 Creating profiles with Jinja2 templates

The flow responds with time travel movie recommendations because of the prompt or
profile it uses. By default, prompt flow uses Jinja2 templates to define the content of
the prompt or what we’ll call a profile. For the purposes of this book and our explora-
tion of AI agents, we’ll refer to these templates as the profile of a flow or agent.

 While prompt flow doesn’t explicitly refer to itself as an assistant or agent engine, it
certainly meets the criteria of producing a proxy and general types of agents. As you’ll
see, prompt flow even supports deployments of flows into containers and as services.

 Open VS Code to chapter_09/promptflow/simpleflow/flow.dag.yaml, and open
the file in the visual editor. Then, locate the Prompt field, and click the recommended
.jinja2 link, as shown in figure 9.12.

Inputs block

Click Play to run all
the blocks in the flow.

Use the default text.

Figure 9.11 Setting the inputs and starting the flow

Click the link to open
the inja2 template.J

Defines the start of the system and
user portion of the prompt/profile

The role of the profileThis is where the user_input
text will be placed.

Figure 9.12 Opening the prompt Jinja2 template and examining the parts of the profile/prompt
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Jinja is a templating engine, and Jinja2 is a particular version of that engine. Tem-
plates are an excellent way of defining the layout and parts of any form of text docu-
ment. They have been extensively used to produce HTML, JSON, CSS, and other
document forms. In addition, they support the ability to apply code directly into the
template. While there is no standard way to construct prompts or agent profiles, our
preference in this book is to use templating engines such as Jinja.

 At this point, change the role within the system prompt of the recommended.jin-
ja2 template. Then, run all blocks of the flow by opening the flow in the visual editor
and clicking the Play button. The next section will look at other ways of running
prompt flow for testing or actual deployment.

9.3.3 Deploying a prompt flow API

Because prompt flow was also designed to be deployed as a service, it supports a cou-
ple of ways to deploy as an app or API quickly. Prompt flow can be deployed as a local
web application and API running from the terminal or as a Docker container.

 Return to the flow.dag.yaml file in the visual editor from VS Code. At the top of
the window beside the Play button are several options we’ll want to investigate further.
Click the Build button as shown in figure 9.13, and then select to deploy as a local
app. A new YAML file will be created to configure the app. Leave the defaults, and
click the Start Local App link.

This will launch the flow as a local web application, and you’ll see a browser tab open,
as shown in figure 9.14. Enter some text into the user_input field, which is marked as
required with a red asterisk. Click Enter and wait a few seconds for the reply.

 You should see a reply like the one shown earlier in figure 9.12, where the flow or
agent replies with a list of time travel movies. This is great—we’ve just developed our
first agent profile and the equivalent of a proxy agent. However, we need to determine

Click the Build button. When prompted, select to build
as either a web application or Docker container.

Click the link to start the local app.

Figure 9.13 Building and starting the flow as a local app
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how successful or valuable the recommendations are. In the next section, we explore
how to evaluate prompts and profiles.

9.4 Evaluating profiles: Rubrics and grounding
A key element of any prompt or agent profile is how well it performs its given task. As
we see in our recommendation example, prompting an agent profile to give a list of
recommendations is relatively easy, but knowing whether those recommendations are
helpful requires us to evaluate the response.

 Fortunately, prompt flow has been designed to evaluate prompts/profiles at scale.
The robust infrastructure allows for the evaluation of LLM interactions to be paral-
lelized and managed as workers, allowing hundreds of profile evaluations and varia-
tions to happen quickly.

 In the next section, we look at how prompt flow can be configured to run prompt/
profile variations against each other. We’ll need to understand this before evaluating
profiles’ performance.

 Prompt flow provides a mechanism to allow for multiple variations within an LLM
prompt/profile. This tool is excellent for comparing subtle or significant differences

Chat history is only used for chat flow. This is a standard flow.

Keeps a history of submissions Enter text to be used by the recommender.

Figure 9.14 Running the flow as a local web application
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between profile variations. When used in performing bulk evaluations, it can be
invaluable for quickly assessing the performance of a profile.

 Open the recommender_with_variations/flow.dag.yaml file in VS Code and the
flow visual editor, as shown in figure 9.15. This time, we’re making the profile more
generalized and allowing for customization at the input level. This allows us to expand
our recommendations to anything and not just time travel movies.

The new inputs Subject, Genre, Format, and Custom allow us to define a profile that
can easily be adjusted to any recommendation. This also means that we must prime
the inputs based on the recommendation use case. There are multiple ways to prime
these inputs; two examples of priming inputs are shown in figure 9.16. The figure
shows two options, options A and B, for priming inputs. Option A represents the clas-
sic UI; perhaps there are objects for the user to select the subject or genre, for exam-
ple. Option B places a proxy/chat agent to interact with the user better to understand
the desired subject, genre, and so on.

Added additional inputs
into the recommender

The recommenderLLM has two variations. Click
the adjust icons to see and edit the variations.

Inputs are passed directly to
the recommender LLM block.

Figure 9.15 The recommender, with variations in flow and expanded inputs
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Even considering the power of LLMs, you may still want or need to use option A. The
benefit of option A is that you can constrain and validate the inputs much like you do
with any modern UI. Alternatively, the downside of option A is that the constrained
behavior may limit and restrict future use cases.

 Option B represents a more fluid and natural way without a traditional UI. It’s far
more powerful and extensible than option A but also introduces more unknowns for
evaluation. However, if the proxy agent that option B uses is written well, it can assist a
lot in gathering better information from the user.

 The option you choose will dictate how you need to evaluate your profiles. If
you’re okay with a constrained UI, then it’s likely that the inputs will also be con-
strained to a set of discrete values. For now, we’ll assume option B for input priming,
meaning the input values will be defined by their name.

 To get back to VS Code and the visual view of the recommender with variants flow,
click the icon shown earlier in figure 9.15 to open the variants and allow editing.
Then, click the recommend.jinja2 and recommender_variant_1.jinja2 links to open
the files side by side, as shown in figure 9.17.

 Figure 9.17 demonstrates the difference between the variant profiles. One profile
injects the inputs into the user prompt, and the other injects them into the system
prompt. However, it’s essential to understand that variations can encompass more
than profile design, as identified in table 9.1.

API

User interface

I want a movie recommendation

LLM
Options

Option A

Option B

User enters the required information: subject,
genre, format, and custom into an interface

The proxy agent asks or is directed by the user
for recommendations. The agent asks and/or
identifies the subject, genre, format, and
custom through conversation.

Agent profile interacts with LLM by
injecting subject, genre, format,
and custom into its profile

Figure 9.16 The user interaction options for interfacing with the agent profile to prime inputs to the agent profile
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For this simple example, we’re just going to use prompt variations by varying the input
to reflect in either the system or user prompt. Refer to figure 9.17 for what this looks

Table 9.1 LLM variation options in prompt flow

Option Evaluation option examples Notes

Jinja2 prompt 
template

Compare system prompt variations, 
user prompt variations, or mixed prompt 
variations.

Some endless combinations and tech-
niques can be applied here. Prompt engi-
neering is evolving all the time.

LLM Compare GPT-9.5 to GPT-4.

Compare GPT-4 to GPT-4 Turbo.

Compare open source models to com-
mercial models.

This is a useful way to evaluate and 
ground model performance against a 
prompt. It can also help you tune your 
profile to work with open source and/or 
cheaper models.

Temperature Compare a 0 temperature (no random-
ness) to a 1 (maximum randomness).

Changes to the temperature can signifi-
cantly change the responses of some 
prompts, which may improve or degrade 
performance.

Max tokens Compare limited tokens to larger token 
sizes.

This can allow you to reduce and maxi-
mize token usage.

Advanced 
parameters

Compare differences to options such 
as top_p, presence_penalty, 
frequency_penalty, and 
logit_bias. 

We’ll cover the use of these advanced 
parameters in later chapters.

Function calls Compare alternative function calls. Function calls will be addressed later in 
this chapter.

The system prompt describes a generic recommender
that works when given specific inputs.

This profile injects the inputs directly
into a formatted user message.

Custom input now becomes
the user prompt.

The inputs are now injected into
the system prompt. Both
prompts have been simplified.

Figure 9.17 Side-by-side comparison of variant profile templates for the recommender
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like. We can then quickly run both variations by clicking the Play (Run All) button at
the top and choosing both, as shown in figure 9.18.

In the terminal window, you’ll see the results of both runs. The results will likely look
similar, so now we must move on to how we evaluate the difference between variations
in the next section.

9.5 Understanding rubrics and grounding
Evaluation of prompt/profile performance isn’t something we can typically do using a
measure of accuracy or correct percentage. Measuring the performance of a profile
depends on the use case and desired outcome. If that is as simple as determining if
the response was right or wrong, all the better. However, in most cases, evaluation
won’t be that simple.

 In education, the rubric concept defines a structured set of criteria and standards a
student must establish to receive a particular grade. A rubric can also be used to
define a guide for the performance of a profile or prompt. We can follow these steps
to define a rubric we can use to evaluate the performance of a profile or prompt:

1 Identify the purpose and objectives. Determine the goals you want the profile or
agent to accomplish. For example, do you want to evaluate the quality of recom-
mendations for a given audience or overall quality for a given subject, format,
or other input?

2 Define criteria. Develop a set of criteria or dimensions that you’ll use to evaluate
the profile. These criteria should align with your objectives and provide clear
guidelines for assessment. Each criterion should be specific and measurable.

#2 Select the option to run all variations.

#1 Click Play (Run All) to start the run.

Figure 9.18 Running both prompt variations at the same time
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For example, you may want to measure a recommendation by how well it fits
with the genre and then by subject and format.

3 Create a scale. Establish a rating scale that describes the levels of performance for
each criterion. Standard scales include numerical scales (e.g., 1–5) or descrip-
tive scales (e.g., Excellent, Good, Fair, Poor).

4 Provide descriptions. For each level on the scale, provide clear and concise descrip-
tions that indicate what constitutes a strong performance and what represents a
weaker performance for each criterion.

5 Apply the rubric. When assessing a prompt or profile, use the rubric to evaluate
the prompt’s performance based on the established criteria. Assign scores or
ratings for each criterion, considering the descriptions for each level.

6 Calculate the total score. Depending on your rubric, you may calculate a total
score by summing up the scores for each criterion or using a weighted average
if some criteria are more important than others.

7 Ensure evaluation consistency. If multiple evaluators are assessing the profile, it’s
crucial to ensure consistency in grading.

8 Review, revise, and iterate. Periodically review and revise the rubric to ensure it
aligns with your assessment goals and objectives. Adjust as needed to improve
its effectiveness.

Grounding is a concept that can be applied to profile and prompt evaluation—it
defines how well a response is aligned with a given rubric’s specific criteria and stan-
dards. You can also think of grounding as the baseline expectation of a prompt or pro-
file output.

 This list summarizes some other important considerations when using grounding
with profile evaluation:

 Grounding refers to aligning responses with the criteria, objectives, and context
defined by the rubric and prompt.

 Grounding involves assessing whether the response directly addresses the
rubric criteria, stays on topic, and adheres to any provided instructions.

 Evaluators and evaluations gauge the accuracy, relevance, and adherence to
standards when assessing grounding.

 Grounding ensures that the response output is firmly rooted in the specified
context, making the assessment process more objective and meaningful.

A well-grounded response aligns with all the rubric criteria within the given context
and objectives. Poorly grounded responses will fail or miss the entire criteria, context,
and objectives.

 As the concepts of rubrics and grounding may still be abstract, let’s look at apply-
ing them to our current recommender example. Following is a list that follows the
process for defining a rubric as applied to our recommender example:
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1 Identify the purpose and objectives. The purpose of our profile/prompt is to recom-
mend three top items given a subject, format, genre, and custom input.

2 Define criteria. For simplicity, we’ll evaluate how a particular recommendation
aligns with the given input criteria, subject, format, and genre. For example, if a
profile recommends a book when asked for a movie format, we expect a low
score in the format criteria.

3 Create a scale. Again, keeping things simple, we’ll use a scale of 1–5 (1 is poor,
and 5 is excellent).

4 Provide descriptions. See the general descriptions for the rating scale shown in
table 9.2.

5 Apply the rubric. With the rubric assigned at this stage, it’s an excellent exercise
to evaluate the rubric against recommendations manually.

6 Calculate the total score. For our rubric, we’ll average the score for all criteria to
provide a total score.

7 Ensure evaluation consistency. The technique we’ll use for evaluation will provide
very consistent results.

8 Review, revise, and iterate. We’ll review, compare, and iterate on our profiles, rubrics,
and the evaluations themselves.

This basic rubric can now be applied to evaluate the responses for our profile. You can
do this manually, or as you’ll see in the next section, using a second LLM profile.

9.6 Grounding evaluation with an LLM profile
This section will employ another LLM prompt/profile for evaluation and grounding.
This second LLM prompt will add another block after the recommendations are gen-
erated. It will process the generated recommendations and evaluate each one, given
the previous rubric.

 Before GPT-4 and other sophisticated LLMs came along, we would have never con-
sidered using another LLM prompt to evaluate or ground a profile. You often want

Table 9.2 Rubric ratings 

Rating Description

1 Poor alignment: this is the opposite of what is expected given the criteria.

2 Bad alignment: this isn’t a good fit for the given criteria.

3 Mediocre alignment: it may or may not fit well with the given criteria.

4 Good alignment: it may not align 100% with the criteria but is a good fit otherwise.

5 Excellent alignment: this is a good recommendation for the given criteria.
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to use a different model when using LLMs to ground a profile. However, if you’re
comparing profiles against each other, using the same LLM for evaluation and ground-
ing is appropriate.

 Open the recommender_with_LLM_evaluation\flow.dag.yaml file in the prompt
flow visual editor, scroll down to the evaluate_recommendation block, and click the
evaluate_recommendation.jinja2 link to open the file, as shown in figure 9.19. Each
section of the rubric is identified in the figure.

We have a rubric that is not only well defined but also in the form of a prompt that can
be used to evaluate recommendations. This allows us to evaluate the effectiveness of
recommendations for a given profile—automatically. Of course, you can also use the
rubric to score and evaluate the recommendations manually for a better baseline.

NOTE Using LLMs to evaluate prompts and profiles provides a strong base-
line for comparing the performance of a profile. It can also do this without
human bias in a controlled and repeatable manner. This provides an excel-
lent mechanism to establish baseline groundings for any profile or prompt.

Returning to the recommender_with_LLM_evaluation flow visual editor, we can run
the flow by clicking the Play button and observing the output. You can run a single

Define the basic role of the profile.

Define the basic criteria for the rubric.

Define the rubric scale and
a description for each item
on the scale.

Reiterate the criteria and scale, and
show an example of expected output.

Figure 9.19 The evaluation prompt, with each of the parts of the rubric outlined
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recommendation or run both variations when prompted. The output of a single eval-
uation using the default inputs is shown in the following listing.

{
    "recommendations": "Title: The Butterfly Effect
Subject: 5
Format: 5
Genre: 4

Title: Primer
Subject: 5
Format: 5
Genre: 4

Title: Time Bandits
Subject: 5
Format: 5
Genre: 5"
}

We now have a rubric for grounding our recommender, and the evaluation is run
automatically using a second LLM prompt. In the next section, we look at how to per-
form multiple evaluations simultaneously and then at a total score for everything.

9.7 Comparing profiles: Getting the perfect profile
With our understanding of rubrics and grounding, we can now move on to evaluating
and iterating the perfect profile. Before we do that, though, we need to clean up the
output from the LLM evaluation block. This will require us to parse the recommenda-
tions into something more Pythonic, which we’ll tackle in the next section.

9.7.1 Parsing the LLM evaluation output

As the raw output from the evaluation block is text, we now want to parse that into
something more usable. Of course, writing parsing functions is simple, but there are
better ways to cast responses automagically. We covered better methods for returning
responses in chapter 5, on agent actions.

 Open chapter_09\prompt_flow\recommender_with_parsing\flow.dag.yaml in
VS Code, and look at the flow in the visual editor. Locate the parsing_results block,
and click the link to open the Python file in the editor, as shown in figure 9.20.

 The code for the parsing_results.py file is shown in listing 9.2.
 

 
 
 

Listing 9.1 LLM rubric evaluation output
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from promptflow import tool

@tool     
def parse(input: str) -> str:
    # Splitting the recommendations into individual movie blocks
    rblocks = input.strip().split("\n\n")     

    # Function to parse individual recommendation block into dictionary
    def parse_block(block):
        lines = block.split('\n')
        rdict = {}
        for line in lines:
            kvs = line.split(': ')
            key, value = kvs[0], kvs[1]
            rdict[key.lower()] = value    
        return rdict

    parsed = [parse_block(block) for block in rblocks]   

    return parsed

We’re converting the recommendations output from listing 9.1, which is just a string,
into a dictionary. So this code will convert this string into the JSON block shown next:

Listing 9.2 parsing_results.py

Click the link to open the Python file.

parsing_results.py parses output
after LLM evaluation.

Figure 9.20 Opening the parsing_results.py file in VS Code

Special decorator to 
denote the tool block

Splits the input and
double new lines

Creates a dictionary entry 
and sets the value

Loops through each 
block and parses 
into key/value 
dictionary
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 Before parsing:

"Title: The Butterfly Effect
Subject: 5
Format: 5
Genre: 4

Title: Primer
Subject: 5
Format: 5
Genre: 4

Title: Time Bandits
Subject: 5
Format: 5
Genre: 5"

After parsing:

       {
            "title": " The Butterfly Effect
            "subject": "5",
            "format": "5",
            "genre": "4"
        },
        {
            "title": " Primer",
            "subject": "5",
            "format": "5",
            "genre": "4"
        },
        {
            "title": " Time Bandits",
            "subject": "5",
            "format": "5",
            "genre": "5"
        }

The output of this parsing_results block now gets passed to the output and is
wrapped in a list of recommendations. We can see what all this looks like by running
the flow.

 Open flow.dag.yaml for the flow in the visual editor, and click the Play (Run All)
button. Be sure to select to use both recommender variants. You’ll see both variations
run and output to the terminal.

 At this point, we have a full working recommendation and LLM evaluation flow
that outputs a score for each criterion on each output. However, to do comprehensive
evaluations of a particular profile, we want to generate multiple recommendations
with various criteria. We’ll see how to do batch processing of flows in the next section.
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9.7.2 Running batch processing in prompt flow

In our generic recommendation profile, we want to evaluate how various input crite-
ria can affect the generated recommendations. Fortunately, prompt flow can batch-
process any variations we want to test. The limit is only the time and money we want
to spend.

 To perform batch processing, we must first create a JSON Lines (JSONL) or JSON
list document of our input criteria. If you recall, our input criteria looked like the fol-
lowing in JSON format:

{
    "subject": "time travel",
    "format": "books",
    "genre": "fantasy",
    "custom": "don't include any R rated content"
}

We want to create a list of JSON objects like that just shown, preferably in a random
manner. Of course, the simple way to do this is to prompt ChatGPT to create a JSONL
document using the following prompt:

I am developing a recommendation agent. The agent will recommend anything given
the following criteria:

1. subject - examples: time travel, cooking, vacation

2. format - examples: books, movies, games

3. genre: documentary, action, romance

4. custom: don't include any R rated content

Can you please generate a random list of these criteria and output it in the format of
a JSON Lines file, JSONL. Please include 10 items in the list.

Try this out by going to ChatGPT and entering the preceding prompt. A previously
generated file can be found in the flow folder, called \bulk_recommend.jsonl. The
contents of this file have been shown here for reference:

{
  "subject": "time travel",
  "format": "books",
  "genre": "fantasy",
  "custom": "don't include any R rated content"
}
{
  "subject": "space exploration",
  "format": "podcasts",
  "genre": "sci-fi",
  "custom": "include family-friendly content only"
}
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{
  "subject": "mystery",
  "format": "podcasts",
  "genre": "fantasy",
  "custom": "don't include any R rated content"
}
{
  "subject": "space exploration",
  "format": "podcasts",
  "genre": "action",
  "custom": "include family-friendly content only"
}
{
  "subject": "vacation",
  "format": "books",
  "genre": "thriller",
  "custom": "don't include any R rated content"
}
{
  "subject": "mystery",
  "format": "books",
  "genre": "sci-fi",
  "custom": "don't include any R rated content"
}
{
  "subject": "mystery",
  "format": "books",
  "genre": "romance",
  "custom": "don't include any R rated content"
}
{
  "subject": "vacation",
  "format": "movies",
  "genre": "fantasy",
  "custom": "don't include any R rated content"
}
{
  "subject": "cooking",
  "format": "TV shows",
  "genre": "thriller",
  "custom": "include family-friendly content only"
}
{
  "subject": "mystery",
  "format": "movies",
  "genre": "romance",
  "custom": "include family-friendly content only"
}

With this bulk file, we can run both variants using the various input criteria in the bulk
JSONL file. Open the flow.dag.yaml file in the visual editor, click Batch (the beaker
icon) to start the bulk-data loading process, and select the file as shown in figure 9.21.
For some operating systems, this may appear as Local Data File.
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After the bulk file is selected, a new YAML document will open with a Run link added
at the bottom of the file, as shown in figure 9.22. Click the link to do the batch run
of inputs.

At this point, a few things will happen. The flow visual editor will appear, and beside
that a log file will open, showing the progress of the run. In the terminal window,
you’ll see the various worker processes spawning and running.

 Be patient. The batch run, even for 10 items, may take a few minutes or seconds,
depending on various factors such as hardware, previous calls, and so on. Wait for the
run to complete, and you’ll see a summary of results in the terminal.

 You can also view the run results by opening the prompt flow extension and select-
ing the last run, as shown in figure 9.23. Then, you dig into each run by clicking the

Select a local file.

Click to open the select input source.

Figure 9.21 Loading the bulk JSONL file to run the flow on multiple input variations

Click to run the batch.

Figure 9.22 Running the batch run of inputs
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table cells. A lot of information is exposed in this dialog, which can help you trouble-
shoot flows and profiles.

A lot of information is captured during a batch run, and you can explore much of it
through the visualizer. More information can be found by clicking the output folder
link from the terminal window. This will open another session of VS Code with the
output folder allowing you to review the run logs and other details.

 Now that we’ve completed the batch run for each variant, we can apply grounding
and evaluate the results of both prompts. The next section will use a new flow to per-
form the profile/prompt evaluation.

9.7.3 Creating an evaluation flow for grounding

Open chapter_3\prompt_flow\evaluate_groundings\flow.dag.yaml in the visual edi-
tor, as shown in figure 9.24. There are no LLM blocks in the evaluation flow—just
Python code blocks that will run the scoring and then aggregate the scores.

 We can now look at the code for the scoring and aggregate blocks, starting
with the scoring code in listing 9.3. This scoring code averages the score for each
criterion into an average score. The output of the function is a list of processed
recommendations.

#2 Right-click a run, and
select to open the visualization.

Recommendations for
a single set of inputs

Look at the API calls and
timing for the various calls.

#3 Click the recommendations
cell to view the results.

#1 Open the prompt
flow extension.

Figure 9.23 An opening run visualization and an examination of a batch run
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@tool
def line_process(recommendations: str):    
    inputs = recommendations
    output = []
    for data_dict in inputs:                     
        total_score = 0
        score_count = 0

        for key, value in data_dict.items():     
                if key != "title":    
                    try:
                        total_score += float(value)
                        score_count += 1
                        data_dict[key] = float(value)    
                    except:
                        pass

        avg_score = total_score / score_count if score_count > 0 else 0

        data_dict["avg_score"] = round(avg_score, 2)   
        output.append(data_dict)

    return output

Listing 9.3 line_process.py

line_process block processes and
scores each recommendation.

aggregate block aggregates
the results of scoring.

Figure 9.24 Looking at the evaluate_groundings flow used to ground recommendation runs

A set of three recommendations 
is input into the function.

Loops over each 
recommendation 
and criterion

Title isn’t a criterion, 
so ignore it.

Totals the score 
for all criteria 
and sets the float 
value to key

Adds the average 
score as a grounding 
score of the 
recommendation
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From the grounded recommendations, we can move on to aggregating the scores
with the aggregate block—the code for the aggregate block is shown in the follow-
ing listing.

@tool
def aggregate(processed_results: List[str]):
    items = [item for sublist in processed_results 
              ➥ for item in sublist]    

    aggregated = {}

    for item in items:
        for key, value in item.items():
            if key == 'title':
                continue

            if isinstance(value, (float, int)):     
                if key in aggregated:
                    aggregated[key] += value
                else:
                    aggregated[key] = value

    for key, value in aggregated.items():     
        value = value / len(items)
        log_metric(key=key, value=value)    
        aggregated[key] = value

    return aggregated

The result of the aggregations will be a summary score for each criterion and the aver-
age score. Since the evaluation/grounding flow is separate, it can be run over any rec-
ommendation run we perform. This will allow us to use the batch run results for any
variation to compare results.

 We can run the grounding flow by opening flow.dag.yaml in the visual editor and
clicking Batch (beaker icon). Then, when prompted, we select an existing run and
then select the run we want to evaluate, as shown in figure 9.25. This will open a YAML
file with the Run link at the bottom, as we’ve seen before. Click the Run link to run
the evaluation.

 After the run is completed, you’ll see a summary of the results in the terminal win-
dow. You can click the output link to open the folder in VS Code and analyze the
results, but there is a better way to compare them.

 Open the prompt flow extension, focus on the Batch Run History window, and
scroll down to the Run against Run section, as shown in figure 9.26. Select the runs
you want to compare—likely the ones near the top—so that the checkmark appears.
Then, right-click the run, and select the Visualize Runs option. The Batch Run Visual-
ization window opens, and you’ll see the metrics for each of the runs at the top.

Listing 9.4 aggregate.py

The input is a list 
of lists; flatten to 
a list of items.

Checks to see if the value 
is numeric and accumulates 
scores for each criterion key

Loops over aggregated 
criterion scores

Logs the criterion 
as a metric
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We can now see a significant difference between profile/prompt variation 0, the
user prompt, and variation 1, the system prompt. Refer to figure 9.15 if you need a
refresher on what the prompts/profiles look like. At this point, it should be evi-
dent that injecting the input parameters into the system prompt provides better
recommendations.

 You can now go back and try other profiles or other variant options to see what
effect this has on your recommendations. The possibilities are virtually endless, but
hopefully you can see what an excellent tool prompt flow will be for building agent
profiles and prompts.

 
 

Select Existing Run that is not a local JSON Lines file.

Select the run you want to evaluate, noting the name.

Figure 9.25 Loading a previous run to be grounded and evaluated

#1 Scroll down to the batch
Run against the run section.

#2 Select the runs you want to evaluate,
and a checkmark appears. Then,
right-click and select Visualize Runs.

#3 Compare the aggregated criteria
results against each of the runs.

Figure 9.26 Visualizing the metrics for multiple runs and comparing them
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9.7.4 Exercises

Use the following exercises to improve your knowledge of the material:

 Exercise 1—Create a New Prompt Variant for Recommender Flow (Intermediate)
Objective—Improve the recommendation results by creating and testing a new
prompt variant in prompt flow.

Tasks:

– Create a new prompt variant for the recommender flow in prompt flow.
– Run the flow in batch mode.
– Evaluate the results to determine if they are better or worse compared to the

original prompt.
 Exercise 2—Add a Custom Field to the Rubric and Evaluate (Intermediate)

Objective—Enhance the evaluation criteria by incorporating a custom field into
the rubric and updating the evaluation flow.

Tasks:

– Add the custom field as a new criterion to the rubric.
– Update the evaluation flow to score the new criterion.
– Evaluate the results, and analyze the effect of the new criterion on the

evaluation.
 Exercise 3—Develop a New Use Case and Evaluation Rubric (Advanced)

Objective—Expand the application of prompt engineering by developing a new
use case and creating an evaluation rubric.

Tasks:

– Develop a new use case aside from the recommendation.
– Build the prompt for the new use case.
– Create a rubric for evaluating the new prompt.
– Update or alter the evaluation flow to aggregate and compare the results of

the new use case with existing ones.
 Exercise 4—Evaluate Other LLMs Using LM Studio (Intermediate)

Objective—Assess the performance of different open source LLMs by hosting a
local server with LM Studio.

Tasks:

– Use LM Studio to host a local server for evaluating LLMs.
– Evaluate other open source LLMs.
– Consult chapter 2 if assistance is needed for setting up the server and per-

forming the evaluations.
 Exercise 5—Build and Evaluate Prompts Using Prompt Flow (Intermediate)

Objective—Apply prompt engineering strategies to build and evaluate new prompts
or profiles using prompt flow.
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Tasks:

– Build new prompts or profiles for evaluation using prompt flow.
– Apply the Write Clear Instructions prompt engineering strategy from chap-

ter 2.
– Evaluate the prompts and profiles using prompt flow.
– Refer to chapter 2 for tactics and implementation details if a refresher is

needed.

Summary
 An agent profile consists of several other component prompts that can drive

functions such as actions/tools, knowledge, memory, evaluation, reasoning, feed-
back, and planning.

 Prompt flow can be used to evaluate an agent’s component prompts.
 Systemic prompt engineering is an iterative process evaluating a prompt and

agent profile.
 The Test Changes Systematically strategy describes iterating and evaluating

prompts, and system prompt engineering implements this strategy.
 Agent profiles and prompt engineering have many similarities. We define an

agent profile as the combination of prompt engineering elements that guide
and help an agent through its task.

 Prompt flow is an open source tool from Microsoft that provides several fea-
tures for developing and evaluating profiles and prompts.

 An LLM connection in prompt flow supports additional parameters, including
temperature, stop token, max tokens, and other advanced parameters.

 LLM blocks support prompt and profile variants, which allow for evaluating
changes to the prompt/profile or other connection parameters.

 A rubric applied to an LLM prompt is the criteria and standards a prompt/profile
must fulfill to be grounded. Grounding is the scoring and evaluation of a rubric.

 Prompt flow supports running multiple variations as single runs or batch runs.
 In prompt flow, an evaluation flow is run after a generative flow to score and

aggregate the results. The Visualize Runs option can compare the aggregated
criteria from scoring the rubric across multiple runs.



Agent reasoning
and evaluation
Now that we’ve examined the patterns of memory and retrieval that define the
semantic memory component in agents, we can take a look at the last and most
instrumental component in agents: planning. Planning encompasses many facets,
from reasoning, understanding, and evaluation to feedback.

 To explore how LLMs can be prompted to reason, understand, and plan, we’ll
demonstrate how to engage reasoning through prompt engineering and then
expand that to planning. The planning solution provided by the Semantic Kernel
(SK) encompasses multiple planning forms. We’ll finish the chapter by incorporat-
ing adaptive feedback into a new planner.

 Figure 10.1 demonstrates the high-level prompt engineering strategies we’ll
cover in this chapter and how they relate to the various techniques we’ll cover. Each

This chapter covers
 Using various prompt engineering techniques 

to extend large language model functions

 Engaging large language models with prompt 
engineering techniques that engage reasoning

 Employing an evaluation prompt to narrow 
and identify the solution to an unknown 
problem 
244
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of the methods showcased in the figure will be explored in this chapter, from the
basics of solution/direct prompting, shown in the top-left corner, to self-consistency
and tree of thought (ToT) prompting, in the bottom right.

10.1 Understanding direct solution prompting
Direct solution prompting is generally the first form of prompt engineering that users
employ when asking LLMs questions or solving a particular problem. Given any LLM
use, these techniques may seem apparent, but they are worth reviewing to establish
the foundation of thought and planning. In the next section, we’ll start from the
beginning, asking questions and expecting answers.

Split Complex Tasks into Simpler Subtasks
Reduces error rates.
Tactics include intent classi cation, summarizingfi
dialogues, and piecewise summarization of documents.

Planning

Give Models
Time to
“Think”
Allows more
reliable
reasoning.
Tactics involve
working out
solutions
before
conclusions,
using inner
monologue,
and reviewing
previous
answers.

Planning

Solutions—prompts in this
group are direct and may include
examples of completed tasks.

Prompt
chaining

Question and- -
answer prompting

Zero-shot
prompting

One-shot
prompting

Self-consistency
prompting

Tree of thought
prompting

Automatic easoningr
with tools (ART)

Planners

Adaptive constructive
feedback

Chain of thought
prompting

Reasoning prompts demonstrate—
reasoning by encouraging a thought
process and solving a sequence of
thoughts.

Evaluation—multiple
prompts are generated
and evaluated based on
the goal.

Tooling the ability to use—
tools, actions, planners, and
specialized prompts to solve
tasks and high-level goals.

Multi-agent
systems

Feedbace xtendsk—
planning but also
engages with perceived
or genuine feedback to
continually adapt and
improve plans.

Think of these as axes:
the y-axis represents
thought, and the x-axis
represents planning.

Prompt Engineering Strategies

Evaluation and Feedback

All of these
concepts will
be covered in
this chapter.

.

Thought

Figure 10.1 How the two planning prompt engineering strategies align with the various techniques
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10.1.1 Question-and-answer prompting

For the exercises in this chapter, we’ll employ prompt flow to build and evaluate the var-
ious techniques. (We already extensively covered this tool in chapter 9, so refer to that
chapter if you need a review.) Prompt flow is an excellent tool for understanding how
these techniques work and exploring the flow of the planning and reasoning process.

 Open Visual Studio Code (VS Code) to the chapter 10 source folder. Create a new
virtual environment for the folder, and install the requirements.txt file. If you need
help setting up a chapter’s Python environment, refer to appendix B.

 We’ll look at the first flow in the prompt_flow/question-answering-prompting
folder. Open the flow.dag.yaml file in the visual editor, as shown in figure 10.2. On
the right side, you’ll see the flow of components. At the top is the question_answer
LLM prompt, followed by two Embedding components and a final LLM prompt to do
the evaluation called evaluate.

The breakdown in listing 10.1 shows the structure and components of the flow in
more detail using a sort of YAML-shortened pseudocode. You can also see the input
and outputs to the various components and a sample output from running the flow.

   Inputs:
        context  : the content to ask the question about

Listing 10.1 question-answer-prompting flow

Prompt flow folder to open

Open the flow.dag.yaml
file in the visual editor.

Select the question_answer
LLM component.

Shows the visual
flow of the DAG
making up the flow

Embeds the expected and
predicted answer so their
similarity can be evaluated

Figure 10.2 The flow.dag.yaml file, open in the visual editor, highlighting the various components of the flow
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        question : question asked specific to the content
        expected : the expected answer

   LLM: Question-Answer (the prompt used to ask the question)
        inputs:
               context and question
        outputs: 
               the prediction/answer to the question

   Embeddings: uses an LLM embedding model to create the embedding 
representation of the text

     Embedding_predicted: embeds the output of the Question-Answer LLM
     Embedding_expected: embeds the output of the expected answer

   Python: Evaluation (Python code to measure embedding similarity)
     Inputs:
            Embedding_predicted output
            Embedding_expected output
     Outputs: 
            the similarity score between predicted and expected
   
   Outputs:
        context: -> input.context
        question: -> input.question
     expected: -> input.expected
     predicted: -> output.question_answer
     evaluation_score: output.evaluation

### Example Output
{
    "context": "Back to the Future (1985)…",
    "evaluation_score": 0.9567478002354606,
    "expected": "Marty traveled back in time 30 years.",
    "predicted": "Marty traveled back in time 30 years from 1985 to 1955 
in the movie \"Back to the Future.\"",
    "question": "How far did Marty travel back in time in the movie 
Back to the Future (1985)"
}

Before running this flow, make sure your LLM block is configured correctly. This may
require you to set up a connection to your chosen LLM. Again, refer to chapter 9 if
you need a review on how to complete this. You’ll need to configure the LLM and
Embedding blocks with your connection if you’re not using OpenAI.

 After configuring your LLM connection, run the flow by clicking the Play but-
ton from the visual editor or using the Test (Shift-F5) link in the YAML editor win-
dow. If everything is connected and configured correctly, you should see output
like that in listing 10.1.

 Open the question_answer.jinja2 file in VS Code, as shown in listing 10.2. This
listing shows the basic question-and-answer-style prompt. In this style of prompt, the
system message describes the basic rules and provides the context to answer the question.
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In chapter 4, we explored the retrieval augmented generation (RAG) pattern, and
this prompt follows a similar pattern.

system:
Answer the users question based on the context below. Keep the answer 
short and concise. Respond "Unsure about answer" if not sure about the 
answer.

Context: {{context}}    

user:
Question: {{question}}    

This exercise shows the simple method of using an LLM to ask questions about a
piece of content. Then, the question response is evaluated using a similarity matching
score. We can see from the output in listing 10.1 that the LLM does a good job of
answering a question about the context. In the next section, we’ll explore a similar
technique that uses direct prompting.

10.1.2 Implementing few-shot prompting

Few-shot prompting is like question-and-answer prompting, but the makeup of the
prompt is more about providing a few examples than about facts or context. This
allows the LLM to bend to patterns or content not previously seen. While this
approach sounds like question and answer, the implementation is quite different,
and the results can be powerful.

Open prompt_flow/few-shot-prompting/flow.dag.yaml in VS Code and the visual
editor. Most of the flow looks like the one pictured earlier in figure 10.2, and the dif-
ferences are highlighted in listing 10.3, which shows a YAML pseudocode represen-
tation. The main differences between this and the previous flow are the inputs and
LLM prompt.

 
 

Listing 10.2 question_answer.jinja2

Zero-shot, one-shot, and few-shot learning
One holy grail of machine learning and AI is the ability to train a model on as few items
as possible. For example, in traditional vision models, millions of images are fed into
the model to help identify the differences between a cat and a dog.

A one-shot model is a model that requires only a single image to train it. For example,
a picture of a cat can be shown, and then the model can identify any cat image. A
few-shot model requires only a few things to train the model. And, of course, zero-shot
indicates the ability to identify something given no previous examples. LLMs are effi-
cient learners and can do all three types of learning.

Replace with the content LLM 
should answer the question about.

Replace with 
the question.
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   Inputs:
       statement  : introduces the context and then asks for output
       expected : the expected answer to the statement

   LLM: few_shot (the prompt used to ask the question)
       inputs:statement
       outputs: the prediction/answer to the statement

   Embeddings: uses an LLM embedding model to create the embedding 
representation of the text

        Embedding_predicted: embeds the output of the few_shot LLM
        Embedding_expected: embeds the output of the expected answer
   
   Python: Evaluation (Python code to measure embedding similarity)
        Inputs:
               Embedding_predicted output
               Embedding_expected output
        Outputs: the similarity score between predicted and expected

Outputs:
        statement: -> input.statement
        expected: -> input.expected
        predicted: -> output.few_shot
        evaluation_score: output.evaluation

### Example Output
{
    "evaluation_score": 0.906647282920417,    
    "expected": "We ate sunner and watched the setting sun.",
    "predicted": "After a long hike, we sat by the lake 
and enjoyed a peaceful sunner as the sky turned 
brilliant shades of orange and pink.",    
    "statement": "A sunner is a meal we eat in Cananda 
at sunset, please use the word in a sentence"    
}

Run the flow by pressing Shift-F5 or clicking the Play/Test button from the visual edi-
tor. You should see output like listing 10.3 where the LLM has used the word sunner (a
made-up term) correctly in a sentence given the initial statement.

 This exercise demonstrates the ability to use a prompt to alter the behavior of the
LLM to be contrary to what it has learned. We’re changing what the LLM understands
to be accurate. Furthermore, we then use that modified perspective to elicit the use of
a made-up word.

 Open the few_shot.jinja2 prompt in VS Code, shown in listing 10.4. This listing
demonstrates setting up a simple persona, that of an eccentric dictionary maker, and
then providing examples of words it has defined and used before. The base of the

Listing 10.3 few-shot-prompting flow

Evaluation score 
represents the 
similarity between 
expected and 
predicted.

Uses sunner in 
a sentence

This is a false statement but the 
intent is to get the LLM to use 
the word as if it was real.
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prompt allows for the LLM to extend the examples and produce similar results using
other words.

system:
You are an eccentric word dictionary maker. You will be asked to 

construct a sentence using the word.
The following are examples that demonstrate how to craft a sentence using 
the word.
A "whatpu" is a small, furry animal native to Tanzania. 
An example of a sentence that uses the word whatpu is:    
We were traveling in Africa and we saw these very cute whatpus.
To do a "farduddle" means to jump up and down really fast. An example of a 
sentence that uses the word farduddle is:
I was so excited that I started to farduddle.    

Please only return the sentence requested by the user.  

user:
{{statement}}   

You may say we’re forcing the LLM to hallucinate here, but this technique is the basis
for modifying behavior. It allows prompts to be constructed to guide an LLM to do
everything contrary to what it learned. This foundation of prompting also establishes
techniques for other forms of altered behavior. From the ability to alter the percep-
tion and background of an LLM, we’ll move on to demonstrate a final example of a
direct solution in the next section.

10.1.3 Extracting generalities with zero-shot prompting
Zero-shot prompting or learning is the ability to generate a prompt in such a manner that
allows the LLM to generalize. This generalization is embedded within the LLM and
demonstrated through zero-shot prompting, where no examples are given, but instead a
set of guidelines or rules are given to guide the LLM.

 Employing this technique is simple and works well to guide the LLM to generate
replies given its internal knowledge and no other contexts. It’s a subtle yet powerful
technique that applies the knowledge of the LLM to other applications. This tech-
nique, combined with other prompting strategies, is proving effective at replacing
other language classification models—models that identify the emotion or sentiment
in text, for example.

 Open prompt_flow/zero-shot-prompting/flow.dag.yaml in the VS Code prompt
flow visual editor. This flow is again almost identical to that shown earlier in figure 10.1
but differs slightly in implementation, as shown in listing 10.5.

 
 

Listing 10.4 few_shot.jinja2

Demonstrates an example defining a made-
up word and using it in a sentence

Demonstrates 
another example

A rule to prevent the 
LLM from outputting 
extra informationThe input statement defines a 

new word and asks for the use.
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   Inputs:
        statement  : the statement to be classified
        expected : the expected classification of the statement
   
    LLM: zero_shot (the prompt used to classify)
        inputs: statement
        outputs: the predicted class given the statement

    Embeddings: uses an LLM embedding model to create the embedding 
representation of the text

    Embedding_predicted: embeds the output of the zero_shot LLM
    Embedding_expected: embeds the output of the expected answer

    Python: Evaluation (Python code to measure embedding similarity)
        Inputs:
               Embedding_predicted output
             Embedding_expected output
          Outputs: the similarity score between predicted and expected

   Outputs:
        statement: -> input.statement
        expected: -> input.expected
        predicted: -> output.few_shot
        evaluation_score: output.evaluation

   ### Example Output
{
       "evaluation_score": 1,    
       "expected": "neutral",
       "predicted": "neutral",
       "statement": "I think the vacation is okay. "    
   }

Run the flow by pressing Shift-F5 within the VS Code prompt flow visual editor. You
should see output similar to that shown in listing 10.5.

 Now open the zero_shot.jinja2 prompt as shown in listing 10.6. The prompt is
simple and uses no examples to extract the sentiment from the text. What is especially
interesting to note is that the prompt doesn’t even mention the phrase sentiment, and
the LLM seems to understand the intent.

system:
Classify the text into neutral, negative or positive. 
Return on the result and nothing else.    

user:
{{statement}}    

Listing 10.5 zero-shot-prompting flow

Listing 10.6 zero_shot.jinja2

Shows a perfect 
evaluation score 
of 1.0

The statement 
we’re asking the 
LLM to classify

Provides essential 
guidance on 
performing the 
classificationThe statement of 

text to classify
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Zero-shot prompt engineering is about using the ability of the LLM to generalize
broadly based on its training material. This exercise demonstrates how knowledge
within the LLM can be put to work for other tasks. The LLM’s ability to self-contextu-
alize and apply knowledge can extend beyond its training. In the next section, we
extend this concept further by looking at how LLMs can reason.

10.2 Reasoning in prompt engineering
LLMs like ChatGPT were developed to function as chat completion models, where
text content is fed into the model, whose responses align with completing that request.
LLMs were never trained to reason, plan, think, or have thoughts.

 However, much like we demonstrated with the examples in the previous section,
LLMs can be prompted to extract their generalities and be extended beyond their
initial design. While an LLM isn’t designed to reason, the training material fed into
the model provides an understanding of reasoning, planning, and thought. There-
fore, by extension, an LLM understands what reasoning is and can employ the con-
cept of reasoning.

We’ll look at another set of prompt engineering techniques that allow or mimic rea-
soning behavior to demonstrate this reasoning ability. Typically, when evaluating the
application of reasoning, we look to having the LLM solve challenging problems it
wasn’t designed to solve. A good source of such is based on logic, math, and word
problems.

 Using the time travel theme, what class of unique problems could be better to
solve than understanding time travel? Figure 10.3 depicts one example of a uniquely
challenging time travel problem. Our goal is to acquire the ability to prompt the LLM
in a manner that allows it to solve the problem correctly.

 Time travel problems are thought exercises that can be deceptively difficult to
solve. The example in figure 10.3 is complicated to solve for an LLM, but the part it

Reasoning and planning
Reasoning is the ability of an intellect, artificial or not, to understand the process of
thought or thinking through a problem. An intellect can understand that actions have
outcomes, and it can use this ability to reason through which action from a set of
actions can be applied to solve a given task.

Planning is the ability of the intellect to reason out the order of actions or tasks and
apply the correct parameters to achieve a goal or outcome—the extent to which an
intellectual plan depends on the scope of the problem. An intellect may combine mul-
tiple levels of planning, from strategic and tactical to operational and contingent.
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gets wrong may surprise you. The next section will use reasoning in prompts to solve
these unique problems.

10.2.1 Chain of thought prompting

Chain of thought (CoT)prompting is a prompt engineering technique that employs
the one-shot or few-shot examples that describe the reasoning and the steps to
accomplish a desired goal. Through the demonstration of reasoning, the LLM can
generalize this principle and reason through similar problems and goals. While the
LLM isn’t trained with the goal of reasoning, we can elicit the model to reason, using
prompt engineering.

 Open prompt_flow/chain-of-thought-prompting/flow.dag.yaml in the VS Code
prompt flow visual editor. The elements of this flow are simple, as shown in figure 10.4.
With only two LLM blocks, the flow first uses a CoT prompt to solve a complex ques-
tion; then, the second LLM prompt evaluates the answer.

 Listing 10.7 shows the YAML pseudocode that describes the blocks and the
inputs/outputs of the flow in more detail. The default problem statement in this
example isn’t the same as in figure 10.3.

 
 
 

In a sci-fi film, Alex is a time traveler who decides to go back in

time to witness a famous historical battle that took place 100 years ago,

which lasted for 10 days. He arrives three days before the battle starts.

However, after spending six days in the past, he jumps forward in time by

50 years and stays there for 20 days. Then, he travels back to witness the

end of the battle. How many days does Alex spend in the past before he

sees the end of the battle?

Alex

Timeline

PresentHistoric
battle starts

Historic
battle ends

Alex
arrives

Jumps back in time 100 years (3 days before the battle)

spends 6 days
jumps forward in time 50 years

20 days

jumps back to the present

Alex
leaves

Alex
returns?

Alex
arrives

Alex
leaves

???

The problem statement:

The statement is vague as
to what time Alex returns
to the battle. Is it the same
time he left?

jumps back to witness end of battle

battle lasts 10 days

Figure 10.3 The complexity of the time travel problems we intend to solve using LLMs with reasoning and 
planning
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   Inputs:
        statement  : the statement problem to be solved
        expected : the expected solution to the problem

   LLM: cot (the prompt used to solve the problem)
        inputs: statement
        outputs: the predicted answer given the problem statement

   LLM: evaluate_answer (the prompt used to evaluate the solution)
        inputs:
               statement: -> input.statement
               expected: -> input.expected
               predicted: -> output.cot

        outputs: a score of how well the problem was answered

Listing 10.7 chain-of-thought-prompting flow

LLM prompt that uses chain of
thought to answer a given problem

LLM prompt that evaluates
the efficacy of the answer

Figure 10.4 The flow of the CoT
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   Outputs:
        statement: -> input.statement
        expected: -> input.expected
        predicted: -> output.cot
        evaluation_score: output.evaluate_answer

   ### Example Output
{
    "evaluation_score": "0.5",    
    "expected": "After the final jump, Max finds himself 
in the year 1980 and he is 75 years old.",    
    "predicted": " Max starts in the year 2300 and 
travels backward in 40-year increments, spending 5 years 
in each period. The journeys will be as follows:
\n\n- From 2300 to 2260: Max is 25 + 5 = 30 years old.
\n- From 2260 to 2220: Max is 30 + 5 = 35 years old.
\n- From 2220 to 2180: Max is 35 + 5 = 40 years old.
\n- From 2180 to 2140: Max is 40 + 5 = 45 years old.
\n- From 2140 to 2100: Max is 45 + 5 = 50 years old.
\n- From 2100 to 2060: Max is 50 + 5 = 55 years old.
\n- From 2060 to 2020: Max is 55 + 5 = 60 years old.
\n- From 2020 to 1980: Max is 60 + 5 = 65 years old.
\n- From 1980 to 1940: Max is 65 + 5 = 70 years old.
\n- From 1940 to 1900: Max is 70 + 5"    
}

Dig into the inputs and check the problem statement; try to evaluate the problem
yourself. Then, run the flow by pressing Shift-F5. You should see output similar to that
shown in listing 10.7.

 Open the cot.jinja2 prompt file as shown in listing 10.8. This prompt gives a few
examples of time travel problems and then the thought-out and reasoned solution.
The process of showing the LLM the steps to complete the problem provides the rea-
soning mechanism.

system:
"In a time travel movie, Sarah travels back in time to 
prevent a historic event from happening. She arrives 
2 days before the event. After spending a day preparing, 
she attempts to change the event but realizes she has 
actually arrived 2 years early, not 2 days. She then 
decides to wait and live in the past until the event's 
original date. How many days does Sarah spend in the past 
before the day of the event?"    

Chain of Thought:    

    Initial Assumption: Sarah thinks she has arrived 2 days before the event.
    Time Spent on Preparation: 1 day spent preparing.
    Realization of Error: Sarah realizes she's actually 2 years early.
    Conversion of Years to Days: 

Listing 10.8 cot.jinja2

The evaluated 
score for the 
given solution

The expected 
answer for the 
problem

The predicted answer 
shows the reasoning 
steps and output.

A few example 
problem 
statements

The solution 
to the problem 
statement, output 
as a sequence of 
reasoning steps
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2 years = 2 × 365 = 730 days (assuming non-leap years).
    Adjust for the Day Spent Preparing: 730 - 1 = 729 days.
    Conclusion: Sarah spends 729 days in the past before the day of the event.

"In a sci-fi film, Alex is a time traveler who decides 
to go back in time to witness a famous historical battle 
that took place 100 years ago, which lasted for 10 days. 
He arrives three days before the battle starts. However, 
after spending six days in the past, he jumps forward in 
time by 50 years and stays there for 20 days. Then, he 
travels back to witness the end of the battle. How many 
days does Alex spend in the past before he sees the end of
 the battle?"    

Chain of Thought:    

    Initial Travel: Alex arrives three days before the battle starts.
    Time Spent Before Time Jump: Alex spends six days in the past. 
The battle has started and has been going on for 3 days (since he 
arrived 3 days early and has now spent 6 days, 3 + 3 = 6).
    First Time Jump: Alex jumps 50 years forward and stays for 20 days.
 This adds 20 days to the 6 days he's already spent in the past 
(6 + 20 = 26).
    Return to the Battle: When Alex returns, he arrives back on the same 
day he left (as per time travel logic). The battle has been going on for 
3 days now.
    Waiting for the Battle to End: The battle lasts 10 days. Since he's 
already witnessed 3 days of it, he needs to wait for 7 more days.
    Conclusion: Alex spends a total of 3 (initial wait) + 3 (before the 
first jump) + 20 (50 years ago) + 7 (after returning) = 33 days in the 
past before he sees the end of the battle.
Think step by step but only show the final answer to the statement.

user:
{{statement}}    

You may note that the solution to figure 10.3 is also provided as an example in listing
10.8. It’s also helpful to go back and review listing 10.7 for the reply from the LLM
about the problem. From this, you can see the reasoning steps the LLM applied to get
its final answer.

 Now, we can look at the prompt that evaluates how well the solution solved the
problem. Open evaluate_answer.jinja2, shown in listing 10.9, to review the prompt
used. The prompt is simple, uses zero-shot prompting, and allows the LLM to general-
ize how it should score the expected and predicted. We could provide examples and
scores, thus changing this to an example of a few-shot classification.

system:

Please confirm that expected and predicted results are 
the same for the given problem.    

Listing 10.9 evaluate_answer.jinja2

A few example 
problem 
statements

The solution 
to the problem 
statement, output 
as a sequence of 
reasoning steps

The problem statement the 
LLM is directed to solve

The rules for 
evaluating the 
solution
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Return a score from 0 to 1 where 1 is a perfect match and 0 is no match.
Please just return the score and not the explanation.    

user:
Problem: {{problem}}    

Expected result: {{expected}}    

Predicted result: {{predicted}}    

Looking at the LLM output shown earlier in listing 10.7, you can see why the evalua-
tion step may get confusing. Perhaps a fix to this could be suggesting to the LLM to
provide the final answer in a single statement. In the next section, we move on to
another example of prompt reasoning.

10.2.2 Zero-shot CoT prompting

As our time travel demonstrates, CoT prompting can be expensive in terms of prompt
generation for a specific class of problem. While not as effective, there are techniques
similar to CoT that don’t use examples and can be more generalized. This section will
examine a straightforward phrase employed to elicit reasoning in LLMs.

 Open prompt_flow/zero-shot-cot-prompting/flow.dag.yaml in the VS Code
prompt flow visual editor. This flow is very similar to the previous CoT, as shown in fig-
ure 10.4. The next lsting shows the YAML pseudocode that describes the flow.

   Inputs:
        statement  : the statement problem to be solved
        expected : the expected solution to the problem
    
   LLM: cot (the prompt used to solve the problem)
        inputs: statement
        outputs: the predicted answer given the problem statement
    
   LLM: evaluate_answer (the prompt used to evaluate the solution)
        inputs:
               statement: -> input.statement
               expected: -> input.expected
               predicted: -> output.cot
    
         outputs: a score of how well the problem was answered
    
    
    Outputs:
        statement: -> input.statement
        expected: -> input.expected
        predicted: -> output.cot

Listing 10.10 zero-shot-CoT-prompting flow

Direction to only 
return the score 
and nothing else

The initial 
problem 
statement

The expected or 
grounded answerThe output from the

CoT prompt earlier
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        evaluation_score: output.evaluate_answer
    
    ### Example Output
   {
       "evaluation_score": "1",    
       "expected": "After the final jump, 
          ➥ Max finds himself in the year 1980 and 
   he is 75 years old.",    
       "predicted": "Max starts in… 
          ➥ Therefore, after the final jump, 
          ➥ Max is 75 years old and in the year 1980.",    
       "statement": "In a complex time travel …"    
   }

Run/test the flow in VS Code by pressing Shift-F5 while in the visual editor. The flow
will run, and you should see output similar to that shown in listing 10.10. This exercise
example performs better than the previous example on the same problem.

 Open the cot.jinja2 prompt in VS Code, as shown in listing 10.11. This is a much
simpler prompt than the previous example because it only uses zero-shot. However, one
key phrase turns this simple prompt into a powerful reasoning engine. The line in the
prompt Let’s think step by step triggers the LLM to consider internal context show-
ing reasoning. This, in turn, directs the LLM to reason out the problem in steps.

system:
You are an expert in solving time travel problems.
You are given a time travel problem and you have to solve it.
Let's think step by step.    
Please finalize your answer in a single statement.    

user:
{{statement}}    

Similar phrases asking the LLM to think about the steps or asking it to respond in
steps also extract reasoning. We’ll demonstrate a similar but more elaborate tech-
nique in the next section.

10.2.3 Step by step with prompt chaining

We can extend the behavior of asking an LLM to think step by step into a chain of
prompts that force the LLM to solve the problem in steps. In this section, we look at a
technique called prompt chaining that forces an LLM to process problems in steps.

 Open the prompt_flow/prompt-chaining/flow.dag.yaml file in the visual editor,
as shown in figure 10.5. Prompt chaining breaks up the reasoning method used to
solve a problem into chains of prompts. This technique forces the LLM to answer the
problem in terms of steps.

Listing 10.11 cot.jinja2

The final 
evaluation score

The expected 
answer

The predicted 
answer (the 
steps have been 
omitted showing 
the final answer)

The initial problem
statement

A magic line 
that formulates 
reasoning from 
the LLM

Asks the LLM to 
provide a final 
statement of the 
answer

The problem 
statement the LLM 
is asked to solve
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Listing 10.12 shows the YAML pseudocode that describes the flow in a few more
details. This flow chains the output of the first LLM block into the second and then
from the second into the third. Forcing the LLM to process the problem this way
uncovers the reasoning pattern, but it can also be overly verbose.

   Inputs:
        statement  : the statement problem to be solved
    
   LLM: decompose_steps (the prompt used to decompose the problem)
        inputs: 
               statement: -> input.statement    
    
        outputs: the breakdown of steps to solve the problem

   LLM: calculate_steps (the prompt used to calculate the steps)
        inputs:
               statement: -> input.statement
               decompose_steps: -> output.decompose_steps    
    
               outputs: the calculation for each step

Listing 10.12 prompt-chaining flow

LLM then calculates the
output for each step.

LLM calculates the
solution using the steps.

LLM prompt first decomposes
the problem into steps.

Figure 10.5 The prompt chaining flow

Start of the chain 
of prompts

Output from 
the previous 
step injected 
into this step
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   LLM: calculate_solution (attempts to solve the problem)
        inputs:
               statement: -> input.statement
               decompose_steps: -> output.decompose_steps
               calculate_steps: -> output.calculate_steps    

         outputs: the final solution statement

   Outputs:
        statement: -> input.statement
        decompose_steps: -> output.decompose_steps
        calculate_steps: -> output.calculate_steps
        calculate_solution: -> output.calculate_solution

   ### Example Output
{
    "calculate_steps": "1. The days spent by Alex",
    "decompose_steps": "To figure out the …",
    "solution": "Alex spends 13 days in the 
           ➥ past before the end of the battle.",    
    "statement": "In a sci-fi film, Alex …"    
}

Run the flow by pressing Shift-F5 from the visual editor, and you’ll see the output as
shown in listing 10.12. The answer is still not correct for the Alex problem, but we can
see all the work the LLM is doing to reason out the problem.

 Open up all three prompts: decompose_steps.jinja2, calculate_steps.jinja2,
and calculate_solution.jinja2 (see listings 10.13, 10.14, and 10.15, respectively).
All three prompts shown in the listings can be compared to show how outputs chain
together.

system:
You are a problem solving AI assistant.
Your job is to break the users problem down into smaller steps and list 
the steps in the order you would solve them.
Think step by step, not in generalities.
Do not attempt to solve the problem, just list the steps.

user:
{{statement}}    

system:
You are a problem solving AI assistant.
You will be given a list of steps that solve a problem.
Your job is to calculate the output for each of the steps in order.
Do not attempt to solve the whole problem,

Listing 10.13 decompose_steps.jinja2

Listing 10.14 calculate_steps.jinja2

Output from 
two previous 
steps injected 
into this step

The final solution 
statement, 
although wrong, 
is closer.

Forces the LLM to
list only the steps
and nothing else

The initial problem 
statement
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just list output for each of the steps.    
Think step by step.    

user:
{{statement}}

{{steps}}    

system:
You are a problem solving AI assistant.
You will be given a list of steps and the calculated output for each step.
Use the calculated output from each step to determine the final 
solution to the problem.
Provide only the final solution to the problem in a 
single concise sentence. Do not include any steps 
in your answer.    

user:
{{statement}}

{{steps}}    

{{calculated}}    

In this exercise example, we’re not performing any evaluation and scoring. Without
the evaluation, we can see that this sequence of prompts still has problems solving our
more challenging time travel problem shown earlier in figure 10.3. However, that
doesn’t mean this technique doesn’t have value, and this prompting format solves
some complex problems well.

 What we want to find, however, is a reasoning and planning methodology that can
solve such complex problems consistently. The following section moves from reason-
ing to evaluating the best solution.

10.3 Employing evaluation for consistent solutions
In the previous section, we learned that even the best-reasoned plans may not always
derive the correct solution. Furthermore, we may not always have the answer to con-
firm if that solution is correct. The reality is that we often want to use some form of
evaluation to determine the efficacy of a solution.

 Figure 10.6 shows a comparison of the prompt engineering strategies that have been
devised as a means of getting LLMs to reason and plan. We’ve already covered the two on
the left: zero-shot direct prompting and CoT prompting. The following example exer-
cises in this section will look at self-consistency with the CoT and ToT techniques.

 We’ll continue to focus on the complex time travel problem to compare these
more advanced methods that expand on reasoning and planning with evaluation. In
the next section, we’ll evaluate self-consistency.

Listing 10.15 calculate_solution.jinja2

Requests that the LLM 
not solve the whole 
problem, just the steps

Uses the magic statement 
to extract reasoning

Injects the steps 
produced by the 
decompose_steps step

Requests that the LLM 
output the final answer 
and not any steps

The decomposed steps

The calculated steps
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10.3.1 Evaluating self-consistency prompting

Consistency in prompting is more than just lowering the temperature parameter we
send to an LLM. Often, we want to generate a consistent plan or solution and still use
a high temperature to better evaluate all the variations to a plan. By evaluating multi-
ple different plans, we can get a better sense of the overall value of a solution.

 Self-consistent prompting is the technique of generating multiple plans/solutions for
a given problem. Then, those plans are evaluated, and the more frequent or consis-
tent plan is accepted. Imagine three plans generated, where two are similar, but the
third is different. Using self-consistency, we evaluate the first two plans as the more
consistent answer.

 Open prompt_flow/self-consistency-prompting/flow.dag.yaml in the VS Code
prompt flow visual editor. The flow diagram shows the simplicity of the prompt genera-
tion flow in figure 10.7. Next to it in the diagram is the self-consistency evaluation flow.

 Prompt flow uses a direct acyclic graph (DAG) format to execute the flow logic.
DAGs are an excellent way of demonstrating and executing flow logic, but because
they are acyclic, meaning they can’t repeat, they can’t execute loops. However, because
prompt flow provides a batch processing mechanism, we can use that to simulate
loops or repetition in a flow.

 Referring to figure 10.6, we can see that self-consistency processes the input three
times before collecting the results and determining the best plan/reply. We can apply
this same pattern but use batch processing to generate the outputs. Then, the evalua-
tion flow will aggregate the results and determine the best answer.

 Open the self-consistency-prompting/cot.jinja2 prompt template in VS
Code (see listing 10.16). The listing was shortened, as we’ve seen parts before. This

Input Input Input Input

Output Output Output Output

Zero-shot, direct
prompting

Chain of thought
(CoT)

Self-consistency
with CoT (CoT-SC)

Tree of thought
(ToT)

Majority vote

...... ...... ......

......

......

thought

Figure 10.6 Comparing the various prompt engineering strategies to enable reasoning and planning from LLMs
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prompt uses two (few-shot prompt) examples of a CoT to demonstrate the thought
reasoning to the LLM.

system:

"In a time travel movie, Sarah travels back… "    

Chain of Thought:

    Initial Assumption: …    
    Conclusion: Sarah spends 729 days in the past before the day of the event.

"In a complex time travel movie plot, Max, a 25 year old…"    

Chain of Thought:
    Starting Point: Max starts …    
    Conclusion: After the final jump, 
Max finds himself in the year 1980 and he is 75 years old.

Listing 10.16 self-consistency-prompting/cot.jinja2

Self-consistency generation Self-consistency evaluation

This flow evaluates each of the
prompts and then chooses the
prompt that is consistent.the most

Self-consistency uses a
chain of thought prompt
to generate the plans.

Figure 10.7 The self-consistency prompt generation beside the evaluation flow

The Sarah time 
travel problem

Sample CoT, 
cut for brevity

The Max time 
travel problem

Sample CoT, 
cut for brevity
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Think step by step,
 but only show the final answer to the statement.    

user:
{{statement}}

Open the self-consistency-prompting/flow.dag.yaml file in VS Code. Run the
example in batch mode by clicking Batch Run (the beaker icon) from the visual edi-
tor. Figure 10.8 shows the process step by step: 

1 Click Batch Run.
2 Select the JSON Lines (JSONL) input.
3 Select statements.jsonl.
4 Click the Run link.

TIP If you need to review the process, refer to chapter 9, which covers this
process in more detail.

Final guide and 
statement to 
constrain output

1. Click the
Batch Run button.

3. Click the Run link to start
the batch processing.

2. Select the local data file, and
when prompted with the file
dialog, select statements.jsonl.

Figure 10.8 The step-by-step process of launching a batch process
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e 
Listing 10.17 shows the JSON output from executing the flow in batch mode. The
statements.jsonl file has five identical Alex time travel problem entries. Using
identical entries allows us to simulate the prompt executing five times on the dupli-
cate entry.

{
    "name": "self-consistency-prompting_default_20240203_100322_912000",
    "created_on": "2024-02-03T10:22:30.028558",
    "status": "Completed",
    "display_name": "self-consistency-prompting_variant_0_202402031022",
    "description": null,
    "tags": null,
    "properties": {
        "flow_path": "…prompt_flow/self-consistency-prompting",    
        "output_path": "…/.promptflow/.runs/self-
➥ consistency-prompting_default_20240203_100322_912000",    
        "system_metrics": {
            "total_tokens": 4649,
            "prompt_tokens": 3635,
            "completion_tokens": 1014,
            "duration": 30.033773
        }
    },
    "flow_name": "self-consistency-prompting",
    "data": "…/prompt_flow/self-consistency-prompting/
➥ statements.jsonl",    
    "output": "…/.promptflow/.runs/self-consistency-
➥ prompting_default_20240203_100322_912000/flow_outputs"
}

You can view the flow produced by pressing the Ctrl key and clicking the output link,
highlighted in listing 10.17. This will open another instance of VS Code, showing a
folder with all the output from the run. We now want to check the most consistent
answer. Fortunately, the evaluation feature in prompt flow can help us identify consis-
tent answers using similarity matching.

 Open self-consistency-evaluation/flow.dag.yaml in VS Code (see figure
10.7). This flow embeds the predicted answer and then uses an aggregation to deter-
mine the most consistent answer.

 From the flow, open consistency.py in VS Code, as shown in listing 10.18. The
code for this tool function calculates the cosine similarity for all pairs of answers.
Then, it finds the most similar answer, logs it, and outputs that as the answer.

from promptflow import tool
from typing import List
import numpy as np
from scipy.spatial.distance import cosine

Listing 10.17 self-consistency-prompting batch execution output

Listing 10.18 consistency.py

The path wher
the flow was 
executed from

The folder 
containing the 
outputs of the flow 
(note this path)

The data used to run 
the flow in batch
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@tool
def consistency(texts: List[str],
                embeddings: List[List[float]]) -> str:
    if len(embeddings) != len(texts):
        raise ValueError("The number of embeddings 
       ➥ must match the number of texts.")

    mean_embedding = np.mean(embeddings, axis=0)    
    similarities = [1 - cosine(embedding, mean_embedding) 
                ➥ for embedding in embeddings]    
    most_similar_index = np.argmax(similarities)    

    from promptflow import log_metric
    log_metric(key="highest_ranked_output", value=texts[most_similar_index])    

    return texts[most_similar_index]    

We need to run the evaluation flow in batch mode as well. Open self-consistency-
evaluation/flow.dag.yaml in VS Code and run the flow in batch mode (beaker
icon). Then, select Existing Run as the flow input, and when prompted, choose the
top or the last run you just executed as input.

 Again, after the flow completes processing, you’ll see an output like that shown in
listing 10.17. Ctrl-click on the output folder link to open a new instance of VS Code
showing the results. Locate and open the metric.json file in VS Code, as shown in
figure 10.9.

 The answer shown in figure 10.9 is still incorrect for this run. You can continue a
few more batch runs of the prompt and/or increase the number of runs in a batch
and then evaluate flows to see if you get better answers. This technique is generally
more helpful for more straightforward problems but still demonstrates an inability to
reason out complex problems.

 Self-consistency uses a reflective approach to evaluate the most likely thought.
However, the most likely thing is certainly not always the best. Therefore, we must con-
sider a more comprehensive approach in the next section.

10.3.2 Evaluating tree of thought prompting

As mentioned earlier, ToT prompting, as shown in figure 10.6, combines self-evalua-
tion and prompt chaining techniques. As such, it breaks down the sequence of plan-
ning into a chain of prompts, but at each step in the chain, it provides for multiple
evaluations. This creates a tree that can be executed and evaluated at each level,
breadth-first, or from top to bottom, depth-first.

 Figure 10.10 shows the difference between executing a tree using breadth-first or
depth-first. Unfortunately, due to the DAG execution pattern of prompt flow, we can’t
quickly implement the depth-first method, but breadth-first works just fine.

Calculates the mean of 
all the embeddings

Calculates cosine 
similarity for each 
pair of embeddings

Finds the index 
of the most 
similar answer

Logs the output
as a metricReturns the text 

for the most 
similar answer
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Select the
metrics.json output

Returns the highest ranked output as
generated by the aggregation in
consistency.pr, but is the answer right?

Figure 10.9 The VS Code is open to the batch run output folder. Highlighted are the metrics.json file and 
the output showing the most similar answer.

input

output

Tree of Thought (ToT)

......

Breadth-first executes/considers
a row of thoughts at a time.

Depth-first executes/considers
a sequence of thoughts from
beginning to end.

Figure 10.10 Breadth-first vs. depth-first execution on a ToT pattern
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Open tree-of-thought-evaluation/flow.dag.yaml in VS Code. The visual of the
flow is shown in figure 10.11. This flow functions like a breadth-first ToT pattern—the
flow chains together a series of prompts asking the LLM to return multiple plans at
each step.

Because the flow executes in a breadth-first style, each level output of the nodes is also
evaluated. Each node in the flow uses a pair of semantic functions—one to generate
the answer and the other to evaluate the answer. The semantic function is a custom
Python flow block that processes multiple inputs and generates multiple outputs.

 Listing 10.19 shows the semantic_function.py tool. This general tool is reused for
multiple blocks in this flow. It also demonstrates the embedding functionality from
the SK for direct use within prompt flow.

@tool
def my_python_tool(
    input: str,
    input_node: int,
    history: str,

Listing 10.19 semantic_function.py

First asks LLM to create 3 plans,
but not solutions as an expert

Each LLM node calculates 3 versions
of the output for each step in the plan.

Output from an LLM block is a
single string, so this block splits
the text into nodes.

Splits the output text
into 3 nodes again

Each answer node calculates
the output of the answer.

Figure 10.11 ToT pattern expressed and prompt flow
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    semantic_function: str,
    evaluation_function: str,
    function_name: str,
    skill_name: str,
    max_tokens: int,
    temperature: float,
    deployment_name: str,
    connection: Union[OpenAIConnection, 
                      AzureOpenAIConnection],    
) -> str:
    if input is None or input == "":    
        return ""

    kernel = sk.Kernel(log=sk.NullLogger())
    # code for setting up the kernel and LLM connection omitted

    function = kernel.create_semantic_function(
                             semantic_function,                                               
                             function_name=function_name,
                             skill_name=skill_name,
                             max_tokens=max_tokens,
                             temperature=temperature,
                             top_p=0.5)    
    evaluation = kernel.create_semantic_function(
                             evaluation_function,        
                             function_name="Evaluation",
                             skill_name=skill_name,
                             max_tokens=max_tokens,
                             temperature=temperature,
                             top_p=0.5)    

    async def main():
        query = f"{history}\n{input}"
        try:
            eval = int((await evaluation.invoke_async(query)).result)
            if eval > 25:    
                return await function.invoke_async(query)   
        except Exception as e:
            raise Exception("Evaluation failed", e)

       try:
        result = asyncio.run(main()).result
        return result
    except Exception as e:
        print(e)
        return ""

The semantic function tool is used in the tree’s experts, nodes, and answer blocks. At
each step, the function determines if any text is being input. If there is no text, the
block returns with no execution. Passing no text to a block means that the previous
block failed evaluation. By evaluating before each step, ToT short-circuits the execu-
tion of plans it deems as not being valid.

Uses a union to allow 
for different types of 
LLM connections

Checks to see if the input is 
empty or None; if so, the 
function shouldn’t be executed.

Sets up the 
generation function 
that creates a plan

Sets up the 
evaluation function

Runs the evaluate function and
determines if the input is good

enough to continue

If the evaluation 
score is high 
enough, 
generates the 
next step
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 This may be a complex pattern to grasp at first, so go ahead and run the flow in VS
Code. Listing 10.20 shows just the answer node output of a run; these results may vary
from what you see but should be similar. Nodes that return no text either failed evalu-
ation or their parents did.

{
    "answer_1_1": "",    
    "answer_1_2": "",
    "answer_1_3": "",
    "answer_2_1": "Alex spends a total of 29 days in the past before he 
sees the end of the battle.",
    "answer_2_2": "",    
    "answer_2_3": "Alex spends a total of 29 days in the past before he 
sees the end of the battle.",
    "answer_3_1": "",    
    "answer_3_2": "Alex spends a total of 29 days in the past before he 
sees the end of the battle.",
    "answer_3_3": "Alex spends a total of 9 days in the past before he 
sees the end of the battle.",

The output in listing 10.20 shows how only a select set of nodes was evaluated. In most
cases, the evaluated nodes returned an answer that could be valid. Where no output
was produced, it means that the node itself or its parent wasn’t valid. When sibling
nodes all return empty, the parent node fails to evaluate.

 As we can see, ToT is valid for complex problems but perhaps not very practical.
The execution of this flow can take up to 27 calls to an LLM to generate an output. In
practice, it may only do half that many calls, but that’s still a dozen or more calls to
answer a single problem.

10.4 Exercises
Use the following exercises to improve your knowledge of the material:

 Exercise 1—Create Direct Prompting, Few-Shot Prompting, and Zero-Shot
Prompting
Objective—Create three different prompts for an LLM to summarize a recent
scientific article: one using direct prompting, one with few-shot prompting, and
the last employing zero-shot prompting. 

Tasks:

– Compare the effectiveness of the summaries generated by each approach.
– Compare the accuracy of the summaries generated by each approach.

 Exercise 2—Craft Reasoning Prompts
Objective—Design a set of prompts that require the LLM to solve logical puzzles
or riddles.

Listing 10.20 Output from tree-of-thought-evaluation flow

Represents that the first 
node plans weren’t valid 
and not executed

The plan for node 2 and
answer 2 failed evaluation

and wasn’t run.

The plan for this node failed
to evaluate and wasn’t run.
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Tasks:

– Focus on how the structure of your prompt can influence the LLM’s rea-
soning process.

– Focus on how the same can influence the correctness of its answers.

 Exercise 3—Evaluation Prompt Techniques
Objective—Develop an evaluation prompt that asks the LLM to predict the out-
come of a hypothetical experiment.

Task:

– Create a follow-up prompt that evaluates the LLM’s prediction for accuracy
and provides feedback on its reasoning process.

Summary
 Direct solution prompting is a foundational method of using prompts to direct

LLMs toward solving specific problems or tasks, emphasizing the importance of
clear question-and-answer structures.

 Few-shot prompting provides LLMs with a few examples to guide them in han-
dling new or unseen content, highlighting its power in enabling the model to
adapt to unfamiliar patterns.

 Zero-shot learning and prompting demonstrate how LLMs can generalize from
their training to solve problems without needing explicit examples, showcasing
their inherent ability to understand and apply knowledge in new contexts.

 Chain of thought prompting guides the LLMs through a reasoning process step
by step to solve complex problems, illustrating how to elicit detailed reasoning
from the model.

 Prompt chaining breaks down a problem into a series of prompts that build
upon each other, showing how to structure complex problem-solving processes
into manageable steps for LLMs.

 Self-consistency is a prompt technique that generates multiple solutions to a
problem and selects the most consistent answer through evaluation, emphasiz-
ing the importance of consistency in achieving reliable outcomes.

 Tree of thought prompting combines self-evaluation and prompt chaining to
create a comprehensive strategy for tackling complex problems, allowing for a
systematic exploration of multiple solution paths.

 Advanced prompt engineering strategies provide insights into sophisticated
techniques such as self-consistency with CoT and ToT, offering methods to
increase the accuracy and reliability of LLM-generated solutions.



Agent planning
and feedback
Now that we’ve examined how large language models (LLMs) can reason and plan,
this chapter takes this concept a step further by employing planning within an
agent framework. Planning should be at the core of any agent/assistant platform
or toolkit. We’ll start by looking at the basics of planning and how to implement a
planner through prompting. Then, we’ll see how planning operates using the
OpenAI Assistants platform, which automatically incorporates planning. From
there, we’ll build and implement a general planner for LLMs.

 Planning can only go so far, and an often-unrecognized element is feedback.
Therefore, in the last sections of the chapter, we explore feedback and implement

This chapter covers
 Planning for an LLM and implementing it in 

agents and assistants

 Using the OpenAI Assistants platform via custom 
actions

 Implementing/testing a generic planner on LLMs

 Using the feedback mechanism in advanced 
models 

 Planning, reasoning, evaluation, and feedback in 
building agentic systems
272
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it within a planner. You must be familiar with the content of chapter 10, so please
review it if you need to, and when you’re ready, let’s begin planning.

11.1 Planning: The essential tool for all agents/assistants
Agents and assistants who can’t plan and only follow simple interactions are nothing
more than chatbots. As we’ve seen throughout this book, our goal isn’t to build bots
but rather to build autonomous thinking agents—agents that can take a goal, work
out how to solve it, and then return with the results. 

 Figure 11.1 explains the overall planning process that the agent/assistant will
undertake. This figure was also presented in chapter 1, but let’s review it now in more
detail. At the top of the figure, a user submits a goal. In an agentic system, the agent
takes the goal, constructs the plan, executes it, and then returns the results.

Depending on your interaction with platforms such as ChatGPT and GPTs, Claude,
and others, you may have already encountered a planning assistant and not even noticed.
Planning is becoming ubiquitous and is now built into most commercial platforms to

Agent interface layer (natural language)Planning: Agent takes the goal and breaks it into tasks.

1. Collect data.
2. Annotate data.
3. Format data, and create report visualizations.
4. Present report.

4. Agent presents the report.

Please create a report of
last year’s sales.

GPT data layer

Database

1. Query database using natural
language.

GPT functions

APIs,
web browsing,

search, etc.

All communication via natural language

2. Annotate data by calling semantic
functions using natural language.

External agents

GPT tools

3. External agent formats data and
may write code to generate visuals.

Figure 11.1 The agent planning process
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make the model appear more intelligent and capable. Therefore, in the next exercise,
we’ll look at an example to set a baseline and differentiate between an LLM that can’t
plan and an agent that can.

 For the next exercise, we’ll use Nexus to demonstrate how raw LLMs can’t plan
independently. If you need assistance installing, setting up, and running Nexus, refer
to chapter 7. After you have Nexus installed and ready, we can begin running it with
the Gradio interface, using the commands shown next.

nexus run gradio

Gradio is an excellent web interface tool built to demonstrate Python machine learn-
ing projects. Figure 11.2 shows the Gradio Nexus interface and the process for creat-
ing an agent and using an agent engine (OpenAI, Azure, and Groq) of your choice.
You can’t use LM Studio unless the model/server supports tool/action use. Anthropic’s
Claude supports internal planning, so for the purposes of this exercise, avoid using
this model.

Listing 11.1 Running Nexus with the Gradio interface 

Figure 11.2 Creating a new agent in Nexus

1. Select to create a new agent.

2. Name your agent.

3. Don’t worry about a system
prompt or instructions.

4. Select an engine. Note that each engine needs to
be configured correctly to show in the list.

5. Keep the default engine settings, model,
temperature, , and max tokens.top_p

6. Don’t worry about retrieval or
advanced options for now.

7. Click Add Agent when your agent
configuration is complete.

When you start conversing
with your agent,  you will need
to create a new thread or use
an existing thread.
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After creating the agent, we want to give it specific actions (tools) to undertake or
complete a goal. Generally, providing only the actions an agent needs to complete its
goal is best for a few reasons:

 More actions can confuse an agent into deciding which to use or even how to
solve a goal.

 APIs have limits on the number of tools that can be submitted; at the time of
writing, hitting this limit is relatively easy.

 Agents may use your actions in ways you didn’t intend unless that’s your goal.
Be warned, however, that actions can have consequences.

 Safety and security need to be considered. LLMs aren’t going to take over the
world, but they make mistakes and quickly get off track. Remember, these
agents will operate independently and may perform any action.

WARNING While writing this book and working with and building agents over
many hours, I have encountered several instances of agents going rogue with
actions, from downloading files to writing and executing code when not
intended, continually iterating from tool to tool, and even deleting files they
shouldn’t have. Watching an agent emerge new behaviors using actions can
be fun, but things can quickly go astray.

For this exercise, we’ll define the goal described in the following listing. 

Search Wikipedia for pages on {topic} and download each page and save it 
to a file called Wikipedia_{topic}.txt

This goal will demonstrate the following actions:

 search_wikipedia(topic)—Searches Wikipedia and returns page IDs for the
given search term.

 get_wikipedia_page(page_id)—Downloads the page content given the page ID.

 save_file—Saves the content to a file.

Set the actions on the agent, as shown in figure 11.3. You’ll also want to make sure the
Planner is set to None. We’ll look at setting up and using planners soon. You don’t
have to click Save; the interface automatically saves an agent’s changes.

 After you choose the actions and planner, enter the goal in listing 11.2. Then click
Create New Thread to instantiate a new conversation. Substitute the topic you want to
search for in the chat input, and wait for the agent to respond. Here’s an example of
the goal filled with the topic, but again, use any topic you like:

Search Wikipedia for pages on Calgary and download each page and save it to 
a file called Wikipedia_Calgary.txt.

Listing 11.2 Demonstrating planning: The goal 
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Figure 11.4 shows the results of submitting the goal to the plain agent. We see the
agent executed the tool/action to search for the topic but couldn’t execute any
steps beyond that. If you recall from our discussion and code example of actions in
chapter 5, OpenAI, Groq, and Azure OpenAI all support parallel actions but not
sequential or planned actions.

 The LLM can answer reasonably well if you submit a goal with several parallel
tasks/actions. However, if the actions are sequential, requiring one step to be depen-
dent on another, it will fail. Remember, parallel actions are standalone actions that
can be run alongside others. 

Select only the three actions:
search_wikipedia,
get_wikipedia_page, and
save_file

Make sure to select
None for the Planner.

Figure 11.3 Selecting the actions for the agent and disabling the planner
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Anthropic’s Claude and OpenAI Assistants support sequential action planning. This
means both models can be called with sequential plans, and the model will execute them
and return the results. In the next section, we’ll explore sequential planning and then
demonstrate it in action.

11.2 Understanding the sequential planning process
In the next exercise, we’ll ask an OpenAI assistant to solve the same goal. If you have
Anthropic/Claude credentials and have the engine configured, you can also try this
exercise with that model. 

 Figure 11.5 shows the difference between executing tasks sequentially (planning)
and using iteration. If you’ve used GPTs, assistants, or Claude Sonnet 3.5, you’ve likely
already experienced this difference. These advanced tools already incorporate plan-
ning by prompt annotations, advanced training, or combining both. 

 As LLM and chat services evolve, most models will likely natively support some
form of planning and tool use. However, most models, including GPT-4o, only sup-
port action/tool use today. 

 Let’s open the GPT Assistants Playground to demonstrate sequential planning in
action. If you need help, refer to the setup guide in chapter 6. We’ll use the same goal
but, this time, run it against an assistant (which has built-in planning).

Figure 11.4 The results from trying to get the agent/LLM to complete the goal
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After you launch the Playground, create a new assistant, and assign it the search_
wikipedia, get_wikipedia_page, and save_file actions. Figure 11.6 shows the results
of entering the goal to the assistant. As you can see, the assistant completed all the
tasks behind the scenes and responded with the user’s final requested output, achiev-
ing the goal.

 To demonstrate the effectiveness of the OpenAI Assistant’s planner, we added
another task, summarizing each page, to the goal. The inserted task didn’t have a
function/tool, but the assistant was savvy enough to use its ability to summarize the
content. You can see the output of what the assistant produced by opening the [root
folder]assistants_working_folder/Wikipedia_{topic}.txt file and reviewing the
contents. Now that we understand how LLMs function without planners and plan-
ning, we can move on to creating our planners in the next section.

11.3 Building a sequential planner
LLM tools such as LangChain and Semantic Kernel (SK) have many planners using
various strategies. However, writing our planner is relatively easy, and Nexus also sup-
ports a plugin-style interface allowing you to add other planners from tools such as
LangChain and SK, or your derivatives.

Single prompt as a goal:
search Wikipedia for topic, return
the top page, and save to a file.

Sequential execution of a goal

Single prompt as a goal:
search Wikipedia for topic, return
the top page, and save to a file.

Iterative execution of a goal

Tasks/plan

Returns a list of page IDs

search_wikipedia(topic)

Returns the page content

get_wikipedia_page(page_id)

Collects pages

save_ lefi

All pages combined

In a planner, this
aggregation is
performed
internally.

All tasks are
performed
internally by
the agent.

User submits a goal.

search_wikipedia(topic)

Results are displayed, and the
agent asks to continue to the

next step.

Returns a list of page IDs

get_wikipedia_page(page_id)

User responds
with continue.

Returns are collected and
displayed to the user. The agent

asks for further continuation.

Returns the page content

save_ lefi

All pages combined User responds
with continue.

Goal is complete, and user has the output.

Iterative
execution
is default
behavior
for an LLM.

Sequential
(planned)
execution is
standard in
GPT
Assistants
and Claude.

Figure 11.5 The difference between iterative and planned execution
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Planners may sound complicated, but they are easily implemented through prompt
engineering strategies that incorporate planning and reasoning. In chapter 10, we
covered the basics of reasoning and deriving plans, and now we can put those skills to
good use.

 Listing 11.3 shows a sequential planner derived from the SK, which is extended to
incorporate iteration. Prompt annotation planners like those shown in the listing can
be adapted to fit specific needs or be more general like those shown. This planner
uses JSON, but planners could use any format an LLM understands, including code.

 
 
 

No instructions are needed, but
be sure to select the actions:
search_wikipedia,
get_wikipedia_page, and
save_file

Click the Logs tab as the assistant is
running to see it work through the actions.

In this example, the goal was extended
to ask the assistant to summarize the
content first before saving it to a file.

This is a single response from
the assistant, which also
included summarization of
the content and confirmation
of the file save.

Nexus and Playground have
a feature that confirms the
file indeed was saved.

Figure 11.6 The assistant processing the goal and outputting the results
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You are a planner for Nexus.    
Your job is to create a properly formatted JSON plan step by step, to 
satisfy the goal given.
Create a list of subtasks based off the [GOAL] provided.
Each subtask must be from within the [AVAILABLE FUNCTIONS] list. Do not 
use any functions that are not in the list.
Base your decisions on which functions to use from the description and the 
name of the function.
Sometimes, a function may take arguments. Provide them if necessary.
The plan should be as short as possible.
You will also be given a list of corrective, suggestive and epistemic 
feedback from previous plans to help you make your decision.
For example:

[SPECIAL FUNCTIONS]    
for-each- prefix
description: execute a function for each item in a list
args: 
- function: the function to execute
- list: the list of items to iterate over
- index: the arg name for the current item in the list

[AVAILABLE FUNCTIONS]
GetJokeTopics
description: Get a list ([str]) of joke topics

EmailTo
description: email the input text to a recipient
args:
- text: the text to email
- recipient: the recipient's email address. Multiple addresses may be 
included if separated by ';'.

Summarize
description: summarize input text
args:
- text: the text to summarize

Joke
description: Generate a funny joke
args:
- topic: the topic to generate a joke about

[GOAL]
"Get a list of joke topics and generate a different joke for each topic. 
Email the jokes to a friend."

[OUTPUT]
    {        
        "subtasks": [
            {"function": "GetJokeTopics"},

Listing 11.3 basic_nexus_planner.py 

The preamble instructions telling the 
agent how to process the examples

Beginning of the 
three (few-shot) 
examples
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            {"function": "for-each",
             "args": {
                       "list": "output_GetJokeTopics",
                       "index": "topic", 
                       "function": 
                                  {
                                   "function": "Joke",
                                   "args": {"topic": "topic"}}}},
            {
             "function": "EmailTo",
              "args": {
                        "text": "for-each_output_GetJokeTopics"
                       ecipient": "friend"}}
        ]
    }
# 2 more examples are given but omitted from this listing

[SPECIAL FUNCTIONS]    
for-each
description: execute a function for each item in a list
args: 
- function: the function to execute
- iterator: the list of items to iterate over
- index: the arg name for the current item in the list  

[AVAILABLE FUNCTIONS]    
{{$available_functions}}

[GOAL]
{{$goal}}    

Be sure to only use functions from the list of available functions. 
The plan should be as short as possible. 
And only return the plan in JSON format.
[OUTPUT]    

Figure 11.7 shows the process of building and running a planning prompt, from
building to execution to finally returning the results to the user. Planners work by
building a planning prompt, submitting it to an LLM to construct the plan, parsing
and executing the plan locally, returning the results to an LLM to evaluate and sum-
marize, and finally returning the final output back to the user.

 It’s essential to notice a few subtle details about the planning process. Typically, the
plan is built in isolation by not adding context history. This is done to focus on the
goal because most planning prompts consume many tokens. Executing the functions
within the executor is usually done in a local environment and may include calling
APIs, executing code, or even running machine learning models.

 Listing 11.4 shows the code for the create_plan function from the BasicNexus-
Planner class; tools such as LangChain and SK use similar patterns. The process loads
the agent’s actions as a string. The goal and available functions list are then inserted into
the planner prompt template using the PromptTemplateManager, which is just a wrapper

Adds the for-each 
special iterative 
function

Available functions are 
autopopulated from the 
agent’s list of available 
functions.

The goal is inserted here.

Where the agent is expected 
to place the output
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for the template-handling code. Template handling is done with simple regex but can
also be more sophisticated using tools such as Jinja2, Handlebars, or Mustache.

def create_plan(self, nexus, agent, goal: str, prompt: str = PROMPT) -> Plan:
        selected_actions = nexus.get_actions(agent.actions)
        available_functions_string = "\n\n".join(
            format_action(action) for action in selected_actions
        )    
        

        context = {}    
        context["goal"] = goal
        context["available_functions"] = available_functions_string

Listing 11.4 basic_nexus_planner.py (create_plan)

Execution is typically done
in an environment local to
the agent.

The planning prompt
adds the list of available
functions and the goal to
the prompt template.

LLMLLM

LLM

Chat history

Assembled resultsThe plan

Goal
“Fetch, summarize, and send”

Results of executed goal

Execute the function to query the
database for access to an API.

Chat history

Send the goal along with

planning prompt.

No history of other

context is sent.

Plan executor

Each step of the plan is executed,

and results are passed through LLM

along with history.

Use the output and other arguments

to execute the actions/functions.

Results are again sent through

the LLM to summarize the output

for the user.

Planning prompt

Figure 11.7 The planning process for creating and executing a plan

Loads the agent’s available actions and
formats the result string for the planner

The context will be injected into
the planner prompt template.
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        ptm = PromptTemplateManager()    
        prompt = ptm.render_prompt(prompt, context)

        plan_text = nexus.execute_prompt(agent, prompt)    
        return Plan(prompt=prompt, 
                    goal=goal, 
                    plan_text=plan_text)    

The code to execute the plan, shown in listing 11.5, parses the JSON string and exe-
cutes the functions. When executing the plan, the code detects the particular for-each
function, which iterates through a list and executes each element in a function. The
results of each function execution are added to the context. This context is passed to
each function call and returned as the final output.

def execute_plan(self, nexus, agent, plan: Plan) -> str:
        context = {}
        plan = plan.generated_plan
        for task in plan["subtasks"]:    
            if task["function"] == "for-each":    
                list_name = task["args"]["list"]
                index_name = task["args"]["index"]
                inner_task = task["args"]["function"]

                list_value = context.get(list_name, [])
                for item in list_value:
                    context[index_name] = item
                    result = nexus.execute_task(agent, inner_task, context)
                    context[f"for-each_{list_name}_{item}"] = result

                for_each_output = [    
                    context[f"for-each_{list_name}_{item}"] ➥
                      for item in list_value
                ]
                context[f"for-each_{list_name}"] = for_each_output
                
                for item in list_value:    
                    del context[f"for-each_{list_name}_{item}"]

            else:
                result = nexus.execute_task(agent,
                                            task,
                                            context)    
                context[f"output_{task['function']}"] = result

        return context    

Listing 11.5 basic_nexus_planner.py (execute_plan)

A simple template 
manager, similar in 
concept to Jinja2, 
Handlebars, or 
Mustache

Sends the filled-in 
planner prompt to 
the LLMThe results (the plan) are wrapped in a 

Plan class and returned for execution.

Iterates through each 
subtask in the plan

Handles functions that
should be iterated

over and adds full list
of results to the

context

Removes 
individual 
for-each 
context 
entries

General task 
execution

Returns the full context, which includes 
the results of each function call
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The returned context from the entire execution is sent in a final call to the LLM,
which summarizes the results and returns a response. If everything goes as planned,
the LLM will respond with a summary of the results. If there is an error or something
is missing, the LLM may try to fix the problem or inform the user of the error.

 Let’s now open Nexus again and test a planner in operation. Load up the same
agent you used last time, but select the planner under the Advanced options this time,
as shown in figure 11.8. Then, enter the goal prompt as you did before, and let the
agent take it away.

After a few minutes, the agent returns with the saved file, and in some cases, it may
provide extra information, such as the next steps and what to do with the output. This
is because the agent was given a high-level overview of what it accomplished. Remem-
ber, though, that plan execution is done at the local level, and only context, plan, and
goal were sent to the LLM.

Goal requiring multiple
steps to complete

The agent will execute the tasks and
finish by outputting the file as well
as suggesting next steps.

Select the basic
planner.

Figure 11.8 The results from requesting to complete the goal in Nexus using the basic planner
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 This means that plan execution can be completed by any process, not necessarily
by the agent. Executing a plan outside the LLM reduces the tokens and tool use the
agent needs to perform. This also means that an LLM doesn’t need to support tools
usage to use a planner.

 Internally, when a planner is enabled within Nexus, the agent engine tool is
bypassed. Instead, the planner completes the action execution, and the agent is only
aware of the actions through the passing of the output context. This can be good for
models that support tool use but can’t plan. However, a planner may limit functional-
ity for models that support both tool use and planning, such as Claude.

 In general, you’ll want to understand the capabilities of the LLM you’re using. If
you’re unsure of those details, then a little trial and error can also work. Ask the agent to
complete a multistep goal with and without planning enabled, and then see the results.

 Planning allows agents to complete multiple sequential tasks to achieve more com-
plex goals. The problem with external or prompt planning is that it bypasses the feed-
back iteration loop, which can help correct problems quickly. Because of this, OpenAI
and others are now directly integrating reasoning and planning at the LLM level, as
we’ll see in the next section.

11.4 Reviewing a stepwise planner: OpenAI Strawberry
The release of the o1-preview model, code named Strawberry, introduced a dra-
matic shift in the type of LLMs becoming available for agentic systems. Strawberry
was not only proclaimed to be more efficient at math, science, and general calcula-
tion tasks but also able to engage in reasoning, planning, evaluation, and feedback
directly in the LLM. 

 Consider our time travel problem from chapter 10 and shown again in figure 11.9.
If you recall, this problem was difficult to solve using GPT-4 and other similar LLMs.
However, with the application of reasoning and feedback, we were able to produce
output that was occasionally correct. 

 As an experiment, enter this problem into ChatGPT using the o1-preview model,
as shown in listing 11.6. Sit back for a few seconds and wait for the answer. Yep, the
model still gets it wrong.

In a sci-fi film, Alex is a time traveler who decides to go back in time 
to witness a famous historical battle that took place 100 years ago, 
which lasted for 10 days. He arrives three days before the battle starts. 
However, after spending six days in the past, he jumps forward in time 
by 50 years and stays there for 20 days. Then, he travels back to 
witness the end of the battle. How many days does Alex spend in the past 
before he sees the end of the battle?

While it may be somewhat disappointing to see the model get the wrong answer, it
does, however, do a far better job of breaking down the problem and demonstrating

Listing 11.6 Time travel reasoning/planning problem
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its answer. Listing 11.7 shows the sample output from posing the problem in listing
11.6 to the Strawberry model. Note, you may get a different answer because of the sto-
chastic nature of the LLM.

To determine how many days Alex spends in the past before witnessing the 
end of the battle, let's reconstruct the timeline step by step:
Arrival in the Past:
Alex arrives 3 days before the battle begins.
He spends these 3 days waiting for the battle to start.
During the Battle:
The battle starts, and Alex experiences the first 3 days of it.
At this point, he has spent a total of 6 days in the past (3 days before 
the battle and 3 days during the battle).
Time Jump Forward:    
After these 6 days, Alex jumps 50 years forward in time.
He spends 20 days in this future time.
Return to the Past:
Alex then returns to the past to witness the end of the battle.
Since the battle lasts 10 days and he left after day 3 of the battle, 
there are 7 days remaining in the battle.
However, because he was away for 20 days, which is longer than the 
remaining 7 days of the battle, he must return to a point in time before 
the battle ends to witness its conclusion.
To see the end of the battle, he returns to the past on the last day of 

Listing 11.7 o1-preview response to time travel problem

In a sci-fi film, Alex is a time traveler who decides to go back in

time to witness a famous historical battle that took place 100 years ago,

which lasted for 10 days. He arrives three days before the battle starts.

However, after spending six days in the past, he jumps forward in time by

50 years and stays there for 20 days. Then, he travels back to witness the

end of the battle. How many days does Alex spend in the past before he

sees the end of the battle?

Alex

Timeline

PresentHistoric
battle starts

Historic
battle ends

Alex
arrives

Jumps back in time 100 years (3 days before the battle)

spends 6 days
jumps forward in time 50 years

20 days

jumps back to the present

Alex
leaves

Alex
returns?

Alex
arrives

Alex
leaves

???

The problem statement:

The statement is vague as
to what time Alex returns
to the battle. Is it the same
time he left?

jumps back to witness end of battle

battle lasts 10 days

Figure 11.9 The time travel problem, revisited

It becomes obvious 
where the model is 
making the error.
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the battle.
Final Days Spent Before the Battle Ends:
Upon returning, he spends 1 more day in the past to witness the battle's 
end.
Total Days Spent in the Past Before Seeing the End:
6 days before jumping forward in time.
1 day after returning to the past.
Total: 6 + 1 = 7 days.
Answer: 7

Because we know the right answer is 27, we know the LLM is wrong, but if we didn’t,
we could just as easily assume that the work and reasoning were all correct. Problems
like this can happen when we remove feedback in LLM interactions and agentic sys-
tems. Feedback can guide the model to correct itself. 

 However, what if we didn’t know the correct answer was 27 (26, if you assume he
doesn’t spend the day to witness the battle) and assumed the LLM or agent was cor-
rect? Well, this is a problem we can rectify with a couple of simple prompts that can
engage the LLM in reasoning and planning feedback. However, these techniques are
more effective with LLMs or wrappers such as the OpenAI Assistants, which provide
reasoning and planning within the model.

 What we want to do is provide feedback to the LLM, but understanding what that
feedback is will likely be difficult for us. Fortunately, we can elicit feedback directly
from the LLM, provided we give the correct answer. Listing 11.8 shows how to gener-
ate constructive feedback from the LLM concerning our time travel problem.

the correct answer is 27, please review what you did wrong and suggest 
feedback you could give yourself when trying to solve similar future problems

Entering this after the model answers the question wrong will generate feedback that
you can use to guide the model through prompting or as part of system instructions.
Listing 11.9 shows an example of the feedback provided by o1-preview. You can then
extract this feedback and augment the instructions the next time you want to tackle
complex time travel problems.

Feedback for Future Problems
Understanding Time Frames in Time Travel:
Relative Time Frames: Always consider the time periods relative to the 
original point of reference. In this problem, even though Alex jumps 
forward 50 years, he is still in the past relative to his original 
present time.
Including All Relevant Periods: 
Ensure that all time periods spent in the past (or future) are included 
in the total calculation, even if they involve moving to different 
points in time.
Time Continuity: 

Listing 11.8 Generating feedback

Listing 11.9 Generated feedback
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Remember that while the traveler moves through time, events in other 
time periods continue to progress unless specified otherwise.
Application:
Careful Reading: 
Pay close attention to the details provided, such as the durations and 
the sequences of time jumps.
Visualization: 
It may help to draw a timeline to visualize the sequence of events and 
time periods involved.
Double-Checking Calculations: 
After solving, revisit each step to ensure all time periods are 
accounted for correctly.

This feedback technique will consistently work on models such as o1-preview, but
other models may still struggle to answer correctly, even given this feedback. Over
time, as models become smarter, this technique will likely generally work on most
models. However, this feedback mechanism will likely be essential even as models
get progressively brighter. because language is nuanced, and not every problem we
challenge LLMs with may have an obvious absolute answer. Take our example prob-
lem, for instance. This problem is an excellent example of requiring the problem
solver to make assumptions and draw correlations from the question. There are still
plenty of areas in science, from geology to behavioral science, where answering the
same problem may yield a range of answers. Let’s look next at a few techniques for
how the application of reasoning, planning, evaluation, and feedback can be
applied to agentic systems.

11.5 Applying planning, reasoning, evaluation, and 
feedback to assistant and agentic systems
In recent chapters, we’ve examined how the agentic components of planning, reason-
ing, feedback, and evaluation can be implemented. Now we look at how, when, and
where those components can be integrated into assistant and agentic systems for real-
time production, research, or development.

 While not all of these components may fit the same into every application, it’s use-
ful to understand where and when to apply which component. In the next section, we
look at how planning can be integrated into assistant/agentic systems.

11.5.1 Application of assistant/agentic planning

Planning is the component where an assistant or agent can plan to undertake a set of
tasks, whether they are in series, parallel, or some other combination. We typically
associate planning with tool use, and, rightfully, any system using tools will likely want
a capable planner. However, not all systems are created equally, so in table 11.1, we’ll
review where, when, and how to implement planners.
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Table 11.1 shows several varied application scenarios in which we may find an assis-
tant or agent deployed to assist in some capacity. To provide further information
and guidance, this list provides more details about how planning may be employed
in each application:

 Personal assistant—While this application has been slow to roll out, LLM per-
sonal assistants promise to surpass Alexa and Siri in the future. Planning will be
essential to these new assistants/agents to coordinate numerous complex tasks
and execute tools (actions) in series or parallel. 

 Customer service bot—Due to the controlled nature of this environment, it’s
unlikely that assistants engaged directly with customers will have controlled and
very specific tools use. This means that these types of assistants will likely not
require extensive planning.

 Autonomous agent—As we’ve seen in previous chapters, agents with the ability to
plan can complete a series of complex tasks for various goals. Planning will be
an essential element of any autonomous agentic system.

 Collaborative workflows—Think of these as agents or assistants that sit alongside
coders or writers. While these workflows are still in early development, think of
a workflow where agents are automatically tasked with writing and executing
test code alongside developers. Planning will be an essential part of executing
these complex future workflows.

Table 11.1 When and where planning is employed and used in various applications

Application Implemented Environment Purpose Timing Configuration

Personal 
assistant

At or within the 
LLM

Personal 
device

Facilitate tool 
use

During the 
response

As part of the 
prompt or LLM

Customer 
service bot

Not typical; 
restricted 
environment

Restricted 
environment, 
no tool use

Autonomous 
agent

As part of the 
agent prompt 
and within the 
LLM

Server or 
service

Facilitate com-
plex tool use 
and task plan-
ning

As part of con-
structing the 
agent and/or 
during the 
response

Within the 
agent or LLM

Collaborative 
workflows

As part of 
the LLM

Shared can-
vas or coding

Facilitate com-
plex tool use

During the 
response

Within the LLM

Game AI As part of 
the LLM

Server or 
application

Complex 
tool use and 
planning

Before or 
during the 
response

Within the LLM

Research Anywhere Server Facilitate tool 
use and engage 
in complex 
task workflows

Before, 
during, and 
after response 
generation

Anywhere
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 Game AI—While applying LLMs to games is still in early stages, it isn’t hard to
imagine in-game agents or assistants that can assist or challenge the player. Giv-
ing these agents the ability to plan and execute complex workflows could dis-
rupt how and with whom we play games.

 Research—Similar to collaborative workflows, these agents will be responsible
for deriving new ideas from existing sources of information. Finding that infor-
mation will likely be facilitated through extensive tool use, which will benefit
from coordination of planning.

As you can see, planning is an essential part of many LLM applications, whether
through coordination of tool use or otherwise. In the next section, we look at the next
component of reasoning and how it can be applied to the same application stack.

11.5.2 Application of assistant/agentic reasoning

Reasoning, while often strongly associated with planning and task completion, is a
component that can also stand by itself. As LLMs mature and get smarter, reasoning is
often included within the LLM itself. However, not all applications may benefit from
extensive reasoning, as it often introduces a thinking cycle within the LLM response.
Table 11.2 describes at a high level how the reasoning component can be integrated
with various LLM application types.

Table 11.2 When and where reasoning is employed and used in various applications

Application Implemented Environment Purpose Timing Configuration

Personal 
assistant

Within the LLM Personal 
device

Breaking down 
work into steps

During the 
response

As part of the 
prompt or LLM

Customer 
service bot

Not typical; 
usually just 
informational

Limited tool 
use and need 
for composite 
tool use

Autono-
mous 
agent

As part of the 
agent prompt 
and within 
the LLM

Server or 
service

Facilitate 
complex tool use 
and task planning

As part of 
LLM, external 
reasoning not 
well suited 

Within the 
agent or LLM

Collabora-
tive work-
flows

As part of the 
LLM

Shared can-
vas or coding

Assists in break-
ing work down

During the 
response

Within the 
LLM

Game AI As part of 
the LLM

Server or 
application

Essential for 
undertaking com-
plex actions

Before or 
during the 
response

Within the 
LLM

Research Anywhere Server Understand how to 
solve complex 
problems and 
engage in complex 
task workflows

Before, during, 
and after 
response 
generation

Anywhere
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Table 11.2 shows several varied application scenarios in which we may find an assis-
tant or agent deployed to assist in some capacity. To provide further information
and guidance, this list provides more details about how reasoning may be employed
in each application:

 Personal assistant—Depending on the application, the amount of reasoning an
agent employs may be limited. Reasoning is a process that requires the LLM to
think through a problem, and this often requires longer response times depend-
ing on the complexity of the problem and the extent of the prompt. In many
situations, responses intended to be closer to real-time reasoning may be dis-
abled or turned down. While this may limit the complexity at which an agent
can interact, limited or no reasoning can improve response times and increase
user enjoyment.

 Customer service bot—Again, because of the controlled nature of this environ-
ment, it’s unlikely that assistants engaged directly with customers will need to
perform complex or any form of reasoning. 

 Autonomous agent—While reasoning is a strong component of autonomous
agents, we still don’t know how much reasoning is too much. As models such as
Strawberry become available for agentic workflows, we can gauge at what
point extensive reasoning may not be needed. This will surely be the case for
well-defined autonomous agent workflows.

 Collaborative workflows—Again, applying reasoning creates an overhead in the LLM
interaction. Extensive reasoning may provide benefits for some workflows, while
other well-defined workflows may suffer. This may mean that these types of work-
flows will benefit from multiple agents—those with reasoning and those without. 

 Game AI—Similar to other applications, heavy-reasoning applications may not
be appropriate for most game AIs. Games will especially require LLM response
times to be quick, and this will surely be the application of reasoning for gen-
eral tactical agents. Of course, that doesn’t preclude the use of other reasoning
agents that may provide more strategic control.

 Research—Reasoning will likely be essential to any complex research task for sev-
eral reasons. A good example is the application of the Strawberry model, which
we’ve already seen in research done in mathematics and the sciences.

While we often consider reasoning in tandem with planning, there may be conditions
where the level at which each is implemented may differ. In the next section we con-
sider the agent pillar of evaluation of various applications.

11.5.3 Application of evaluation to agentic systems

Evaluation is the component of agentic/assistant systems that can guide how well the
system performs. While we demonstrated incorporating evaluation in some agentic
workflows, evaluation is often an external component in agentic systems. However, it’s
also a core component of most LLM applications and not something that should be
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overlooked in most developments. Table 11.3 describes at a high level how the evalua-
tion component can be integrated with various LLM application types.

Table 11.3 shows several varied application scenarios in which we may find an assis-
tant or agent deployed to assist in some capacity. To provide further information
and guidance, this list provides more details about how evaluation may be employed
in each application:

 Personal assistant—In most cases, an evaluation component will be used to process
and guide the performance of agent responses. In systems primarily employing
retrieval augmented generation (RAG) for document exploration, the evaluation
indicates how well the assistant responds to information requests. 

 Customer service bot—Evaluating service bots is critical to understanding how well
the bot responds to customer requests. In many cases, a strong RAG knowledge
element may be an element of the system that will require extensive and ongoing
evaluation. Again, with most evaluation components, this element is external to

Table 11.3 When and where evaluation is employed and used in various applications

Application Implemented Environment Purpose Timing Configuration

Personal 
assistant

External Server Determine how 
well the system 
is working

After the 
interaction

Often devel-
oped externally

Customer 
service bot

External 
monitor

Server Evaluate the suc-
cess of each 
interaction

After the 
interaction

External to the 
agent system

Autonomous 
agent

External or 
internal

Server or 
service

Determine the 
success of the 
system after 
or during task 
completion

After the 
interaction 

External or 
internal 

Collaborative 
workflows

External Shared can-
vas or coding

Evaluate the 
success of the 
collaboration

After the 
interaction

External service

Game AI External or 
internal

Server or 
application

Evaluate the 
agent or evalu-
ate the success 
of a strategy or 
action

After the 
interaction

External or 
as part of the 
agent or another 
agent

Research Combined 
manual and 
LLM

Server and 
human

Evaluate the 
output of the 
research 
developed

After the 
generated 
output

Depends on the 
complexity of 
the problem 
and research 
undertaken
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the main working system and is often run as part of monitoring general perfor-
mance over several metrics.

 Autonomous agent—In most cases, a manual review of agent output will be a pri-
mary guide to the success of an autonomous agent. However, in some cases,
internal evaluation can help guide the agent when it’s undertaking complex
tasks or as a means of improving the final output. Multiple agent systems, such
as CrewAI and AutoGen, are examples of autonomous agents that use internal
feedback to improve the generated output.

 Collaborative workflows—In most direct cases, manual evaluation is ongoing
within these types of workflows. A user will often immediately and in near
real time correct the assistant/agent by evaluating the output. Additional
agents could be added similarly to autonomous agents for more extensive
collaborative workflows.

 Game AI—Evaluation will often be broken down into development evaluation—
evaluating how the agent interacts with the game—and in-game evaluation, evalu-
ating how well an agent succeeded at a task. Implementing the later evaluation
form is similar to autonomous agents but aims to improve some strategies or
execution. Such in-game evaluations would also likely benefit from memory
and a means of feedback.

 Research—Evaluation at this level generally occurs as a manual effort after com-
pleting the research task. An agent could employ some form of evaluation simi-
lar to autonomous agents to improve the generated output, perhaps even
contemplating internally how evaluation of the output could be extended or
further researched. Because this is currently a new area for agentic develop-
ment, how well this will be executed remains to be seen.

Evaluation is an essential element to any agentic or assistant system, especially if that
system provides real and fundamental information to users. Developing evaluation sys-
tems for agents and assistants is likely something that could or should have its own
book. In the final section of this chapter, we’ll look at feedback implementation for
various LLM applications.

11.5.4 Application of feedback to agentic/assistant applications

Feedback as a component of agentic systems is often, if not always, implemented as
an external component—at least for now. Perhaps confidence in evaluation systems
may improve to the point where feedback is regularly incorporated into such sys-
tems. Table 11.4 showcases how feedback can be implemented into various LLM
applications.
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Table 11.4 shows several application scenarios in which we may find an assistant or agent
deployed to assist in some capacity. To provide further information and guidance, this list
provides more details about how feedback may be employed in each application:

 Personal assistant—If the assistant or agent interacts with the user in a chat-style
interface, direct and immediate feedback can be applied by the user. Whether
this feedback is sustained over future conversations or interactions, it usually
develops within agentic memory. Assistants such as ChatGPT now incorporate
memory and can benefit from explicit user feedback.

 Customer service bot—User or system feedback is typically provided through a survey
after the interaction has completed. This usually means that feedback is regulated
to an external system that aggregates the feedback for later improvements.

 Autonomous agent—Much like bots, feedback within autonomous agents is typi-
cally regulated to after the agent has completed a task that a user then reviews.
The feedback mechanism may be harder to capture because many things can

Table 11.4 When and where feedback is employed and used in various applications

Application Implemented Environment Purpose Timing Configuration

Personal 
assistant

External or 
by the user

Aggregated to 
the server or 
as part of the 
system

Provides means 
of system 
improvement

After or during 
the interaction

Internal and 
external

Customer 
service bot

External 
monitor

Aggregated to 
the server

Qualifies and 
provides a means 
for system 
improvement

After the 
interaction

External to the 
agent system

Autonomous 
agent

External Aggregated at 
the server

Provides a means 
for system 
improvement

After the 
interaction 

External 

Collaborative 
workflows

While 
interacting

Shared can-
vas or coding

Provides a mecha-
nism for immedi-
ate feedback

During the 
interaction

External 
service

Game AI External or 
internal

Server or 
application

As part of internal 
evaluation feed-
back provided 
for dynamic 
improvement

After or during 
the interaction

External or 
as part of 
the agent or 
another agent

Research Combined 
manual and 
LLM

Server and 
human

Evaluate the out-
put of the research 
developed

After the 
generated 
output

Depends on 
the complexity 
of the problem 
and the 
research 
undertaken
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be subjective. Methods explored in this chapter for producing feedback can be
used within prompt engineering improvements.

 Collaborative workflows—Similar to the personal assistant, these types of appli-
cations can benefit from immediate and direct feedback from the user. Again,
how this information is persisted across sessions is often an implementation of
agentic memory.

 Game AI—Feedback can be implemented alongside evaluation through addi-
tional and multiple agents. This feedback form may again be single-use and
exist within the current interaction or may persist as memory. Imagine a game
AI that can evaluate its actions, improve those with feedback, and remember
those improvements. While this pattern isn’t ideal for games, it will certainly
improve the gameplay experience.

 Research—Similar to evaluation in the context of research, feedback is typically
performed offline after the output is evaluated. While some development has
been done using multiple agent systems incorporating agents for evaluation
and feedback, these systems don’t always perform well, at least not with the cur-
rent state-of-the-art models. Instead, it’s often better to isolate feedback and
evaluation at the end to avoid the common feedback looping problem. 

Feedback is another powerful component of agentic and assistant systems, but it’s not
always required on the first release. However, incorporating rigorous feedback and
evaluation mechanisms can greatly benefit agentic systems in the long term concern-
ing ongoing monitoring and providing the confidence to improve various aspects of
the system.

 How you implement each of these components in your agentic systems may, in
part, be guided by the architecture of your chosen agentic platform. Now that you
understand the nuances of each component, you also have the knowledge to guide
you in selecting the right agent system that fits your application and business use case.
Regardless of your application, you’ll want to employ several agentic components in
almost all cases.

 As agentic systems mature and LLMs themselves get smarter, some of the compo-
nents we today consider external may be closely integrated. We’ve already seen rea-
soning and planning be integrated into a model such as Strawberry. Certainly, as we
approach the theoretical artificial general intelligence milestone, we may see models
capable of performing long-term self-evaluation and feedback. 

 In any case, I hope you enjoyed this journey with me into this incredible frontier of
a new and emerging technology that will certainly alter our perception of work and
how we undertake it through agents.
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11.6 Exercises
Use the following exercises to improve your knowledge of the material:

 Exercise 1—Implement a Simple Planning Agent (Beginner)
Objective—Learn how to implement a basic planning agent using a prompt to
generate a sequence of actions.

Tasks:

– Create an agent that receives a goal, breaks it into steps, and executes those
steps sequentially.

– Define a simple goal, such as retrieving information from Wikipedia and sav-
ing it to a file.

– Implement the agent using a basic planner prompt (refer to the planner
example in section 11.3).

– Run the agent, and evaluate how well it plans and executes each step.
 Exercise 2—Test Feedback Integration in a Planning Agent (Intermediate)

Objective—Understand how feedback mechanisms can improve the performance
of an agentic system.

Tasks:

– Modify the agent from exercise 1 to include a feedback loop after each task.
– Use the feedback to adjust or correct the next task in the sequence.
– Test the agent by giving it a more complex task, such as gathering data from

multiple sources, and observe how the feedback improves its performance.
– Document and compare the agent’s behavior before and after adding feedback.

 Exercise 3—Experiment with Parallel and Sequential Planning (Intermediate)
Objective—Learn the difference between parallel and sequential actions and
how they affect agent behavior.

Tasks:

– Set up two agents using Nexus: one that executes tasks in parallel and another
that performs tasks sequentially.

– Define a multistep goal where some actions depend on the results of previous
actions (sequential), and some can be done simultaneously (parallel).

– Compare the performance and output of both agents, noting any errors or
inefficiencies in parallel execution when sequential steps are required.

 Exercise 4—Build and Integrate a Custom Planner into Nexus (Advanced)
Objective—Learn how to build a custom planner and integrate it into an agent
platform.

Tasks:

– Write a custom planner using prompt engineering strategies from section 11.3,
ensuring it supports sequential task execution.

– Integrate this planner into Nexus, and create an agent that uses it.
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– Test the planner with a complex goal that involves multiple steps and tools
(e.g., data retrieval, processing, and saving).

– Evaluate how the custom planner performs compared to built-in planners in
Nexus or other platforms.

 Exercise 5—Implement Error Handling and Feedback in Sequential Planning
(Advanced)
Objective—Learn how to implement error handling and feedback to refine sequen-
tial planning in an agentic system.

Tasks:

– Using a sequential planner, set up an agent to perform a goal that may encoun-
ter common errors (e.g., a failed API call, missing data, or invalid input).

– Implement error-handling mechanisms in the planner to recognize and
respond to these errors.

– Add feedback loops to adjust the plan or retry actions based on the error
encountered.

– Test the system by deliberately causing errors during execution, and observe
how the agent recovers or adjusts its plan.

Summary
 Planning is central to agents and assistants, allowing them to take a goal, break

it into steps, and execute them. Without planning, agents are reduced to simple
chatbot-like interactions.

 Agents must differentiate between parallel and sequential actions. Many LLMs
can handle parallel actions, but only advanced models support sequential plan-
ning, critical for complex task completion.

 Feedback is crucial in guiding agents to correct their course and improve per-
formance over time. This chapter demonstrates how feedback mechanisms can
be integrated with agents to refine their decision-making processes.

 Platforms such as OpenAI Assistants and Anthropic’s Claude support internal
planning and can execute complex, multistep tasks. Agents using these plat-
forms can use sequential action planning for sophisticated workflows.

 Properly selecting and limiting agent actions is vital to avoid confusion and
unintended behavior. Too many actions may overwhelm an agent, while unnec-
essary tools may be misused.

 Nexus allows for creating and managing agents through a flexible interface,
where users can implement custom planners, set goals, and assign tools. The
chapter includes practical examples using Nexus to highlight the difference
between a raw LLM and a planner-enhanced agent.

 Writing custom planners is straightforward, using prompt engineering strate-
gies. Tools such as LangChain and Semantic Kernel offer a variety of planners
that can be adapted or extended to fit specific agentic needs.
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 Models such as OpenAI Strawberry integrate reasoning, planning, evalua-
tion, and feedback directly into the LLM, offering more accurate problem-
solving capabilities.

 Evaluation helps determine how well an agentic system is performing and can
be implemented internally or externally, depending on the use case.

 As LLMs evolve, reasoning, planning, and feedback mechanisms may become
deeply integrated into models, paving the way for more autonomous and intelli-
gent agent systems.



appendix A
Accessing OpenAI

large language models

Although several commercial large language model (LLM) services are available,
this book recommends using OpenAI services directly or through Azure OpenAI
Studio. To access either service, you must create an account and register a payment
method not covered in this appendix. The GPT-4 family of LLMs is considered best
in class and better suited for agent development. Using open source and alterna-
tive services is always an option but generally only advisable after you’ve worked
with GPT-4 for some time.

A.1 Accessing OpenAI accounts and keys
The following general steps can help you quickly set up using OpenAI LLMs for agent
development. Though using OpenAI and other commercial LLMs comes at a price,
you can expect to pay less than US$100 to complete all the exercises in this book:

1 Go to https://openai.com and log in, or register for an account and log in. If
this is your first time creating an account, you’ll likely be given free credit in
some amount. If you already have an account, you must register a payment
method and type. It’s generally better to purchase a number of credits at a
time. This will allow you to manage the costs better and avoid overruns.

2 After logging in to the platform, select ChatGPT or the API, as shown in
figure A.1. Choose the API.
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3 Open the left menu, and select the API Keys option, as shown in figure A.2.

Select the API

.

.

Figure A.1 Selecting the API section of the OpenAI platform

Select the API eysK

Figure A.2 Selecting 
the API Keys option
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4 Click the Create button to create a new key, enter a name for the key, and click
the Create Secret Key button, as shown in figure A.3.

5 Copy and paste the key to a notepad or another area for safekeeping using the
Copy button, as shown in figure A.4. Keep this key secret, and ensure it remains
only on your development machine.

After generating a key, you can continue to use it within an .env configuration file or
through other means of registering an OpenAI key. For most of the packages used in
this book, configuring OpenAI will generally only require the key. Other services,
such as Azure OpenAI, will require the configuration of a model deployment and a
base URL as covered in the next section.

 
 
 

Enter a helpful name,
such as GPT-Agents.

Click to create
the key.

Start by clicking the button
to create a new secret key.

Figure A.3 Creating the secret API key
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A.2 Azure OpenAI Studio, keys, and deployments
Through its ongoing relationship with OpenAI, Microsoft hosts the same models at
the same price within Azure OpenAI Studio. Occasionally, Azure may be a model ver-
sion behind, but Microsoft generally keeps current with the latest OpenAI models.

 These guidelines will be more general because there are several ways to access
Azure and methods of creating accounts and accessing the studio (for specific instruc-
tions, refer to Microsoft documentation):

1 Log in to your Azure portal account subscription.
2 Create a new Azure OpenAI Studio resource in a region that makes sense to

you. At the time of writing, not all regions provided access to all models. You may
need to check which models are available for your region first. This will also be
specific to your account and usage.

Within Azure OpenAI, models are exposed through a resource allocation
called a deployment. Deployments wrap a model, such as GPT-4, and provide
access to the resource. Figure A.5 shows an example of various models being
exposed through deployments.

3 Click the Create New Deployment button to create a new deployment, and then
select the model you want to deploy.

 

Click the Copy button to copy
the key to the clipboard.

Make sure to save the
key right away.

Click to create the key.

Figure A.4 Copying and pasting the key to a well-known safe location
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4 After the model is wrapped in a deployment, you must access the parent Azure
OpenAI resource. From there, you can access the key, endpoint, or base URL
needed to configure your connection, as shown in figure A.6.

Again, if you get stuck, the Microsoft documentation can guide you in the right direc-
tion. The three critical differences to remember when connecting to a resource such
as Azure OpenAI Studio or another LLM using the OpenAI tooling are listed here:

 The api key to access the model
 The base url or endpoint where the model is located
 The name of the model or deployment name

If you can’t access a model for whatever reason, a good alternative is open source
models. Setting up and consuming open source LLMs is covered in chapter 2. 

Deployment name is the name
referenced as the model name.

OpenAI model
name

Other resource
information

Figure A.5 Deploying a model through an Azure OpenAI Studio deployment
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Click to copy, and then
paste the keys as needed.

The base URL for
the model service

Other resource
information



appendix B
Python development

environment

While this book assumes readers are experienced Python developers, this could
mean many different things. In this appendix, we look at configuring a Python
development environment that will function with the code examples in this book.
You can use other integrated development environments (IDEs), but not all tool-
ing, especially extensions, will work in all IDEs.

B.1 Downloading the source code
To download and run the source code, install Git, and then pull the repository
locally. Here are the high-level steps to pull the code from the book’s GitHub
repository:

1 Install Git if you need to. Git can be installed from multiple sources, but a
good option is the main release, found here: https://git-scm.com/down-
loads. Follow the instructions to download and install the tool for your oper-
ating system.

2 Open a terminal in a folder you want to download the source to, and then
enter the following command:

git clone https://github.com/cxbxmxcx/GPT-Agents.git

3 After the code is downloaded, you can begin by opening the chapter folder
that you’re working on in Visual Studio Code (VS Code). If you need to
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install VS Code or understand how to load a chapter folder as a workspace, con-
sult section B.5 in this appendix.

B.2 Installing Python
Python is provided through different versions and deployments. This book relies on
the standard Python installation, version 3.10. Anaconda is another deployment of
Python that is very popular and could be used. However, all the material in this book
has been run and tested with a Python 3.10 virtual environment:

1 Go to www.python.org/downloads/.
2 Locate and download the latest release of Python 3.10 for your operating system.
3 Install the release on your machine using the instructions for your operating

system.
4 To confirm your installation, open a terminal, and execute the following

command:

python –-version

The version should be 3.10, but if it isn’t, don't worry. You may have multiple Python
versions installed. We’ll also confirm the installation when setting up VS Code.

B.3 Installing VS Code
Installing VS Code is relatively straightforward and can be done in just a few steps:

1 Go to https://code.visualstudio.com.
2 Download a stable release of VS Code for your operating system.
3 After the release is downloaded, follow the installation instructions for your

operating system.
4 Launch VS Code for your operating system, and make sure no warnings or

errors appear. If you encounter problems, try to restart your computer and/or
reinstall.

With VS Code running, we can install the necessary extensions. We’ll cover those
extensions next.

B.4 Installing VS Code Python extensions
Thousands of extensions for VS Code can provide an excellent Python coding envi-
ronment. The recommended ones are only the start of what you can explore inde-
pendently. Beware, though, that not all extensions are created equally. When installing
new extensions, look at the number of installs and ratings. Extensions with fewer than
four stars are generally to be avoided. To install the extensions, follow these steps:

 

https://www.python.org/downloads/
https://code.visualstudio.com/
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1 Launch VS Code, and open the Extensions panel, as shown in figure B.1.

2 Install the following list of extensions:
– Python, for environment and language support
– Python Extension Pack, for covering other extensions
– Python Environment Manager, for managing environments
– Python Indent, for code formatting
– Flake8, for code formatting/linting
– Prompt Flow, for testing LLM prompts
– Semantic Kernel Tools, for working with the Semantic Kernel framework
– Docker, for managing Docker containers
– Dev Containers, for running development environments with containers

You’ll only need to install the extensions for each VS Code environment you’re run-
ning. Typically, this will mean installing for just your operating system installation of
VS Code. However, if you run VS Code in containers, you must install extensions for
each container you’re running. Working with Python in the Dev Containers extension
will be covered later in this appendix.

Open the
Extensions panel. Select the

extensions.

Enter your search term.

Click the Install
button to install.

Figure B.1 Installing VS Code extensions
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B.5 Creating a new Python environment with VS Code
When developing Python projects, you often want to create isolated virtual environ-
ments. This will help in managing multiple package dependencies across various tasks
and tools. In this book, it’s recommended that a new virtual environment be created
for each new chapter. VS Code can help you create and manage multiple Python envi-
ronments quickly and efficiently via the following steps:

1 Press Ctrl-Shift-P (Cmd-Shift-P) to open the command panel, and select Python:
Create Environment, as shown in figure B.2.

2 Select the environment type, either Venv or Conda. This book demonstrates
Venv but Conda should also work.

Open the command panel (Ctrl-Shift-P, Cmd-Shift-P)

Select to create a new environment.

Use the Refresh button if your installation is shown.

Check the requirements.txt file, which should
contain all the dependencies for the chapter.

Select the installation. This list should reflect
the Python versions you have installed.

Select the type of environment. The
instructions in this book use an .venv
environment, but Conda should work
just as well.

Figure B.2 The steps to set up the virtual environment for a chapter
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3 Select the Python installation. The code in this book has been run with Python
3.10 at a minimum. The agent tools and frameworks featured in this book are
cutting edge, so they should support later versions of Python.

4 Check that the requirements.txt file in the chapter folder is selected. This will
install all the requirements for the current chapter.

You should complete these steps for each new chapter of the book. The alternative is
to use VS Code development containers, which will be covered in the next section.

B.6 Using VS Code Dev Containers (Docker)
When working with advanced agents and agents that can generate and execute
code, running them in isolated containers is generally recommended. Container
isolation prevents operating system disruption or corruption and provides a base for
deploying agents.

 Getting familiar with containers and platforms such as Docker can be an extensive
undertaking to grasp everything. Fortunately, it takes very little knowledge to start
using containers, and VS Code extensions make this even more accessible.

 You’ll first need to install a container toolset. Docker is free (provided you use the
tool as a hobby or you’re a student) and the most accessible. Follow these instructions
to install Docker and get started working with containers:

1 Go to the Docker Desktop download page at www.docker.com/products/
docker-desktop.

2 Download and install Docker for your operating system. Follow any other
instructions as requested.

3 Launch the Docker desktop application. Completing this step will confirm you
have Docker installed and working as expected.

4 Open VS Code, and confirm that the Docker extensions listed in section 1.4 are
installed.

With Docker and VS Code configured, you can move on to using Dev Containers by
following these steps:

1 Open a new instance of VS Code.
2 Select to open a remote window, as shown in figure B.3. 
3 Select Open Folder in Container to start a container from a folder, or select

New Dev Container to start without a folder.
After the container is launched, your VS Code environment will be con-

nected. This allows you to develop code on the container without worrying about
dependencies not working.

https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
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Select Open Folder
in Container.

Select Open
Remote Window.

Figure B.3 Opening a remote window to a container in VS Code
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The difference between iterative and planned execution

Single prompt as a goal:
search Wikipedia for topic, return
the top page, and save to a file.

Sequential execution of a goal

Single prompt as a goal:
search Wikipedia for topic, return
the top page, and save to a file.

Iterative execution of a goal

Tasks/plan

Returns a list of page IDs

search_wikipedia(topic)

Returns the page content

get_wikipedia_page(page_id)

Collects pages

save_ file

All pages combined

In a planner, this
aggregation is
performed
internally.

All tasks are
performed
internally by
the agent.

User submits a goal.

search_wikipedia(topic)

Results are displayed, and the
agent asks to continue to the

next step.

Returns a list of page IDs

get_wikipedia_page(page_id)

User responds
with continue.

Returns are collected and
displayed to the user. The agent

asks for further continuation.

Returns the page content

save_ file

All pages combined User responds
with continue.

Goal is complete, and user has the output.

Iterative
execution
is default
behavior
for an LLM.

Sequential
(planned)
execution is
standard in
GPT
Assistants
and Claude.
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